JP2017066499A - Plating resin composition, and plating molding - Google Patents

Plating resin composition, and plating molding Download PDF

Info

Publication number
JP2017066499A
JP2017066499A JP2015196513A JP2015196513A JP2017066499A JP 2017066499 A JP2017066499 A JP 2017066499A JP 2015196513 A JP2015196513 A JP 2015196513A JP 2015196513 A JP2015196513 A JP 2015196513A JP 2017066499 A JP2017066499 A JP 2017066499A
Authority
JP
Japan
Prior art keywords
plating
rubber
resin composition
plated
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015196513A
Other languages
Japanese (ja)
Inventor
文敏 武田
Fumitoshi Takeda
文敏 武田
隆祥 藤原
Takayoshi Fujiwara
隆祥 藤原
なな 松本
Nana Matsumoto
なな 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2015196513A priority Critical patent/JP2017066499A/en
Publication of JP2017066499A publication Critical patent/JP2017066499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plating rubber-reinforced styrene resin composition excellent in a plating appearance after a cold heat cycle, and a plated molding.SOLUTION: A plating rubber-reinforced styrene composition or a flat plate molding (length×width×thickness=100 mm×50 mm×3 mm) obtained by molding the plating rubber-reinforced styrene composition is plated. After this, 10 cycles are repeated by exemplifying 1 cycle by one hour of-30°C, 30 minutes of → 23°C, 1 hour of 80°C, and 1 hour of 23°C repeatedly is characterized in that the point is 1 or less when the plated molding surface is evaluated in the following manner: (1) a point is applied according to the size of the bulging portion of the plated film. The maximum one longer side of one bulging portion is 1 cm or more: the maximum longer side of one portion of the bulging portion is 1 cm or more: the maximum longer side of one portion of 2 points is less than 1 cm: no one point bulging portion; 0 point; (2) The point is decided at the bulging portion of all plating films; and (3) The points are aggregated.SELECTED DRAWING: None

Description

本発明は、冷熱サイクルめっき外観の良好なめっき用ゴム強化スチレン系樹脂組成物及びめっき成形品に関する。また、本発明は、該めっき成形品のめっき外観を改善する方法に関する。 TECHNICAL FIELD The present invention relates to a rubber-reinforced styrene-based resin composition for plating and a plated molded article having a good appearance in cold cycle plating. The present invention also relates to a method for improving the plating appearance of the plated molded article.

ABS樹脂は、耐衝撃性、耐熱性、加工性に優れることより、自動車部品、家庭電化製品、事務機器部品をはじめとする多様な用途に使用されている。特に自動車部品等にはめっきを施して使用する例が多い。このようなめっき処理工程は、一般に脱脂、化学エッチング、中和、触媒付与、活性化、無電解めっき、酸活性、電気めっきの工程からなる。化学エッチングに使用する溶剤としては一般に無水クロム酸−濃硫酸混合液が用いられ、樹脂成形品の表面を粗化する事によってめっき下地に適した微細な凹凸を形成し、樹脂とめっきした金属膜との間に良好な密着性を付加することができる。 ABS resin is used in various applications including automobile parts, home appliances, and office equipment parts because of its excellent impact resistance, heat resistance, and workability. In particular, there are many examples in which automobile parts are used after being plated. Such a plating process generally comprises steps of degreasing, chemical etching, neutralization, catalyst application, activation, electroless plating, acid activation, and electroplating. As a solvent used for chemical etching, a mixed chromic anhydride-concentrated sulfuric acid solution is generally used. By roughening the surface of the resin molded product, fine irregularities suitable for the plating base are formed, and the metal film plated with the resin Good adhesion can be added between the two.

近年、軽量化などの観点からめっき利用部位の大型化さらには複雑なデザインが求められている。それに伴いめっき密着強度に関しては、これまでにない高いめっき密着強度の要求があり、さらには複雑なデザイン化に伴いめっき外観不良が多発する問題が挙がっている。 In recent years, from the viewpoint of weight reduction and the like, an increase in the size of a plating application site and a complicated design have been demanded. Along with this, with respect to plating adhesion strength, there has been a demand for higher plating adhesion strength than ever before, and there has been a problem that plating appearance defects frequently occur with complicated design.

めっき密着強度を向上させる方法として、特許文献1には、樹脂素材をオゾンガスで前処理して、その後無電解めっき処理する方法が開示されており、さらに、特許文献2には、不飽和結合を有する樹脂素材を無電解めっき処理するにあたり、該樹脂素材に紫外線を照射する紫外線処理を行う方法が開示されている。しかしながら、良好なめっき密着強度が得られても、温度変動の激しい環境下で、良好なめっき外観(以下、「冷熱サイクル後のめっき外観」と呼ぶ)を維持できるかについては、いまだ不十分なものである。   As a method for improving the plating adhesion strength, Patent Document 1 discloses a method of pre-treating a resin material with ozone gas, and then performing electroless plating treatment. Further, Patent Document 2 discloses an unsaturated bond. In the electroless plating treatment of the resin material having, there is disclosed a method of performing an ultraviolet treatment that irradiates the resin material with ultraviolet rays. However, even if good plating adhesion strength is obtained, it is still insufficient as to whether a good plating appearance (hereinafter referred to as “plating appearance after cooling cycle”) can be maintained in an environment where temperature fluctuation is severe. Is.

特開平01−092377号公報Japanese Unexamined Patent Publication No. 01-092377

特開2004−263224号公報JP 2004-263224 A

本発明の目的は、冷熱サイクル後のめっき外観の良好なめっき用ゴム強化スチレン系樹脂組成物及びめっき成形品を提供することにある。さらに、本発明の目的は、めっき成形品のめっき外観を改善する方法を提供することにある。 An object of the present invention is to provide a rubber-reinforced styrene-based resin composition for plating and a plated molded article having a good plating appearance after a thermal cycle. Furthermore, the objective of this invention is providing the method of improving the plating external appearance of a plating molded product.

すなわち、めっき用ゴム強化スチレン系樹脂組成物であって、該ゴム強化スチレン系樹脂組成物を成形して得られる平板成形品(縦×横×厚み=100mm×50mm×3mm)をめっき処理した後、−30℃で1時間→23℃で30分→80℃で1時間→23℃で1時間を1サイクルとして10サイクル繰り返し、めっき成形品表面を下記のように評価した際、ポイントが1ポイント以下であることを特徴とするめっき用ゴム強化スチレン系樹脂組成物を提供する。
(1)めっき膜の膨れ箇所の大きさによってポイントをつける。
膨れ部1か所の最大長辺が1cm以上:2ポイント
膨れ部1か所の最大長辺が1cm未満:1ポイント
膨れ部なし:0ポイント
(2)すべてのめっき膜の膨れ箇所においてポイントを判定する。
(3)ポイントを合算する。
That is, after plating a rubber-reinforced styrene-based resin composition for plating, which is obtained by molding the rubber-reinforced styrene-based resin composition (length × width × thickness = 100 mm × 50 mm × 3 mm) 1 hour at −30 ° C. → 30 minutes at 23 ° C. → 1 hour at 80 ° C. → 1 hour at 23 ° C. is repeated 10 cycles, and when the surface of the plated product is evaluated as follows, the point is 1 point Provided is a rubber-reinforced styrene-based resin composition for plating characterized by the following.
(1) A point is given according to the size of the swelling portion of the plating film.
The maximum long side of one bulging part is 1 cm or more: 2 points The maximum long side of one bulging part is less than 1 cm: 1 point
No swelling portion: 0 points (2) Points are determined at the swelling locations of all plating films.
(3) Sum the points.

また、本発明は、上記めっき用ゴム強化スチレン系樹脂組成物を用いためっき成形品も提供する。   The present invention also provides a plated product using the rubber-reinforced styrene resin composition for plating.

上記めっき成形品では、めっき成形品において、厚み10nm以上である触媒吸着層の領域が、70%以上有することを好ましく、めっき成形品において、厚み15nm以上である触媒吸着層の領域が、70%以上有することがさらに好ましい。   In the plated molded article, the area of the catalyst adsorption layer having a thickness of 10 nm or more is preferably 70% or more in the plated molded article, and the area of the catalyst adsorption layer having a thickness of 15 nm or more in the plated molded article is 70%. It is more preferable to have the above.

さらに、本発明は、めっき成形品のめっき外観を改善する方法を提供する。   Furthermore, the present invention provides a method for improving the plating appearance of a plated molded article.

本発明によれば、冷熱サイクル後のめっき外観に優れるめっき用ゴム強化スチレン系樹脂組成物及びめっき成形品を提供することができる。また、めっき成形品のめっき外観を改善する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the rubber reinforcement | strengthening styrene-type resin composition for plating and plating molded article which are excellent in the plating external appearance after a thermal cycle can be provided. Moreover, the method of improving the plating external appearance of a plating molded product can be provided.

以下、本発明につき詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明にて使用されるめっき用ゴム強化スチレン系樹脂組成物とは、ゴム状重合体に芳香族ビニル系単量体と芳香族ビニル系単量体と共重合可能なビニル系単量体をグラフト重合してなるグラフト共重合体(A)または該グラフト共重合体(A)と芳香族ビニル系単量体と芳香族ビニル系単量体と共重合可能なビニル系単量体を重合してなる共重合体(R)を含む混合物である。   The rubber-reinforced styrene resin composition for plating used in the present invention is a rubber-like polymer comprising an aromatic vinyl monomer and a vinyl monomer copolymerizable with an aromatic vinyl monomer. A graft copolymer (A) obtained by graft polymerization or the graft copolymer (A), an aromatic vinyl monomer, and a vinyl monomer copolymerizable with the aromatic vinyl monomer are polymerized. Is a mixture containing the copolymer (R).

グラフト共重合体(A)を構成するゴム状重合体としては、ポリブタジエン、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム等の共役ジエン系ゴム、エチレン−プロピレンゴム、エチレン−プロピレン−非共役ジエン系ゴム等のエチレン−プロピレン系ゴム、ポリブチルアクリレート等のアクリル酸エステル系ゴム、ポリオルガノシロキサン系ゴム等、さらにはこれらの二種以上のゴムからなる複合ゴムを挙げることが出来る。これらのうち、特に共役ジエン系ゴムが好ましい。   Examples of the rubbery polymer constituting the graft copolymer (A) include conjugated diene rubbers such as polybutadiene, styrene-butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene rubber, ethylene-propylene-nonconjugated diene rubber, and the like. Examples thereof include ethylene-propylene rubbers, acrylic ester rubbers such as polybutyl acrylate, polyorganosiloxane rubbers, and composite rubbers composed of two or more of these rubbers. Of these, conjugated diene rubbers are particularly preferable.

ゴム状重合体の重量平均粒子径に特に制限はないが、耐衝撃性、流動性及び発色性などの物性バランスから、0.01〜2.0μmが好ましく、0.1〜1.0μmがより好ましい。また、重量平均粒子径が0.05〜0.3μmのゴム状重合体を凝集肥大化させることで調整することもできる。   Although there is no restriction | limiting in particular in the weight average particle diameter of a rubber-like polymer, 0.01-2.0 micrometers is preferable from a physical property balance, such as impact resistance, fluidity | liquidity, and color development property, and 0.1-1.0 micrometer is more. preferable. Moreover, it can also adjust by agglomerating and enlarging the rubber-like polymer whose weight average particle diameter is 0.05-0.3 micrometer.

本発明のグラフト共重合体(A)は、上述のゴム状重合体の存在下に、芳香族ビニル系単量体と芳香族ビニル系単量体と共重合可能なビニル系単量体をグラフト重合して得られる。   The graft copolymer (A) of the present invention grafts an aromatic vinyl monomer and a vinyl monomer copolymerizable with the aromatic vinyl monomer in the presence of the rubber-like polymer described above. Obtained by polymerization.

グラフト共重合体(A)を構成する芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられ、一種又は二種以上用いることができる。特にスチレン、α−メチルスチレンが好ましい。   Examples of the aromatic vinyl monomer constituting the graft copolymer (A) include styrene, α-methylstyrene, paramethylstyrene, bromostyrene, and the like, and one or more of them can be used. In particular, styrene and α-methylstyrene are preferable.

グラフト共重合体(A)を構成する芳香族ビニル系単量体と共重合可能なビニル系単量体として、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体、マレイミド系単量体、アミド系単量体、不飽和カルボン酸単量体等が挙げられ、1種又は2種以上用いることができる。シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等が例示でき、(メタ)アクリル酸エステル系単量体としては(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、アクリル酸2−エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸4−t−ブチルフェニル、(メタ)アクリル酸(ジ)ブロモフェニル、(メタ)アクリル酸クロルフェニル等が例示でき、マレイミド系単量体としてはN−フェニルマレイミド、N−シクロヘキシルマレイミド等が例示でき、アミド系単量体としてはアクリルアミド、メタクリルアミド等が例示でき、不飽和カルボン酸単量体としてはアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等が例示できる。   As a vinyl monomer copolymerizable with the aromatic vinyl monomer constituting the graft copolymer (A), a vinyl cyanide monomer, a (meth) acrylic acid ester monomer, a maleimide monomer A monomer, an amide-type monomer, an unsaturated carboxylic acid monomer, etc. are mentioned, It can use 1 type (s) or 2 or more types. Examples of vinyl cyanide monomers include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile, and examples of (meth) acrylic acid ester monomers include methyl (meth) acrylate and (meth) acrylic acid. Ethyl, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, phenyl (meth) acrylate, 4-tert-butylphenyl (meth) acrylate, (di) bromo (meth) acrylate Examples thereof include phenyl and chlorophenyl (meth) acrylate, examples of the maleimide monomer include N-phenylmaleimide and N-cyclohexylmaleimide, and examples of the amide monomer include acrylamide and methacrylamide. Unsaturated carboxylic acid monomers include acrylic acid and methacrylic acid Maleic acid, fumaric acid, and itaconic acid can be exemplified.

ゴム状重合体にグラフト重合される、上述の単量体の組成比率に特に制限はないが、芳香族ビニル系単量体60〜90重量%、シアン化ビニル系単量体10〜40重量%及びその他の単量体0〜30重量%の組成比率、芳香族ビニル系単量体30〜80重量%、(メタ)アクリル酸エステル系単量体20〜70重量%及び共重合可能な他のビニル系単量体0〜50重量%の組成比率、芳香族ビニル系単量体20〜70重量%、(メタ)アクリル酸エステル系単量体20〜70重量%、シアン化ビニル系単量体10〜60重量%及び共重合可能な他のビニル系単量体0〜50重量%の組成比率であることが好ましい(ゴム状重合体にグラフト重合される単量体合計量を100重量%とする)。   There is no particular limitation on the composition ratio of the above-mentioned monomer graft-polymerized on the rubber-like polymer, but aromatic vinyl monomer 60 to 90% by weight, vinyl cyanide monomer 10 to 40% by weight Composition ratio of 0 to 30% by weight of other monomers, 30 to 80% by weight of aromatic vinyl monomers, 20 to 70% by weight of (meth) acrylate monomers and other copolymerizable monomers Composition ratio of 0 to 50% by weight of vinyl monomer, 20 to 70% by weight of aromatic vinyl monomer, 20 to 70% by weight of (meth) acrylate monomer, vinyl cyanide monomer The composition ratio is preferably from 10 to 60% by weight and from 0 to 50% by weight of another copolymerizable vinyl monomer (the total amount of monomers grafted onto the rubbery polymer is 100% by weight). To do).

グラフト共重合体(A)のグラフト率及びアセトン可溶分の重量平均分子量は下記のように求めることができ、耐衝撃性、流動性及び発色性などの物性バランスの観点から、グラフト率は10〜150%であることが好ましく、20〜100%がより好ましい。耐衝撃性、流動性などの物性バランスの観点から、アセトン可溶部の重量平均分子量は5〜20万であることが好ましい。
グラフト率(%)=(X―Y)/Y×100
X:グラフト共重合体のアセトン不溶分量
Y:グラフト共重合体中のゴム状重合体量
アセトン可溶分の重量平均分子量
アセトン可溶部をメタノールに沈殿させポリマーを得た後、テトラヒドロフランに溶解させ液体クロマトグラフィーを用いて測定する。分子量既知のポリスチレンを標準液として重量平均分子量(Mw)を求める。
The graft ratio of the graft copolymer (A) and the weight average molecular weight of the acetone-soluble component can be determined as follows. From the viewpoint of balance of physical properties such as impact resistance, fluidity and color development, the graft ratio is 10 It is preferably ˜150%, more preferably 20 to 100%. From the viewpoint of balance of physical properties such as impact resistance and fluidity, the acetone-soluble part preferably has a weight average molecular weight of 50,000 to 200,000.
Graft rate (%) = (XY) / Y × 100
X: Acetone-insoluble amount of graft copolymer Y: Amount of rubbery polymer in graft copolymer
Weight average molecular weight of acetone-soluble matter An acetone-soluble part is precipitated in methanol to obtain a polymer, and then dissolved in tetrahydrofuran and measured using liquid chromatography. The weight average molecular weight (Mw) is determined using polystyrene having a known molecular weight as a standard solution.

共重合体(R)を構成する芳香族ビニル系単量体および芳香族ビニル系単量体と共重合可能なビニル系単量体としては、前述したグラフト共重合体(A)で例示したものと同様の単量体が挙げられる。   Examples of the aromatic vinyl monomer composing the copolymer (R) and the vinyl monomer copolymerizable with the aromatic vinyl monomer are those exemplified for the graft copolymer (A) described above. And the same monomers.

共重合体(R)を構成する単量体の組成比率に特に制限はないが、好ましい組成比率として前述したグラフト共重合体(A)で例示したものと同様の組成比率が挙げられる。   Although there is no restriction | limiting in particular in the composition ratio of the monomer which comprises a copolymer (R), The composition ratio similar to what was illustrated by the graft copolymer (A) mentioned above as a preferable composition ratio is mentioned.

共重合体(R)の重量平均分子量は下記のように求めることができ、耐衝撃性、流動性などの物性バランスの観点から、5〜20万であることが好ましい。
重量平均分子量
テトラヒドロフランに溶解させ液体クロマトグラフィーを用いて測定する。分子量既知のポリスチレンを標準液として重量平均分子量(Mw)を求める。
The weight average molecular weight of the copolymer (R) can be determined as follows, and is preferably 5 to 200,000 from the viewpoint of balance of physical properties such as impact resistance and fluidity.
The weight average molecular weight is dissolved in tetrahydrofuran and measured using liquid chromatography. The weight average molecular weight (Mw) is determined using polystyrene having a known molecular weight as a standard solution.

上記ゴム強化スチレン系樹脂組成物を構成するグラフト共重合体(A)および共重合体(R)の重合方法には特に制限はなく、例えば乳化重合法、懸濁重合法、溶液重合法、塊状重合法およびこれらを組み合わせた方法により製造することができる。   The polymerization method of the graft copolymer (A) and the copolymer (R) constituting the rubber-reinforced styrene resin composition is not particularly limited, and for example, emulsion polymerization method, suspension polymerization method, solution polymerization method, block shape It can be produced by a polymerization method or a combination of these methods.

上記ゴム強化スチレン系樹脂組成物には、他の熱可塑性樹脂組成物を混合することもできる。このような他の熱可塑性樹脂として、例えば、ポリメチルメタクリレートなどのアクリル系樹脂、ポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリ乳酸樹脂等を使用することができる。   Other thermoplastic resin compositions can also be mixed with the rubber-reinforced styrene resin composition. Examples of such other thermoplastic resins that can be used include acrylic resins such as polymethyl methacrylate, polycarbonate resins, polybutylene terephthalate resins, polyethylene terephthalate resins, polyamide resins, and polylactic acid resins.

さらに、上記ゴム強化スチレン系樹脂組成物には、ヒンダードアミン系の光安定剤、ヒンダードフェノール系、含硫黄有機化合物系、含リン有機化合物系等の酸化防止剤、フェノール系、アクリレート系等の熱安定剤、ベンゾエート系、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系の紫外線吸収剤、有機ニッケル系、高級脂肪酸アミド類等の滑剤、リン酸エステル類等の可塑剤、ポリブロモフェニルエーテル、テトラブロモビスフェノール−A、臭素化エポキシオリゴマー、臭素化等の含ハロゲン系化合物、リン系化合物、三酸化アンチモン等の難燃剤・難燃助剤、臭気マスキング剤、カーボンブラック、酸化チタン、顔料、及び染料等を添加することもできる。更に、タルク、炭酸カルシウム、水酸化アルミニウム、ガラス繊維、ガラスフレーク、ガラスビーズ、炭素繊維、金属繊維等の補強剤や充填剤を添加することもできる。   Further, the rubber-reinforced styrene-based resin composition includes a hindered amine light stabilizer, a hindered phenol-based, a sulfur-containing organic compound-based, a phosphorus-containing organic compound-based antioxidant, a phenol-based, an acrylate-based, etc. Stabilizers, benzoate, benzotriazole, benzophenone, salicylate UV absorbers, organic nickel, lubricants such as higher fatty acid amides, plasticizers such as phosphate esters, polybromophenyl ether, tetrabromobisphenol A, brominated epoxy oligomers, halogenated compounds such as brominated compounds, phosphorus compounds, flame retardants and flame retardants such as antimony trioxide, odor masking agents, carbon black, titanium oxide, pigments, and dyes You can also Furthermore, reinforcing agents and fillers such as talc, calcium carbonate, aluminum hydroxide, glass fiber, glass flake, glass bead, carbon fiber, and metal fiber can be added.

上記ゴム強化スチレン系樹脂組成物を含有する樹脂の混合は、通常使用されるロール、バンバリーミキサー、押出機、ニーダー等公知の方法で実施できる。   The mixing of the resin containing the rubber-reinforced styrene resin composition can be performed by a known method such as a commonly used roll, Banbury mixer, extruder, kneader.

このようにして得られたゴム強化スチレン系樹脂組成物は、射出成形、押出成形、圧縮成形、射出圧縮成形、ブロー成形等により成形され、得られた樹脂成形品は、公知のめっき方法、例えば通常のABS樹脂のメッキ条件と同様の条件にてめっき加工することができる。   The rubber-reinforced styrene-based resin composition thus obtained is molded by injection molding, extrusion molding, compression molding, injection compression molding, blow molding, etc., and the resulting resin molded product is obtained by a known plating method, for example, Plating can be performed under the same conditions as plating conditions for ordinary ABS resin.

本発明のめっき用ゴム強化スチレン系樹脂組成物は、該ゴム強化スチレン系樹脂組成物を成形して得られる平板成形品(縦×横×厚み=100mm×50mm×3mm)をめっき処理した後、−30℃で1時間→23℃で30分→80℃で1時間→23℃で1時間を1サイクルとして10サイクル繰り返し(以後、「冷熱サイクル」と呼ぶ)、めっき成形品表面を下記のように評価した際、ポイントが1以下であるめっき用ゴム強化スチレン系樹脂組成物である。ポイントが1を超えると、冷熱サイクル後のめっき外観が劣る。
(1)めっき膜の膨れ箇所の大きさによってポイントをつける。
膨れ部1か所の最大長辺が1cm以上:2ポイント
膨れ部1か所の最大長辺が1cm未満:1ポイント
膨れ部なし:0ポイント
(2)すべてのめっき膜の膨れ箇所においてポイントを判定する。
(3)ポイントを合算する。
The plating rubber-reinforced styrene-based resin composition of the present invention is obtained by plating a flat plate product (vertical × horizontal × thickness = 100 mm × 50 mm × 3 mm) obtained by molding the rubber-reinforced styrene-based resin composition, 1 hour at -30 ° C. → 30 minutes at 23 ° C. → 1 hour at 80 ° C. → 1 hour at 23 ° C. is repeated 10 cycles (hereinafter referred to as “cooling cycle”). It is a rubber-reinforced styrene-based resin composition for plating having a point of 1 or less when evaluated. If the point exceeds 1, the appearance of plating after the cooling and heating cycle is inferior.
(1) A point is given according to the size of the swelling portion of the plating film.
The maximum long side of one bulging part is 1 cm or more: 2 points The maximum long side of one bulging part is less than 1 cm: 1 point
No swelling portion: 0 points (2) Points are determined at the swelling locations of all plating films.
(3) Sum the points.

ポイントを1以下にするためには、めっき成形品において、厚み10nm以上である触媒吸着層の領域が、70%以上有することが好ましく、めっき成形品において、厚み15nm以上である触媒吸着層の領域が、70%以上有することがさらに好ましい。成形品において、厚み10nm以上である触媒吸着層の領域が、70%未満では冷熱サイクル後のめっき外観が劣る傾向にある。また、触媒吸着層の上限に関しては、厚いほど好ましいが、パラジウムのコストおよび触媒効率の観点から40nm未満が好ましい。   In order to make the point 1 or less, the area of the catalyst adsorption layer having a thickness of 10 nm or more in the plated molded article is preferably 70% or more, and the area of the catalyst adsorption layer having a thickness of 15 nm or more in the plating molded article. Is more preferably 70% or more. In the molded product, when the area of the catalyst adsorption layer having a thickness of 10 nm or more is less than 70%, the plating appearance after the cooling and heating cycle tends to be inferior. The upper limit of the catalyst adsorption layer is preferably as thick as possible, but is preferably less than 40 nm from the viewpoint of palladium cost and catalyst efficiency.

めっき処理工程は、一般的に、脱脂、化学エッチング、中和、触媒付与、活性化、無電解めっき、酸活性、電気めっきの工程からなり、触媒付与工程でパラジウムやスズが使用される。触媒であるパラジウムやスズが樹脂表面に吸着することにより、金属イオンが金属として析出し、金属被膜(以下めっき層と呼ぶ)を形成する。つまり、触媒吸着層とは、上記の触媒付与工程で形成されるパラジウム、スズなどが存在する層のことを意味する。   The plating process generally includes degreasing, chemical etching, neutralization, catalyst application, activation, electroless plating, acid activity, and electroplating processes, and palladium or tin is used in the catalyst application process. When the catalyst palladium or tin is adsorbed on the resin surface, the metal ions are precipitated as a metal to form a metal coating (hereinafter referred to as a plating layer). That is, the catalyst adsorption layer means a layer in which palladium, tin or the like formed in the catalyst application step is present.

めっき成形品において、厚み10nm以上である触媒吸着層の領域を増加させる方法としては、樹脂成形品に使用するゴム強化スチレン系樹脂組成物中のゴム状重合体含有量の増加、グラフト共重合体(A)及び共重合体(R)を構成するシアン化ビニル系単量体含有量の増加、及びアセトン可溶部の重量平均分子量を増加する方法が挙げられ、諸物性とのバランスの観点から、好ましい範囲があり、下記段落に説明する。また、触媒付与工程における処理時間や処理液のパラジウム濃度による調整も挙げられる。   As a method for increasing the area of the catalyst adsorption layer having a thickness of 10 nm or more in the plated molded product, an increase in the content of the rubbery polymer in the rubber-reinforced styrene resin composition used in the resin molded product, a graft copolymer (A) and the method of increasing the weight average molecular weight of an acetone soluble part, and the increase of vinyl cyanide-type monomer content which comprises a copolymer (R) are mentioned from a viewpoint of balance with various physical properties. There is a preferable range, which will be described in the following paragraph. Moreover, the adjustment by the treatment time in a catalyst provision process and the palladium concentration of a process liquid is also mentioned.

ゴム強化スチレン系樹脂組成物中のゴム状重合体含有量は、9〜25重量%が好ましく、11〜21重量%がさらに好ましい。   The rubber-like polymer content in the rubber-reinforced styrene resin composition is preferably 9 to 25% by weight, and more preferably 11 to 21% by weight.

ゴム強化スチレン系樹脂組成物のグラフト共重合体(A)及び共重合体(R)を構成するシアン化ビニル系単量体の含有量は、20〜30重量%が好ましく、21〜29重量%がさらに好ましい。   The content of the vinyl cyanide monomer constituting the graft copolymer (A) and the copolymer (R) of the rubber-reinforced styrene resin composition is preferably 20 to 30% by weight, and 21 to 29% by weight. Is more preferable.

ゴム強化スチレン系樹脂組成物のアセトン可溶部の重量平均分子量は、8〜15万が好ましく、9〜14万がさらに好ましい。   The weight average molecular weight of the acetone soluble part of the rubber-reinforced styrene resin composition is preferably 8 to 150,000, and more preferably 9 to 140,000.

アセトン可溶部の重量平均分子量の調整方法は、特に制限はないが、重合時に使用される連鎖移動剤によって適宜調整できる。   The method for adjusting the weight average molecular weight of the acetone soluble part is not particularly limited, but can be appropriately adjusted depending on the chain transfer agent used at the time of polymerization.

以下に実施例を用いて本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。なお、実施例中にて示す部および%は重量に基づくものである。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited by these. In addition, the part and% which are shown in an Example are based on a weight.

グラフト共重合体(A−1)の製造
耐圧製の重合反応器に、重合水138部、ポリブタジエンラテックス(重量平均粒子径0.39μm)65重量部(固形分)を仕込み、窒素置換を行い、槽内を昇温し61℃に到達したところで、過硫酸カリウム0.16重量部を脱イオン水11重量部に溶解した水溶液を添加した。65℃に到達後、アクリロニトリル9.4重量部、スチレン25.6重量部及びt−ドデシルメルカプタン0.15重量部の混合液と、脱イオン水20重量部にデヒドロアビエチン酸ナトリウム1.5重量部を溶解した乳化剤水溶液を4.5時間かけて連続添加した。その後、重合転化率が98%を超えた時点で重合を終了した。その後、塩析・脱水・乾燥し、グラフト共重合体(A−1)のパウダーを得た。得られたグラフト共重合体(A−1)を下記に示す方法でグラフト率およびアセトン可溶部の重量平均分子量を測定したところ、グラフト率は37.0%、アセトン可溶部の重量平均分子量は11.6万であった。
<グラフト共重合体(A−1)のグラフト率の測定>
約2g秤量した該当グラフト共重合体(A−1)パウダーをアセトン60mLに24時間浸漬後、ガラスフィルターでアセトン不溶部とアセトン可溶部に分離する。分離したアセトン不溶部を24時間真空乾燥後、その重量を測定した。
グラフト率(%)=(X―Y)/Y×100
X:真空乾燥後のアセトン不溶部量(g)
Y:グラフト共重合体中のゴム状重合体量(g)
<グラフト共重合体(A−1)のアセトン可溶部の重量平均分子量の測定>
約1g秤量したグラフト共重合体(A−1)パウダーを試薬特級のアセトンに24時間以上浸漬する。その溶液を遠心分離機で可溶部と不溶部に分離する。遠心分離機で分離されたアセトン可溶部を試薬特級メタノールに沈殿させポリマーを得る。得られたポリマーを試薬特級テトラヒドロフランに溶解させ液体クロマトグラフィー用のサンプルを作成する。このサンプルを液体クロマトグラフィー(アジレント・テクノロジー(株)製 Agilent 1260 Infinity)を用いて、分子量既知のポリスチレンを標準液として分子量(Mw)を算出した。
Production of Graft Copolymer (A-1) In a pressure-resistant polymerization reactor, charged with 138 parts of polymerized water and 65 parts by weight of polybutadiene latex (weight average particle size 0.39 μm) (solid content), nitrogen substitution was performed, When the temperature in the tank reached 61 ° C., an aqueous solution in which 0.16 parts by weight of potassium persulfate was dissolved in 11 parts by weight of deionized water was added. After reaching 65 ° C., a mixture of 9.4 parts by weight of acrylonitrile, 25.6 parts by weight of styrene and 0.15 parts by weight of t-dodecyl mercaptan, 20 parts by weight of deionized water and 1.5 parts by weight of sodium dehydroabietate An aqueous emulsifier solution in which was dissolved was added continuously over 4.5 hours. Thereafter, the polymerization was terminated when the polymerization conversion rate exceeded 98%. Thereafter, salting out, dehydration, and drying were performed to obtain a powder of the graft copolymer (A-1). When the graft ratio and the weight average molecular weight of the acetone soluble part of the obtained graft copolymer (A-1) were measured by the following method, the graft ratio was 37.0% and the weight average molecular weight of the acetone soluble part. Was 116,000.
<Measurement of graft ratio of graft copolymer (A-1)>
About 2 g of the graft copolymer (A-1) powder weighed is immersed in 60 mL of acetone for 24 hours, and then separated into an acetone insoluble part and an acetone soluble part with a glass filter. The separated acetone insoluble part was vacuum-dried for 24 hours, and then its weight was measured.
Graft rate (%) = (XY) / Y × 100
X: Acetone insoluble part after vacuum drying (g)
Y: amount of rubbery polymer in the graft copolymer (g)
<Measurement of weight average molecular weight of acetone soluble part of graft copolymer (A-1)>
About 1 g of the graft copolymer (A-1) powder is immersed in reagent-grade acetone for at least 24 hours. The solution is separated into a soluble part and an insoluble part with a centrifuge. The acetone soluble part separated by the centrifuge is precipitated in reagent-grade methanol to obtain a polymer. The obtained polymer is dissolved in reagent-grade tetrahydrofuran to prepare a sample for liquid chromatography. This sample was subjected to liquid chromatography (Agilent 1260 Infinity manufactured by Agilent Technologies), and the molecular weight (Mw) was calculated using polystyrene with a known molecular weight as a standard solution.

共重合体(R−1)の製造
アクリルニトリルを27部、スチレンを73部、溶媒としてエチルベンゼンを10部、開始剤として1,1−ジ(t−へキシルペルオキシ)シクロへキサン(10時間半減期温度86.7℃)を0.184部、連鎖移動剤としてt−ドデシルメルカプタンを0.42部用いた混合溶液を調整し、5℃以下に冷却保存した。調整した混合溶液を反応温度118℃に保たれた容積20Lのダブルヘリカルリボン翼付きの反応器に1.52kg/hrで連続的に供給し重合を行った。共重合体を含む混合溶液を供給速度と同じ速度でポンプにより連続的に抜き出し、283℃、45torrに保たれた気液分離装置に送液することで、共重合体と未反応溶液に分離した。分離した共重合体をペレット化することで共重合体(R−1)を得た。重合が安定した時の重合率は49%であり、その重合率になったときの共重合体を物性等の評価に用いた。得られた共重合体(R−1)を下記に示す方法で重量平均分子量を測定したところ、重量平均分子量は11.61万であった。
Production of copolymer (R-1) 27 parts of acrylonitrile, 73 parts of styrene, 10 parts of ethylbenzene as a solvent, 1,1-di (t-hexylperoxy) cyclohexane as an initiator (10 hours and half) A mixed solution was prepared using 0.184 parts of the initial temperature (86.7 ° C.) and 0.42 parts of t-dodecyl mercaptan as the chain transfer agent, and stored at 5 ° C. or lower. The prepared mixed solution was continuously supplied at a rate of 1.52 kg / hr to a reactor with a double helical ribbon blade having a volume of 20 L maintained at a reaction temperature of 118 ° C. to perform polymerization. The mixed solution containing the copolymer was continuously extracted by a pump at the same rate as the supply rate, and was sent to a gas-liquid separator maintained at 283 ° C. and 45 torr to separate the copolymer and the unreacted solution. . A copolymer (R-1) was obtained by pelletizing the separated copolymer. When the polymerization was stabilized, the polymerization rate was 49%, and the copolymer when the polymerization rate was reached was used for evaluation of physical properties and the like. When the weight average molecular weight of the obtained copolymer (R-1) was measured by the method shown below, the weight average molecular weight was 111,000.

<共重合体(R−1)の重量平均分子量の測定>
約1g秤量した共重合体(R−1)パウダーを試薬特級テトラヒドロフランに溶解させ液体クロマトグラフィー用のサンプルを作成する。このサンプルを液体クロマトグラフィー(アジレント・テクノロジー(株)製 Agilent 1260 Infinity)を用いて、分子量既知のポリスチレンを標準液として分子量(Mw)を算出した。
<Measurement of weight average molecular weight of copolymer (R-1)>
About 1 g of the copolymer (R-1) powder is dissolved in reagent-grade tetrahydrofuran to prepare a sample for liquid chromatography. This sample was subjected to liquid chromatography (Agilent 1260 Infinity manufactured by Agilent Technologies), and the molecular weight (Mw) was calculated using polystyrene with a known molecular weight as a standard solution.

共重合体(R−2)〜(R−3)の製造
表1に示す原料に変更した以外は、共重合体(R−1)と同様な方法により共重合体(R−2)〜(R−3)を得た。また、得られた共重合体(R−2)〜(R−3)の重量平均分子量は、上記共重合体(R−1)と同様に測定し、結果を表1に示す。
Production of Copolymers (R-2) to (R-3) Copolymers (R-2) to (R-2) to (R-3) were produced in the same manner as the copolymer (R-1) except that the raw materials shown in Table 1 were changed. R-3) was obtained. Moreover, the weight average molecular weights of the obtained copolymers (R-2) to (R-3) were measured in the same manner as the copolymer (R-1), and the results are shown in Table 1.

〔実施例1〜6および比較例1〜3〕
グラフト共重合体(A−1)と共重合体(R−1)〜(R−3)を表2記載の配合割合で混合した後、50mm押出機(田辺精機製)を用い、シリンダー温度250℃にて溶融混練した後、ペレット化した。得られたゴム強化スチレン系樹脂ペレットを用いて、下記の方法にてアセトン可溶部の重量平均分子量(Mw)の測定を行った。また、得られたゴム強化スチレン系樹脂ペレットにつき、射出成形機にて平板試験片を作成し、冷熱サイクル後のめっき外観を評価した。
[Examples 1-6 and Comparative Examples 1-3]
After mixing the graft copolymer (A-1) and the copolymers (R-1) to (R-3) at the blending ratios shown in Table 2, a cylinder temperature of 250 is used using a 50 mm extruder (manufactured by Tanabe Seiki). After melt-kneading at 0 ° C., the mixture was pelletized. Using the rubber-reinforced styrene-based resin pellets obtained, the weight average molecular weight (Mw) of the acetone soluble part was measured by the following method. Moreover, about the obtained rubber reinforced styrene-type resin pellet, the flat plate test piece was created with the injection molding machine, and the plating external appearance after a thermal cycle was evaluated.

<アセトン可溶部の重量平均分子量(Mw)の測定>
ゴム強化スチレン系樹脂ペレット約1gを試薬特級のアセトン溶液に24時間以上浸漬する。その溶液を遠心分離機で可溶部と不溶部に分離する。遠心分離機で分離されたアセトン可溶部を試薬特級メタノールに沈殿させポリマーを得る。得られたポリマーを試薬特級テトラヒドロフランに溶解させ液体クロマトグラフィー用のサンプルを作成する。このサンプルを液体クロマトグラフィー(アジレント・テクノロジー(株)製 Agilent 1260 Infinity)を用いて、分子量既知のポリスチレンを標準液として分子量(Mw)を算出した。
<Measurement of weight average molecular weight (Mw) of acetone soluble part>
About 1 g of rubber-reinforced styrene resin pellets are immersed in a reagent grade acetone solution for at least 24 hours. The solution is separated into a soluble part and an insoluble part with a centrifuge. The acetone soluble part separated by the centrifuge is precipitated in reagent-grade methanol to obtain a polymer. The obtained polymer is dissolved in reagent-grade tetrahydrofuran to prepare a sample for liquid chromatography. This sample was subjected to liquid chromatography (Agilent 1260 Infinity manufactured by Agilent Technologies), and the molecular weight (Mw) was calculated using polystyrene with a known molecular weight as a standard solution.

射出成形機にてピンゲート金型を用いてめっき用平板成形品(縦×横×厚み=100mm×50mm×3mm)を成形し、以下の方法にてめっき処理した後、触媒吸着層の観察および冷熱サイクル後のめっき外観を測定した。また、比較例3は、めっき処理工程のキャタリスト(塩化パラジウム−塩化第一スズ−塩酸水溶液、室温×1分間)に変更した以外は、他と同様にめっき処理を行った。   After forming a flat plate product for plating (vertical x horizontal x thickness = 100 mm x 50 mm x 3 mm) using a pin gate mold with an injection molding machine, and plating with the following method, observation of the catalyst adsorption layer and cooling The appearance of plating after the cycle was measured. Moreover, the comparative example 3 performed the plating process similarly to others except having changed into the catalyst (Palladium chloride-stannic chloride-hydrochloric acid aqueous solution, room temperature x 1 minute) of the plating process.

<めっき処理法>
脱脂(界面活性剤水溶液、55℃×5分間)、エッチング(硫酸−無水クロム酸混液、67℃×10分間)、中和(塩酸水溶液、室温×2分間)、キャタリスト(塩化パラジウム−塩化第一スズ−塩酸水溶液、室温×3分間)、アクセレーター(硫酸水溶液、45℃×4分間)、無電解メッキ(硫酸ニッケル−次亜燐酸ソーダ−クエン酸ソーダを主体とするニッケルメッキ液)、電気メッキ(硫酸銅浴→硫酸ニッケル浴→無水クロム酸浴)。
<Plating method>
Degreasing (surfactant aqueous solution, 55 ° C. × 5 minutes), etching (sulfuric acid-chromic anhydride mixed solution, 67 ° C. × 10 minutes), neutralization (hydrochloric acid aqueous solution, room temperature × 2 minutes), catalyst (palladium chloride-chloride chloride) Monotin-hydrochloric acid aqueous solution, room temperature x 3 minutes), accelerator (sulfuric acid aqueous solution, 45 ° C x 4 minutes), electroless plating (nickel sulfate-sodium hypophosphite-sodium citrate nickel plating solution), electricity Plating (copper sulfate bath → nickel sulfate bath → chromic anhydride bath).

<触媒吸着層の観察>
上記で得られためっき樹脂成形品の断面をCP加工装置(クロスセクションポリスッシャ、日本電子株式会社製)を用いて研磨した後、FE−SEM(電解放出形電子銃搭載走査電子顕微鏡)のSTEM−EDS検出器を使用してパラジウムの元素マッピングを実施してパラジウムが存在する帯状の領域を触媒吸着層と規定した。さらに、装置付属の計測機能を用いて触媒吸着層の厚みを約1000nm範囲で測定し、厚み10nm以上の触媒吸着層の割合を下記より求めた。また、厚み15nm以上の触媒吸着層の割合についても同様に求めた。
割合(%)=厚み10nm以上の触媒吸着層領域の総計(nm)/全測定距離(nm)×100
<Observation of catalyst adsorption layer>
After polishing the cross section of the plated resin molded product obtained above using a CP processing apparatus (cross section polisher, manufactured by JEOL Ltd.), the FE-SEM (electron emission electron gun mounted scanning electron microscope) Elemental mapping of palladium was performed using a STEM-EDS detector to define a band-like region where palladium was present as a catalyst adsorption layer. Furthermore, the thickness of the catalyst adsorption layer was measured in the range of about 1000 nm using the measurement function attached to the apparatus, and the ratio of the catalyst adsorption layer having a thickness of 10 nm or more was determined from the following. Moreover, it calculated | required similarly about the ratio of the catalyst adsorption layer of thickness 15nm or more.
Ratio (%) = total amount of catalyst adsorption layer region having a thickness of 10 nm or more (nm) / total measurement distance (nm) × 100

<冷熱サイクル後の評価>
上記で得られためっき樹脂成形品を、−30℃で1時間→23℃で30分→80℃で1時間→23℃で1時間を1サイクルとして10サイクル繰り返し、めっき成形品表面を下記のように評価した。
(1)めっき膜の膨れ箇所の大きさによってポイントをつける。
膨れ部1か所の最大長辺が1cm以上:2ポイント
膨れ部1か所の最大長辺が1cm未満:1ポイント
膨れ部なし:0ポイント
(2)すべてのめっき膜の膨れ箇所においてポイントを判定する。
(3)ポイントの合計により冷熱サイクル後のめっき外観を評価した。
ポイント0:○(冷熱サイクル後のめっき外観が良好)
ポイント1:△(冷熱サイクル後のめっき外観が若干劣る)
ポイント2以上:×(冷熱サイクル後のめっき外観が劣る)
<Evaluation after cooling cycle>
The plated resin molded product obtained above was repeated 10 cycles with 1 cycle at −30 ° C. for 1 hour → 23 ° C. for 30 minutes → 80 ° C. for 1 hour → 23 ° C. for 1 hour. It was evaluated as follows.
(1) A point is given according to the size of the swelling portion of the plating film.
The maximum long side of one bulging part is 1 cm or more: 2 points The maximum long side of one bulging part is less than 1 cm: 1 point
No swelling portion: 0 points (2) Points are determined at the swelling locations of all plating films.
(3) The plating appearance after the cooling and heating cycle was evaluated by the total of points.
Point 0: ○ (Plating appearance after cooling cycle is good)
Point 1: △ (Plating appearance after cooling cycle is slightly inferior)
Point 2 or more: × (Plating appearance after cooling cycle is inferior)

これらの評価結果を表2に示す。
These evaluation results are shown in Table 2.

表2から明らかなように、本発明のゴム強化スチレン系樹脂組成物を使用した実施例1〜6はいずれも、冷熱サイクル後のめっき外観に優れるものが得られた。比較1〜3は、冷熱サイクル後の評価で、合計ポイントが1を超えるものであり、冷熱サイクル後のめっき外観に優れるものが得られなかった。   As is apparent from Table 2, Examples 1 to 6 using the rubber-reinforced styrene resin composition of the present invention were all excellent in plating appearance after the cooling and heating cycle. In comparisons 1 to 3, the total points exceeded 1 in the evaluation after the cooling and heating cycle, and no excellent plating appearance after the cooling and heating cycle was obtained.

上記のとおり、本発明のゴム強化スチレン系樹脂組成物およびめっき成形品は、冷熱サイクル後のめっき外観に優れるものが得られることから、温度の変動が厳しい環境下でも実用可能なメッキ成形品を提供することができる。
As described above, since the rubber-reinforced styrene-based resin composition and the plated molded product of the present invention have excellent plating appearance after the thermal cycle, a plated molded product that can be used even in an environment with severe temperature fluctuations. Can be provided.

Claims (5)

めっき用ゴム強化スチレン系樹脂組成物であって、該ゴム強化スチレン系樹脂組成物を成形して得られる平板成形品(縦×横×厚み=100mm×50mm×3mm)をめっき処理した後、−30℃で1時間→23℃で30分→80℃で1時間→23℃で1時間を1サイクルとして10サイクル繰り返し、めっき成形品表面を下記のように評価した際、合計ポイントが1ポイント以下であることを特徴とするめっき用ゴム強化スチレン系樹脂組成物。
(1)めっき膜の膨れ箇所の大きさによってポイントをつける。
膨れ部1か所の最大長辺が1cm以上:2ポイント
膨れ部1か所の最大長辺が1cm未満:1ポイント
膨れ部なし:0ポイント
(2)すべてのめっき膜の膨れ箇所においてポイントを判定する。
(3)ポイントを合算する。
It is a rubber-reinforced styrene-based resin composition for plating, and after plating a flat plate product (vertical × horizontal × thickness = 100 mm × 50 mm × 3 mm) obtained by molding the rubber-reinforced styrene-based resin composition, 1 hour at 30 ° C → 30 minutes at 23 ° C → 1 hour at 80 ° C → 1 hour at 23 ° C is repeated 10 cycles. When the surface of the plated product is evaluated as follows, the total number of points is 1 point or less. A rubber-reinforced styrene-based resin composition for plating, characterized in that
(1) A point is given according to the size of the swelling portion of the plating film.
The maximum long side of one bulging part is 1 cm or more: 2 points The maximum long side of one bulging part is less than 1 cm: 1 point
No swelling portion: 0 points (2) Points are determined at the swelling locations of all plating films.
(3) Sum the points.
請求項1に記載のめっき用ゴム強化スチレン系樹脂組成物を用いためっき成形品。   A plated molded article using the rubber-reinforced styrene-based resin composition for plating according to claim 1. めっき成形品において、厚み10nm以上である触媒吸着層の領域が、70%以上有することを特徴とする請求項2に記載のめっき成形品。   The plated molded article according to claim 2, wherein a region of the catalyst adsorption layer having a thickness of 10 nm or more has 70% or more in the plated molded article. めっき成形品において、厚み15nm以上である触媒吸着層の領域が、70%以上有することを特徴とする請求項2に記載のめっき成形品。   The plated molded article according to claim 2, wherein the area of the catalyst adsorption layer having a thickness of 15 nm or more has 70% or more in the plated molded article. 請求項3または4のいずれかに記載のめっき成形品のめっき外観を改善する方法。
The method to improve the plating external appearance of the plating molded product in any one of Claim 3 or 4.
JP2015196513A 2015-10-02 2015-10-02 Plating resin composition, and plating molding Pending JP2017066499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015196513A JP2017066499A (en) 2015-10-02 2015-10-02 Plating resin composition, and plating molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015196513A JP2017066499A (en) 2015-10-02 2015-10-02 Plating resin composition, and plating molding

Publications (1)

Publication Number Publication Date
JP2017066499A true JP2017066499A (en) 2017-04-06

Family

ID=58491816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015196513A Pending JP2017066499A (en) 2015-10-02 2015-10-02 Plating resin composition, and plating molding

Country Status (1)

Country Link
JP (1) JP2017066499A (en)

Similar Documents

Publication Publication Date Title
JP6270927B2 (en) Plating resin composition and plating molded product
JP5547793B2 (en) Thermoplastic resin composition and molded article
JP5453511B2 (en) Graft copolymer, thermoplastic resin composition, and method for producing graft copolymer
US10233320B2 (en) Thermoplastic resin composition and resin molded article
JP7186653B2 (en) Thermoplastic resin composition
JP2017066499A (en) Plating resin composition, and plating molding
JP5453512B2 (en) Graft copolymer and thermoplastic resin composition
JP5547795B2 (en) Thermoplastic resin composition and molded article
JP5547828B2 (en) Thermoplastic resin composition and extruded product
JP6850932B1 (en) Resin composition for painting
JP5457573B2 (en) Thermoplastic resin composition and molded article
JP6246304B2 (en) Thermoplastic resin composition
JP5329702B1 (en) Graft copolymer, thermoplastic resin composition, and method for producing graft copolymer
JP5786079B1 (en) Thermoplastic resin composition
JP6214939B2 (en) Thermoplastic resin composition for extrusion molding and extrusion molding
JP2013245284A (en) Thermoplastic resin composition
JP5547794B2 (en) Thermoplastic resin composition and extruded product
JP2017160353A (en) Thermoplastic resin composition and resin molding
JP2022152087A (en) Thermoplastic resin composition and method for producing the same
JP6041381B2 (en) Thermoplastic resin composition for vehicle lamp and molded product
JP2015189964A (en) thermoplastic resin composition
WO2019017476A1 (en) Thermoplastic resin composition for coating, resin molded article, and coated article
JP2022086389A (en) Thermoplastic composition for blow molding and blow-molded article
JP2014024898A (en) Thermoplastic resin composition for vehicle lighting fixture, and molded product
JP2013018949A (en) Graft copolymer and thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191217