JP6376020B2 - Thermoplastic resin composition and molded article thereof - Google Patents

Thermoplastic resin composition and molded article thereof Download PDF

Info

Publication number
JP6376020B2
JP6376020B2 JP2015068535A JP2015068535A JP6376020B2 JP 6376020 B2 JP6376020 B2 JP 6376020B2 JP 2015068535 A JP2015068535 A JP 2015068535A JP 2015068535 A JP2015068535 A JP 2015068535A JP 6376020 B2 JP6376020 B2 JP 6376020B2
Authority
JP
Japan
Prior art keywords
weight
vinyl
copolymer
parts
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015068535A
Other languages
Japanese (ja)
Other versions
JP2016188292A (en
Inventor
拓哉 柴田
拓哉 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015068535A priority Critical patent/JP6376020B2/en
Publication of JP2016188292A publication Critical patent/JP2016188292A/en
Application granted granted Critical
Publication of JP6376020B2 publication Critical patent/JP6376020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、グラフト共重合体およびビニル系共重合体を配合してなる熱可塑性樹脂組成物およびその成形品に関する。   The present invention relates to a thermoplastic resin composition obtained by blending a graft copolymer and a vinyl copolymer, and a molded article thereof.

ジエン系ゴムなどのゴム質重合体に、スチレン、α−メチルスチレンなどの芳香族ビニル系化合物、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル系化合物をグラフト共重合して得られるABS樹脂は、耐衝撃性、剛性などの機械的強度、成形性およびコストパフォーマンスなどに優れることから、家電製品、通信関連機器、一般雑貨および医療関連機器などの用途分野で幅広く利用されている。   ABS resin obtained by graft-copolymerizing aromatic vinyl compounds such as styrene and α-methylstyrene, vinyl cyanide compounds such as acrylonitrile and methacrylonitrile on rubbery polymers such as diene rubber is Since it is excellent in mechanical strength such as impact and rigidity, moldability and cost performance, it is widely used in application fields such as home appliances, communication related equipment, general goods and medical related equipment.

家電製品の一例として洗濯機用途を挙げると、近年、“ナノックス”(登録商標)、ウルトラアタックneoなどの商品名で知られる超濃縮コンパクト洗剤が広がっている。これらの超濃縮コンパクト洗剤は、従来の洗剤と比べて樹脂を劣化させやすく、洗濯機用途に用いられる樹脂材料には、これらに対する耐薬品性が求められている。また、医療関連機器用途においては、消毒用アルコールに対する耐薬品性が求められる。   As an example of home appliances, as a washing machine application, in recent years, ultra-concentrated compact detergents known under trade names such as “Nanox” (registered trademark) and Ultra Attack neo have been spreading. These ultra-concentrated compact detergents tend to deteriorate the resin as compared with conventional detergents, and resin materials used for washing machine applications are required to have chemical resistance against them. In medical-related equipment applications, chemical resistance against disinfecting alcohol is required.

これまでに、透明性、耐薬品性および色調安定性に優れた樹脂組成物として、ビニル系共重合体(A)にグラフト共重合体(B)が分散してなる熱可塑性樹脂組成物であって、この熱可塑性樹脂組成物のアセトン可溶分中に存在するアクリロニトリル単量体由来単位の3連シーケンスの割合が、前記アセトン可溶分に対し10重量%以下である熱可塑性樹脂組成物が提案されている(例えば、特許文献1参照)。しかしながら、特許文献1に開示される透明ABS樹脂は、近年求められる有機溶媒などの薬品類や洗剤、消毒用アルコールなどの溶剤に対する高い耐薬品性に対してはなお不十分であり、使用される用途が制限されているのが実情である。   Until now, as a resin composition excellent in transparency, chemical resistance and color tone stability, it has been a thermoplastic resin composition in which a graft copolymer (B) is dispersed in a vinyl copolymer (A). Thus, a thermoplastic resin composition in which the proportion of the triple sequence of acrylonitrile monomer-derived units present in the acetone-soluble component of the thermoplastic resin composition is 10% by weight or less with respect to the acetone-soluble component is obtained. It has been proposed (see, for example, Patent Document 1). However, the transparent ABS resin disclosed in Patent Document 1 is still insufficient for high chemical resistance against chemicals such as organic solvents and solvents such as detergents and alcohols for disinfection that are required in recent years. The fact is that the use is limited.

一方、ABS樹脂の耐薬品性を改善する手段としては、シアン化ビニル系化合物の含有割合を高めることが一般に知られており、例えば、芳香族ビニル系単量体10〜30重量%、不飽和カルボン酸アルキルエステル系単量体50〜85重量%およびシアン化ビニル系単量体8〜15重量%を含有するビニル系単量体混合物を重合してなるビニル系共重合体中に、ゴム質重合体の存在下に1種以上のビニル系単量体またはビニル系単量体混合物をグラフト重合してなるグラフト共重合体(B)が分散してなる熱可塑性樹脂組成物であって、この熱可塑性樹脂組成物のアセトン可溶分中に存在するアクリロニトリル単量体由来単位の3連シーケンスの割合が、前記アセトン可溶分に対し、0.001重量%以上10重量%以下である熱可塑性樹脂組成物(例えば、特許文献2参照)、芳香族ビニル系単量体10〜30重量%、不飽和カルボン酸アルキルエステル系単量体30〜80重量%、シアン化ビニル系単量体1〜10重量%を含有するビニル系単量体混合物を重合してなるビニル系共重合体と、ゴム質重合体の存在下に1種以上のビニル系単量体をグラフト重合してなるグラフト共重合体を配合してなる樹脂組成物であって、該樹脂組成物のアセトン可溶分のメチルエチルケトン中での還元粘度が0.70〜0.75dl/gである透明熱可塑性樹脂組成物(例えば、特許文献3参照)などが提案されている。   On the other hand, as means for improving the chemical resistance of ABS resin, it is generally known to increase the content of vinyl cyanide compound, for example, 10 to 30% by weight of aromatic vinyl monomer, unsaturated In a vinyl copolymer obtained by polymerizing a vinyl monomer mixture containing 50 to 85% by weight of a carboxylic acid alkyl ester monomer and 8 to 15% by weight of a vinyl cyanide monomer, A thermoplastic resin composition in which a graft copolymer (B) obtained by graft polymerization of one or more vinyl monomers or a vinyl monomer mixture in the presence of a polymer is dispersed. Thermoplastic whose ratio of triple sequence of units derived from acrylonitrile monomer present in acetone-soluble component of thermoplastic resin composition is 0.001 wt% or more and 10 wt% or less with respect to acetone-soluble component Tree Composition (see, for example, Patent Document 2), aromatic vinyl monomer 10-30% by weight, unsaturated carboxylic acid alkyl ester monomer 30-80% by weight, vinyl cyanide monomer 1-10 A vinyl copolymer obtained by polymerizing a vinyl monomer mixture containing% by weight, and a graft copolymer obtained by graft polymerizing one or more vinyl monomers in the presence of a rubbery polymer. A transparent thermoplastic resin composition (for example, patents) having a reduced viscosity of 0.70 to 0.75 dl / g in methyl ethyl ketone of an acetone-soluble component of the resin composition. Reference 3) has been proposed.

一方、ABS樹脂の塗装性、耐衝撃性および加工性を改善する手法として、重量平均分子量が250,000〜450,000であるゴム含有グラフト共重合体(A)と、芳香族ビニル単量体及びシアン化ビニル単量体を含む硬質重合体であって、重量平均分子量が100,000〜200,000でシアン化ビニル単量体を20〜30重量%を含む硬質重合体(B−I)と重量平均分子量が100,000未満でシアン化ビニル単量体を35〜50重量%含む硬質重合体(B−II)とを含む硬質重合体混合物(B)を含む熱可塑性樹脂組成物(例えば、特許文献4参照)が提案されている。また、ABS樹脂の耐衝撃性や流動性を改善する手段として、例えば、少なくとも芳香族ビニル単量体およびシアン化ビニル単量体を含む単量体混合物を共重合してなる共重合体ならびにゴム状重合体の存在下に少なくとも芳香族ビニル単量体およびシアン化ビニル単量体を含む単量体混合物をグラフト重合したグラフト共重合体を含むゴム強化熱可塑性樹脂組成物において、アセトン可溶成分総重量に対するアセトン可溶成分における分子量50,000未満の成分の割合が30重量%未満、かつ分子量250,000以上の成分の割合が5〜15重量%であり、アセトン可溶成分の重量平均分子量(Mw)と数平均分子量(Mn)との比で表された分子量分布(Mw/Mn)が1.5〜2.5の範囲にあるゴム強化熱可塑性樹脂組成物(例えば、特許文献5参照)などが提案されている。   On the other hand, as a technique for improving the paintability, impact resistance and processability of ABS resin, a rubber-containing graft copolymer (A) having a weight average molecular weight of 250,000 to 450,000 and an aromatic vinyl monomer And a hard polymer containing a vinyl cyanide monomer having a weight average molecular weight of 100,000 to 200,000 and containing 20 to 30% by weight of the vinyl cyanide monomer (BI) And a hard polymer mixture (B) comprising a hard polymer (B-II) having a weight average molecular weight of less than 100,000 and containing 35 to 50% by weight of a vinyl cyanide monomer (for example, , See Patent Document 4). Further, as means for improving the impact resistance and fluidity of ABS resin, for example, a copolymer obtained by copolymerizing a monomer mixture containing at least an aromatic vinyl monomer and a vinyl cyanide monomer, and rubber Acetone-soluble component in a rubber-reinforced thermoplastic resin composition containing a graft copolymer obtained by graft-polymerizing a monomer mixture containing at least an aromatic vinyl monomer and a vinyl cyanide monomer in the presence of a glassy polymer The proportion of the component having a molecular weight of less than 50,000 in the acetone-soluble component relative to the total weight is less than 30% by weight and the proportion of the component having a molecular weight of 250,000 or more is 5 to 15% by weight, and the weight-average molecular weight of the acetone-soluble component A rubber-reinforced thermoplastic resin composition having a molecular weight distribution (Mw / Mn) represented by a ratio of (Mw) to number average molecular weight (Mn) in the range of 1.5 to 2.5 ( In example, such as Patent Document 5) it has been proposed.

さらに、ABS樹脂は、直接太陽光に曝されると黄変しやすい傾向にあり、また、暗所環境においても黄変(暗所黄変)しやすい課題がある。ABS樹脂の暗所黄変を改善する手段として、例えば、ゴム強化熱可塑性樹脂(A)100重量部に対し、フェノール系酸化防止剤(a)、ヒンダートアミン系光安定剤(b)およびリン系酸化防止剤(c)の合計が0.5〜3.5重量部、ベンゾトリアゾール系光安定剤(d)が0.25〜0.75重量部、エチレン・一酸化炭素・(メタ)アクリル酸エステル共重合体(e)が0.5〜6.0重量部の範囲にあり、ゴム強化熱可塑性樹脂(A)100重量部に対するゴム質重合体(ア)の重量比に対して、(ア):(a):(b):(c)の重量比を1:0.004〜0.008:0.0020〜0.005:0.006〜0.05とする熱可塑性樹脂組成物(例えば、特許文献6参照)などが提案されている。   Furthermore, the ABS resin tends to yellow when directly exposed to sunlight, and there is a problem that it tends to yellow (dark yellow) even in a dark environment. As a means for improving the dark yellowing of ABS resin, for example, 100 parts by weight of rubber-reinforced thermoplastic resin (A), phenolic antioxidant (a), hindered amine light stabilizer (b) and phosphorus 0.5 to 3.5 parts by weight of total antioxidant (c), 0.25 to 0.75 parts by weight of benzotriazole light stabilizer (d), ethylene / carbon monoxide / (meth) acrylic The acid ester copolymer (e) is in the range of 0.5 to 6.0 parts by weight, and the weight ratio of the rubber polymer (a) to 100 parts by weight of the rubber-reinforced thermoplastic resin (A) is ( A): A thermoplastic resin composition in which the weight ratio of (a): (b): (c) is 1: 0.004-0.008: 0.0020-0.005: 0.006-0.05. (For example, refer patent document 6) etc. are proposed.

特開2002−179873号公報JP 2002-179873 A 特開2010−116427号公報JP 2010-116427 A 特開2011−190388号公報JP 2011-190388 A 特開2000−7877号公報JP 2000-7877 A 特開2012−136644号公報JP 2012-136644 A 特開2014−98113号公報JP 2014-98113 A

しかしながら、特許文献1〜6に開示される技術によってもなお、超濃縮コンパクト洗剤に対する耐薬品性が不十分であり、超濃縮コンパクト洗剤に接触すると暗所黄変が発生する課題があった。また、特許文献3に開示される技術は流動性が不十分である課題があり、特許文献1〜3および5に開示される技術は、耐衝撃性が不十分である課題があった。   However, even with the techniques disclosed in Patent Documents 1 to 6, chemical resistance to the ultra-concentrated compact detergent is still insufficient, and there has been a problem that yellowing occurs in the dark when contacted with the super-concentrated compact detergent. Further, the technique disclosed in Patent Document 3 has a problem of insufficient fluidity, and the techniques disclosed in Patent Documents 1 to 3 and 5 have a problem of insufficient impact resistance.

本発明は、上述した従来技術における課題に鑑み、流動性に優れ、耐薬品性、耐衝撃性に優れ、薬品接触時の暗所黄変を低減した成形品を得ることのできる熱可塑性樹脂組成物を提供することを目的とするものである。   In view of the above-mentioned problems in the prior art, the present invention is a thermoplastic resin composition that is excellent in fluidity, excellent in chemical resistance and impact resistance, and capable of obtaining a molded product with reduced dark yellowing during chemical contact. The purpose is to provide goods.

本発明者は、上記の目的を達成するために鋭意検討した結果、以下の構成により上記課題を解決することを見いだした。
(1)ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(a1)60〜80重量%、シアン化ビニル系単量体(a2)20〜40重量%を含有するビニル系単量体混合物(a)をグラフト共重合してなるグラフト共重合体(A)20〜40重量部に、少なくとも芳香族ビニル系単量体(b1)およびシアン化ビニル系単量体(b2)を含有するビニル系単量体混合物(b)を共重合してなるビニル系共重合体(B)60〜80重量部を配合してなる熱可塑性樹脂組成物であって、該熱可塑性樹脂組成物中のアセトン可溶分(C)の重量平均分子量が150,000〜250,000、分散度が2.8以上、シアン化ビニル系単量体由来単位の含有量が29〜36重量%であり、
前記アセトン可溶分(C)100重量%中、シアン化ビニル系単量体由来単位の含有量が35重量%以上の成分(C−1)を10〜30重量%、シアン化ビニル系単量体由来単位の含有量が35重量%未満の成分(C−2)を70〜90重量%含有し、
前記成分(C−1)100重量%中、分子量が30,000〜200,000にある成分の割合が70重量%以上、分子量200,000を超える成分の割合が10〜20重量%、分子量30,000未満の成分の割合が20重量%以下であり、
前記成分(C−2)100重量%中、分子量が30,000〜200,000にある成分の割合が40〜60重量%、分子量200,000を超える成分の割合が20重量%以上、分子量30,000未満の成分の割合が20重量%以下である熱可塑性樹脂組成物。
(2)ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(a1)60〜80重量%、シアン化ビニル系単量体(a2)20〜40重量%を含有するビニル系単量体混合物(a)をグラフト共重合してなるグラフト共重合体(A)20〜40重量部に、少なくとも芳香族ビニル系単量体(b1)およびシアン化ビニル系単量体(b2)を含有するビニル系単量体混合物(b)を共重合してなるビニル系共重合体(B)60〜80重量部を配合する熱可塑性樹脂組成物の製造方法であって、
前記ビニル系共重合体(B)として、少なくとも芳香族ビニル系単量体(b1)55〜65重量%およびシアン化ビニル系単量体(b2)35〜45重量%を含有するビニル系単量体混合物(b−1)を共重合してなり、重量平均分子量が100,000〜150,000である高ニトリル含有ビニル系共重合体(B−1)と、少なくとも芳香族ビニル系単量体(b1)65重量%を超え75重量%以下およびシアン化ビニル系単量体(b2)25重量%以上35重量%未満を含有するビニル系単量体混合物(b−2)を共重合してなり、重量平均分子量が250,000〜350,000である高分子量ビニル系共重合体(B−2)とを組み合わせる熱可塑性樹脂組成物の製造方法。
(3)前記ビニル系共重合体(B)を構成する、前記高ニトリル含有ビニル系共重合体(B−1)と高分子量ビニル系共重合体(B−2)との配合比(重量比)を、(B−1)/(B−2)=33/67〜67/33とする(2)に記載の熱可塑性樹脂組成物の製造方法。
(4)(1)記載の熱可塑性樹脂組成物を成形してなる成形品。
(5)(2)または(3)記載の製造方法により得られる熱可塑性樹脂組成物を成形してなる成形品の製造方法
As a result of intensive studies to achieve the above object, the present inventor has found that the above-described problems can be solved by the following configuration.
(1) Vinyl containing at least 60 to 80% by weight of an aromatic vinyl monomer (a1) and 20 to 40% by weight of a vinyl cyanide monomer (a2) in the presence of the rubbery polymer (r) 20 to 40 parts by weight of the graft copolymer (A) obtained by graft copolymerization of the monomer mixture (a) is added to at least the aromatic vinyl monomer (b1) and the vinyl cyanide monomer (b2). Is a thermoplastic resin composition comprising 60 to 80 parts by weight of a vinyl copolymer (B) obtained by copolymerizing a vinyl monomer mixture (b) containing the thermoplastic resin, The acetone-soluble component (C) in the composition has a weight average molecular weight of 150,000 to 250,000, a degree of dispersion of 2.8 or more, and a content of vinyl cyanide monomer-derived units of 29 to 36% by weight. And
10 to 30% by weight of component (C-1) having a content of vinyl cyanide monomer-derived unit of 35% by weight or more in 100% by weight of acetone-soluble component (C), vinyl cyanide single amount 70-90 weight% of components (C-2) whose content of a body-derived unit is less than 35 weight%,
In 100% by weight of the component (C-1), the proportion of components having a molecular weight of 30,000 to 200,000 is 70% by weight or more, the proportion of components having a molecular weight exceeding 200,000 is 10 to 20% by weight, and the molecular weight is 30. The proportion of ingredients less than 1,000 is 20% by weight or less,
In 100% by weight of the component (C-2), the proportion of the component having a molecular weight of 30,000 to 200,000 is 40 to 60% by weight, the proportion of the component having a molecular weight exceeding 200,000 is 20% by weight or more, and the molecular weight is 30. A thermoplastic resin composition in which the proportion of components less than 1,000 is 20% by weight or less.
(2) Vinyl containing at least 60 to 80% by weight of the aromatic vinyl monomer (a1) and 20 to 40% by weight of the vinyl cyanide monomer (a2) in the presence of the rubbery polymer (r). 20 to 40 parts by weight of the graft copolymer (A) obtained by graft copolymerization of the monomer mixture (a) is added to at least the aromatic vinyl monomer (b1) and the vinyl cyanide monomer (b2). ) Containing a vinyl monomer mixture (b) containing 60 to 80 parts by weight of a vinyl copolymer (B), and a method for producing a thermoplastic resin composition,
The vinyl copolymer (B) contains at least an aromatic vinyl monomer (b1) of 55 to 65% by weight and a vinyl cyanide monomer (b2) of 35 to 45% by weight. becomes the body mixture (b-1) copolymerizing, high nitrile-containing vinyl copolymer having a weight average molecular weight is 100,000~150,000 and (B-1), at least an aromatic vinyl monomer (B1) A vinyl monomer mixture ( b-2 ) containing more than 65% by weight and 75% by weight or less and vinyl cyanide monomer (b2) of 25% by weight or more and less than 35% by weight is copolymerized. And a method for producing a thermoplastic resin composition in combination with a high molecular weight vinyl copolymer (B-2) having a weight average molecular weight of 250,000 to 350,000.
(3) Compounding ratio (weight ratio) of the high nitrile-containing vinyl copolymer (B-1) and the high molecular weight vinyl copolymer (B-2) constituting the vinyl copolymer (B) ) Is (B-1) / (B-2) = 33/67 to 67/33. The method for producing a thermoplastic resin composition according to (2).
(4) A molded product obtained by molding the thermoplastic resin composition according to (1).
(5) (2) or (3) the production method of a molded article obtained by molding the thermoplastic resin composition obtained by the production method described.

本発明の熱可塑性樹脂組成物は、流動性に優れる。本発明の熱可塑性樹脂組成物により、耐薬品性、耐衝撃性に優れ、薬品接触時の暗所黄変を低減した成形品を得ることができる。本発明の熱可塑性樹脂組成物の製造方法によれば、流動性が高く、耐薬品性、耐衝撃性に優れ、薬品接触時の暗所黄変を低減した成形品を得ることができる熱可塑性樹脂組成物を提供することができる。   The thermoplastic resin composition of the present invention is excellent in fluidity. With the thermoplastic resin composition of the present invention, it is possible to obtain a molded article having excellent chemical resistance and impact resistance and reduced darkness yellowing during chemical contact. According to the method for producing a thermoplastic resin composition of the present invention, thermoplasticity that can provide a molded product having high fluidity, excellent chemical resistance and impact resistance, and reduced darkness yellowing at the time of chemical contact. A resin composition can be provided.

実施例および比較例における耐薬品性の評価方法を示す概略図である。It is the schematic which shows the chemical-resistance evaluation method in an Example and a comparative example.

本発明の熱可塑性樹脂組成物は、後述するグラフト共重合体(A)に後述するビニル系共重合体(B)を配合してなる。グラフト共重合体(A)を配合することにより、熱可塑性樹脂組成物の流動性を向上させ、成形品の耐衝撃性を向上させることができる。ビニル系共重合体(B)を配合することにより、熱可塑性樹脂組成物の流動性を向上させ、成形品の耐薬品性を向上させ、薬品接触時の暗所黄変を低減することができる。   The thermoplastic resin composition of the present invention is obtained by blending a later-described graft copolymer (A) with a later-described vinyl-based copolymer (B). By mix | blending a graft copolymer (A), the fluidity | liquidity of a thermoplastic resin composition can be improved and the impact resistance of a molded article can be improved. By blending the vinyl copolymer (B), the fluidity of the thermoplastic resin composition can be improved, the chemical resistance of the molded product can be improved, and yellowing in the dark at the time of chemical contact can be reduced. .

本発明の熱可塑性樹脂組成物を構成するグラフト共重合体(A)は、ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(a1)60〜80重量%、シアン化ビニル系単量体(a2)20〜40重量%を含有するビニル系単量体混合物(a)をグラフト共重合して得られるものである。ビニル系単量体混合物(a)は、前記(a1)、(a2)と共重合可能な他の単量体をさらに含有してもよい。   The graft copolymer (A) constituting the thermoplastic resin composition of the present invention comprises at least 60 to 80% by weight of the aromatic vinyl monomer (a1) in the presence of the rubbery polymer (r), cyanide. It is obtained by graft copolymerization of a vinyl monomer mixture (a) containing 20 to 40% by weight of the vinyl monomer (a2). The vinyl monomer mixture (a) may further contain other monomers copolymerizable with the above (a1) and (a2).

ゴム質重合体(r)としては、例えば、ポリブタジエン、ポリ(ブタジエン−スチレン)(SBR)、ポリ(ブタジエン−アクリロニトリル)(NBR)、ポリイソプレン、ポリ(ブタジエン−アクリル酸ブチル)、ポリ(ブタジエン−メタクリル酸メチル)、ポリ(アクリル酸ブチル−メタクリル酸メチル)、ポリ(ブタジエン−アクリル酸エチル)、エチレン−プロピレンラバー、ポリ(エチレン−イソプレン)、ポリ(エチレン−アクリル酸メチル)、天然ゴムなどが挙げられる。これらを2種以上用いてもよい。なかでも、耐衝撃性をより向上させる観点から、ポリブタジエン、SBR、NBR、エチレン−プロピレンラバー、天然ゴムが好ましい。   Examples of the rubber polymer (r) include polybutadiene, poly (butadiene-styrene) (SBR), poly (butadiene-acrylonitrile) (NBR), polyisoprene, poly (butadiene-butyl acrylate), poly (butadiene- Methyl methacrylate), poly (butyl acrylate-methyl methacrylate), poly (butadiene-ethyl acrylate), ethylene-propylene rubber, poly (ethylene-isoprene), poly (ethylene-methyl acrylate), natural rubber, etc. Can be mentioned. Two or more of these may be used. Of these, polybutadiene, SBR, NBR, ethylene-propylene rubber, and natural rubber are preferable from the viewpoint of further improving impact resistance.

また、グラフト共重合体(A)を構成するゴム質重合体(r)および後述するビニル系単量体混合物(a)の総量に対して、ゴム質重合体(r)の含有量は、20〜80重量%が好ましい。ゴム質重合体(r)の含有量が20重量%以上であれば、成形品の耐衝撃性をより向上させることができる。ゴム質重合体(r)の含有量は35重量%以上がより好ましい。一方、ゴム質重合体(r)の含有量が80重量%以下であれば、熱可塑性樹脂組成物の成形性をより向上させることができる。ゴム質重合体(r)の含有量は60重量%以下がより好ましい。   The content of the rubbery polymer (r) is 20 with respect to the total amount of the rubbery polymer (r) constituting the graft copolymer (A) and the vinyl monomer mixture (a) described later. ~ 80 wt% is preferred. When the content of the rubbery polymer (r) is 20% by weight or more, the impact resistance of the molded product can be further improved. The content of the rubbery polymer (r) is more preferably 35% by weight or more. On the other hand, if the content of the rubbery polymer (r) is 80% by weight or less, the moldability of the thermoplastic resin composition can be further improved. The content of the rubber-like polymer (r) is more preferably 60% by weight or less.

ゴム質重合体(r)の重量平均粒子径は、特に制限はないが、成形品の耐衝撃性を向上させる観点から、0.1μm以上が好ましく、0.15μm以上がより好ましい。一方、成形品の耐衝撃性、流動性を向上させる観点から、1.5μm以下が好ましく、0.5μm以下がより好ましい。また、成形品の剛性、耐衝撃性をより向上させる観点から、重量平均粒子径が0.5〜1.2μmである比較的大粒径のSBRと重量平均粒子径が0.1〜0.3μmである比較的小粒径のポリブタジエンを併用することが好ましい。   The weight average particle diameter of the rubber polymer (r) is not particularly limited, but is preferably 0.1 μm or more, and more preferably 0.15 μm or more from the viewpoint of improving the impact resistance of the molded product. On the other hand, from the viewpoint of improving the impact resistance and fluidity of the molded product, 1.5 μm or less is preferable, and 0.5 μm or less is more preferable. Further, from the viewpoint of further improving the rigidity and impact resistance of the molded product, the SBR having a relatively large particle diameter having a weight average particle diameter of 0.5 to 1.2 μm and the weight average particle diameter of 0.1 to 0.00. It is preferable to use polybutadiene having a relatively small particle diameter of 3 μm.

ここで、ゴム質重合体(r)の重量平均粒子径は、ゴム質重合体ラテックスを水媒体で希釈、分散させ、レーザ散乱回折法粒度分布測定装置“LS 13 320”(ベックマン・コールター(株))により測定した粒子径分布から算出することができる。   Here, the weight average particle diameter of the rubber polymer (r) is determined by diluting and dispersing the rubber polymer latex with an aqueous medium, and measuring the laser scattering diffraction particle size distribution analyzer “LS 13 320” (Beckman Coulter, Inc.). )) And can be calculated from the particle size distribution measured.

芳香族ビニル系単量体(a1)としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、m−メチルスチレン、o−メチルスチレン、ビニルトルエン、t−ブチルスチレンなどが挙げられる。これらを2種以上含有してもよい。これらの中でも、熱可塑性樹脂組成物の流動性および成形品の剛性をより向上させる観点から、スチレンが好ましい。   Examples of the aromatic vinyl monomer (a1) include styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, vinyltoluene, and t-butylstyrene. Two or more of these may be contained. Among these, styrene is preferable from the viewpoint of further improving the fluidity of the thermoplastic resin composition and the rigidity of the molded product.

ビニル系単量体混合物(a)中の芳香族ビニル系単量体(a1)の含有量は、熱可塑性樹脂組成物の流動性および成形品の剛性をより向上させる観点から、ビニル系単量体混合物(a)の合計100重量%中、60重量%以上が好ましく、70重量%以上がより好ましい。一方、ビニル系単量体混合物(a)中の芳香族ビニル系単量体(a1)の含有量は、流動性、成形品の耐衝撃性を向上させる観点から、80重量%以下が好ましく、75重量%以下がより好ましい。   The content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (a) is from the viewpoint of further improving the fluidity of the thermoplastic resin composition and the rigidity of the molded product. Of the total 100% by weight of the body mixture (a), 60% by weight or more is preferable, and 70% by weight or more is more preferable. On the other hand, the content of the aromatic vinyl monomer (a1) in the vinyl monomer mixture (a) is preferably 80% by weight or less from the viewpoint of improving fluidity and impact resistance of the molded product, 75% by weight or less is more preferable.

シアン化ビニル系単量体(a2)としては、例えば、アクリロニトリル、メタクリロニトリル、エタクリロニトリルなどが挙げられる。これらを2種以上含有してもよい。これらの中でも、成形品の耐薬品性および耐衝撃性をより向上させる観点から、アクリロニトリルが好ましい。   Examples of the vinyl cyanide monomer (a2) include acrylonitrile, methacrylonitrile, ethacrylonitrile and the like. Two or more of these may be contained. Among these, acrylonitrile is preferable from the viewpoint of further improving the chemical resistance and impact resistance of the molded product.

ビニル系単量体混合物(a)中のシアン化ビニル系単量体(a2)の含有量は、成形品の耐薬品性および耐衝撃性をより向上させる観点から、ビニル系単量体混合物(a)の合計100重量%中、20重量%以上が好ましく、25重量%以上がより好ましい。一方、ビニル系単量体混合物(a)中のシアン化ビニル系単量体(a2)の含有量は、成形品の色調を向上させる観点から、40重量%以下が好ましく、30重量%以下がより好ましい。   The content of the vinyl cyanide monomer (a2) in the vinyl monomer mixture (a) is selected from the viewpoint of further improving the chemical resistance and impact resistance of the molded product. Of the total 100% by weight of a), 20% by weight or more is preferable, and 25% by weight or more is more preferable. On the other hand, the content of the vinyl cyanide monomer (a2) in the vinyl monomer mixture (a) is preferably 40% by weight or less, and preferably 30% by weight or less from the viewpoint of improving the color tone of the molded product. More preferred.

また、これらと共重合可能な他の単量体は、前述の芳香族ビニル系単量体(a1)、シアン化ビニル系単量体(a2)以外のビニル系単量体であって、本発明の効果を損なわないものであれば特に制限はない。具体的には、不飽和カルボン酸アルキルエステル系単量体、不飽和脂肪酸、アクリルアミド系単量体、マレイミド系単量体などが挙げられる。これらを2種以上含有してもよい。   Other monomers copolymerizable with these are vinyl monomers other than the above-mentioned aromatic vinyl monomer (a1) and vinyl cyanide monomer (a2), If it does not impair the effect of invention, there will be no restriction | limiting in particular. Specific examples include unsaturated carboxylic acid alkyl ester monomers, unsaturated fatty acids, acrylamide monomers, and maleimide monomers. Two or more of these may be contained.

不飽和カルボン酸アルキルエステル系単量体としては、例えば、炭素数1〜6のアルコールとアクリル酸またはメタクリル酸とのエステルが好ましい。炭素数1〜6のアルコールとアクリル酸またはメタクリル酸とのエステルは、さらに水酸基やハロゲン基などの置換基を有してもよい。炭素数1〜6のアルコールとアクリル酸またはメタクリル酸とのエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどが挙げられる。これらを2種以上含有してもよい。なお、「(メタ)アクリル酸」とは、アクリル酸またはメタクリル酸を示す。   As an unsaturated carboxylic acid alkyl ester monomer, for example, an ester of an alcohol having 1 to 6 carbon atoms and acrylic acid or methacrylic acid is preferable. The ester of an alcohol having 1 to 6 carbon atoms and acrylic acid or methacrylic acid may further have a substituent such as a hydroxyl group or a halogen group. Examples of the ester of an alcohol having 1 to 6 carbon atoms and acrylic acid or methacrylic acid include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth) acrylic acid n. -Butyl, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, chloromethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) acryl Examples include acid 2,3,4,5,6-pentahydroxyhexyl, 2,3,4,5-tetrahydroxypentyl (meth) acrylate, and the like. Two or more of these may be contained. “(Meth) acrylic acid” refers to acrylic acid or methacrylic acid.

不飽和脂肪酸としては、例えば、イタコン酸、マレイン酸、フマル酸、ブテン酸、アクリル酸、メタクリル酸等が挙げられる。   Examples of the unsaturated fatty acid include itaconic acid, maleic acid, fumaric acid, butenoic acid, acrylic acid, and methacrylic acid.

アクリルアミド系単量体としては、例えば、アクリルアミド、メタクリルアミド、N−メチルアクリルアミド等が挙げられる。   Examples of the acrylamide monomer include acrylamide, methacrylamide, N-methylacrylamide and the like.

マレイミド系単量体としては、例えば、N−メチルマレイミド、N−エチルマレイミド、N−イソプロピルマレイミド、N−ブチルマレイミド、N−ヘキシルマレイミド、N−オクチルマレイミド、N−ドデシルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド等が挙げられる。   Examples of maleimide monomers include N-methylmaleimide, N-ethylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-hexylmaleimide, N-octylmaleimide, N-dodecylmaleimide, N-cyclohexylmaleimide, Examples thereof include N-phenylmaleimide.

本発明において、グラフト共重合体(A)のアセトン可溶分の重量平均分子量は、特に制限はないが、50,000〜300,000が好ましい。グラフト共重合体(A)のアセトン可溶分の重量平均分子量が50,000以上であれば、成形品の耐薬品性をより向上させることができる。一方、グラフト共重合体(A)のアセトン可溶分の重量平均分子量が300,000以下であれば、流動性をより向上させることができる。100,000以下がより好ましい。   In the present invention, the weight average molecular weight of the acetone-soluble component of the graft copolymer (A) is not particularly limited, but is preferably 50,000 to 300,000. If the weight average molecular weight of the acetone-soluble component of the graft copolymer (A) is 50,000 or more, the chemical resistance of the molded product can be further improved. On the other hand, if the weight average molecular weight of the acetone-soluble component of the graft copolymer (A) is 300,000 or less, the fluidity can be further improved. 100,000 or less is more preferable.

アセトン可溶分の重量平均分子量が50,000〜300,000の範囲にあるグラフト共重合体(A)は、例えば、後述する開始剤や連鎖移動剤を用いること、重合温度を後述の好ましい範囲にすることなどにより、容易に製造することができる。   For the graft copolymer (A) having a weight average molecular weight in the range of 50,000 to 300,000 for the acetone-soluble component, for example, an initiator or a chain transfer agent described later is used, and a polymerization temperature is set in a preferable range described later. For example, it can be easily manufactured.

本発明において、グラフト共重合体(A)のアセトン可溶分の分散度は、特に制限はないが、2.0〜2.5が好ましい。グラフト共重合体(A)のアセトン可溶分の分散度が2.0〜2.5であれば、グラフト共重合体(A)を容易に製造することができ、流動性、成形品の耐薬品性をより向上させることができる。   In the present invention, the degree of dispersion of the acetone-soluble component of the graft copolymer (A) is not particularly limited, but is preferably 2.0 to 2.5. If the degree of dispersion of the acetone soluble part of the graft copolymer (A) is 2.0 to 2.5, the graft copolymer (A) can be easily produced, and the flowability and resistance of the molded product can be improved. Chemical properties can be further improved.

アセトン可溶分の分散度が2.0〜2.5の範囲にあるグラフト共重合体(A)は、例えば、後述する開始剤や連鎖移動剤を用いること、重合温度を後述の好ましい範囲にすることになどにより、容易に製造することができる。   For the graft copolymer (A) having a dispersity of acetone-soluble in the range of 2.0 to 2.5, for example, an initiator or a chain transfer agent described below is used, and the polymerization temperature is set in a preferable range described below. For example, it can be easily manufactured.

ここで、グラフト共重合体(A)のアセトン可溶分の重量平均分子量および分散度は、グラフト共重合体(A)からアセトン不溶分を濾過した濾液をロータリーエバポレーターで濃縮することにより採取したアセトン可溶分約0.03gをテトラヒドロフラン約15gに溶解した約0.2重量%の溶液を用いて測定したGPCクロマトグラムから、ポリスチレンを標準物質として換算することにより求めることができる。なお、GPC測定は、下記条件により測定することができる。
測定装置:Waters2695
カラム温度:40℃
検出器:RI2414(示差屈折率計)
キャリア溶離液流量:0.3ml/分(溶媒:テトラヒドロフラン)
カラム:TSKgel SuperHZM−M(6.0mmI.D.×15cm)、TSKgel SuperHZM−N(6.0mmI.D.×15cm)直列(いずれも東ソー)。
Here, the weight average molecular weight and dispersity of the acetone-soluble component of the graft copolymer (A) were measured by concentrating the filtrate obtained by filtering the acetone-insoluble component from the graft copolymer (A) using a rotary evaporator. It can be determined by converting polystyrene as a standard substance from a GPC chromatogram measured using a solution of about 0.2% by weight in which about 0.03 g of soluble component is dissolved in about 15 g of tetrahydrofuran. The GPC measurement can be performed under the following conditions.
Measuring device: Waters 2695
Column temperature: 40 ° C
Detector: RI2414 (differential refractometer)
Carrier eluent flow rate: 0.3 ml / min (solvent: tetrahydrofuran)
Column: TSKgel SuperHZM-M (6.0 mm ID × 15 cm), TSKgel SuperHZM-N (6.0 mm ID × 15 cm) in series (both Tosoh).

グラフト共重合体(A)のグラフト率には特に制限はないが、成形品の耐衝撃性を向上させる観点から、10〜100%が好ましい。   Although there is no restriction | limiting in particular in the graft rate of a graft copolymer (A), From a viewpoint of improving the impact resistance of a molded article, 10 to 100% is preferable.

ここで、グラフト共重合体(A)のグラフト率は、以下の方法により求めることができる。まず、グラフト共重合体(A)約1g(m:サンプル重量)にアセトン80mlを加え、70℃の湯浴中で3時間還流し、この溶液を8000r.p.m(10000G)で40分間遠心分離した後、不溶分を濾過し、アセトン不溶分を得る。得られたアセトン不溶分を80℃で5時間減圧乾燥させ、その重量(n)を測定し、下記式よりグラフト率を算出する。ここで、Xはグラフト共重合体(A)のゴム質重合体含有率(%)である。
グラフト率(%)={[(n)−((m)×X/100)]/[(m)×X/100]}×100。
Here, the graft ratio of the graft copolymer (A) can be determined by the following method. First, 80 ml of acetone was added to about 1 g (m: sample weight) of the graft copolymer (A) and refluxed in a hot water bath at 70 ° C. for 3 hours. p. After centrifuging at m (10000 G) for 40 minutes, the insoluble matter is filtered to obtain an acetone insoluble matter. The obtained acetone insoluble matter is dried under reduced pressure at 80 ° C. for 5 hours, its weight (n) is measured, and the graft ratio is calculated from the following formula. Here, X is the rubbery polymer content (%) of the graft copolymer (A).
Graft ratio (%) = {[(n) − ((m) × X / 100)] / [(m) × X / 100]} × 100.

本発明において、グラフト共重合体(A)の製造方法に特に制限はなく、乳化重合法、懸濁重合法、連続塊状重合法、溶液連続重合法等の任意の方法を用いることができる。乳化重合法または塊状重合法が好ましく、ゴム状重合体(r)の粒子径を所望の範囲に容易に調整することができること、重合時の除熱により重合安定性を容易に調整することができることから、乳化重合法がより好ましい。   In this invention, there is no restriction | limiting in particular in the manufacturing method of a graft copolymer (A), Arbitrary methods, such as an emulsion polymerization method, a suspension polymerization method, a continuous block polymerization method, and a solution continuous polymerization method, can be used. The emulsion polymerization method or the bulk polymerization method is preferable, the particle size of the rubbery polymer (r) can be easily adjusted to a desired range, and the polymerization stability can be easily adjusted by removing heat during polymerization. Therefore, the emulsion polymerization method is more preferable.

グラフト共重合体(A)を乳化重合法により製造する場合、ゴム質重合体(r)とビニル系単量体混合物(a)の仕込み方法は、特に限定されない。例えば、これら全てを初期一括仕込みしてもよいし、共重合体組成の分布を調整するために、ビニル系単量体混合物(a)の一部を連続的に仕込んでもよいし、ビニル系単量体混合物(a)の一部または全てを分割して仕込んでもよい。ここで、ビニル系単量体混合物(a)の一部を連続的に仕込むとは、ビニル系単量体混合物(a)の一部を初期に仕込み、残りを経時的に連続して仕込むことを意味する。また、ビニル系単量体混合物(a)の一部または全てを分割して仕込むとは、ビニル系単量体混合物(a)の一部または全てを、初期仕込みより後の時点で仕込むことを意味する。   When the graft copolymer (A) is produced by an emulsion polymerization method, the charging method of the rubbery polymer (r) and the vinyl monomer mixture (a) is not particularly limited. For example, all of these may be charged in the initial batch, or a part of the vinyl monomer mixture (a) may be continuously charged in order to adjust the distribution of the copolymer composition. A part or all of the monomer mixture (a) may be divided and charged. Here, continuously charging a part of the vinyl monomer mixture (a) means charging a part of the vinyl monomer mixture (a) in the initial stage and continuously charging the remainder over time. Means. In addition, dividing and charging part or all of the vinyl monomer mixture (a) means charging part or all of the vinyl monomer mixture (a) at a time after the initial charging. means.

グラフト共重合体(A)を乳化重合法により製造する場合、乳化剤として各種界面活性剤を添加してもよい。各種界面活性剤としては、カルボン酸塩型、硫酸エステル塩型、スルホン酸塩型などのアニオン系界面活性剤が特に好ましく使用される。これらを2種以上組み合わせてもよい。なお、ここで言う塩としては、ナトリウム塩、リチウム塩、カリウム塩などのアルカリ金属塩、アンモニウム塩などが挙げられる。   When the graft copolymer (A) is produced by an emulsion polymerization method, various surfactants may be added as an emulsifier. As the various surfactants, anionic surfactants such as carboxylate type, sulfate ester type, and sulfonate type are particularly preferably used. Two or more of these may be combined. In addition, as a salt said here, alkali metal salts, such as sodium salt, lithium salt, potassium salt, ammonium salt, etc. are mentioned.

カルボン酸塩型の乳化剤としては、例えば、カプリル酸塩、カプリン酸塩、ラウリル酸塩、ミスチリン酸塩、パルミチン酸塩、ステアリン酸塩、オレイン酸塩、リノール酸塩、リノレン酸塩、ロジン酸塩、ベヘン酸塩、ジアルキルスルホコハク酸塩などが挙げられる。   Examples of carboxylate type emulsifiers include caprylate, caprate, laurate, myristate, palmitate, stearate, oleate, linoleate, linolenate, and rosinate. , Behenate, dialkylsulfosuccinate and the like.

硫酸エステル塩型の乳化剤としては、例えば、ヒマシ油硫酸エステル塩、ラウリルアルコール硫酸エステル塩、ポリオキシエチレンラウリル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩などが挙げられる。   Examples of the sulfate ester type emulsifier include castor oil sulfate ester, lauryl alcohol sulfate ester, polyoxyethylene lauryl sulfate, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl phenyl ether sulfate, and the like. .

スルホン酸塩型の乳化剤としては、例えば、ドデシルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、ナフタレンスルホン酸塩縮合物などが挙げられる。   Examples of the sulfonate type emulsifier include dodecylbenzene sulfonate, alkyl naphthalene sulfonate, alkyl diphenyl ether disulfonate, naphthalene sulfonate condensate, and the like.

グラフト共重合体(A)を乳化重合法により製造する場合、必要により開始剤を使用してもよい。開始剤としては、過酸化物、アゾ系化合物、水溶性の過硫酸カリウムなどが挙げられる。これらを2種以上組み合わせてもよい。また、開始剤は、レドックス系でも使用される。   When the graft copolymer (A) is produced by an emulsion polymerization method, an initiator may be used as necessary. Examples of the initiator include peroxides, azo compounds, and water-soluble potassium persulfate. Two or more of these may be combined. Initiators are also used in redox systems.

過酸化物のとしては、例えば、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、t−ブチルイソプロピルカルボネート、ジ−t−ブチルパーオキサイド、t−ブチルパーオクテート、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロへキサン、1,1−ビス(t−ブチルパーオキシ)シクロへキサン、t−ブチルパーオキシ−2−エチルヘキサノエートなどが挙げられる。なかでも、クメンハイドロパーオキサイド、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロへキサン、1,1−ビス(t−ブチルパーオキシ)シクロへキサンが特に好ましく用いられる。   Examples of the peroxide include benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl isopropyl carbonate, di-t-butyl peroxide, t-butyl peroctate, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (T-Butylperoxy) cyclohexane, t-butylperoxy-2-ethylhexanoate, etc. are mentioned. Of these, cumene hydroperoxide, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, and 1,1-bis (t-butylperoxy) cyclohexane are particularly preferably used. It is done.

アゾ系化合物としては、例えば、アゾビスイソブチロニトリル、アゾビス(2,4−ジメチルバレロニトリル)、2−フェニルアゾ−2,4−ジメチル−4−メトキシバレロニトリル、2−シアノ−2−プロピルアゾホルムアミド、1,1’−アゾビスシクロヘキサン−1−カーボニトリル、アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、ジメチル2,2’−アゾビスイソブチレート、1−t−ブチルアゾ−2−シアノブタン、2−t−ブチルアゾ−2−シアノ−4−メトキシ−4−メチルペンタンなどが挙げられる。なかでも、アゾビスイソブチロニトリル、アゾビス(2,4−ジメチルバレロニトリル)、1,1’−アゾビスシクロヘキサン−1−カーボニトリルが特に好ましく用いられる。   Examples of the azo compound include azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile), 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, 2-cyano-2-propylazo. Formamide, 1,1′-azobiscyclohexane-1-carbonitrile, azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 1-t-butylazo-2 -Cyanobutane, 2-t-butylazo-2-cyano-4-methoxy-4-methylpentane and the like. Of these, azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile), and 1,1′-azobiscyclohexane-1-carbonitrile are particularly preferably used.

グラフト共重合体(A)を製造するために用いられる開始剤の添加量は、特に制限はないが、グラフト共重合体(A)のアセトン可溶分の重量平均分子量および分散度を前述の範囲に調整しやすいという観点からゴム質重合体(r)とビニル系単量体混合物(a)の合計100重量部に対して、0.1〜0.5重量部が好ましい。   The addition amount of the initiator used for producing the graft copolymer (A) is not particularly limited, but the weight average molecular weight and the degree of dispersion of the acetone-soluble portion of the graft copolymer (A) are within the above-mentioned ranges. From the viewpoint of easy adjustment to 0.1 to 0.5 parts by weight with respect to a total of 100 parts by weight of the rubbery polymer (r) and the vinyl monomer mixture (a).

グラフト共重合体(A)を製造する場合、連鎖移動剤を使用してもよい。連鎖移動剤を使用することにより、グラフト共重合体(A)のアセトン可溶分の重量平均分子量、分散度、グラフト率を所望の範囲に容易に調整することができる。   When producing the graft copolymer (A), a chain transfer agent may be used. By using a chain transfer agent, the weight average molecular weight, dispersity, and graft ratio of the acetone-soluble component of the graft copolymer (A) can be easily adjusted to a desired range.

連鎖移動剤としては、例えば、n−オクチルメルカプタン、t−ドデシルメルカプタン、n−ドデシルメルカプタン、n−テトラデシルメルカプタン、n−オクタデシルメルカプタンなどのメルカプタン、テルピノレンなどのテルペンなどが挙げられる。これらを2種以上組み合わせてもよい。なかでも、n−オクチルメルカプタン、t−ドデシルメルカプタンが好ましく用いられる。   Examples of the chain transfer agent include mercaptans such as n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan and n-octadecyl mercaptan, and terpenes such as terpinolene. Two or more of these may be combined. Of these, n-octyl mercaptan and t-dodecyl mercaptan are preferably used.

グラフト共重合体(A)を製造するために用いられる連鎖移動剤の添加量は、特に制限はないが、グラフト共重合体(A)の重量平均分子量および分散度、グラフト率を前述の範囲に調整しやすいという観点から、ゴム質重合体(r)とビニル系単量体混合物(a)の合計100重量部に対して0.05重量部以上が好ましく、0.2重量部以上がより好ましい。一方、0.7重量部以下が好ましく、0.6重量部以下がより好ましい。   The addition amount of the chain transfer agent used for producing the graft copolymer (A) is not particularly limited, but the weight average molecular weight and degree of dispersion of the graft copolymer (A), and the graft ratio are within the above-mentioned ranges. From the viewpoint of easy adjustment, the amount is preferably 0.05 parts by weight or more and more preferably 0.2 parts by weight or more with respect to 100 parts by weight in total of the rubbery polymer (r) and the vinyl monomer mixture (a). . On the other hand, 0.7 parts by weight or less is preferable, and 0.6 parts by weight or less is more preferable.

グラフト共重合体(A)を乳化重合法により製造する場合、重合温度に特に制限はないが、グラフト共重合体(A)の重量平均分子量および分散度、グラフト率を前述の範囲に調整しやすいという観点、乳化安定性の観点から40〜70℃が好ましい。   When the graft copolymer (A) is produced by an emulsion polymerization method, the polymerization temperature is not particularly limited, but it is easy to adjust the weight average molecular weight, the degree of dispersion, and the graft ratio of the graft copolymer (A) to the above ranges. From the standpoint of emulsification stability, 40 to 70 ° C is preferable.

グラフト共重合体(A)を乳化重合法により製造する場合、グラフト共重合体ラテックスに凝固剤を添加して、グラフト共重合体(A)を回収することが一般的である。凝固剤としては、酸または水溶性塩が好ましく用いられる。   When the graft copolymer (A) is produced by an emulsion polymerization method, it is common to add a coagulant to the graft copolymer latex and recover the graft copolymer (A). As the coagulant, an acid or a water-soluble salt is preferably used.

酸としては、例えば、硫酸、塩酸、リン酸、酢酸などが挙げられる。水溶性塩としては、例えば、塩化カルシウム、塩化マグネシウム、塩化バリウム、塩化アルミニウム、硫酸マグネシウム、硫酸アルミニウム、硫酸アルミニウムアンモニウム、硫酸アルミニウムカリウム、硫酸アルミニウムナトリウムなどが挙げられる。これらを2種以上組み合わせてもよい。成形品の色調を向上させる観点からは、熱可塑性樹脂組成物中に乳化剤を残存させないことが好ましく、乳化剤としてアルカリ脂肪酸塩を用い、酸凝固することが好ましい。   Examples of the acid include sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and the like. Examples of the water-soluble salt include calcium chloride, magnesium chloride, barium chloride, aluminum chloride, magnesium sulfate, aluminum sulfate, aluminum ammonium sulfate, aluminum potassium sulfate, and sodium aluminum sulfate. Two or more of these may be combined. From the viewpoint of improving the color tone of the molded article, it is preferable not to leave an emulsifier in the thermoplastic resin composition, and it is preferable to use an alkali fatty acid salt as the emulsifier and to perform acid coagulation.

本発明の熱可塑性樹脂組成物を構成するビニル系共重合体(B)は、少なくとも芳香族ビニル系単量体(b1)およびシアン化ビニル系単量体(b2)を含有するビニル系単量体混合物(b)を共重合して得られるものである。ビニル系単量体混合物(b)は、前記(b1)、(b2)と共重合可能な他の単量体をさらに含有してもよい。
芳香族ビニル系単量体(b1)としては、芳香族ビニル系単量体(a1)として例示したものが挙げられ、スチレンが好ましい。
The vinyl copolymer (B) constituting the thermoplastic resin composition of the present invention is a vinyl monomer containing at least an aromatic vinyl monomer (b1) and a vinyl cyanide monomer (b2). It is obtained by copolymerizing the body mixture (b). The vinyl monomer mixture (b) may further contain other monomers copolymerizable with the above (b1) and (b2).
Examples of the aromatic vinyl monomer (b1) include those exemplified as the aromatic vinyl monomer (a1), and styrene is preferable.

ビニル系単量体混合物(b)中の芳香族ビニル系単量体(b1)の含有量は、熱可塑性樹脂組成物の流動性および成形品の剛性をより向上させる観点から、ビニル系単量体混合物(b)の合計100重量%中、55重量%以上が好ましく、60重量%以上がより好ましく、62重量%以上がさらに好ましい。一方、ビニル系単量体混合物(b)中の芳香族ビニル系単量体(b1)の含有量は、流動性、成形品の耐衝撃性をより向上させる観点から、75重量%以下が好ましく、72重量%以下がより好ましく、70重量%以下がさらに好ましい。   The content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture (b) is from the viewpoint of further improving the fluidity of the thermoplastic resin composition and the rigidity of the molded product. Of the total 100% by weight of the body mixture (b), 55% by weight or more is preferable, 60% by weight or more is more preferable, and 62% by weight or more is more preferable. On the other hand, the content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture (b) is preferably 75% by weight or less from the viewpoint of further improving the fluidity and impact resistance of the molded product. 72 wt% or less is more preferable, and 70 wt% or less is more preferable.

シアン化ビニル系単量体(b2)としては、シアン化ビニル系単量体(a2)として例示したものが挙げられ、アクリロニトリルが好ましい。   Examples of the vinyl cyanide monomer (b2) include those exemplified as the vinyl cyanide monomer (a2), and acrylonitrile is preferred.

ビニル系単量体混合物(b)中のシアン化ビニル系単量体(b2)の含有量は、成形品の耐薬品性、耐衝撃性をより向上させ、薬品接触時の暗所黄変をより低減する観点から、ビニル系単量体混合物(b)の合計100重量%中、25重量%以上が好ましく、28重量%以上がより好ましく、30重量%以上がさらに好ましい。一方、ビニル系単量体混合物(b)中のシアン化ビニル系単量体(b2)の含有量は、耐衝撃性をより向上させる観点から、45重量%以下が好ましく、40重量%以下がより好ましく、38重量%以下がさらに好ましい。   The content of the vinyl cyanide monomer (b2) in the vinyl monomer mixture (b) improves the chemical resistance and impact resistance of the molded product, and reduces yellowing in the dark at the time of chemical contact. From the viewpoint of further reduction, in the total 100% by weight of the vinyl monomer mixture (b), 25% by weight or more is preferable, 28% by weight or more is more preferable, and 30% by weight or more is more preferable. On the other hand, the content of the vinyl cyanide monomer (b2) in the vinyl monomer mixture (b) is preferably 45% by weight or less, more preferably 40% by weight or less from the viewpoint of further improving impact resistance. More preferred is 38% by weight or less.

また、これらと共重合可能な他の単量体は、前述の芳香族ビニル系単量体(b1)、シアン化ビニル系単量体(b2)以外のビニル系単量体であって、本発明の効果を損なわないものであれば特に制限はない。具体的には、ビニル系単量体混合物(a)において他の単量体として例示したものが挙げられる。   Other monomers copolymerizable with these are vinyl monomers other than the above-mentioned aromatic vinyl monomer (b1) and vinyl cyanide monomer (b2), If it does not impair the effect of invention, there will be no restriction | limiting in particular. Specifically, what was illustrated as another monomer in a vinyl-type monomer mixture (a) is mentioned.

本発明において、ビニル系共重合体(B)の重量平均分子量は、特に制限はないが、100,000〜350,000が好ましい。160,000〜250,000がより好ましい。ビニル系共重合体(B)の重量平均分子量が100,000以上であれば、成形品の耐薬品性をより向上させ、薬品接触時の暗所黄変をより低減することができる。16,000以上がより好ましい。一方、ビニル系共重合体(B)の重量平均分子量が350,000以下であれば、流動性をより向上させることができる。25,000以下がより好ましい。   In the present invention, the weight average molecular weight of the vinyl copolymer (B) is not particularly limited, but is preferably 100,000 to 350,000. 160,000-250,000 is more preferable. If the weight average molecular weight of the vinyl copolymer (B) is 100,000 or more, the chemical resistance of the molded product can be further improved, and yellowing in the dark at the time of chemical contact can be further reduced. 16,000 or more is more preferable. On the other hand, if the weight average molecular weight of the vinyl copolymer (B) is 350,000 or less, the fluidity can be further improved. 25,000 or less is more preferable.

本発明において、ビニル系共重合体(B)の分散度は、特に制限はないが、2.0〜3.5が好ましい。ビニル系共重合体(B)の分散度が2.0以上であれば、ビニル系共重合体(B)を容易に製造することができる。2.5以上がより好ましい。一方、ビニル系共重合体(B)の分散度が3.5以下であれば、流動性および成形品の耐薬品性をより向上させ、薬品接触時の暗所黄変をより低減することができる。   In the present invention, the degree of dispersion of the vinyl copolymer (B) is not particularly limited, but is preferably 2.0 to 3.5. If the degree of dispersion of the vinyl copolymer (B) is 2.0 or more, the vinyl copolymer (B) can be easily produced. 2.5 or more is more preferable. On the other hand, if the degree of dispersion of the vinyl copolymer (B) is 3.5 or less, the fluidity and chemical resistance of the molded product can be further improved, and yellowing in the dark at the time of chemical contact can be further reduced. it can.

ここで、ビニル系共重合体(B)の重量平均分子量および分散度は、ビニル系共重合体(B)約0.03gをテトラヒドロフラン約15gに溶解した約0.2重量%の溶液を用いて、グラフト共重合体(A)と同様に測定することができる。   Here, the weight average molecular weight and dispersity of the vinyl copolymer (B) were determined using a solution of about 0.2% by weight obtained by dissolving about 0.03 g of the vinyl copolymer (B) in about 15 g of tetrahydrofuran. It can be measured in the same manner as the graft copolymer (A).

本発明において、ビニル系共重合体(B)として、単量体組成や組成比の異なる単量体混合物(b)を共重合して得られる2種以上の共重合体を用いてもよいし、重量平均分子量の異なる2種以上の共重合体を用いてもよい。例えば、ビニル系共重合体(B)として、後述する高ニトリル含有ビニル系共重合体(B−1)と、高分子量ビニル系共重合体(B−2)とを組み合わせてもよい。この場合、2種以上の共重合体を含むビニル系共重合体(B)全体として、単量体混合物(b)の組成比や重量平均分子量が前述の好ましい範囲にあることが好ましい。   In the present invention, as the vinyl copolymer (B), two or more kinds of copolymers obtained by copolymerizing monomer mixtures (b) having different monomer compositions and composition ratios may be used. Two or more types of copolymers having different weight average molecular weights may be used. For example, as the vinyl copolymer (B), a high nitrile-containing vinyl copolymer (B-1) described later and a high molecular weight vinyl copolymer (B-2) may be combined. In this case, it is preferable that the composition ratio and the weight average molecular weight of the monomer mixture (b) are in the above-mentioned preferable ranges as the whole vinyl copolymer (B) including two or more kinds of copolymers.

本発明において、ビニル系共重合体(B)の製造方法に特に制限はなく、懸濁重合法、乳化重合法、塊状重合法、溶液重合法等の任意の方法を用いることができる。なかでも、重合制御の容易さ、後処理の容易さおよび生産性の観点から、塊状重合、懸濁重合が好ましい。また、得られる熱可塑性樹脂組成物の流動性、成形品の耐薬品性および色調や、ビニル系共重合体(B)の重量平均分子量および分散度の調整のしやすさの観点から、懸濁重合法が好ましく用いられる。懸濁重合法により、ビニル系共重合体(B)のスラリーが得られ、次いで、脱水、乾燥を経て、ビーズ状のビニル系共重合体(B)が得られる。   In the present invention, the method for producing the vinyl copolymer (B) is not particularly limited, and any method such as a suspension polymerization method, an emulsion polymerization method, a bulk polymerization method, and a solution polymerization method can be used. Of these, bulk polymerization and suspension polymerization are preferred from the viewpoints of ease of polymerization control, ease of post-treatment and productivity. From the viewpoint of fluidity of the resulting thermoplastic resin composition, chemical resistance and color tone of the molded product, and ease of adjustment of the weight average molecular weight and dispersity of the vinyl copolymer (B), it is suspended. A polymerization method is preferably used. By the suspension polymerization method, a slurry of the vinyl copolymer (B) is obtained, and then a bead-like vinyl copolymer (B) is obtained through dehydration and drying.

ビニル系共重合体(B)を懸濁重合法により製造する場合、懸濁安定剤を使用してもよい。懸濁安定剤としては、例えば、粘土、硫酸バリウム、水酸化マグネシウムなどの無機系懸濁安定剤や、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリアクリルアミド、メタクリル酸メチル/アクリルアミド共重合体などの有機系懸濁安定剤などが挙げられる。これらを2種以上組み合わせてもよい。なかでも、色調の観点から、有機系懸濁安定剤が好ましく使用される。   When the vinyl copolymer (B) is produced by suspension polymerization, a suspension stabilizer may be used. Examples of the suspension stabilizer include inorganic suspension stabilizers such as clay, barium sulfate, and magnesium hydroxide, and organic substances such as polyvinyl alcohol, carboxymethyl cellulose, hydroxyethyl cellulose, polyacrylamide, and methyl methacrylate / acrylamide copolymer. And suspension stabilizers. Two or more of these may be combined. Of these, organic suspension stabilizers are preferably used from the viewpoint of color tone.

ビニル系共重合体(B)を懸濁重合法により製造する場合、必要に応じて開始剤や連鎖移動剤を使用してもよい。開始剤および連鎖移動剤としては、グラフト共重合体(A)の製造方法において例示した開始剤および連鎖移動剤が挙げられる。   When manufacturing a vinyl-type copolymer (B) by suspension polymerization method, you may use an initiator and a chain transfer agent as needed. Examples of the initiator and the chain transfer agent include the initiator and the chain transfer agent exemplified in the method for producing the graft copolymer (A).

ビニル系共重合体(B)を懸濁重合法により製造する場合、単量体の仕込み方法に特に制限はなく、初期に一括して仕込む方法、単量体の一部または全てを連続して仕込む方法、単量体の一部または全てを分割して仕込む方法のいずれを用いてもよい。   When the vinyl copolymer (B) is produced by the suspension polymerization method, there is no particular limitation on the monomer charging method, the initial batch method, a part or all of the monomers are continuously added. Either a charging method or a method in which a part or all of the monomer is divided and charged may be used.

ビニル系共重合体(B)を懸濁重合法により製造する場合、重合温度に特に制限はないが、ビニル系共重合体(B)の重量平均分子量および分散度を前述の範囲に調整しやすいという観点、懸濁安定性の観点から、60〜80℃で重合を開始し、重合率が50〜70%となった時点で昇温を開始し、最終的に100〜120℃にすることが好ましい。なお、昇温開始時には、重合槽内を窒素等の不活性ガスで0.3〜0.5MPaに加圧することが好ましい。   When the vinyl copolymer (B) is produced by the suspension polymerization method, the polymerization temperature is not particularly limited, but it is easy to adjust the weight average molecular weight and the degree of dispersion of the vinyl copolymer (B) to the above ranges. From the viewpoint of suspension stability, the polymerization is started at 60 to 80 ° C., and the temperature rise is started when the polymerization rate reaches 50 to 70%, and finally the temperature is set to 100 to 120 ° C. preferable. In addition, it is preferable to pressurize the inside of a polymerization tank to 0.3-0.5 MPa with inert gas, such as nitrogen, at the time of temperature rising start.

本発明の熱可塑性樹脂組成物は、グラフト共重合体(A)およびビニル系共重合体(B)の合計100重量部に対して、グラフト共重合体(A)20〜40重量部およびビニル系共重合体(B)60〜80重量部を配合してなる。グラフト共重合体(A)が40重量部を超え、ビニル系共重合体(B)が60重量部未満の場合、成形品の耐薬品性、剛性が低下し、薬品接触時の暗所黄変が生じやすくなる。一方、グラフト共重合体(A)が20重量部未満であり、ビニル系共重合体(B)が80重量部を超える場合、熱可塑性樹脂組成物の溶融粘度が上昇し、成形品の耐衝撃性が低下する。   The thermoplastic resin composition of the present invention comprises 20 to 40 parts by weight of the graft copolymer (A) and vinyl based on the total of 100 parts by weight of the graft copolymer (A) and the vinyl copolymer (B). It is formed by blending 60 to 80 parts by weight of the copolymer (B). When the graft copolymer (A) exceeds 40 parts by weight and the vinyl copolymer (B) is less than 60 parts by weight, the chemical resistance and rigidity of the molded product are lowered, and yellowing in the dark at the time of chemical contact Is likely to occur. On the other hand, when the graft copolymer (A) is less than 20 parts by weight and the vinyl copolymer (B) exceeds 80 parts by weight, the melt viscosity of the thermoplastic resin composition increases, and the impact resistance of the molded product Sex is reduced.

本発明の熱可塑性樹脂組成物において、熱可塑性樹脂組成物の合計100重量%中、グラフト共重合体(A)中に含まれるゴム質重合体(r)相当分は10〜25重量%が好ましい。ゴム質重合体(r)相当分をかかる範囲とすることにより、成形品の耐薬品性、耐衝撃性をより向上させることができる。   In the thermoplastic resin composition of the present invention, the rubber polymer (r) equivalent content in the graft copolymer (A) is preferably 10 to 25% by weight in a total of 100% by weight of the thermoplastic resin composition. . By setting the rubber polymer (r) equivalent to such a range, the chemical resistance and impact resistance of the molded product can be further improved.

本発明の熱可塑性樹脂組成物は、アセトン可溶分(C)の重量平均分子量が150,000〜250,000であり、分散度が2.8以上であり、シアン化ビニル系単量体由来単位の含有量が29〜36重量%である。ここで、シアン化ビニル系単量体由来単位とは、アセトン可溶分(C)に含まれる共重合体において、シアン化ビニル系単量体に由来する構造単位を意味する。耐薬品性は、成形品に含まれるグラフト共重合体(A)およびビニル系共重合体(B)のうち、薬品に対する耐性の高いグラフト成分に比べて、ゴム質重合体(r)にグラフトしていない成分(アセトン可溶分(C))による影響が大きい。一方、ゴム質重合体(r)にグラフトしていない成分は、比較的流動性が高い。そこで、本発明においては、熱可塑性樹脂組成物の中でもアセトン可溶分(C)に着目した。さらに、成形品の耐薬品性を向上させるためには、成形品に付着した薬液の浸透を抑制することが有効であり、具体的には、高分子量化により分子鎖の絡まりを強化すること、高ニトリル化により分子間力を向上させて分子鎖間の相互作用を強化することが有効である。また、比較的シアン化ビニル系単量体由来単位の含有量が高く、比較的分子量の低いビニル系共重合体と、比較的高分子量で比較的シアン化ビニル系単量体由来単位の含有量が低いビニル系共重合体を組み合わせて用いることにより、成形性を維持しながら、耐薬品性を向上させることができることから、本発明においては、アセトン可溶分(C)のうち、シアン化ビニル系単量体由来単位の含有量が35重量%以上の成分(C−1)と、シアン化ビニル系単量体由来単位の含有量が35%重量%未満の成分(C−2)の分子量分布に着目した。さらに、薬品の浸透を抑制する分子間の相互作用を強化する作用は、シアン化ビニル系単量体由来単位の含有量が35重量%以上の場合に効果的に奏される。一方、グラフト共重合体(A)との相溶性向上効果は、シアン化ビニル系単量体由来単位の含有量が35重量%未満の場合に効果的に奏される。そこで、本発明においては、特に、シアン化ビニル系単量体由来単位の含有量が35重量%以上であるか、35重量%未満であるかに着目し、成分(C−1)と成分(C−2)それぞれの分子量分布に着目した。すなわち、アセトン可溶分(C)100重量%中、成分(C−1)を10〜30重量%、成分(C−2)を70〜90重量%含有し、成分(C−1)100重量%中、分子量が30,000〜200,000にある成分の割合が70重量%以上、分子量200,000を超える成分の割合が10〜20重量%、分子量30,000未満の成分の割合が20重量%以下であり、成分(C−2)100重量%中、分子量が30,000〜200,000にある成分の割合が40〜60重量%、分子量200,000を超える成分の割合が20重量%以上、分子量30,000未満の成分の割合が20重量%以下である。   The thermoplastic resin composition of the present invention has an acetone-soluble component (C) having a weight average molecular weight of 150,000 to 250,000, a dispersity of 2.8 or more, and derived from a vinyl cyanide monomer. The content of the unit is 29 to 36% by weight. Here, the vinyl cyanide monomer-derived unit means a structural unit derived from a vinyl cyanide monomer in the copolymer contained in the acetone-soluble component (C). As for chemical resistance, the graft copolymer (A) and vinyl copolymer (B) contained in the molded product are grafted to the rubbery polymer (r) as compared with the graft component having high resistance to chemicals. The influence by the component which is not (acetone soluble part (C)) is large. On the other hand, the component not grafted on the rubber polymer (r) has a relatively high fluidity. Therefore, in the present invention, attention was focused on the acetone-soluble component (C) in the thermoplastic resin composition. Furthermore, in order to improve the chemical resistance of the molded product, it is effective to suppress the penetration of the chemical solution attached to the molded product, specifically, to strengthen the entanglement of molecular chains by increasing the molecular weight, It is effective to enhance the interaction between the molecular chains by improving the intermolecular force by increasing the nitrile. In addition, a vinyl copolymer having a relatively high vinyl cyanide monomer-derived unit content and a relatively low molecular weight, and a relatively high molecular weight vinyl cyanide monomer-derived unit content In the present invention, among the acetone-soluble components (C), vinyl cyanide is used because chemical resistance can be improved while maintaining moldability by using a combination of vinyl copolymers having a low content. Molecular weight of the component (C-1) having a content of the monomer-based unit of 35% by weight or more and the component (C-2) having a content of the vinyl cyanide-based monomer-derived unit of less than 35% by weight Focused on the distribution. Furthermore, the effect | action which reinforce | strengthens the interaction between the molecules which suppress a chemical | medical agent penetration | permeation is show | played effectively, when content of the unit derived from a vinyl cyanide type monomer is 35 weight% or more. On the other hand, the effect of improving the compatibility with the graft copolymer (A) is effectively exhibited when the content of the vinyl cyanide monomer-derived unit is less than 35% by weight. Therefore, in the present invention, focusing on whether the content of the vinyl cyanide monomer-derived unit is 35% by weight or more or less than 35% by weight, the component (C-1) and the component ( C-2) Attention was paid to each molecular weight distribution. That is, 10 to 30% by weight of component (C-1) and 70 to 90% by weight of component (C-2) are contained in 100% by weight of acetone-soluble component (C), and 100% by weight of component (C-1). %, The proportion of components having a molecular weight of 30,000 to 200,000 is 70% by weight or more, the proportion of components having a molecular weight of more than 200,000 is 10 to 20% by weight, and the proportion of components having a molecular weight of less than 30,000 is 20%. The proportion of the component having a molecular weight of 30,000 to 200,000 is 40 to 60% by weight and the proportion of the component having a molecular weight exceeding 200,000 is 20% in 100% by weight of the component (C-2). %, And the proportion of components having a molecular weight of less than 30,000 is 20% by weight or less.

アセトン可溶分(C)の重量平均分子量を150,000以上とすることにより、成形品の耐衝撃性、耐薬品性を向上させ、薬品接触時の暗所黄変を低減することができる。一方、アセトン可溶分(C)の重量平均分子量を250,000以下とすることにより、流動性を向上させることができる。230,000以下がより好ましい。   By setting the weight average molecular weight of the acetone-soluble component (C) to 150,000 or more, impact resistance and chemical resistance of the molded product can be improved, and yellowing in the dark at the time of chemical contact can be reduced. On the other hand, fluidity | liquidity can be improved by making the weight average molecular weight of acetone soluble part (C) into 250,000 or less. 230,000 or less is more preferable.

アセトン可溶分(C)の分散度を2.8以上とすることにより、流動性を向上させることができる。3.0以上がより好ましい。   By setting the degree of dispersion of the acetone-soluble component (C) to 2.8 or more, the fluidity can be improved. 3.0 or more is more preferable.

アセトン可溶分(C)のシアン化ビニル系単量体由来単位の含有量を29重量%以上とすることにより、成形品の耐薬品性、剛性、耐衝撃性を向上させ、薬品接触時の暗所黄変性を低減することができる。一方、アセトン可溶分(C)のシアン化ビニル系単量体由来単位の含有量を36重量%以下とすることにより、流動性、成形品の耐衝撃性、色調を向上させることができる。   By making the content of the unit derived from vinyl cyanide monomer of acetone-soluble component (C) 29% by weight or more, the chemical resistance, rigidity, and impact resistance of the molded product are improved. Dark yellowing can be reduced. On the other hand, when the content of the unit derived from the vinyl cyanide monomer in the acetone-soluble component (C) is 36% by weight or less, the fluidity, the impact resistance of the molded product, and the color tone can be improved.

アセトン可溶分(C)100重量%中、シアン化ビニル系単量体由来単位の含有量が35重量%以上の成分(C−1)を10重量%以上含有することにより、成形品の耐薬品性、剛性、耐衝撃性を向上させ、薬品接触時の暗所黄変を低減することができる。一方、成分(C−1)を30重量%以下含有することにより、耐衝撃性、色調を向上させることができる。   By containing 10% by weight or more of component (C-1) having a content of vinyl cyanide monomer-derived units of 35% by weight or more in 100% by weight of acetone-soluble component (C), Improves chemical properties, rigidity, and impact resistance, and can reduce yellowing in the dark at the time of chemical contact. On the other hand, impact resistance and color tone can be improved by containing 30% by weight or less of component (C-1).

また、アセトン可溶分(C)100重量%中、シアン化ビニル系単量体由来単位の含有量が35重量%未満の成分(C−2)を70重量%以上含有することにより、成形品の耐衝撃性を向上させることができる。一方、成分(C−2)を90重量%以下含有することにより、成形品の剛性、耐衝撃性を向上させることができる。   Further, in 100% by weight of the acetone-soluble component (C), by containing 70% by weight or more of the component (C-2) in which the content of the vinyl cyanide monomer-derived unit is less than 35% by weight, a molded product is obtained. It is possible to improve the impact resistance. On the other hand, by containing 90% by weight or less of the component (C-2), the rigidity and impact resistance of the molded product can be improved.

さらに、成分(C−1)100重量%中、分子量が30,000〜200,000にある成分の割合が70重量%以上であれば、流動性、成形品の耐薬品性が向上する。一方、分子量が30,000〜200,000にある成分の割合は80重量%以下がより好ましい。また、成分(C−1)100重量%中、分子量200,000を超える成分の割合が10重量%以上であれば、耐薬品性および耐衝撃性が向上し、薬品接触時の暗所黄変を低減することができる。一方、分子量200,000を超える成分の割合が20重量%以下であれば、流動性が向上する。さらに、成分(C−1)100重量%中、分子量30,000未満の成分の割合が20重量%以下であれば、成形品の耐薬品性が向上し、薬品接触時の暗所黄変を低減することができる。15重量%以下がより好ましい。一方、分子量30,000未満の成分の割合は10重量%以上がより好ましい。   Furthermore, when the ratio of the component having a molecular weight of 30,000 to 200,000 is 70% by weight or more in 100% by weight of the component (C-1), fluidity and chemical resistance of the molded product are improved. On the other hand, the proportion of components having a molecular weight of 30,000 to 200,000 is more preferably 80% by weight or less. In addition, if the proportion of the component having a molecular weight exceeding 200,000 is 10% by weight or more in 100% by weight of component (C-1), chemical resistance and impact resistance are improved, and the yellowing in the dark at the time of chemical contact Can be reduced. On the other hand, if the proportion of the component having a molecular weight exceeding 200,000 is 20% by weight or less, the fluidity is improved. Furthermore, if the proportion of the component having a molecular weight of less than 30,000 in 100% by weight of component (C-1) is 20% by weight or less, the chemical resistance of the molded product is improved, and the yellowing in the dark at the time of chemical contact is improved. Can be reduced. 15% by weight or less is more preferable. On the other hand, the proportion of components having a molecular weight of less than 30,000 is more preferably 10% by weight or more.

成分(C−2)100重量%中、分子量が30,000〜200,000にある成分の割合が40〜60重量%であれば、流動性、成形品の耐薬品性が向上し、薬品接触時の暗所黄変を低減することができる。また、成分(C−2)100重量%中、分子量200,000を超える成分の割合が20重量%以上であれば、成形品の耐薬品性および耐衝撃性が向上し、薬品接触時の暗所黄変を低減することができる。25重量%以上がより好ましい。一方、分子量200,000を超える成分の割合は50重量%以下がより好ましい。さらに、成分(C−2)100重量%中、分子量30,000未満の成分の割合が20重量%以下であれば、成形品の耐薬品性が向上し、薬品接触時の暗所黄変を低減することができる。一方、分子量30,000未満の成分の割合5重量%以上がより好ましい。   If the ratio of the component having a molecular weight of 30,000 to 200,000 is 40 to 60% by weight in 100% by weight of component (C-2), the fluidity and chemical resistance of the molded product are improved, and the chemical contact It is possible to reduce yellowing in the dark in the time. Further, if the proportion of the component having a molecular weight exceeding 200,000 in 100% by weight of component (C-2) is 20% by weight or more, the chemical resistance and impact resistance of the molded product are improved, and darkness at the time of chemical contact The yellowing can be reduced. More preferably 25% by weight or more. On the other hand, the proportion of the component having a molecular weight exceeding 200,000 is more preferably 50% by weight or less. Furthermore, if the proportion of the component having a molecular weight of less than 30,000 in 100% by weight of component (C-2) is 20% by weight or less, the chemical resistance of the molded product is improved, and the yellowing in the dark at the time of chemical contact is improved. Can be reduced. On the other hand, the proportion of components having a molecular weight of less than 30,000 is more preferably 5% by weight or more.

ここで、分子量30,000未満の成分は、グラフト共重合体(A)のゴム質重合体(r)にグラフトしていない成分の比較的流動性が高い成分であるが、含有量が前記範囲より多くなると、耐薬品性が低下する傾向にある。一方、分子量200,000を超える成分は、耐薬品性の向上に寄与する成分であるが、成分(C−2)中の含有量が前記範囲より多いと、流動性が低下する傾向にある。   Here, the component having a molecular weight of less than 30,000 is a component having relatively high fluidity of the component not grafted to the rubbery polymer (r) of the graft copolymer (A), but the content thereof is in the above range. When it is more, the chemical resistance tends to decrease. On the other hand, a component having a molecular weight exceeding 200,000 is a component that contributes to an improvement in chemical resistance. However, if the content in the component (C-2) is more than the above range, the fluidity tends to decrease.

ここで、熱可塑性樹脂組成物中のアセトン可溶分(C)の重量平均分子量および分散度は、熱可塑性樹脂組成物からアセトン不溶分を濾過した濾液をロータリーエバポレーターで濃縮することにより採取したアセトン可溶分(C)約0.03gをテトラヒドロフラン約15gに溶解した約0.2重量%の溶液を用いて、グラフト共重合体(A)と同様に測定することができる。   Here, the weight average molecular weight and the degree of dispersion of the acetone-soluble component (C) in the thermoplastic resin composition were determined by concentrating the filtrate obtained by filtering the acetone-insoluble component from the thermoplastic resin composition with a rotary evaporator. It can be measured in the same manner as the graft copolymer (A) using a solution of about 0.2% by weight in which about 0.03 g of the soluble component (C) is dissolved in about 15 g of tetrahydrofuran.

ここで、熱可塑性樹脂組成物のアセトン可溶分(C)中のシアン化ビニル系単量体由来単位の含有量は、以下の組成分布測定により求めることができる。まず、熱可塑性樹脂組成物からアセトン不溶分を濾過した濾液をロータリーエバポレーターで濃縮することにより採取したアセトン可溶分(C)5gをアセトン80mlに溶解する。得られた溶液にシクロヘキサンを徐々に添加し、白濁したところで添加をやめる。この白濁溶液を8000r.p.m(10000G)で40分間遠心分離した後、上澄みを分離し、不溶分を得る。不溶分を80℃で5時間減圧乾燥し、その重量を測定する。その後、230℃に設定した加熱プレスにより作製した厚み30±5μmのフィルムについて、FT−IR分析を行い、FT−IRチャートに現れる下記ピークの強度比からシアン化ビニル系単量体由来単位の含有量とその重量を定量することができる。
芳香族ビニル系単量体由来単位:ベンゼン核の振動に帰属される1605cm−1のピーク
シアン化ビニル系単量体由来単位:−C≡N伸縮に帰属される2240cm−1のピーク
分離した上澄み液に、さらに5mlシクロヘキサンを加え、白濁液から同様の方法により不溶分を得る。上記操作を繰り返し、白濁がなくなるまで、5mずつシクロヘキサンを加え、各々のシクロヘキサン添加量における不溶分のシアン化ビニル系単量体由来単位の含有量と重量を、シアン化ビニル系単量体由来単位の含有量ごとに分離して測定することができる。上記方法により、シアン化ビニル系単量体由来単位が35重量%以上の成分(C−1)と35重量%未満の成分(C−2)の重量が求められる。
Here, the content of the vinyl cyanide monomer-derived unit in the acetone-soluble component (C) of the thermoplastic resin composition can be determined by the following composition distribution measurement. First, 5 g of an acetone soluble component (C) collected by concentrating a filtrate obtained by filtering acetone insoluble components from a thermoplastic resin composition using a rotary evaporator is dissolved in 80 ml of acetone. Cyclohexane is gradually added to the obtained solution, and the addition is stopped when it becomes cloudy. This cloudy solution was added to 8000 r. p. After centrifugation at m (10000 G) for 40 minutes, the supernatant is separated to obtain an insoluble matter. The insoluble matter is dried under reduced pressure at 80 ° C. for 5 hours, and its weight is measured. Then, FT-IR analysis was performed on a film with a thickness of 30 ± 5 μm produced by a heat press set at 230 ° C., and the inclusion of vinyl cyanide monomer-derived units from the intensity ratio of the following peak appearing in the FT-IR chart The amount and its weight can be quantified.
Unit derived from aromatic vinyl monomer: 1605 cm −1 peak attributed to vibration of benzene nucleus Unit derived from vinyl cyanide monomer: 2240 cm −1 peak attributed to —C≡N stretching Separated supernatant 5 ml of cyclohexane is further added to the liquid, and insoluble matter is obtained from the cloudy liquid by the same method. Repeat the above operation, add cyclohexane in 5 m increments until the cloudiness disappears, and determine the content and weight of insoluble vinyl cyanide monomer-derived units in each cyclohexane addition amount as vinyl cyanide monomer-derived units. It can be measured separately for each content. By the above method, the weights of the component (C-1) having a unit derived from vinyl cyanide monomer of 35% by weight or more and the component (C-2) having a unit of less than 35% by weight are obtained.

また、シアン化ビニル系単量体由来単位の含有量によって分けられたサンプル各々について、ビニル系共重合体(B)に記載と同一の方法によりGPC測定することにより、分子量30,000未満の成分、分子量30,000〜200,000の成分、分子量200,000を超える成分の重量比を求めることができる。   Moreover, about each sample divided according to content of the vinyl cyanide monomer-derived unit, a component having a molecular weight of less than 30,000 is measured by GPC measurement by the same method as described in the vinyl copolymer (B). The weight ratio of components having a molecular weight of 30,000 to 200,000 and components having a molecular weight exceeding 200,000 can be determined.

本発明の熱可塑性樹脂組成物において、アセトン可溶分(C)の重量平均分子量および分散度を前記範囲にする方法としては、例えば、前記グラフト共重合体(A)と、後述する高ニトリル含有ビニル系共重合体(B−1)および高分子量ビニル系共重合体(B−2)を含むビニル系共重合体(B)を配合する方法が挙げられる。   In the thermoplastic resin composition of the present invention, for example, the graft copolymer (A) and the high nitrile content described later can be used as the method for bringing the acetone-soluble content (C) into the weight average molecular weight and the degree of dispersion. The method of mix | blending the vinyl copolymer (B) containing a vinyl copolymer (B-1) and a high molecular weight vinyl copolymer (B-2) is mentioned.

本発明の熱可塑性樹脂組成物には、本発明の目的を損なわない範囲で、さらに他の熱可塑性樹脂や熱硬化性樹脂を配合してもよい。他の熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリ乳酸系樹脂等のポリエステル樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、芳香族または脂肪族ポリカーボネート樹脂、ポリアリレート樹脂、ポリフェニレンオキサイド樹脂、ポリアセタール樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、芳香族または脂肪族ポリケトン樹脂、フッ素樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン樹脂、ビニルエステル系樹脂、酢酸セルロース樹脂、ポリビニルアルコール樹脂などが挙げられる。熱硬化性樹脂としては、例えば、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂などが挙げられる。これらを2種以上配合してもよい。   In the thermoplastic resin composition of the present invention, another thermoplastic resin or a thermosetting resin may be further blended within a range that does not impair the object of the present invention. Examples of other thermoplastic resins include polyamide resins, polyphenylene sulfide resins, polyether ether ketone resins, polyester resins such as polylactic acid resins, polysulfone resins, polyether sulfone resins, aromatic or aliphatic polycarbonate resins, polyarylate. Resin, polyphenylene oxide resin, polyacetal resin, polyimide resin, polyetherimide resin, aromatic or aliphatic polyketone resin, fluororesin, polyvinyl chloride resin, polyvinylidene chloride resin, vinyl ester resin, cellulose acetate resin, polyvinyl alcohol Resin etc. are mentioned. Examples of the thermosetting resin include phenol resin, melamine resin, polyester resin, silicone resin, and epoxy resin. Two or more of these may be blended.

本発明の熱可塑性樹脂組成物には、さらに必要に応じて、本発明の目的を損なわない範囲で、ガラス繊維、ガラスパウダー、ガラスビーズ、ガラスフレーク、アルミナ、アルミナ繊維、炭素繊維、黒鉛繊維、ステンレス繊維、ウィスカ、チタン酸カリ繊維、ワラステナイト、アスベスト、ハードクレー、焼成クレー、タルク、カオリン、マイカ、炭酸カルシウム、炭酸マグネシウム、酸化アルミニウムおよび鉱物などの無機充填材;ヒンダードフェノール系、含硫黄化合物系または含リン有機化合物系などの酸化防止剤;フェノール系、アクリレート系などの熱安定剤;ベンゾトリアゾール系、ベンゾフェノン系またはサリシレート系などの紫外線吸収剤;ヒンダードアミン系光安定剤;高級脂肪酸、酸エステル、酸アミド系または高級アルコールなどの滑剤および可塑剤;モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびエチレンワックスなどの離型剤;各種難燃剤;難燃助剤;亜リン酸塩、次亜リン酸塩などの着色防止剤;リン酸、リン酸1ナトリウム、無水マレイン酸、無水コハク酸などの中和剤;核剤;アミン系、スルホン酸系、ポリエーテル系などの帯電防止剤;カーボンブラック、顔料、染料などの着色剤などを配合することができる。   In the thermoplastic resin composition of the present invention, if necessary, glass fiber, glass powder, glass beads, glass flake, alumina, alumina fiber, carbon fiber, graphite fiber, as long as the object of the present invention is not impaired. Inorganic fillers such as stainless fiber, whisker, potassium titanate fiber, wollastonite, asbestos, hard clay, calcined clay, talc, kaolin, mica, calcium carbonate, magnesium carbonate, aluminum oxide and minerals; hindered phenol, sulfur-containing Antioxidants such as compounds or phosphorus-containing organic compounds; heat stabilizers such as phenols and acrylates; UV absorbers such as benzotriazoles, benzophenones, and salicylates; hindered amine light stabilizers; higher fatty acids, acids Esters, acid amides or higher al Lubricants and plasticizers such as montoleic acid; release agents such as montanic acid and salts thereof, esters thereof, half esters thereof, stearyl alcohol, stearamide and ethylene wax; various flame retardants; flame retardant aids; Anti-coloring agents such as phosphites; neutralizing agents such as phosphoric acid, monosodium phosphate, maleic anhydride, and succinic anhydride; nucleating agents; antistatic agents such as amines, sulfonic acids, and polyethers; Colorants such as carbon black, pigments and dyes can be blended.

次に、本発明の熱可塑性樹脂組成物の製造方法について説明する。本発明の熱可塑性樹脂組成物は、例えば、前述のグラフト共重合体(A)、ビニル系共重合体(B)および必要に応じてその他成分を溶融混練することにより得ることができる。本発明の熱可塑性樹脂組成物の製造方法に関しては特に制限はなく、熱可塑性樹脂組成物を構成する各成分を、混合機を用いて混合する方法や、これらを均一に溶融混練する方法などが挙げられる。混合機としては、例えば、V型ブレンダー、スーパーミキサー、スーパーフローターおよびヘンシェルミキサーなどが挙げられる。溶融混練機としては、例えば、ニーダー、一軸または二軸押出機などが挙げられる。溶融混練温度は210〜320℃が好ましく、230〜300℃がより好ましい。得られた熱可塑性樹脂組成物は、ペレタイザによりペレット化して用いられることが一般的である。   Next, the manufacturing method of the thermoplastic resin composition of this invention is demonstrated. The thermoplastic resin composition of the present invention can be obtained, for example, by melt-kneading the aforementioned graft copolymer (A), vinyl copolymer (B) and other components as required. The method for producing the thermoplastic resin composition of the present invention is not particularly limited, and there are a method of mixing each component constituting the thermoplastic resin composition using a mixer, a method of uniformly melting and kneading them. Can be mentioned. Examples of the mixer include a V-type blender, a super mixer, a super floater, and a Henschel mixer. Examples of the melt kneader include a kneader, a single screw or twin screw extruder, and the like. The melt kneading temperature is preferably 210 to 320 ° C, more preferably 230 to 300 ° C. The obtained thermoplastic resin composition is generally used after being pelletized by a pelletizer.

本発明の熱可塑性樹脂組成物の製造方法においては、前記ビニル系共重合体(B)として、少なくとも芳香族ビニル系単量体(b1)55〜65重量%およびシアン化ビニル系単量体(b2)35〜45重量%を含有するビニル系単量体混合物(b−1)を共重合してなり、重量平均分子量が100,000〜150,000である高ニトリル含有ビニル系共重合体(B−1)と、少なくとも芳香族ビニル系単量体(b1)65重量%を超え75重量%以下およびシアン化ビニル系単量体(b2)25重量%以上35重量%未満を含有するビニル系単量体混合物(b−2)を共重合してなり、重量平均分子量が250,000〜350,000である高分子量ビニル系共重合体(B−2)とを組み合わせることが好ましい。 In the method for producing a thermoplastic resin composition of the present invention, as the vinyl copolymer (B), at least 55 to 65% by weight of an aromatic vinyl monomer (b1) and a vinyl cyanide monomer ( b2) A high nitrile-containing vinyl copolymer having a weight average molecular weight of 100,000 to 150,000 (copolymerized with a vinyl monomer mixture ( b-1 ) containing 35 to 45% by weight) B-1), a vinyl-based monomer containing at least 65% by weight of the aromatic vinyl-based monomer (b1) and 75% by weight or less and a vinyl cyanide monomer (b2) of 25% by weight or more and less than 35% by weight It is preferable to combine the monomer mixture ( b-2 ) with a high molecular weight vinyl copolymer (B-2) having a weight average molecular weight of 250,000-350,000.

高ニトリル含有ビニル系共重合体(B−1)を構成するビニル系単量体混合物(b−1)中の芳香族ビニル系単量体(b1)の含有量は、熱可塑性樹脂組成物の成形性および成形品の色調を向上させる観点から、ビニル系単量体混合物(b−1)の合計100重量%中、55重量%以上が好ましく、58重量%以上がより好ましい。一方、ビニル系単量体混合物(b−1)中の芳香族ビニル系単量体(b1)の含有量は、成形品の耐衝撃性および耐薬品性を向上させ、薬品接触時の暗所黄変を低減する観点から、65重量%以下が好ましく、62重量%以下がより好ましい。 The content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture ( b-1 ) constituting the high nitrile-containing vinyl copolymer (B-1) is the same as that of the thermoplastic resin composition. From the viewpoint of improving moldability and the color tone of the molded product, 55% by weight or more is preferable and 58% by weight or more is more preferable in the total 100% by weight of the vinyl monomer mixture ( b-1 ). On the other hand, the content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture ( b-1 ) improves the impact resistance and chemical resistance of the molded product, and is a dark place at the time of chemical contact. From the viewpoint of reducing yellowing, it is preferably 65% by weight or less, and more preferably 62% by weight or less.

一方、高ニトリル含有ビニル系共重合体(B−1)を構成するビニル系単量体混合物(b−1)中のシアン化ビニル系単量体(b2)の含有量は、成形品の耐薬品性および耐衝撃性を向上させ、薬品接触時の暗所黄変を低減する観点から、35重量%以上が好ましく、38重量%以上がより好ましい。一方、ビニル系単量体混合物(b−1)中のシアン化ビニル系単量体(b2)の含有量は、成形品の流動性および色調を向上させる観点から、45重量%以下が好ましく、42重量%以下がより好ましい。 On the other hand, the content of the vinyl cyanide monomer (b2) in the vinyl monomer mixture ( b-1 ) constituting the high nitrile-containing vinyl copolymer (B-1) depends on the resistance of the molded product. From the viewpoint of improving chemical properties and impact resistance and reducing yellowing in the dark at the time of chemical contact, it is preferably 35% by weight or more, and more preferably 38% by weight or more. On the other hand, the content of the vinyl cyanide monomer (b2) in the vinyl monomer mixture ( b-1 ) is preferably 45% by weight or less from the viewpoint of improving the fluidity and color tone of the molded product, 42% by weight or less is more preferable.

高分子量ビニル系共重合体(B−2)を構成するビニル系単量体混合物(b−2)中の芳香族ビニル系単量体(b1)の含有量は、熱可塑性樹脂組成物の流動性および成形品の色調を向上させる観点から、ビニル系単量体混合物(b−2)の合計100重量%中、65重量%以上が好ましく、68重量%以上がより好ましい。一方、ビニル系単量体混合物(b−2)中の芳香族ビニル系単量体(b1)の含有量は、成形品の耐衝撃性および耐薬品性を向上させ、薬品接触時の暗所黄変を低減する観点から、75重量%以下が好ましく、72重量%以下がより好ましい。 The content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture ( b-2 ) constituting the high molecular weight vinyl copolymer (B-2) depends on the flow of the thermoplastic resin composition. From the viewpoint of improving the properties and the color tone of the molded product, 65% by weight or more is preferable and 68% by weight or more is more preferable in the total 100% by weight of the vinyl monomer mixture ( b-2 ). On the other hand, the content of the aromatic vinyl monomer (b1) in the vinyl monomer mixture ( b-2 ) improves the impact resistance and chemical resistance of the molded product, and is a dark place at the time of chemical contact. From the viewpoint of reducing yellowing, 75% by weight or less is preferable, and 72% by weight or less is more preferable.

一方、高分子量系ビニル系共重合体(B−2)を構成するビニル系単量体混合物(b−2)中のシアン化ビニル系単量体(b2)の含有量は、熱可塑性樹脂組成物の耐衝撃性、耐薬品性を向上させ、薬品接触時の暗所黄変を低減する観点から、25重量%以上が好ましく、27重量%以上がより好ましい。一方、ビニル系単量体混合物(b−2)中のシアン化ビニル系単量体(b2)の含有量は、成形品の耐衝撃性、色調を向上させる観点から34重量%以下が好ましく、30重量%以下がより好ましい。 On the other hand, the content of the vinyl cyanide monomer (b2) in the vinyl monomer mixture ( b-2 ) constituting the high molecular weight vinyl copolymer (B-2) is determined by the thermoplastic resin composition. From the viewpoint of improving impact resistance and chemical resistance of an object and reducing yellowing in the dark at the time of chemical contact, it is preferably 25% by weight or more, and more preferably 27% by weight or more. On the other hand, the content of the vinyl cyanide monomer (b2) in the vinyl monomer mixture ( b-2 ) is preferably 34% by weight or less from the viewpoint of improving the impact resistance and color tone of the molded product, 30% by weight or less is more preferable.

本発明の熱可塑性樹脂組成物の製造方法において、高ニトリル含有ビニル系共重合体(B−1)の重量平均分子量は、100,000〜150,000である。高ニトリル含有ビニル系共重合体(B−1)の重量平均分子量が100,000以上であれば、耐薬品性を向上させ、薬品接触時の暗所黄変を低減することができる。一方、高ニトリル含有ビニル系共重合体(B−1)の重量平均分子量が150,000以下であれば、流動性が向上する。   In the method for producing a thermoplastic resin composition of the present invention, the weight average molecular weight of the high nitrile-containing vinyl copolymer (B-1) is 100,000 to 150,000. If the weight average molecular weight of the high nitrile-containing vinyl copolymer (B-1) is 100,000 or more, chemical resistance can be improved and dark yellowing at the time of chemical contact can be reduced. On the other hand, if the weight average molecular weight of the high nitrile-containing vinyl copolymer (B-1) is 150,000 or less, the fluidity is improved.

また、本発明の熱可塑性樹脂組成物の製造方法において、高分子量ビニル系共重合体(B−2)の重量平均分子量は、250,000〜350,000である。高分子量ビニル系共重合体(B−2)の重量平均分子量が250,000以上であれば、耐薬品性が向上し、薬品接触時の暗所黄変を低減することができる。一方、高分子量ビニル系共重合体(B−2)の重量平均分子量が350,000以下であれば、流動性が向上する。   Moreover, in the manufacturing method of the thermoplastic resin composition of this invention, the weight average molecular weights of a high molecular weight vinyl type copolymer (B-2) are 250,000-350,000. If the weight average molecular weight of the high molecular weight vinyl copolymer (B-2) is 250,000 or more, chemical resistance is improved, and yellowing in the dark at the time of chemical contact can be reduced. On the other hand, if the weight average molecular weight of the high molecular weight vinyl copolymer (B-2) is 350,000 or less, the fluidity is improved.

高ニトリル含有ビニル系共重合体(B−1)および高分子量ビニル系共重合体(B−2)の重量平均分子量を上記範囲とすることにより、熱可塑性樹脂組成物のアセトン可溶分(C)の重量平均分子量および分散度を、前述の所望の範囲に容易に調整することができる。   By setting the weight average molecular weights of the high nitrile-containing vinyl copolymer (B-1) and the high molecular weight vinyl copolymer (B-2) within the above range, the acetone-soluble component (C ) Can be easily adjusted to the above desired range.

高ニトリル含有ビニル系共重合体(B−1)および高分子量ビニル系共重合体(B−2)の分散度については、特に制限はないが、2.0〜3.0が好ましい。分散度が前記範囲であれば、流動性、耐薬品性をより向上させ、薬品接触時の暗所黄変をより低減することができる。   The degree of dispersion of the high nitrile-containing vinyl copolymer (B-1) and the high molecular weight vinyl copolymer (B-2) is not particularly limited, but is preferably 2.0 to 3.0. When the degree of dispersion is in the above range, the fluidity and chemical resistance can be further improved, and yellowing in the dark place during chemical contact can be further reduced.

重量平均分子量が100,000〜150,000である高ニトリル含有ビニル系共重合体(B−1)および重量平均分子量が250,000〜350,000である高分子量ビニル系共重合体(B−2)は、例えば、前述の開始剤や連鎖移動剤を用いること、重合温度を前述の好ましい範囲にすることなどにより、容易に製造することができる。   A high nitrile-containing vinyl copolymer (B-1) having a weight average molecular weight of 100,000 to 150,000 and a high molecular weight vinyl copolymer having a weight average molecular weight of 250,000 to 350,000 (B- 2) can be easily produced, for example, by using the above-mentioned initiator or chain transfer agent, or setting the polymerization temperature within the above-mentioned preferred range.

本発明の熱可塑性樹脂組成物の製造方法においては、前述の高ニトリル含有ビニル系共重合体(B−1)および高分子量ビニル系共重合体(B−2)を、(B−1)/(B−2)=33/67〜67/33(重量比)で組み合わせることがより好ましい。(B−1)/(B−2)を33/67以上とすることにより、耐薬品性および耐衝撃性をより向上させ、薬品接触時の暗所黄変をより低減することができる。一方、(B−1)/(B−2)を67/33以下とすることにより、耐衝撃性および色調をより向上させることができる。   In the method for producing the thermoplastic resin composition of the present invention, the above-mentioned high nitrile-containing vinyl copolymer (B-1) and high molecular weight vinyl copolymer (B-2) are converted into (B-1) / It is more preferable to combine at (B-2) = 33/67 to 67/33 (weight ratio). By setting (B-1) / (B-2) to 33/67 or more, chemical resistance and impact resistance can be further improved, and yellowing in the dark at the time of chemical contact can be further reduced. On the other hand, by setting (B-1) / (B-2) to 67/33 or less, impact resistance and color tone can be further improved.

本発明の熱可塑性樹脂組成物は、任意の成形方法により成形することができる。成形方法としては、例えば、射出成形、押出成形、インフレーション成形、ブロー成形、真空成形、圧縮成形、ガスアシスト成形などが挙げられ、射出成形が好ましく用いられる。射出成形時のシリンダー温度は210〜320℃が好ましく、金型温度は30〜80℃が好ましい。   The thermoplastic resin composition of the present invention can be molded by any molding method. Examples of the molding method include injection molding, extrusion molding, inflation molding, blow molding, vacuum molding, compression molding, gas assist molding, and the like, and injection molding is preferably used. The cylinder temperature during injection molding is preferably 210 to 320 ° C, and the mold temperature is preferably 30 to 80 ° C.

本発明の熱可塑性樹脂組成物は、任意の形状の成形品として広く用いることができる。成形品としては、例えば、フィルム、シート、繊維、布、不織布、射出成形品、押出成形品、真空圧空成形品、ブロー成形品、他の材料との複合体などが挙げられる。本発明の成形品は、家電製品、通信関連機器、一般雑貨および医療関連機器などの用途に有用であり、なかでも、洗剤や溶剤との接触を伴う外装部品に好ましく用いることができる。   The thermoplastic resin composition of the present invention can be widely used as a molded article having an arbitrary shape. Examples of the molded article include films, sheets, fibers, cloths, nonwoven fabrics, injection molded articles, extruded molded articles, vacuum / pressure molded articles, blow molded articles, and composites with other materials. The molded article of the present invention is useful for applications such as home appliances, communication-related equipment, general goods, and medical-related equipment, and can be preferably used for exterior parts that are in contact with detergents and solvents.

以下、実施例を挙げて本発明をさらに詳述するが、本発明はこれらの実施例に限定されるものではない。まず、実施例における評価方法について説明する。   EXAMPLES Hereinafter, although an Example is given and this invention is further explained in full detail, this invention is not limited to these Examples. First, the evaluation method in an Example is demonstrated.

(1)ゴム質重合体の重量平均粒子径
ゴム質重合体ラテックスを水媒体で希釈、分散させ、レーザ散乱回折法粒度分布測定装置“LS 13 320”(ベックマン・コールター株式会社)により粒子径分布を測定した。その粒子径分布より、ゴム質重合体(r)の重量平均粒子径を算出した。
(1) Weight average particle diameter of rubbery polymer The rubbery polymer latex is diluted and dispersed in an aqueous medium, and the particle size distribution is measured by a laser scattering diffraction particle size distribution analyzer “LS 13 320” (Beckman Coulter, Inc.). Was measured. From the particle size distribution, the weight average particle size of the rubber polymer (r) was calculated.

(2)グラフト共重合体(A)のグラフト率
グラフト共重合体(A)サンプル約1g(m:サンプル重量)にアセトン80mlを加え、70℃の湯浴中で3時間還流し、この溶液を8000r.p.m(10000G)で40分間遠心分離した後、不溶分を濾過した。得られたアセトン不溶分を80℃で5時間減圧乾燥させ、その重量(n)を測定し、下記式よりグラフト率を算出した。ここで、Xはグラフト共重合体(A)のゴム質重合体含有率(%)である。
グラフト率(%)={[(n)−(m)×X]/[(m)×X]}×100。
(2) Graft ratio of graft copolymer (A) 80 ml of acetone is added to about 1 g (m: sample weight) of the graft copolymer (A) and refluxed in a 70 ° C. water bath for 3 hours. 8000 r. p. After centrifugation at m (10000 G) for 40 minutes, the insoluble matter was filtered. The obtained acetone insoluble matter was dried under reduced pressure at 80 ° C. for 5 hours, its weight (n) was measured, and the graft ratio was calculated from the following formula. Here, X is the rubbery polymer content (%) of the graft copolymer (A).
Graft ratio (%) = {[(n) − (m) × X] / [(m) × X]} × 100.

また、アセトン可溶分をロータリーエバポレーターにより濃縮することにより得た。   Moreover, it obtained by concentrating acetone soluble part with a rotary evaporator.

(3)重量平均分子量および分散度
前記(2)の操作によりグラフト共重合体(A)のアセトン可溶分を得た。また、各実施例および比較例により得られた熱可塑性樹脂組成物ペレット約1g(m:サンプル質量)にアセトン80mlを加え、70℃の湯浴中で3時間還流し、この溶液を8000r.p.m(10000G)で40分間遠心分離した後、不溶分を濾過することにより、熱可塑性樹脂組成物のアセトン可溶分(C)を得た。グラフト共重合体(A)のアセトン可溶分、ビニル系共重合体(B)、熱可塑性樹脂組成物のアセトン可溶分(C)各々のサンプル約0.03gをテトラヒドロフラン約15gに溶解し、約0.2重量%の溶液を調製した。下記条件により測定したGPCクロマトグラムより、ポリスチレンを標準物質として換算した重量平均分子量および分散度を算出した。
機器:Waters2695
カラム温度:40℃
検出器:RI2414(示差屈折率計)
キャリア溶離液流量:0.3ml/min(溶媒:テトラヒドロフラン)
カラム:TSKgel SuperHZM−M(6.0mmI.D.×15cm)、TSKgel SuperHZM−N(6.0mmI.D.×15cm)直列(いずれも東ソー)。
(3) Weight average molecular weight and degree of dispersion The acetone-soluble content of the graft copolymer (A) was obtained by the operation of (2). Further, 80 ml of acetone was added to about 1 g (m: sample mass) of the thermoplastic resin composition pellets obtained in each example and comparative example, and the mixture was refluxed in a 70 ° C. hot water bath for 3 hours. p. After centrifuging at m (10000 G) for 40 minutes, the insoluble matter was filtered to obtain an acetone-soluble matter (C) of the thermoplastic resin composition. About 0.03 g of each of the acetone-soluble content of the graft copolymer (A), the vinyl copolymer (B), and the acetone-soluble content (C) of the thermoplastic resin composition was dissolved in about 15 g of tetrahydrofuran, An approximately 0.2% by weight solution was prepared. From the GPC chromatogram measured under the following conditions, the weight average molecular weight and the degree of dispersion in terms of polystyrene were calculated.
Equipment: Waters 2695
Column temperature: 40 ° C
Detector: RI2414 (differential refractometer)
Carrier eluent flow rate: 0.3 ml / min (solvent: tetrahydrofuran)
Column: TSKgel SuperHZM-M (6.0 mm ID × 15 cm), TSKgel SuperHZM-N (6.0 mm ID × 15 cm) in series (both Tosoh).

(4)熱可塑性樹脂組成物のアセトン可溶分(C)のシアン化ビニル系単量体由来単位の含有量
前記(3)の操作により得られた熱可塑性樹脂組成物のアセトン可溶分(C)を230℃に設定した加熱プレスにより加熱加圧し、厚み30±5μmのフィルムを作製した。得られたフィルムについて、FT−IR分析を行い、FT−IRチャートに現れた下記ピークの強度比からシアン化ビニル系単量体由来単位(アクリロニトリル単量体由来単位)の含有量を求めた。
芳香族ビニル系単量体由来単位:ベンゼン核の振動に帰属される1605cm−1のピーク
シアン化ビニル系単量体由来単位:−C≡N伸縮に帰属される2240cm−1のピーク。
(4) Content of unit derived from vinyl cyanide monomer in acetone-soluble component (C) of thermoplastic resin composition Acetone-soluble component of thermoplastic resin composition obtained by operation of (3) above ( C) was heated and pressurized with a heating press set at 230 ° C. to produce a film with a thickness of 30 ± 5 μm. The obtained film was subjected to FT-IR analysis, and the content of vinyl cyanide monomer-derived units (acrylonitrile monomer-derived units) was determined from the intensity ratio of the following peaks appearing on the FT-IR chart.
Unit derived from aromatic vinyl monomer: 1605 cm −1 peak attributed to vibration of benzene nucleus Vinyl cyanide monomer derived unit: peak at 2240 cm −1 attributed to —C≡N stretching.

(5)熱可塑性樹脂組成物のアセトン可溶分(C)の組成分布および分子量分布
各実施例および比較例により得られた熱可塑性樹脂組成物ペレットからアセトン不溶分を濾過した濾液をロータリーエバポレーターで濃縮することにより採取したアセトン可溶分(C)5gをアセトン80mlに溶解した溶液に、シクロヘキサンを徐々に添加し、白濁したところで添加をやめる。この白濁溶液を8000r.p.m(10000G)で40分間遠心分離した後、上澄みを分離し、不溶分を得た。不溶分を80℃で5時間減圧乾燥し、その重量を測定した。その後、230℃に設定した加熱プレスにより厚み30±5μmのフィルムを作製し、得られたフィルムについて、FT−IR分析を行い、FT−IRチャートに現れる下記ピークの強度比からシアン化ビニル系単量体由来単位(アクリロニトリル単量体由来単位)の含有量とその重量を定量した。
芳香族ビニル系単量体由来単位:ベンゼン核の振動に帰属される1605cm−1のピーク
シアン化ビニル系単量体由来単位:−C≡N伸縮に帰属される2240cm−1のピーク
(5) Composition distribution and molecular weight distribution of acetone-soluble component (C) of thermoplastic resin composition The filtrate obtained by filtering the acetone-insoluble component from the thermoplastic resin composition pellets obtained in each Example and Comparative Example was removed with a rotary evaporator. Cyclohexane is gradually added to a solution obtained by dissolving 5 g of acetone-soluble component (C) collected by concentration in 80 ml of acetone, and the addition is stopped when the solution becomes cloudy. This cloudy solution was added to 8000 r. p. After centrifugation at m (10000 G) for 40 minutes, the supernatant was separated to obtain an insoluble matter. The insoluble matter was dried under reduced pressure at 80 ° C. for 5 hours, and its weight was measured. Thereafter, a film with a thickness of 30 ± 5 μm was produced by a heating press set at 230 ° C., and the obtained film was subjected to FT-IR analysis, and from the intensity ratio of the following peak appearing on the FT-IR chart, The content of the monomer-derived unit (acrylonitrile monomer-derived unit) and its weight were quantified.
Unit derived from aromatic vinyl monomer: 1605 cm −1 peak attributed to vibration of benzene nucleus Vinyl cyanide monomer derived unit: peak at 2240 cm −1 attributed to —C≡N stretching

分離した上澄み液に、さらに5mlシクロヘキサンを加え、白濁液から同様の方法により不溶分を得た。上記操作を繰り返し、白濁がなくなるまで、5mずつシクロヘキサンを加え、各々のシクロヘキサン添加量における不溶分のシアン化ビニル系単量体由来単位の含有量と重量を、シアン化ビニル系単量体由来単位の含有量ごとに分離して測定した。上記方法により、アクリロニトリル単量体由来単位の含有量が35重量%以上の成分(C−1)と35重量%未満の成分(C−2)の重量を求めた。   5 ml of cyclohexane was further added to the separated supernatant, and insoluble matter was obtained from the cloudy solution by the same method. Repeat the above operation, add cyclohexane in 5 m increments until the cloudiness disappears, and determine the content and weight of insoluble vinyl cyanide monomer-derived units in each cyclohexane addition amount as vinyl cyanide monomer-derived units. It was measured separately for each content. By the said method, the content of the component (C-1) whose content of an acrylonitrile monomer origin unit is 35 weight% or more and the component (C-2) less than 35 weight% was calculated | required.

また、シアン化ビニル系単量体由来単位の含有量によって分けられたサンプル各々について、前記(3)に記載と同一の方法によりGPC測定し、分子量30,000未満の成分、分子量30,000〜200,000の成分、分子量200,000を超える成分の重量比を求めた。   Further, for each sample divided by the content of the vinyl cyanide monomer-derived unit, GPC measurement was performed by the same method as described in the above (3), a component having a molecular weight of less than 30,000, The weight ratio of 200,000 components and components exceeding 200,000 molecular weight was determined.

(6)耐衝撃性(シャルピー衝撃強度)
各実施例および比較例により得られた熱可塑性樹脂組成物ペレットを80℃の熱風乾燥機中で3時間乾燥した後、シリンダー温度を230℃に設定した住友重機械工業(株)製SE−50DU成形機内に充填し、即時に厚さ4mmのダンベル試験片を成形した。得られたダンベル試験片各5個について、ISO179に準拠した方法でシャルピー衝撃強度を測定し、その数平均値を算出した。
(6) Impact resistance (Charpy impact strength)
SE-50DU manufactured by Sumitomo Heavy Industries, Ltd. in which the thermoplastic resin composition pellets obtained in each Example and Comparative Example were dried in a hot air dryer at 80 ° C. for 3 hours and then the cylinder temperature was set to 230 ° C. The molding machine was filled and a 4 mm thick dumbbell specimen was immediately molded. About five obtained dumbbell test pieces, Charpy impact strength was measured by a method based on ISO179, and the number average value was calculated.

(7)剛性(曲げ弾性率)
各実施例および比較例により得られた熱可塑性樹脂組成物ペレットを80℃の熱風乾燥機中で3時間乾燥した後、シリンダー温度を230℃に設定した住友重機械工業(株)製SE−50DU成形機内に充填し、即時に厚さ4mmのダンベル試験片を成形した。得られたダンベル試験片各3個について、ISO178に準拠した方法で曲げ弾性率を測定し、その数平均値を算出した。
(7) Rigidity (flexural modulus)
SE-50DU manufactured by Sumitomo Heavy Industries, Ltd. in which the thermoplastic resin composition pellets obtained in each Example and Comparative Example were dried in a hot air dryer at 80 ° C. for 3 hours and then the cylinder temperature was set to 230 ° C. The molding machine was filled and a 4 mm thick dumbbell specimen was immediately molded. For each of the three obtained dumbbell test pieces, the flexural modulus was measured by a method based on ISO178, and the number average value was calculated.

(8)流動性(メルトフローレート(MFR))
各実施例および比較例により得られた熱可塑性樹脂組成物ペレットを80℃の熱風乾燥機中で3時間乾燥した後、測定温度220℃、荷重98Nの条件で、ISO113に準拠した方法によりMFRを測定した。
(8) Fluidity (melt flow rate (MFR))
After the thermoplastic resin composition pellets obtained in each Example and Comparative Example were dried in a hot air dryer at 80 ° C. for 3 hours, MFR was measured by a method based on ISO 113 under the conditions of a measurement temperature of 220 ° C. and a load of 98 N. It was measured.

(9)耐薬品性
各実施例および比較例により得られた熱可塑性樹脂組成物ペレットを80℃の熱風乾燥機中で3時間乾燥した後、シリンダー温度を230℃に設定した住友重機械工業(株)製SE−50DU成形機内に充填し、ウェルド部を有する厚さ4mmのダンベル試験片を成形した。
(9) Chemical resistance Sumitomo Heavy Industries, Ltd., in which the thermoplastic resin composition pellets obtained in each Example and Comparative Example were dried in a hot air dryer at 80 ° C. for 3 hours, and then the cylinder temperature was set to 230 ° C. The product was filled into a SE-50DU molding machine, and a dumbbell specimen having a thickness of 4 mm was formed.

ダンベル試験片2個について、温度23℃、湿度50%の環境下で、図1に示すように、ウェルド部4を有するダンベル試験片3の片半分を治具にセットした。次に、ウェルド部4を有するダンベル試験片3の端面に重さ1kgの重り5により荷重をかけながら、ウェルド部4にスポイト1を用いてイソプロパノール2を滴下し、24時間静置した。静置後、目視観察によりウェルド部の破断の有無を観察し、下記基準により評価した。
2個ともにウェルド部が破断しない場合:○
1個でもウェルド部が破断した場合:×。
For two dumbbell test pieces, half of the dumbbell test piece 3 having the weld portion 4 was set in a jig as shown in FIG. 1 in an environment of a temperature of 23 ° C. and a humidity of 50%. Next, isopropanol 2 was dropped into the weld portion 4 using the dropper 1 while applying a load to the end face of the dumbbell test piece 3 having the weld portion 4 with a weight 5 having a weight of 1 kg, and allowed to stand for 24 hours. After standing, the presence or absence of fracture of the weld portion was observed by visual observation, and evaluated according to the following criteria.
When the weld part does not break in both: ○
If even one weld breaks: x.

(10)薬品接触時の暗所黄変
各実施例および比較例により得られた熱可塑性樹脂組成物ペレットを80℃の熱風乾燥機中で3時間乾燥した後、シリンダー温度を230℃に設定した住友重機械工業(株)製SE−50DU成形機内に充填し、長さ50mm、幅30mm、厚さ3mmのプレート試験片を成形した。得られたプレート試験片について、住化カラー社製CCM(分光光度計マクベス7000A)を用いて、L*、a*、b*をそれぞれ測定した。
(10) Dark yellowing at the time of chemical contact After the thermoplastic resin composition pellets obtained by the respective examples and comparative examples were dried in a hot air dryer at 80 ° C. for 3 hours, the cylinder temperature was set to 230 ° C. The plate was filled into a SE-50DU molding machine manufactured by Sumitomo Heavy Industries, Ltd., and a plate test piece having a length of 50 mm, a width of 30 mm, and a thickness of 3 mm was molded. About the obtained plate test piece, L *, a *, and b * were measured using CCM (Spectrophotometer Macbeth 7000A) by Sumika Color Co., Ltd., respectively.

また、プレート試験片を50℃に保温した“ナノックス”に浸し、24時間静置した後、オープンフレームカーボンアーク灯式耐光性試験機(ブラックパネル温度63℃)を用いて24時間光照射した。次いで、温度80℃、湿度80%の恒温恒湿槽内で24時間静置した後、住化カラー社製CCM(分光光度計マクベス7000A)を用いて、L*、a*、b*をそれぞれ測定した。試験前後のL*、a*、b*の測定値から、ΔE*を算出した。   Further, the plate test piece was immersed in “Nanox” kept at 50 ° C., allowed to stand for 24 hours, and then irradiated with light using an open frame carbon arc lamp type light resistance tester (black panel temperature 63 ° C.) for 24 hours. Next, after standing for 24 hours in a constant temperature and humidity chamber with a temperature of 80 ° C. and a humidity of 80%, using a CCM (Spectrophotometer Macbeth 7000A) manufactured by Sumika Color Co., Ltd. It was measured. ΔE * was calculated from the measured values of L *, a *, and b * before and after the test.

(参考例1)グラフト共重合体(A−(1))
撹拌翼を備えた内容量5リットルの四つ口フラスコに、ポリブタジエンラテックス(ゴムの重量平均粒子径0.30μm、ゲル含有率85%)31.5重量部(固形分換算)、スチレン−ブタジエンゴムラテックス(ゴムの重量平均粒子径1.0μm、ゲル非含有)13.5重量部(固形分換算)、純水130重量部、ラウリン酸ナトリウム0.4重量部、ブドウ糖0.2重量部、ピロリン酸ナトリウム0.2重量部、硫酸第一鉄0.01重量部を仕込み、窒素置換後、60℃に温調し、撹拌しながら、スチレン5.84重量部、アクリロニトリル2.16重量部およびt−ドデシルメルカプタン0.083重量部の単量体混合物を30分間かけて初期添加した。
(Reference Example 1) Graft copolymer (A- (1))
In a 5 liter four-necked flask equipped with a stirring blade, 31.5 parts by weight of polybutadiene latex (rubber weight average particle diameter 0.30 μm, gel content 85%) (solid content conversion), styrene-butadiene rubber Latex (rubber weight average particle size 1.0 μm, gel-free) 13.5 parts by weight (in terms of solid content), pure water 130 parts by weight, sodium laurate 0.4 parts by weight, glucose 0.2 parts by weight, pyrroline Sodium sulfate 0.2 parts by weight, ferrous sulfate 0.01 parts by weight, after substitution with nitrogen, the temperature was adjusted to 60 ° C., with stirring, 5.84 parts by weight of styrene, 2.16 parts by weight of acrylonitrile and t -Initial addition of 0.083 parts by weight of monomer mixture of dodecyl mercaptan over 30 minutes.

次いで、クメンハイドロパーオキサイド0.12重量部、乳化剤であるラウリン酸ナトリウム1.8重量部および純水25重量部の開始剤混合物を4時間かけて連続滴下した。同時に並行して、スチレン34.26重量部、アクリロニトリル12.74重量部およびt−ドデシルメルカプタン0.483重量部の単量体混合物を4時間かけて連続追滴下した。単量体混合物追滴下後、さらに、クメンハイドロパーオキサイド0.08重量部、乳化剤であるラウリン酸ナトリウム0.3重量部および純水25重量部の開始剤混合物を2時間かけて添加し、重合を終了させた。得られたグラフト共重合体ラテックスを1.5重量%硫酸で凝固した後、水酸化ナトリウムで中和し、洗浄、遠心分離、乾燥して、パウダー状のグラフト共重合体(A−(1))を得た。得られたグラフト共重合体(A−(1))のグラフト率は24%であった。また、アセトン可溶分の重量平均分子量は80,000であり、アセトン可溶分の分散度は2.2であり、アセトン可溶分のシアン化ビニル系単量体由来単位の含有量は27重量%であった。   Subsequently, 0.12 parts by weight of cumene hydroperoxide, 1.8 parts by weight of sodium laurate as an emulsifier, and 25 parts by weight of pure water were continuously added dropwise over 4 hours. At the same time, a monomer mixture of 34.26 parts by weight of styrene, 12.74 parts by weight of acrylonitrile and 0.483 parts by weight of t-dodecyl mercaptan was continuously added dropwise over 4 hours. After the monomer mixture was added dropwise, an initiator mixture of cumene hydroperoxide 0.08 parts by weight, emulsifier sodium laurate 0.3 parts by weight and pure water 25 parts by weight was added over 2 hours to polymerize. Was terminated. The obtained graft copolymer latex was coagulated with 1.5% by weight sulfuric acid, neutralized with sodium hydroxide, washed, centrifuged and dried to obtain a powdered graft copolymer (A- (1) ) The graft ratio of the obtained graft copolymer (A- (1)) was 24%. The weight average molecular weight of the acetone-soluble component is 80,000, the degree of dispersion of the acetone-soluble component is 2.2, and the content of the acetone-soluble component derived from the vinyl cyanide monomer is 27. % By weight.

(参考例2)グラフト共重合体(A−(2))
撹拌翼を備えた内容量5リットルの四つ口フラスコに、ポリブタジエンラテックス(ゴムの重量平均粒子径0.30μm、ゲル含有率85%)50重量部(固形分換算)、純水130重量部、ラウリン酸ナトリウム0.4重量部、ブドウ糖0.2重量部、ピロリン酸ナトリウム0.2重量部、硫酸第一鉄0.01重量部を仕込み、窒素置換後、60℃に温調し、撹拌しながら、スチレン6.7重量部、アクリロニトリル2.5重量部およびt−ドデシルメルカプタン0.058重量部の単量体混合物を30分間かけて初期添加した。
(Reference Example 2) Graft copolymer (A- (2))
In a 5 liter four-necked flask equipped with a stirring blade, 50 parts by weight of polybutadiene latex (rubber weight average particle diameter 0.30 μm, gel content 85%) (solid content conversion), 130 parts by weight of pure water, Charge 0.4 parts by weight of sodium laurate, 0.2 parts by weight of glucose, 0.2 parts by weight of sodium pyrophosphate, 0.01 parts by weight of ferrous sulfate, and after nitrogen replacement, adjust the temperature to 60 ° C. and stir. However, a monomer mixture of 6.7 parts by weight of styrene, 2.5 parts by weight of acrylonitrile and 0.058 parts by weight of t-dodecyl mercaptan was initially added over 30 minutes.

次いで、クメンハイドロパーオキサイド0.32重量部、乳化剤であるラウリン酸ナトリウム1.5重量部および純水25重量部の開始剤混合物を5時間かけて連続滴下した。同時に並行して、スチレン29.8重量部、アクリロニトリル11.0重量部およびt−ドデシルメルカプタン0.193重量部の単量体混合物を3時間かけて連続追滴下した。単量体混合物滴下後、2時間、開始剤混合物のみを連続滴下し、その後重合を終了させた。得られたグラフト共重合体ラテックスを1.5重量%硫酸で凝固した後、水酸化ナトリウムで中和し、洗浄、遠心分離、乾燥して、パウダー状のグラフト共重合体(A−(2))を得た。得られたグラフト共重合体(A−(2))のグラフト率は38%であった。また、アセトン可溶分の重量平均分子量は83,000であり、アセトン可溶分の分散度は2.3であり、アセトン可溶分のシアン化ビニル系単量体由来単位の含有量は27重量%であった。   Subsequently, an initiator mixture of 0.32 parts by weight of cumene hydroperoxide, 1.5 parts by weight of sodium laurate as an emulsifier and 25 parts by weight of pure water was continuously dropped over 5 hours. At the same time, a monomer mixture of 29.8 parts by weight of styrene, 11.0 parts by weight of acrylonitrile and 0.193 parts by weight of t-dodecyl mercaptan was continuously added dropwise over 3 hours. After dropping of the monomer mixture, only the initiator mixture was continuously dropped for 2 hours, and then the polymerization was terminated. The obtained graft copolymer latex was coagulated with 1.5% by weight sulfuric acid, neutralized with sodium hydroxide, washed, centrifuged and dried to obtain a powdered graft copolymer (A- (2) ) The graft ratio of the obtained graft copolymer (A- (2)) was 38%. The acetone-soluble component has a weight average molecular weight of 83,000, the acetone-soluble component has a dispersity of 2.3, and the acetone-soluble vinyl cyanide monomer-derived unit content is 27. % By weight.

(参考例3)グラフト共重合体(A−(3))
初期添加する単量体混合物中のt−ドデシルメルカプタンを0.01重量部とし、重合開始後に同時並行して添加した単量体混合物中のt−ドデシルメルカプタンを0.04重量部とした以外は参考例1と同様の方法でグラフト共重合体(A−(3))を得た。得られたグラフト共重合体(A−(3))のグラフト率は50%であった。また、アセトン可溶分の重量平均分子量は300,000であり、アセトン可溶分の分散度は2.4であり、アセトン可溶分のシアン化ビニル系単量体由来単位の含有量は27重量%であった。
(Reference Example 3) Graft copolymer (A- (3))
Except that t-dodecyl mercaptan in the monomer mixture to be initially added is 0.01 parts by weight and t-dodecyl mercaptan in the monomer mixture added in parallel after the start of polymerization is 0.04 parts by weight. A graft copolymer (A- (3)) was obtained in the same manner as in Reference Example 1. The graft ratio of the obtained graft copolymer (A- (3)) was 50%. The weight average molecular weight of the acetone-soluble component is 300,000, the degree of dispersion of the acetone-soluble component is 2.4, and the content of the unit derived from the vinyl cyanide monomer based on the acetone-soluble component is 27. % By weight.

(参考例4)グラフト共重合体(A−(4))
初期添加する単量体混合物中のスチレンを3.6重量部、アクリロニトリルを0.6重量部、t−ドデシルメルカプタンを0.15重量部とし、さらにメタクリル酸メチル10.8重量部を加えて、これらの単量体混合物を45分間かけて添加したこと以外は参考例1と同様の方法で初期添加を行った。
(Reference Example 4) Graft copolymer (A- (4))
In the monomer mixture to be initially added, 3.6 parts by weight of styrene, 0.6 part by weight of acrylonitrile, 0.15 part by weight of t-dodecyl mercaptan, and 10.8 parts by weight of methyl methacrylate were added. Initial addition was performed in the same manner as in Reference Example 1 except that these monomer mixtures were added over 45 minutes.

次いで、クメンハイドロパーオキサイド0.3重量部、乳化剤であるラウリン酸ナトリウム1.6重量部および純水25重量部の開始剤混合物を5時間かけて連続滴下した。同時に並行して、スチレン8.4重量部、アクリロニトリル1.4重量部、メタクリル酸メチル25.2重量部およびt−ドデシルメルカプタン0.36重量部の単量体混合物を5時間かけて連続追滴下した。単量体混合物追滴下後、1時間保持して重合を終了させた以外は、参考例2と同様の方法でグラフト共重合体(A−(4))を得た。得られたグラフト共重合体(A−(4))のグラフト率は47%であった。また、アセトン可溶分の重量平均分子量は78,000であり、アセトン可溶分の分散度は2.2であった。り、アセトン可溶分のシアン化ビニル系単量体由来単位の含有量は5重量%であった。   Subsequently, an initiator mixture of 0.3 parts by weight of cumene hydroperoxide, 1.6 parts by weight of sodium laurate as an emulsifier and 25 parts by weight of pure water was continuously dropped over 5 hours. At the same time, a monomer mixture of 8.4 parts by weight of styrene, 1.4 parts by weight of acrylonitrile, 25.2 parts by weight of methyl methacrylate and 0.36 parts by weight of t-dodecyl mercaptan was continuously added dropwise over 5 hours. did. A graft copolymer (A- (4)) was obtained in the same manner as in Reference Example 2 except that the monomer mixture was added dropwise and the polymerization was terminated by maintaining for 1 hour. The graft ratio of the obtained graft copolymer (A- (4)) was 47%. Moreover, the weight average molecular weight of the acetone soluble part was 78,000, and the dispersion degree of the acetone soluble part was 2.2. In other words, the content of the acetone-soluble vinyl cyanide monomer-derived unit was 5% by weight.

参考例1〜4により調製したグラフト共重合体(A)を表1にまとめて示す。   The graft copolymers (A) prepared according to Reference Examples 1 to 4 are shown together in Table 1.

Figure 0006376020
Figure 0006376020

(参考例5)ビニル系共重合体(B−(1))
まず、懸濁重合用の媒体として、メタクリル酸メチル−アクリルアミド共重合体を以下の方法により製造した。
(Reference Example 5) Vinyl-based copolymer (B- (1))
First, as a medium for suspension polymerization, a methyl methacrylate-acrylamide copolymer was produced by the following method.

アクリルアミド80重量部、メタアクリル酸メチル20重量部、過硫酸カリウム0.3重量部、イオン交換水1800重量部を反応器中に仕込み、反応器中の気相を窒素ガスで置換した。よくかき混ぜながら70℃に保ち重合率が99%に到達した時点で重合を終了し、アクリルアミドとメタアクリル酸メチル二元共重合体の水溶液を得た。得られた水溶液は、やや白濁した粘性を有していた。この水溶液に、水酸化ナトリウム35重量部とイオン交換水15000重量部を加え、0.6重量%のアクリルアミドとメタアクリル酸メチルとの二元共重合体の水溶液を得た。70℃で2時間撹拌してケン化させた後、室温まで冷却し、透明な懸濁重合用の媒体(メタクリル酸メチル−アクリルアミド二元共重合体)の水溶液を得た。   80 parts by weight of acrylamide, 20 parts by weight of methyl methacrylate, 0.3 part by weight of potassium persulfate, and 1800 parts by weight of ion-exchanged water were charged into the reactor, and the gas phase in the reactor was replaced with nitrogen gas. While stirring well, the temperature was maintained at 70 ° C., and the polymerization was terminated when the polymerization rate reached 99% to obtain an aqueous solution of acrylamide and methyl methacrylate binary copolymer. The resulting aqueous solution had a slightly cloudy viscosity. To this aqueous solution, 35 parts by weight of sodium hydroxide and 15000 parts by weight of ion-exchanged water were added to obtain a 0.6% by weight aqueous solution of a binary copolymer of acrylamide and methyl methacrylate. After saponification by stirring at 70 ° C. for 2 hours, the mixture was cooled to room temperature to obtain an aqueous solution of a transparent suspension polymerization medium (methyl methacrylate-acrylamide binary copolymer).

20Lのオートクレーブに、前記メタクリル酸メチル−アクリルアミド二元共重合体水溶液6重量部、純水150重量部を入れて400rpmで撹拌し、系内を窒素ガスで置換した。70℃まで昇温後、アクリロニトリル41.8重量部、スチレン3.8重量部、アゾビスイソブチロニトリル0.034重量部、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.293重量部およびt−ドデシルメルカプタン0.44重量部の単量体混合物を、撹拌しながら30分間かけて添加し、重合反応を開始した。単量体混合物添加後、15分、40分、65分、85分経過したところで、それぞれスチレンを1回あたり4.0重量部ずつ、供給ポンプを使用して計4回添加した。さらに、単量体混合物添加後95分経過したところで、スチレン38.4重量部を供給ポンプを使用してオートクレーブに添加した。全ての単量体の添加後、60分間かけて100℃に昇温した。80℃に達した時点で、窒素ガスでオートクレーブ内を0.3MPaに加圧した。100℃に到達後、30分間100℃に維持した後、冷却、ポリマーの分離、洗浄、乾燥を行って、ビーズ状のビニル系共重合体(B−(1))を得た。得られたビニル系共重合体(B−(1))の重量平均分子量は110,000、分散度は2.1、シアン化ビニル系単量体由来単位の含有量は36重量%であった。   In a 20 L autoclave, 6 parts by weight of the aqueous methyl methacrylate-acrylamide binary copolymer solution and 150 parts by weight of pure water were added and stirred at 400 rpm, and the system was replaced with nitrogen gas. After the temperature was raised to 70 ° C., 41.8 parts by weight of acrylonitrile, 3.8 parts by weight of styrene, 0.034 parts by weight of azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile) A monomer mixture of 293 parts by weight and 0.44 parts by weight of t-dodecyl mercaptan was added over 30 minutes with stirring to initiate the polymerization reaction. When 15 minutes, 40 minutes, 65 minutes, and 85 minutes had elapsed after the addition of the monomer mixture, 4.0 parts by weight of styrene was added each time four times using a feed pump. Further, 95 minutes after the addition of the monomer mixture, 38.4 parts by weight of styrene was added to the autoclave using a feed pump. After all the monomers were added, the temperature was raised to 100 ° C. over 60 minutes. When the temperature reached 80 ° C., the inside of the autoclave was pressurized to 0.3 MPa with nitrogen gas. After reaching 100 ° C, the temperature was maintained at 100 ° C for 30 minutes, and then cooling, polymer separation, washing, and drying were performed to obtain a bead-shaped vinyl copolymer (B- (1)). The resulting vinyl copolymer (B- (1)) had a weight average molecular weight of 110,000, a dispersity of 2.1, and a vinyl cyanide monomer-derived unit content of 36% by weight. .

(参考例6)ビニル系共重合体(B−(2))
20Lのオートクレーブに、前記参考例5により得られたメタクリル酸メチル−アクリルアミド二元共重合体水溶液6重量部、純水150重量部を仕込み、400rpmで撹拌し、系内を窒素ガスで置換した。70℃まで昇温後、アクリロニトリル28.9重量部、スチレン11.1重量部、アゾビスイソブチロニトリル0.32重量部、t−ドデシルメルカプタン0.063重量部およびn−オクチルメルカプタン0.094重量部の単量体混合物を、撹拌しながら30分間かけて添加し、重合反応を開始した。単量体混合物を添加後、1時間経過したところで、スチレン15重量部を供給ポンプを使用して添加した。その後、30分間隔で、スチレンを1回あたり15重量部ずつ、計3回オートクレーブに添加した。全ての単量体の添加後、60分間かけて100℃に昇温した。80℃に達した時点で、窒素ガスでオートクレーブ内を0.3MPaに加圧した。100℃に到達後、30分間100℃に維持した後、冷却、ポリマーの分離、洗浄、乾燥を行って、ビーズ状のビニル系共重合体(B−(2))を得た。得られたビニル系共重合体(B−(2))の重量平均分子量は320,000、分散度は2.8、シアン化ビニル系単量体由来単位の含有量は27重量%であった。
(Reference Example 6) Vinyl-based copolymer (B- (2))
A 20 L autoclave was charged with 6 parts by weight of a methyl methacrylate-acrylamide binary copolymer aqueous solution obtained in Reference Example 5 and 150 parts by weight of pure water, stirred at 400 rpm, and the system was replaced with nitrogen gas. After the temperature was raised to 70 ° C., 28.9 parts by weight of acrylonitrile, 11.1 parts by weight of styrene, 0.32 parts by weight of azobisisobutyronitrile, 0.063 parts by weight of t-dodecyl mercaptan and 0.094 of n-octyl mercaptan Part by weight of the monomer mixture was added over 30 minutes with stirring to initiate the polymerization reaction. After 1 hour from the addition of the monomer mixture, 15 parts by weight of styrene was added using a feed pump. Thereafter, styrene was added to the autoclave three times, 15 parts by weight per time, at intervals of 30 minutes. After all the monomers were added, the temperature was raised to 100 ° C. over 60 minutes. When the temperature reached 80 ° C., the inside of the autoclave was pressurized to 0.3 MPa with nitrogen gas. After reaching 100 ° C., the temperature was maintained at 100 ° C. for 30 minutes, and then cooling, polymer separation, washing, and drying were performed to obtain a bead-shaped vinyl copolymer (B- (2)). The resulting vinyl copolymer (B- (2)) had a weight average molecular weight of 320,000, a degree of dispersion of 2.8, and a content of vinyl cyanide monomer-derived units of 27% by weight. .

(参考例7)ビニル系共重合体(B−(3))
単量体混合物中のt−ドデシルメルカプタンを0.75重量部とした以外は、参考例5と同様の方法でビニル系共重合体(B−(3))を得た。得られたビニル系共重合体(B−(3))の重量平均分子量は54,000、分散度は2.1、シアン化ビニル系単量体由来単位の含有量は36重量%であった。
Reference Example 7 Vinyl-based copolymer (B- (3))
A vinyl copolymer (B- (3)) was obtained in the same manner as in Reference Example 5 except that t-dodecyl mercaptan in the monomer mixture was changed to 0.75 parts by weight. The obtained vinyl copolymer (B- (3)) had a weight average molecular weight of 54,000, a degree of dispersion of 2.1, and a content of vinyl cyanide monomer-derived units of 36% by weight. .

(参考例8)ビニル系共重合体(B−(4))
初期に添加する単量体混合物をアクリロニトリル44重量部、スチレン3.8重量部、アゾビスイソブチロニトリル0.034重量部、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.293重量部およびt−ドデシルメルカプタン0.75重量部としたこと、さらに、単量体混合物を添加後95分経過したところで添加するスチレンの量を36.2重量部としたこと以外は参考例5と同様の方法でビニル系共重合体(B−(4))を得た。得られたビニル系共重合体(B−(4))の重量平均分子量は55,000、分散度は2.1、シアン化ビニル系単量体由来単位の含有量は40重量%であった。
(Reference Example 8) Vinyl-based copolymer (B- (4))
The monomer mixture to be added initially was 44 parts by weight of acrylonitrile, 3.8 parts by weight of styrene, 0.034 parts by weight of azobisisobutyronitrile, and 2,2′-azobis (2,4-dimethylvaleronitrile). Reference Example 5 except that 293 parts by weight and 0.75 parts by weight of t-dodecyl mercaptan were added, and the amount of styrene added was changed to 36.2 parts by weight when 95 minutes had elapsed after the addition of the monomer mixture. In the same manner as above, a vinyl copolymer (B- (4)) was obtained. The obtained vinyl copolymer (B- (4)) had a weight average molecular weight of 55,000, a degree of dispersion of 2.1, and a content of vinyl cyanide monomer-derived units of 40% by weight. .

(参考例9)ビニル系共重合体(B−(5))
初期に添加する単量体混合物のt−ドデシルメルカプタンを0.32重量部とし、n−オクチルメルカプタンを添加しないこと以外は参考例6と同様の方法でビニル系共重合体(B−(5))を得た。得られたビニル系共重合体(B−(5))の重量平均分子量は130,000、分散度は2.1、シアン化ビニル系単量体由来単位の含有量は27重量%であった。
Reference Example 9 Vinyl copolymer (B- (5))
The vinyl copolymer (B- (5)) was prepared in the same manner as in Reference Example 6 except that 0.32 parts by weight of t-dodecyl mercaptan of the monomer mixture to be initially added was added and n-octyl mercaptan was not added. ) The resulting vinyl copolymer (B- (5)) had a weight average molecular weight of 130,000, a dispersity of 2.1, and a vinyl cyanide monomer-derived unit content of 27% by weight. .

(参考例10)ビニル系共重合体(B−(6))
初期に添加する単量体混合物のt−ドデシルメルカプタンおよびn−オクチルメルカプタンを添加しないこと以外は参考例6と同様の方法でビニル系共重合体(B−(6))を得た。得られたビニル系共重合体(B−(6))の重量平均分子量は320,000、分散度は2.9、シアン化ビニル系単量体由来単位の含有量は27重量%であった。
Reference Example 10 Vinyl copolymer (B- (6))
A vinyl copolymer (B- (6)) was obtained in the same manner as in Reference Example 6 except that t-dodecyl mercaptan and n-octyl mercaptan as the monomer mixture to be initially added were not added. The obtained vinyl copolymer (B- (6)) had a weight average molecular weight of 320,000, a dispersity of 2.9, and a content of vinyl cyanide monomer-derived units of 27% by weight. .

(参考例11)ビニル系共重合体(B−(7))
20Lのオートクレーブに、前記参考例5により得られたメタクリル酸メチル−アクリルアミド二元共重合体水溶液6重量部、純水150重量部を仕込み、400rpmで撹拌し、系内を窒素ガスで置換した。70℃まで昇温後、アクリロニトリル12重量部、スチレン9重量部、メタクリル酸メチル29重量部、アゾビスイソブチロニトリル0.3重量部およびt−ドデシルメルカプタン0.4重量部の単量体混合物を、撹拌しながら30分間かけて添加し、重合反応を開始した。単量体混合物添加後60分経過したところで、スチレン2重量部、メタクリル酸メチル13重量部を供給ポンプを使用して添加した。30分後に、スチレン4重量部、メタクリル酸メチル11重量部をオートクレーブに添加した。その30分後にスチレン7重量部、メタクリル酸メチル13重量部をオートクレーブに添加した。全ての単量体混合物を添加後、120分間かけて100℃に昇温した。80℃に達した時点で、窒素ガスでオートクレーブ内を0.3MPaに加圧した。100℃に到達後、30分間100℃に維持した後、冷却、ポリマーの分離、洗浄、乾燥を行って、ビーズ状のビニル系共重合体(B−(7))を得た。得られたビニル系共重合体(B−(7))の重量平均分子量は140,000、分散度は2.4、シアン化ビニル系単量体由来単位の含有量は12重量%であった。
(Reference Example 11) Vinyl-based copolymer (B- (7))
A 20 L autoclave was charged with 6 parts by weight of a methyl methacrylate-acrylamide binary copolymer aqueous solution obtained in Reference Example 5 and 150 parts by weight of pure water, stirred at 400 rpm, and the system was replaced with nitrogen gas. After heating up to 70 ° C., a monomer mixture of 12 parts by weight of acrylonitrile, 9 parts by weight of styrene, 29 parts by weight of methyl methacrylate, 0.3 parts by weight of azobisisobutyronitrile and 0.4 parts by weight of t-dodecyl mercaptan Was added over 30 minutes with stirring to initiate the polymerization reaction. When 60 minutes had elapsed after the addition of the monomer mixture, 2 parts by weight of styrene and 13 parts by weight of methyl methacrylate were added using a feed pump. After 30 minutes, 4 parts by weight of styrene and 11 parts by weight of methyl methacrylate were added to the autoclave. Thirty minutes later, 7 parts by weight of styrene and 13 parts by weight of methyl methacrylate were added to the autoclave. After all the monomer mixture was added, the temperature was raised to 100 ° C. over 120 minutes. When the temperature reached 80 ° C., the inside of the autoclave was pressurized to 0.3 MPa with nitrogen gas. After reaching 100 ° C., the temperature was maintained at 100 ° C. for 30 minutes, and then cooling, polymer separation, washing, and drying were performed to obtain a bead-shaped vinyl copolymer (B- (7)). The resulting vinyl copolymer (B- (7)) had a weight average molecular weight of 140,000, a dispersity of 2.4, and a vinyl cyanide monomer-derived unit content of 12% by weight. .

(参考例12)ビニル系共重合体(B−(8))
20Lのオートクレーブに、前記参考例5により得られたメタクリル酸メチル−アクリルアミド二元共重合体水溶液6重量部、純水150重量部を仕込み、400rpmで撹拌し、系内を窒素ガスで置換した。70℃まで昇温後、アクリロニトリル30重量部、スチレン18重量部、アゾビスイソブチロニトリル0.3重量部およびt−ドデシルメルカプタン0.5重量部の単量体混合物を、撹拌しながら30分間かけて添加し、重合反応を開始した。単量体混合物添加後30分経過したところで、メタクリル酸メチル12重量部を供給ポンプを使用して添加した。その後、30分間隔で、メタクリル酸メチルを1回あたり20重量部ずつ、計2回オートクレーブに添加した。全ての単量体の添加後、60分間かけて100℃に昇温した。80℃に達した時点で、窒素ガスでオートクレーブ内を0.3MPaに加圧した。100℃に到達後、30分間100℃に維持した後、冷却、ポリマーの分離、洗浄、乾燥を行って、ビーズ状のビニル系共重合体(B−(8))を得た。得られたビニル系共重合体(B−(8))の重量平均分子量は115,000、分散度は2.4、シアン化ビニル系単量体由来単位の含有量は30重量%であった。
Reference Example 12 Vinyl copolymer (B- (8))
A 20 L autoclave was charged with 6 parts by weight of a methyl methacrylate-acrylamide binary copolymer aqueous solution obtained in Reference Example 5 and 150 parts by weight of pure water, stirred at 400 rpm, and the system was replaced with nitrogen gas. After heating up to 70 ° C., a monomer mixture of 30 parts by weight of acrylonitrile, 18 parts by weight of styrene, 0.3 part by weight of azobisisobutyronitrile and 0.5 part by weight of t-dodecyl mercaptan was stirred for 30 minutes. The polymerization reaction was started. Thirty minutes after the addition of the monomer mixture, 12 parts by weight of methyl methacrylate was added using a feed pump. Thereafter, at 30 minute intervals, 20 parts by weight of methyl methacrylate was added to the autoclave twice in total. After all the monomers were added, the temperature was raised to 100 ° C. over 60 minutes. When the temperature reached 80 ° C., the inside of the autoclave was pressurized to 0.3 MPa with nitrogen gas. After reaching 100 ° C., the temperature was maintained at 100 ° C. for 30 minutes, and then cooling, polymer separation, washing, and drying were performed to obtain a bead-shaped vinyl copolymer (B- (8)). The obtained vinyl copolymer (B- (8)) had a weight average molecular weight of 115,000, a degree of dispersion of 2.4, and a content of vinyl cyanide monomer-derived units of 30% by weight. .

(参考例13)ビニル系共重合体(B−(9))
20Lのオートクレーブに、前記参考例5により得られたメタクリル酸メチル−アクリルアミド二元共重合体水溶液6重量部、純水165重量部を仕込み、400rpmで撹拌し、系内を窒素ガスで置換した。70℃まで昇温後、アクリロニトリル4重量部、スチレン24重量部、メタクリル酸メチル72重量部、アゾビスイソブチロニトリル0.4重量部およびt−ドデシルメルカプタン0.01重量部の単量体混合物を、撹拌しながら30分間かけて添加し、重合反応を開始した。70℃条件下、常圧で5時間重合を継続した後、冷却、ポリマーの分離、洗浄、乾燥を行って、ビーズ状のビニル系共重合体(B−(9))を得た。得られたビニル系共重合体(B−(9))の重量平均分子量は300,000、分散度は2.7、シアン化ビニル系単量体由来単位の含有量は5重量%であった。
Reference Example 13 Vinyl copolymer (B- (9))
A 20 L autoclave was charged with 6 parts by weight of a methyl methacrylate-acrylamide binary copolymer aqueous solution obtained in Reference Example 5 and 165 parts by weight of pure water, stirred at 400 rpm, and the system was replaced with nitrogen gas. After raising the temperature to 70 ° C., a monomer mixture of 4 parts by weight of acrylonitrile, 24 parts by weight of styrene, 72 parts by weight of methyl methacrylate, 0.4 parts by weight of azobisisobutyronitrile and 0.01 parts by weight of t-dodecyl mercaptan Was added over 30 minutes with stirring to initiate the polymerization reaction. Polymerization was continued at 70 ° C. and normal pressure for 5 hours, followed by cooling, polymer separation, washing, and drying to obtain a bead-shaped vinyl copolymer (B- (9)). The resulting vinyl copolymer (B- (9)) had a weight average molecular weight of 300,000, a degree of dispersion of 2.7, and a content of vinyl cyanide monomer-derived units of 5% by weight. .

Figure 0006376020
Figure 0006376020

その他、各実施例および比較例に用いた材料は以下のとおりである。
エチレン・一酸化炭素・(メタ)アクリル酸エステル共重合体:三井・デュポンポリケミカル(株)製“エルバロイ”(登録商標)HP−4051
ヒンダードアミン系光安定剤:ビス(2,2,6,6,−テトラメチル−4−ピペジニル)セバケート (株)ADEKA製“アデカスタブ”(登録商標)LA−57
リン系酸化防止剤:ジステアリルペンタエリスリトールジホスファイト (株)ADEKA製“アデカスタブ”PEP−8
ベンゾトリアゾール系紫外線吸収剤:2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール 共同薬品(株)製“バイオソーブ”520
(実施例1〜6、比較例1〜10)
参考例1〜4で調製したグラフト共重合体(A)と参考例5〜13で調整したビニル系共重合体(B)とをそれぞれ、表3〜5に示した配合比で配合し、さらに添加剤としてt−ブチルヒドロキシトルエン0.3重量部およびトリ(ノニルフェニル)ホスファイト0.3重量部を加え、ヘンシェルミキサーで23℃で混合した後、得られた混合物を40mmφ押出機により、押出温度230℃でガット状に押出し、ペレット化した。得られたペレットを、成形温度230℃、金型温度40℃で射出成形し、評価用の試験片を作製した。得られた試験片を用いて、前記方法により各物性を測定した。
In addition, the materials used in the examples and comparative examples are as follows.
Ethylene / carbon monoxide / (meth) acrylic acid ester copolymer: “Elvalloy” (registered trademark) HP-4051 manufactured by Mitsui DuPont Polychemical Co., Ltd.
Hindered amine light stabilizer: bis (2,2,6,6, -tetramethyl-4-pipedinyl) sebacate "ADEKA STAB" (registered trademark) LA-57 manufactured by ADEKA Corporation
Phosphorus antioxidant: Distearyl pentaerythritol diphosphite “ADEKA STAB” PEP-8 manufactured by ADEKA Corporation
Benzotriazole UV absorber: 2- (2-hydroxy-5-methylphenyl) benzotriazole “Biosorb” 520 manufactured by Kyodo Pharmaceutical Co., Ltd.
(Examples 1-6, Comparative Examples 1-10)
The graft copolymer (A) prepared in Reference Examples 1 to 4 and the vinyl copolymer (B) prepared in Reference Examples 5 to 13 were blended at the blending ratios shown in Tables 3 to 5, respectively. After adding 0.3 parts by weight of t-butylhydroxytoluene and 0.3 parts by weight of tri (nonylphenyl) phosphite as additives, the mixture was mixed at 23 ° C. with a Henschel mixer, and the resulting mixture was extruded by a 40 mmφ extruder. Extruded into a gut at a temperature of 230 ° C. and pelletized. The obtained pellets were injection-molded at a molding temperature of 230 ° C. and a mold temperature of 40 ° C. to prepare test pieces for evaluation. Each physical property was measured by the said method using the obtained test piece.

(比較例11)
参考例1で調製したグラフト共重合体(A)と参考例9で調製したビニル系共重合体(B)とをそれぞれ表5に示した配合比で配合し、さらに、“エルバロイ”HP−4051 5重量部、“アデカスタブ”LA−57 0.5重量部、“アデカスタブ”PEP−8 0.45重量部、“バイオソーブ”520 0.6重量部を加え、ヘンシェルミキサーで23℃で混合した後、得られた混合物を40mmφ押出機により、押出温度230℃でガット状に押出し、ペレット化した。得られたペレットを、成形温度230℃、金型温度40℃で射出成形し、評価用の試験片を作製した。得られた試験片を用いて、前記方法により各物性を測定した。
(Comparative Example 11)
The graft copolymer (A) prepared in Reference Example 1 and the vinyl copolymer (B) prepared in Reference Example 9 were blended in the blending ratios shown in Table 5, respectively, and “Elvalloy” HP-4051 was further blended. 5 parts by weight, 0.5 part by weight of “Adeka Stub” LA-57, 0.45 part by weight of “Adekastab” PEP-8, 0.6 part by weight of “Biosorb” 520, and after mixing at 23 ° C. with a Henschel mixer, The obtained mixture was extruded into a gut shape at an extrusion temperature of 230 ° C. by a 40 mmφ extruder and pelletized. The obtained pellets were injection-molded at a molding temperature of 230 ° C. and a mold temperature of 40 ° C. to prepare test pieces for evaluation. Each physical property was measured by the said method using the obtained test piece.

各実施例および比較例により得られた実施例および比較例の結果を表3〜5に示す。   The result of the Example and comparative example which were obtained by each Example and comparative example is shown to Tables 3-5.

Figure 0006376020
Figure 0006376020

Figure 0006376020
Figure 0006376020

Figure 0006376020
Figure 0006376020

実施例1〜6の熱可塑性樹脂組成物は、流動性に優れる。また、成形品の耐薬品性、耐衝撃性に優れ、薬品接触時の暗所黄変を低減することができる。   The thermoplastic resin compositions of Examples 1 to 6 are excellent in fluidity. In addition, the molded product has excellent chemical resistance and impact resistance, and can reduce yellowing in the dark at the time of chemical contact.

1:スポイト
2:イソプロパノール(薬液)
3:ダンベル試験片
4:ウェルド部
5:重り(1kg)
6:耐薬試験治具
1: Dropper 2: Isopropanol (chemical)
3: Dumbbell specimen 4: Weld part 5: Weight (1 kg)
6: Chemical resistance test jig

Claims (3)

ゴム質重合体(r)の存在下に少なくとも芳香族ビニル系単量体(a1)60〜80重量%、シアン化ビニル系単量体(a2)20〜40重量%を含有するビニル系単量体混合物(a)をグラフト共重合してなるグラフト共重合体(A)20〜40重量部に、少なくとも芳香族ビニル系単量体(b1)およびシアン化ビニル系単量体(b2)を含有するビニル系単量体混合物(b)を共重合してなるビニル系共重合体(B)60〜80重量部を配合する熱可塑性樹脂組成物の製造方法であって、
前記ビニル系共重合体(B)として、少なくとも芳香族ビニル系単量体(b1)55〜65重量%およびシアン化ビニル系単量体(b2)35〜45重量%を含有するビニル系単量体混合物(b−1)を共重合してなり、重量平均分子量が100,000〜150,000である高ニトリル含有ビニル系共重合体(B−1)と、少なくとも芳香族ビニル系単量体(b1)65重量%を超え75重量%以下およびシアン化ビニル系単量体(b2)25重量%以上35重量%未満含有するビニル系単量体混合物(b−2)を共重合してなり、重量平均分子量が250,000〜350,000である高分子量ビニル系共重合体(B−2)とを組み合わせる熱可塑性樹脂組成物の製造方法。
A vinyl monomer containing at least 60 to 80% by weight of an aromatic vinyl monomer (a1) and 20 to 40% by weight of a vinyl cyanide monomer (a2) in the presence of the rubber polymer (r). 20 to 40 parts by weight of graft copolymer (A) obtained by graft copolymerization of body mixture (a) contains at least aromatic vinyl monomer (b1) and vinyl cyanide monomer (b2) A method for producing a thermoplastic resin composition comprising 60 to 80 parts by weight of a vinyl copolymer (B) obtained by copolymerizing a vinyl monomer mixture (b).
The vinyl copolymer (B) contains at least an aromatic vinyl monomer (b1) of 55 to 65% by weight and a vinyl cyanide monomer (b2) of 35 to 45% by weight. becomes the body mixture (b-1) copolymerizing, high nitrile-containing vinyl copolymer having a weight average molecular weight is 100,000~150,000 and (B-1), at least an aromatic vinyl monomer (B1) copolymerized vinyl monomer mixture ( b-2 ) containing more than 65% by weight and 75% by weight or less and vinyl cyanide monomer (b2) containing 25% by weight or more and less than 35% by weight And a method for producing a thermoplastic resin composition in combination with a high molecular weight vinyl copolymer (B-2) having a weight average molecular weight of 250,000 to 350,000.
前記ビニル系共重合体(B)を構成する、前記高ニトリル含有ビニル系共重合体(B−1)と高分子量ビニル系共重合体(B−2)との配合比(重量比)を、(B−1)/(B−2)=33/67〜67/33とする請求項に記載の熱可塑性樹脂組成物の製造方法。 A composition ratio (weight ratio) of the high nitrile-containing vinyl copolymer (B-1) and the high molecular weight vinyl copolymer (B-2) constituting the vinyl copolymer (B), The method for producing a thermoplastic resin composition according to claim 1 , wherein (B-1) / (B-2) = 33/67 to 67/33. 請求項または記載の製造方法により得られる熱可塑性樹脂組成物を成形してなる成形品の製造方法 The process according to claim 1 or 2 obtained by molding the thermoplastic resin composition obtained by the process according moldings.
JP2015068535A 2015-03-30 2015-03-30 Thermoplastic resin composition and molded article thereof Active JP6376020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068535A JP6376020B2 (en) 2015-03-30 2015-03-30 Thermoplastic resin composition and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068535A JP6376020B2 (en) 2015-03-30 2015-03-30 Thermoplastic resin composition and molded article thereof

Publications (2)

Publication Number Publication Date
JP2016188292A JP2016188292A (en) 2016-11-04
JP6376020B2 true JP6376020B2 (en) 2018-08-22

Family

ID=57239368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068535A Active JP6376020B2 (en) 2015-03-30 2015-03-30 Thermoplastic resin composition and molded article thereof

Country Status (1)

Country Link
JP (1) JP6376020B2 (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1033162B (en) * 1974-03-01 1979-07-10 Labofina Sa PROCEDURE OF COPOLYMERIZATION OF STIROLD AND ACRYLONITRULE AND COPOLYMERS OBTAINED WITH THIS PROCEDURE
JPS61167955A (en) * 1985-01-21 1986-07-29 Hitachi Chem Co Ltd Preparation of electrophotographic toner
JPS61204251A (en) * 1985-03-08 1986-09-10 Mitsubishi Monsanto Chem Co Styrene resin composition having excellent optical property
JP2508192B2 (en) * 1988-06-13 1996-06-19 日立化成工業株式会社 Process for producing N-arylmaleimide copolymer
JP2752461B2 (en) * 1989-09-30 1998-05-18 三菱化学株式会社 Manufacturing method of thermoplastic resin with high haze
JP3144055B2 (en) * 1992-05-08 2001-03-07 日本油脂株式会社 Polymerization method of styrene monomer
JP3238491B2 (en) * 1992-10-08 2001-12-17 電気化学工業株式会社 Method for producing thermoplastic resin and resin composition
US5618901A (en) * 1993-11-10 1997-04-08 The Standard Oil Company Process for making a high nitrile multipolymer prepared from acrylonitrile and olefinically unsaturated monomers
FR2742442A1 (en) * 1995-12-13 1997-06-20 Gen Electric Plastics Abs Euro THERMOPLASTIC MOLDING COMPOSITION OF HIGH DENSITY
JP4040157B2 (en) * 1998-01-09 2008-01-30 ユーエムジー・エービーエス株式会社 Styrenic resin composition for vibration welding
JP2001026619A (en) * 1999-07-14 2001-01-30 Denki Kagaku Kogyo Kk Styrene-based resin, preparation thereof, and food packing vessel
JP2002097296A (en) * 2000-09-26 2002-04-02 Hitachi Chem Co Ltd Foamable acrylonitrile-styrene resin particle and foamed molding using the same
JP4119117B2 (en) * 2000-12-27 2008-07-16 テクノポリマー株式会社 Thermoplastic resin composition
JP2002273256A (en) * 2001-01-09 2002-09-24 Sekisui Chem Co Ltd Water tank body for waste water
JP2002212233A (en) * 2001-01-15 2002-07-31 Denki Kagaku Kogyo Kk Poly(meth)acryl/styrene resin, and sheet and food package container made thereof
JP4761413B2 (en) * 2001-02-01 2011-08-31 旭化成ケミカルズ株式会社 Copolymer latex and paper coating composition
JP4530123B2 (en) * 2002-09-17 2010-08-25 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition
DE60330255D1 (en) * 2002-09-17 2010-01-07 Umg Abs Ltd THERMOPLASTIC COMPOSITION AND FORM BODY THEREOF
TWI242578B (en) * 2003-08-21 2005-11-01 Chi Mei Corp Rubber modified styrene system resin composition for extrusion molding
KR100581436B1 (en) * 2004-05-13 2006-05-17 제일모직주식회사 Thermoplastic Resin Composition with Low Coefficient of Linear Thermal Expansion
KR100665803B1 (en) * 2004-12-28 2007-01-09 제일모직주식회사 Thermoplastic Resin Composition for Refrigerator Having Improved Environmental Stress Crack Resistance
KR100998875B1 (en) * 2008-10-29 2010-12-08 제일모직주식회사 Weatherable Thermoplastic Resin Having Excellent Low Gloss Characteristic and Method of Preparing the Same
CN105705971A (en) * 2013-09-03 2016-06-22 电化株式会社 Optical film copolymer

Also Published As

Publication number Publication date
JP2016188292A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
JP6519709B2 (en) Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article and method of producing molded article
WO2021039368A1 (en) Transparent thermoplastic resin composition, production method therefor, molded article obtained by molding transparent thermoplastic resin composition, and production method for molded article
JP6686440B2 (en) Thermoplastic resin composition, method for producing the same and molded article thereof
JP2014031490A (en) Graft copolymer, thermoplastic resin composition, and method for manufacturing graft copolymer
JP6111770B2 (en) Method for producing transparent styrenic thermoplastic resin composition
JP6376020B2 (en) Thermoplastic resin composition and molded article thereof
KR102535966B1 (en) Styrenic thermoplastic resin composition, manufacturing method of styrenic thermoplastic resin composition, molded article and manufacturing method of molded article
JP2010116427A (en) Thermoplastic resin composition
JP6707817B2 (en) Thermoplastic resin composition and method for producing the same
JP2012207074A (en) Transparency styrene-based thermoplastic resin composition
JP2012136644A (en) Rubber-reinforced thermoplastic resin composition
JP7439565B2 (en) Thermoplastic resin composition and its manufacturing method
KR20210028182A (en) High heat resistance impact modified polycarbonate blend
JP6801827B1 (en) Transparent thermoplastic resin composition and its molded product
JP5547828B2 (en) Thermoplastic resin composition and extruded product
WO2021014735A1 (en) Transparent thermoplastic resin composition and article molded thereof
JP4860161B2 (en) Thermoplastic resin composition and molded article thereof
JP2021038387A (en) Transparent thermoplastic resin composition, method for manufacturing the same, molding obtained by molding transparent thermoplastic resin composition and method for manufacturing the same
JP2019137769A (en) Thermoplastic resin composition, and molded product
JP2017149809A (en) Epoxy group-containing vinyl copolymer, thermoplastic resin composition, and molded article of the same
JP2013018949A (en) Graft copolymer and thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R151 Written notification of patent or utility model registration

Ref document number: 6376020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151