JP6111770B2 - Method for producing transparent styrenic thermoplastic resin composition - Google Patents

Method for producing transparent styrenic thermoplastic resin composition Download PDF

Info

Publication number
JP6111770B2
JP6111770B2 JP2013057956A JP2013057956A JP6111770B2 JP 6111770 B2 JP6111770 B2 JP 6111770B2 JP 2013057956 A JP2013057956 A JP 2013057956A JP 2013057956 A JP2013057956 A JP 2013057956A JP 6111770 B2 JP6111770 B2 JP 6111770B2
Authority
JP
Japan
Prior art keywords
monomer
resin composition
thermoplastic resin
graft
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013057956A
Other languages
Japanese (ja)
Other versions
JP2014181315A5 (en
JP2014181315A (en
Inventor
拓哉 柴田
拓哉 柴田
小山 雅史
雅史 小山
貴紀 菅
貴紀 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013057956A priority Critical patent/JP6111770B2/en
Publication of JP2014181315A publication Critical patent/JP2014181315A/en
Publication of JP2014181315A5 publication Critical patent/JP2014181315A5/ja
Application granted granted Critical
Publication of JP6111770B2 publication Critical patent/JP6111770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、耐衝撃性、流動性のバランスに優れ、特に高度な透明性を有する透明スチレン系熱可塑性樹脂組成物に関するものである。   The present invention relates to a transparent styrenic thermoplastic resin composition having an excellent balance between impact resistance and fluidity, and particularly having high transparency.

ジエン系ゴムなどのゴム質重合体にスチレン、α−メチルスチレンなどの芳香族ビニル化合物、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル化合物、メタクリル酸メチル、アクリル酸メチルなどの不飽和カルボン酸アルキルエステル化合物を共重合したグラフト共重合体を含有してなる透明ABS樹脂は、透明性、耐衝撃性、剛性、などの機械強度バランス、成形加工性及びコストパフォーマンスなどに優れることから、家電製品、通信関連機器及び一般雑貨などの用途で幅広く利用されている。   Rubber polymers such as diene rubber, aromatic vinyl compounds such as styrene and α-methylstyrene, vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, and unsaturated carboxylic acid alkyl esters such as methyl methacrylate and methyl acrylate Transparent ABS resin containing a graft copolymer copolymerized with a compound is excellent in mechanical strength balance such as transparency, impact resistance, rigidity, molding processability, and cost performance. Widely used in related equipment and general goods.

これまで、透明ABS樹脂の透明性発現手法は特許文献1や特許文献2のように、ゴム強化スチレン系樹脂のアセトン不溶部とアセトン可溶部との屈折率の差を0.02未満にする方法、特許文献3のようにポリブタジエンゴムを用い、ブタジエン系ゴム強化樹脂のアセトン可溶分の屈折率を1.514〜1.520に調整し、さらにアセトン可溶分とアセトン不溶分の屈折率の差を0.006以下にする方法、特許文献4のようにゴム質重合体成分と熱可塑性樹脂組成物のアセトン可溶分との屈折率の差を0.03以下に調整し、さらにゴム質重合体とグラフト成分との屈折率の差を0.03以下にする方法が提案されている。しかし、いずれの方法でも分光光度計測定での700nm及び450nmの透過率を指標とする透明性が不十分であることに起因して、使用される用途が制限される場合がある。   Until now, the transparent expression technique of transparent ABS resin makes the difference in refractive index between the acetone insoluble part and the acetone soluble part of the rubber-reinforced styrene resin less than 0.02, as in Patent Document 1 and Patent Document 2. Method, using polybutadiene rubber as in Patent Document 3, adjusting the refractive index of acetone-soluble component of butadiene rubber reinforced resin to 1.514 to 1.520, and further adjusting the refractive index of acetone-soluble component and acetone-insoluble component The difference in refractive index between the rubbery polymer component and the acetone-soluble component of the thermoplastic resin composition is adjusted to 0.03 or less as described in Patent Document 4, A method has been proposed in which the difference in refractive index between the crystalline polymer and the graft component is 0.03 or less. However, in any of the methods, there are cases where the application to be used is limited due to insufficient transparency using the transmittances of 700 nm and 450 nm in the spectrophotometer measurement as an index.

特開2002−128848号公報JP 2002-128848 A 特開2003−277454号公報JP 2003-277454 A 特開2002−3548号公報JP 2002-3548 A 特開2002−212369号公報JP 2002-212369 A

本発明は、上述した従来技術における問題点の解決を課題とするものであり、すなわち、耐衝撃性、流動性のバランスに優れながら、特に高度な透明性を有する透明スチレン系熱可塑性樹脂組成物の提供を目的とするものである。   The present invention aims to solve the above-described problems in the prior art, that is, a transparent styrene-based thermoplastic resin composition having a particularly high degree of transparency while having a good balance between impact resistance and fluidity. It is intended to provide.

本発明者らは、上記目的を達成するために鋭意検討した結果、ビニル系単量体混合物を共重合してなるビニル系共重合体にゴム質重合体含有グラフト共重合体が分散した熱可塑性樹脂組成物を調整するに際し、特定の条件を満たす場合に、耐衝撃性、流動性、色調のバランスに優れ、特に高度な透明性を有する透明スチレン系熱可塑性樹脂組成物が得られることを見出し、本発明に到達した。   As a result of diligent studies to achieve the above object, the present inventors have found that a thermoplastic copolymer in which a rubbery polymer-containing graft copolymer is dispersed in a vinyl copolymer obtained by copolymerizing a vinyl monomer mixture. When adjusting the resin composition, it has been found that when specific conditions are satisfied, a transparent styrene-based thermoplastic resin composition having an excellent balance of impact resistance, fluidity, and color tone and particularly high transparency can be obtained. The present invention has been reached.

すなわち、本発明の透明スチレン系熱可塑性樹脂組成物は、ゴム質重合体の存在下、少なくとも芳香族ビニル系単量体(メタ)アクリル酸エステル系単量体及びシアン化ビニル系単量体を含む単量体混合物をグラフト重合して得られるグラフト共重合体(A)並びに少なくとも芳香族ビニル系単量体及び(メタ)アクリル酸エステル系単量体、シアン化ビニル系単量体を含む単量体混合物(b)を共重合してなるビニル系共重合体(B)を含むものであって、厚さ3mmの角板成形品にしたときの分光光度計測定による波長700nmの光の透過率が88%以上、波長450nmの光の透過率が下記式(1)を満たすことを特徴とする
450nm透過率(%)≧90−0.5×R 式(1)
但し、R:透明スチレン系熱可塑性樹脂組成物中のゴム質重合体含有率(重量%)。
That is, the transparent styrenic thermoplastic resin composition of the present invention comprises at least an aromatic vinyl monomer (meth) acrylate monomer and a vinyl cyanide monomer in the presence of a rubbery polymer. A graft copolymer (A) obtained by graft polymerization of a monomer mixture containing a monomer, and a monomer containing at least an aromatic vinyl monomer, a (meth) acrylic acid ester monomer, and a vinyl cyanide monomer Transmission of light having a wavelength of 700 nm as measured by a spectrophotometer when containing a vinyl copolymer (B) obtained by copolymerization of the monomer mixture (b) and formed into a 3 mm-thick square plate product. The transmittance is 88% or more and the transmittance of light having a wavelength of 450 nm satisfies the following formula (1) .
450 nm transmittance (%) ≧ 90−0.5 × R Formula (1)
R: Rubber polymer content (% by weight) in the transparent styrene-based thermoplastic resin composition.

本発明により、耐衝撃性、流動性のバランスに優れながら、特に高度な透明性を有する透明スチレン系熱可塑性樹脂組成物を得ることができる。   According to the present invention, it is possible to obtain a transparent styrenic thermoplastic resin composition having particularly high transparency while being excellent in the balance between impact resistance and fluidity.

本発明の透明スチレン系熱可塑性樹脂組成物は、ゴム質重合体の屈折率とビニル系共重合体(B)の屈折率との差、ゴム質重合体の屈折率とゴム質重合体にビニル系単量体混合物をグラフト共重合したグラフト共重合体(A)のアセトン可溶分(非グラフト成分)の屈折率との差、ゴム質重合体の屈折率とゴム質重合体にビニル系単量体混合物をグラフト共重合したグラフト共重合体(A)のアセトン不溶分に含まれるビニル系共重合体(グラフト成分)の屈折率との差がそれぞれ同じ又は僅差であることによって、従来の透明スチレン系熱可塑性樹脂組成物では達成できなかった高度な透明性、具体的には分光光度計測定による波長700nmの光の透過率が88%以上、波長450nmの光の透過率が下記式(1)を満たすレベルの透明性が得られる。
450nm透過率(%)≧90−0.5×R 式(1)
但し、R:透明スチレン系熱可塑性樹脂組成物中のゴム質重合体含有率(重量%)。
The transparent styrenic thermoplastic resin composition of the present invention has a difference between the refractive index of the rubbery polymer and the refractive index of the vinyl copolymer (B), the refractive index of the rubbery polymer and the vinyl in the rubbery polymer. The difference between the refractive index of the acetone-soluble component (non-grafting component) of the graft copolymer (A) obtained by graft copolymerization of the monomeric monomer mixture, the refractive index of the rubbery polymer and the rubbery polymer The difference between the refractive index of the vinyl copolymer (graft component) contained in the acetone-insoluble matter of the graft copolymer (A) obtained by graft copolymerization of the monomer mixture is the same or slightly different from each other. High transparency that cannot be achieved by the styrene-based thermoplastic resin composition, specifically, the transmittance of light at a wavelength of 700 nm as measured by a spectrophotometer is 88% or more, and the transmittance of light at a wavelength of 450 nm is expressed by the following formula (1 ) Level of transparency It is obtained.
450 nm transmittance (%) ≧ 90−0.5 × R Formula (1)
R: Rubber polymer content (% by weight) in the transparent styrene-based thermoplastic resin composition.

上記式(1)について、式(1)の右辺は樹脂組成物のゴム質重合体含有量が増えることによって樹脂組成物の透明性が減少することを意味するもので、式(1)を満たすことは、ゴム質重合体を配合することによって樹脂組成物の波長450nmの光の透過率が低下してしまう影響以上に樹脂組成物の透過率が低下することがないことを意味する。   With respect to the above formula (1), the right side of the formula (1) means that the transparency of the resin composition decreases as the rubber polymer content of the resin composition increases, and satisfies the formula (1). This means that the transmittance of the resin composition does not decrease more than the influence that the transmittance of light having a wavelength of 450 nm of the resin composition decreases by blending the rubbery polymer.

また、上記式(1)におけるR値は透明スチレン系熱可塑性樹脂組成物の樹脂成分全体の重量に対するゴム質重合体の重量比率であり、例えば、グラフト共重合体(A)及びビニル系共重合体(B)からなる場合は(A)成分と(B)成分の重量に対するゴム質重合体の重量比率となる。R値は5〜25の範囲内であることが好ましく、より好ましくは8〜20である。R値が5未満の場合には耐衝撃性が低下する可能性があり、一方、25を超える場合には波長450nmの光の透過率が低下するため、高度な透明性を損なう可能性がある。   The R value in the above formula (1) is the weight ratio of the rubber polymer to the total weight of the resin component of the transparent styrene thermoplastic resin composition. For example, the graft copolymer (A) and the vinyl copolymer In the case of the combination (B), the weight ratio of the rubber polymer to the weight of the components (A) and (B) is obtained. The R value is preferably in the range of 5 to 25, more preferably 8 to 20. If the R value is less than 5, impact resistance may be reduced. On the other hand, if it exceeds 25, the transmittance of light having a wavelength of 450 nm may be reduced, which may impair high transparency. .

以下、さらに透明スチレン系熱可塑性樹脂組成物の詳細について記述する。   The details of the transparent styrenic thermoplastic resin composition will be described below.

本発明の透明スチレン系熱可塑性樹脂組成物は、ゴム質重合体存在下、少なくとも芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含む単量体混合物(a)をグラフト重合して得られるグラフト共重合体(A)、並びに少なくとも芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)、シアン化ビニル系単量体(b3)を含む単量体混合物(b)を共重合してなるビニル系共重合体(B)を含むことを特徴とする。   The transparent styrenic thermoplastic resin composition of the present invention comprises at least an aromatic vinyl monomer (a1), a (meth) acrylate monomer (a2), and a vinyl cyanide monomer in the presence of a rubbery polymer. Graft copolymer (A) obtained by graft polymerization of monomer mixture (a) containing monomer (a3), and at least aromatic vinyl monomer (b1), (meth) acrylic acid ester It contains a vinyl copolymer (B) obtained by copolymerizing a monomer mixture (b) containing a monomer (b2) and a vinyl cyanide monomer (b3).

グラフト共重合体(A)に使用されるゴム質重合体は特に制限はなく、例えば、ポリブタジエン、ポリイソプレン、天然ゴム、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体などが挙げられるが、ポリブタジエン、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体などのジエン系ゴム質重合体が好ましく、ポリブタジエンがより好ましい。   The rubbery polymer used for the graft copolymer (A) is not particularly limited, and examples thereof include polybutadiene, polyisoprene, natural rubber, styrene-butadiene copolymer, and acrylonitrile-butadiene copolymer. Diene rubbery polymers such as polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer are preferred, and polybutadiene is more preferred.

ゴム質重合体の重量平均粒子径は0.2〜0.4μmが好ましく、より好ましくは0.25〜0.35μmである。グラフト共重合体(A)に使用されるゴム質重合体の重量平均粒子径が0.2μm未満の場合には透明スチレン系熱可塑性樹脂組成物の耐衝撃性が低下する可能性がある。一方、グラフト共重合体(A)に使用されるゴム質重合体の重量平均粒子径が0.4μmを超える場合には、透明スチレン系熱可塑性樹脂組成物の透明性が低下する可能性がある。   The weight average particle diameter of the rubbery polymer is preferably 0.2 to 0.4 μm, more preferably 0.25 to 0.35 μm. When the weight average particle diameter of the rubbery polymer used for the graft copolymer (A) is less than 0.2 μm, the impact resistance of the transparent styrenic thermoplastic resin composition may be lowered. On the other hand, when the weight average particle diameter of the rubbery polymer used for the graft copolymer (A) exceeds 0.4 μm, the transparency of the transparent styrene-based thermoplastic resin composition may be lowered. .

ゴム質重合体のゲル含有率に制限はないが、耐衝撃性や透明性を向上させるため、好ましくは80重量%以上である。   Although there is no restriction | limiting in the gel content rate of a rubber-like polymer, In order to improve impact resistance and transparency, Preferably it is 80 weight% or more.

グラフト共重合体に使用される単量体混合物(a)は、少なくとも芳香族ビニル系単量体(a1)、不飽和カルボン酸アルキルエステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含むことを特徴とするが、透明性を損なわない範囲で、これらの単量体と共重合可能な他の単量体(a4)を含んでもよい。   The monomer mixture (a) used for the graft copolymer contains at least an aromatic vinyl monomer (a1), an unsaturated carboxylic acid alkyl ester monomer (a2), and a vinyl cyanide monomer. (A3) is included, but other monomers (a4) copolymerizable with these monomers may be included as long as the transparency is not impaired.

芳香族ビニル系単量体(a1)としては、スチレン、α―メチルスチレン、p−メチルスチレン、m−メチルスチレン、o−メチルスチレン、ビニルトルエン、t−ブチルスチレンなどが挙げられるが、スチレンが好ましい。なお、これらは1種又は2種以上用いることができる。   Examples of the aromatic vinyl monomer (a1) include styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, vinyltoluene, and t-butylstyrene. preferable. These can be used alone or in combination of two or more.

不飽和カルボン酸アルキルエステル系単量体(a2)としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、などが挙げられるが、(メタ)アクリル酸メチルが好ましい。なお、これらは1種又は2種以上用いることができる。   Examples of the unsaturated carboxylic acid alkyl ester monomer (a2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, (meth ) T-butyl acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, chloromethyl (meth) acrylate, and the like, and methyl (meth) acrylate is preferred. These can be used alone or in combination of two or more.

シアン化ビニル系単量体(a3)としては、アクリロニトリル、メタクリロにトリル、エタクリロニトリルなどが挙げられるが、アクリロニトリルが好ましい。なお、これらは1種又は2種以上用いることができる。   Examples of the vinyl cyanide monomer (a3) include acrylonitrile, methacrylo, tolyl, ethacrylonitrile and the like, and acrylonitrile is preferred. These can be used alone or in combination of two or more.

他の単量体(a4)としては、例えば、イタコン酸、マレイン酸、フマル酸、アクリル酸、メタクリル酸などの不飽和脂肪酸、アクリルアミド、メタクリルアミド、N−メチルアクリルアミドなどのアクリルアミド系単量体、N−メチルマレイミド、N−イソプロピルマレイミド、N−ブチルマレイミド、N−ヘキシルマレイミド、N−オクチルマレイミド、N−ドデシルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミドなどのマレイミド系単量体などを用いることができる。なお、これらは1種又は2種以上用いることができる。   Examples of the other monomer (a4) include unsaturated fatty acids such as itaconic acid, maleic acid, fumaric acid, acrylic acid and methacrylic acid, and acrylamide monomers such as acrylamide, methacrylamide and N-methylacrylamide, Use of maleimide monomers such as N-methylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-hexylmaleimide, N-octylmaleimide, N-dodecylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, etc. Can do. These can be used alone or in combination of two or more.

グラフト共重合体(A)は、ゴム質重合体の存在下、単量体混合物(a)をグラフト重合することによって得られる。ゴム質重合体と単量体混合物(a)の比率としては、ゴム質重合体は好ましくは30〜70重量%、より好ましくは40〜60重量%、単量体混合物(a)は好ましくは70〜30重量%、より好ましくは60〜40重量%である。ゴム質重合体が30重量%未満かつ単量体混合物が70重量%を超える場合には、生産性低下と高コストとなりうる。一方、ゴム質重合体が70重量%を超えかつ単量体混合物が30重量%未満の場合には、ゴム質重合体の分散性が低下し、耐衝撃性が低下する可能性がある。   The graft copolymer (A) is obtained by graft polymerization of the monomer mixture (a) in the presence of a rubbery polymer. As a ratio of the rubbery polymer and the monomer mixture (a), the rubbery polymer is preferably 30 to 70% by weight, more preferably 40 to 60% by weight, and the monomer mixture (a) is preferably 70%. -30% by weight, more preferably 60-40% by weight. When the rubbery polymer is less than 30% by weight and the monomer mixture is more than 70% by weight, the productivity can be lowered and the cost can be increased. On the other hand, when the rubbery polymer exceeds 70% by weight and the monomer mixture is less than 30% by weight, the dispersibility of the rubbery polymer is lowered and the impact resistance may be lowered.

グラフト共重合体(A)は、ゴム質重合体にビニル系単量体混合物(a)の共重合物がグラフト結合したものと、ゴム質重合体にビニル系単量体混合物(a)の共重合物がグラフト結合していないものを含み、ゴム質重合体を含む成分はアセトン不溶分として、ゴム質重合体にグラフト結合していないビニル系単量体混合物(a)の共重合物はアセトンが可溶分(以下、「非グラフト成分」という。)として分けることができる。   The graft copolymer (A) includes a rubber polymer in which a copolymer of the vinyl monomer mixture (a) is graft-bonded and a rubber polymer in which the vinyl monomer mixture (a) is copolymerized. Including those in which the polymer is not graft-bonded, the component containing the rubber polymer is acetone-insoluble, and the copolymer of the vinyl monomer mixture (a) not graft-bonded to the rubber polymer is acetone. Can be classified as a soluble component (hereinafter referred to as “non-grafted component”).

グラフト共重合体(A)のグラフト率には特に制限はないが、耐衝撃性の点から5〜150%であることが好ましく、さらに好ましくは30〜100%である。   The graft ratio of the graft copolymer (A) is not particularly limited, but is preferably 5 to 150%, more preferably 30 to 100% from the viewpoint of impact resistance.

グラフト共重合体(A)におけるゴム質重合体と非グラフト成分との屈折率の差、ゴム質重合体とグラフト成分との屈折率の差は、それぞれ0.001以内が好ましい。屈折率の差が0.001を超えると分光光度計測定による450nm及び700nm、又はそのいずれかの透過率が低下する可能性がある。   The difference in refractive index between the rubbery polymer and the non-graft component in the graft copolymer (A) and the difference in refractive index between the rubbery polymer and the graft component are each preferably within 0.001. When the difference in refractive index exceeds 0.001, there is a possibility that the transmittance of 450 nm and 700 nm as measured by a spectrophotometer or any one of them may be lowered.

ゴム質重合体の屈折率はフィルム状に加工したゴム質重合体をアッベ屈折率計を用いて測定した値である。   The refractive index of the rubbery polymer is a value obtained by measuring a rubbery polymer processed into a film using an Abbe refractometer.

グラフト成分及び非グラフト成分の屈折率(nD)は、FT−IRチャートに現れる下記のピークにより組成を定量し、後述する式(2)により計算することができる。
・芳香族ビニル系単量体(a1):ベンゼン核の振動に帰属される1605cm−1のピーク
・不飽和カルボン酸アルキルエステル系単量体(a2):エステルのカルボニル基のC=O伸縮振動に帰属される1730cm−1のピーク
・シアン化ビニル系単量体:−C≡N伸縮に帰属される2240cm−1のピーク
屈折率(nD)=1.510・MA+1.595・MS+1.490・MM 式(2)
但し、nD:共重合体の屈折率、MA:アクリロニトリル含量(重量%)、MS:スチレン含量(重量%)、MM:メタクリル酸メチル含量(重量%)。
The refractive index (nD) of the graft component and the non-graft component can be calculated by the formula (2) described below after quantifying the composition from the following peak appearing in the FT-IR chart.
Aromatic vinyl monomer (a1): peak at 1605 cm −1 attributed to vibration of the benzene nucleus Unsaturated carboxylic acid alkyl ester monomer (a2): C═O stretching vibration of ester carbonyl group 1730 cm −1 peak attributed to ## STR4 ## Vinyl cyanide monomer: -C≡N 2240 cm −1 peak refractive index (nD) = 1.510 · MA + 1.595 · MS + 1.490 · MM formula (2)
ND: refractive index of copolymer, MA: acrylonitrile content (% by weight), MS: styrene content (% by weight), MM: methyl methacrylate content (% by weight).

グラフト共重合体(A)に使用するビニル系単量体混合物(a)の単量体比率については、上記屈折率の差を満足する範囲であれば特に制限はないが、芳香族ビニル系単量体(a1)20〜30重量%、不飽和カルボン酸アルキルエステル系単量体(a2)65〜75重量%、シアン化ビニル系単量体(a3)3〜10重量%、共重合可能な他の単量体(a4)0〜10重量%が好ましい。   The monomer ratio of the vinyl monomer mixture (a) used for the graft copolymer (A) is not particularly limited as long as the difference in refractive index is satisfied, but the aromatic vinyl monomer unit is not limited. Monomer (a1) 20-30 wt%, unsaturated carboxylic acid alkyl ester monomer (a2) 65-75 wt%, vinyl cyanide monomer (a3) 3-10 wt%, copolymerizable The other monomer (a4) is preferably 0 to 10% by weight.

グラフト共重合体(A)の製造方法には特に制限はないが、乳化重合法がゴム質重合体の粒子径調整が容易であるため好ましい。   Although there is no restriction | limiting in particular in the manufacturing method of a graft copolymer (A), Since the particle diameter adjustment of a rubber-like polymer is easy, it is preferable.

グラフト共重合体(A)の乳化重合において、単量体の仕込み方法には特に制限はないが、グラフト成分と非グラフト成分の屈折率を制御するため、実施例にあるようにビニル系単量体混合物(a)の仕込み組成比率を重合途中で変更する方法が好ましく用いられる。常に一定の単量体混合物組成で仕込んだ場合、グラフト成分と非グラフト成分の屈折率が異なってしまう可能性がある。   In the emulsion polymerization of the graft copolymer (A), the monomer charging method is not particularly limited. However, in order to control the refractive index of the graft component and the non-graft component, a vinyl-based monomer as in the examples is used. A method of changing the charged composition ratio of the body mixture (a) during the polymerization is preferably used. When the composition of the monomer mixture is always constant, the refractive index of the graft component and the non-graft component may be different.

グラフト共重合(A)の乳化重合に使用される重合開始剤は特に制限はなく、過酸化物又はアゾ系化合物及び水溶性の過硫酸カリウムなどが用いられる。また、これらの開始剤はレドックス系でも用いることができる。   The polymerization initiator used for the emulsion polymerization of the graft copolymerization (A) is not particularly limited, and a peroxide or an azo compound and water-soluble potassium persulfate are used. These initiators can also be used in redox systems.

グラフト共重合体(A)の乳化重合では、分子量及びグラフト率調整を目的として連鎖移動剤を使用しても良い。連鎖移動剤としては、メルカプタン類やテルペンなどを用いることができ、特にn−オクチルメルカプタンやt−ドデシルメルカプタンが好ましく用いられる。   In the emulsion polymerization of the graft copolymer (A), a chain transfer agent may be used for the purpose of adjusting the molecular weight and the graft ratio. As the chain transfer agent, mercaptans, terpenes, and the like can be used, and n-octyl mercaptan and t-dodecyl mercaptan are particularly preferably used.

グラフト共重合体(A)の乳化重合に使用される乳化剤は特に制限はなく、各種の界面活性剤が使用できるが、特にアルカリ脂肪酸塩が好ましく使用される。   There is no particular limitation on the emulsifier used for emulsion polymerization of the graft copolymer (A), and various surfactants can be used, and alkali fatty acid salts are particularly preferably used.

乳化重合で製造されたグラフト共重合体ラテックスは、次いで凝固剤を添加してグラフト共重合体(A)をパウダー状の固形物として回収する。凝固剤としては酸又は水溶性塩を用いることができるが、乳化剤の残存量を低下させ、透明性の高い樹脂を得る方法として、酸凝固後にアルカリ中和して固形物を得た後、洗浄と乾燥を行い、グラフト共重合体(A)を得る方法が好ましい。   The graft copolymer latex produced by emulsion polymerization is then added with a coagulant to recover the graft copolymer (A) as a powdery solid. An acid or a water-soluble salt can be used as the coagulant, but as a method of reducing the residual amount of the emulsifier and obtaining a highly transparent resin, the solid is obtained by neutralizing the alkali after acid coagulation to obtain a solid, followed by washing. And drying to obtain the graft copolymer (A).

本発明のビニル系共重合体(B)は、少なくとも芳香族ビニル系単量体(b1)、不飽和カルボン酸アルキルエステル系単量体(b2)及びシアン化ビニル系単量体(b3)を含むことを特徴とするが、透明性を損なわない範囲で、これらの単量体と共重合可能な他の単量体(b4)を含んでもよい。   The vinyl copolymer (B) of the present invention comprises at least an aromatic vinyl monomer (b1), an unsaturated carboxylic acid alkyl ester monomer (b2), and a vinyl cyanide monomer (b3). Although it is characterized by including, it may contain the other monomer (b4) copolymerizable with these monomers in the range which does not impair transparency.

芳香族ビニル系単量体(b1)としては、スチレン、α−メチルスチレン、p−メチルスチレン、m−メチルスチレン、o−メチルスチレン、ビニルトルエン、t−ブチルスチレンなどが挙げられるが、スチレンが好ましい。なお、これらは1種又は2種以上用いることができる。   Examples of the aromatic vinyl monomer (b1) include styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, vinyltoluene, and t-butylstyrene. preferable. These can be used alone or in combination of two or more.

不飽和カルボン酸アルキルエステル系単量体(b2)としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、などが挙げられるが、(メタ)アクリル酸メチルが好ましい。なお、これらは1種又は2種以上用いることができる。   Examples of the unsaturated carboxylic acid alkyl ester monomer (b2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, (meth ) T-butyl acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, chloromethyl (meth) acrylate, and the like, and methyl (meth) acrylate is preferred. These can be used alone or in combination of two or more.

シアン化ビニル系単量体(b3)としては、アクリロニトリル、メタクリロにトリル、エタクリロニトリルなどが挙げられるが、アクリロニトリルが好ましい。なお、これらは1種又は2種以上用いることができる。   Examples of the vinyl cyanide monomer (b3) include acrylonitrile, methacrylo, tolyl, and ethacrylonitrile, with acrylonitrile being preferred. These can be used alone or in combination of two or more.

他の単量体(b4)としては、例えば、イタコン酸、マレイン酸、フマル酸、アクリル酸、メタクリル酸などの不飽和脂肪酸、アクリルアミド、メタクリルアミド、N−メチルアクリルアミドなどのアクリルアミド系単量体、N−メチルマレイミド、N−イソプロピルマレイミド、N−ブチルマレイミド、N−ヘキシルマレイミド、N−オクチルマレイミド、N−ドデシルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミドなどのマレイミド系単量体などを用いることができる。なお、これらは1種又は2種以上用いることができる。   Examples of the other monomer (b4) include unsaturated fatty acids such as itaconic acid, maleic acid, fumaric acid, acrylic acid and methacrylic acid, and acrylamide monomers such as acrylamide, methacrylamide and N-methylacrylamide, Use of maleimide monomers such as N-methylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-hexylmaleimide, N-octylmaleimide, N-dodecylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, etc. Can do. These can be used alone or in combination of two or more.

ビニル系共重合体(B)とゴム質重合体との屈折率の差は0.001以内であることが好ましい。ビニル系共重合体(B)の屈折率は、グラフト共重合体(A)の屈折率と同様にFT−IRチャートに現れる下記のピークにより組成を定量し、式(2)により計算で算出することができる。ビニル系共重合体(B)とゴム質重合体との屈折率の差が0.001を超える場合には、分光光度計測定による450nm及び700nm、又はそのいずれかの透過率が低下する可能性がある。   The difference in refractive index between the vinyl copolymer (B) and the rubbery polymer is preferably within 0.001. The refractive index of the vinyl copolymer (B) is calculated by the formula (2) by quantifying the composition from the following peak appearing on the FT-IR chart in the same manner as the refractive index of the graft copolymer (A). be able to. When the difference in refractive index between the vinyl copolymer (B) and the rubbery polymer exceeds 0.001, there is a possibility that the transmittance of 450 nm and 700 nm or any one of them may be lowered by spectrophotometer measurement. There is.

ビニル系共重合体(B)に使用するビニル系単量体混合物(b)の単量体比率については、上記屈折率の差を満足する範囲であれば特に制限はないが、芳香族ビニル系単量体(b1)20〜30重量%、不飽和カルボン酸アルキルエステル系単量体(b2)65〜75重量%、シアン化ビニル系単量体(b3)3〜10重量%、共重合可能な他の単量体(b4)0〜10重量%が好ましい。   The monomer ratio of the vinyl monomer mixture (b) used for the vinyl copolymer (B) is not particularly limited as long as the difference in refractive index is satisfied, but the aromatic vinyl type is not limited. Monomer (b1) 20-30% by weight, unsaturated carboxylic acid alkyl ester monomer (b2) 65-75%, vinyl cyanide monomer (b3) 3-10% by weight, copolymerizable The other monomer (b4) is preferably 0 to 10% by weight.

ビニル系共重合体(B)の製造方法には特に制限はないが、得られる熱可塑性樹脂組成物の透明性、色調安定性の点から連続塊状重合又は連続溶液重合が好ましい。   Although there is no restriction | limiting in particular in the manufacturing method of a vinyl type copolymer (B), Continuous bulk polymerization or continuous solution polymerization is preferable from the point of the transparency of the thermoplastic resin composition obtained and color stability.

本発明において、連続塊状重合又は連続重合方法を行う方法は特に制限はなく、任意の方法が採用可能であり、重合槽で重合した後、脱モノマー(脱溶媒・脱揮)する方法を用いることができる。   In the present invention, the method for performing continuous bulk polymerization or the continuous polymerization method is not particularly limited, and any method can be employed. After polymerization in a polymerization tank, a method for demonomerization (desolvation / devolatilization) is used. Can do.

重合槽としては、各種の攪拌翼を有する混合タイプの重合槽や各種の塔式の反応器のほか、多管反応器、ニーダー式反応器、二軸押出機などを重合反応器として使用することもできる(例えば、高分子製造プロセスのアセスメント10「耐衝撃性ポリスチレンのアセスメント」高分子学会、1989年1月26日などを参照)。これら重合槽類(反応器)は1基(槽)又は2基(槽)以上の組み合わせでも使用されるが、ビニル系共重合体の組成分布を狭くできる点で1槽式の攪拌翼混合タイプの重合槽が好ましい。これらの重合槽又は反応器で重合して得られた反応混合物は、通常、脱モノマー工程に供され、モノマー、溶媒その他の揮発成分が除去される。脱モノマーの方法としては、ベントを有する一軸又は二軸の押出機で加熱下、常圧又は減圧下でベント穴より揮発成分を除去する方法、遠心型などのプレートフィン型加熱器をドラムに内蔵する蒸発器で揮発成分を除去する方法、遠心型などの薄膜蒸発器で揮発成分を除去する方法、多管式熱交換機を用いて余熱、発泡して真空槽へフラッシュして揮発成分を除去する方法などがあり、いずれの方法も使用できるが、特にベントを有する一軸又は二軸の押出機が好ましく用いられる。   As the polymerization tank, in addition to a mixing type polymerization tank having various stirring blades and various tower reactors, a multi-tube reactor, a kneader reactor, a twin screw extruder, etc. should be used as the polymerization reactor. (See, for example, Assessment of Polymer Production Process 10 “Assessment of High Impact Polystyrene” Polymer Society, January 26, 1989). These polymerization tanks (reactors) can be used in combination of one (tank) or two (tank) or more, but one tank type stirring blade mixing type in that the composition distribution of the vinyl copolymer can be narrowed. The polymerization tank is preferred. The reaction mixture obtained by polymerization in these polymerization tanks or reactors is usually subjected to a demonomer process, and the monomer, solvent and other volatile components are removed. As a method for removing monomer, a uniaxial or biaxial extruder having a vent is used to remove volatile components from a vent hole under normal pressure or reduced pressure, and a plate fin type heater such as a centrifugal type is incorporated in the drum. A method of removing volatile components with an evaporator, a method of removing volatile components with a thin film evaporator such as a centrifugal type, etc., using a multi-tubular heat exchanger, preheating, foaming and flushing to a vacuum chamber to remove volatile components There are methods, and any of these methods can be used. In particular, a single or twin screw extruder having a vent is preferably used.

ビニル系共重合体(B)の連続塊状重合又は連続溶液重合では、開始剤を使用せずに熱重合することも、開始剤を用いて開始重合することも、さらに熱重合と開始剤重合を併用することも可能である。使用する開始剤は特に制限はないが、過酸化物又はアゾ系化合物などが用いられ、特に1,1’−アゾビスシクロヘキサン−1−カーボニトリルが好ましく用いられる。   In continuous bulk polymerization or continuous solution polymerization of the vinyl copolymer (B), thermal polymerization without using an initiator, initial polymerization using an initiator, thermal polymerization and initiator polymerization can be further performed. It can also be used in combination. The initiator to be used is not particularly limited, but a peroxide or an azo compound is used, and 1,1'-azobiscyclohexane-1-carbonitrile is particularly preferably used.

ビニル系共重合体(B)の連続塊状重合又は連続溶液重合では、分子量調整を目的として連鎖移動剤を使用しても良い。連鎖移動剤としては、メルカプタン類やテルペンなどを用いることができ、特にn−オクチルメルカプタンやt−ドデシルメルカプタンが好ましく用いられる。   In the continuous bulk polymerization or continuous solution polymerization of the vinyl copolymer (B), a chain transfer agent may be used for the purpose of adjusting the molecular weight. As the chain transfer agent, mercaptans, terpenes, and the like can be used, and n-octyl mercaptan and t-dodecyl mercaptan are particularly preferably used.

ビニル系共重合体(B)の重量平均分子量は7万〜30万であることが好ましく、さらに好ましくは8万〜25万である。ビニル系共重合体(B)の重量平均分子量が7万未満では機械的強度が低下する可能性があり、また30万を超えると流動性が低下する傾向を示す。   The weight average molecular weight of the vinyl copolymer (B) is preferably 70,000 to 300,000, and more preferably 80,000 to 250,000. If the weight average molecular weight of the vinyl copolymer (B) is less than 70,000, the mechanical strength may decrease, and if it exceeds 300,000, the fluidity tends to decrease.

ビニル系共重合体(B)を連続溶液重合法により製造する場合、溶媒の量に特に限定はないが、生産性の点から、好ましくは重合溶液に対して30重量%以下、より好ましくは、20重量%以下の溶媒量が使用される。用いる溶媒としては特に制限はないが、重合安定性の点からエチルベンゼン又はメチルエチルケトンが好ましく、エチルベンゼンが特に好ましい。   When the vinyl copolymer (B) is produced by a continuous solution polymerization method, the amount of the solvent is not particularly limited, but from the viewpoint of productivity, it is preferably 30% by weight or less, more preferably, based on the polymerization solution. A solvent amount of 20% by weight or less is used. The solvent to be used is not particularly limited, but ethylbenzene or methyl ethyl ketone is preferable from the viewpoint of polymerization stability, and ethylbenzene is particularly preferable.

本発明の透明スチレン系可塑性樹脂組成物は、グラフト共重合体(A)とビニル系共重合体(B)を、例えば、バンバリミキサー、ロール、エクストルーダー及びニーダーなどで溶融混練することによって製造することができる。耐衝撃性、剛性、透明性などの物性バランスの観点から、グラフト共重合体(A)10〜50重量部及びビニル系共重合体(B)90〜50重量部を混合することが好ましく、より好ましくはグラフト共重合体(A)15〜40重量部及びビニル系共重合体(B)85〜60重量部である。   The transparent styrenic plastic resin composition of the present invention is produced by melt-kneading the graft copolymer (A) and the vinyl copolymer (B) with a Banbury mixer, roll, extruder, kneader, or the like. be able to. From the viewpoint of balance of physical properties such as impact resistance, rigidity, and transparency, it is preferable to mix 10-50 parts by weight of the graft copolymer (A) and 90-50 parts by weight of the vinyl copolymer (B). The graft copolymer (A) is preferably 15 to 40 parts by weight and the vinyl copolymer (B) is 85 to 60 parts by weight.

なお、本発明の透明スチレン系熱可塑性樹脂組成物には、本発明の効果を損なわない範囲でヒンダードフェノール系、含硫黄有機化合物系、含リン有機化合物系等の酸化防止剤、フェノール系、アクリレート系等の熱安定剤、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系等の紫外線吸収剤、有機ニッケル系、ヒンダードアミン系等の光安定剤等の各種安定剤、高級脂肪酸の金属塩類、高級脂肪酸アミド類等の滑剤、フタル酸エステル類、リン酸エステル類等の可塑剤、ポリブロモジフェニルエーテル、テトラブロモビスフェノール−A、臭素化エポキシオリゴマー、臭素化ポリカーボネートオリゴマー等の含ハロゲン系化合物、リン系化合物、三酸化アンチモン等の難燃剤・難燃助剤、帯電防止剤、カーボンブラック、酸化チタン、顔料及び染料、水やシリコーンオイル、流動パラフィンなどの液体を添加することもできる。これら添加物の添加方法については特に制限はなく、種々の方法を用いることができる。   The transparent styrene-based thermoplastic resin composition of the present invention includes hindered phenol-based, sulfur-containing organic compound-based, phosphorus-containing organic compound-based antioxidants, phenol-based compounds, etc. within a range not impairing the effects of the present invention. Various stabilizers such as acrylate-based heat stabilizers, benzotriazole-based, benzophenone-based, salicylate-based UV absorbers, organic nickel-based, hindered amine-based light stabilizers, higher fatty acid metal salts, higher fatty acid amides Lubricants such as phthalates, phosphates, plasticizers, polybromodiphenyl ether, tetrabromobisphenol-A, brominated epoxy oligomers, brominated polycarbonate oligomers and other halogen-containing compounds, phosphorus compounds, trioxide Flame retardants and flame retardants such as antimony, antistatic agents, carbon black, oxide Emissions, pigments and dyes, water and silicone oil, can be added to a liquid such as liquid paraffin. There is no restriction | limiting in particular about the addition method of these additives, A various method can be used.

かくしてなる本発明の透明スチレン系熱可塑性樹脂組成物は、耐衝撃性、流動性のバランスに優れ、特に高度な透明性が必要な家電製品、通信関連機器及び一般雑貨などの用途分野で幅広く利用することができる。   Thus, the transparent styrene-based thermoplastic resin composition of the present invention has an excellent balance between impact resistance and fluidity, and is widely used in fields of application such as home appliances, communication-related equipment and general miscellaneous goods that require particularly high transparency. can do.

以下、実施例を挙げて本発明をさらに詳述するが、本発明はこれら実施例に限定されるものではない。なお、実施例及び比較例中、特に断らない限り「部」は「重量部」、「%」は「重量%」を表す。   EXAMPLES Hereinafter, although an Example is given and this invention is further explained in full detail, this invention is not limited to these Examples. In Examples and Comparative Examples, “parts” represents “parts by weight” and “%” represents “% by weight” unless otherwise specified.

(1)ゴム質重合体の重量平均粒子径
ゴム質重合体ラテックスを水媒体で希釈、分散させ、レーザ散乱回折法粒度分布測定装置“LS 13 320”(ベックマン・コールター株式会社)により重量平均粒子径を測定した。
(1) Weight average particle diameter of rubbery polymer The rubbery polymer latex is diluted and dispersed in an aqueous medium, and the weight average particle is measured by a laser scattering diffraction particle size distribution analyzer “LS 13 320” (Beckman Coulter, Inc.). The diameter was measured.

(2)ゴム質重合体のゲル含有率
60℃で5時間真空乾燥を行ったゴム質重合体の所定量(m)[単位:g(約1g)]にトルエン100mlを加え、室温にて24時間放置した。トルエン溶液を100メッシュの篩で濾過した後、残渣を60℃で5時間真空乾燥して重量(n)[単位:g]を測定し、下記式よりゲル含有率を算出した。
ゲル含有率(%)=(n)/(m)×100。
(2) Gel content of rubbery polymer 100 ml of toluene was added to a predetermined amount (m) [unit: g (about 1 g)] of a rubbery polymer that had been vacuum-dried at 60 ° C. for 5 hours, and the mixture was stirred at room temperature for 24 Left for hours. The toluene solution was filtered through a 100-mesh sieve, the residue was vacuum-dried at 60 ° C. for 5 hours, the weight (n) [unit: g] was measured, and the gel content was calculated from the following formula.
Gel content (%) = (n) / (m) × 100.

(3)グラフト共重合体(A)のグラフト率
80℃で4時間真空乾燥を行ったグラフト共重合体(A)の所定量(m)[単位:g(約1g)]にアセトン80mlを加え、70℃の湯浴中で3時間還流し、この溶液を8800r/min(10000G)で40分間遠心分離した。アセトン不溶分を濾過し、80℃で4時間真空乾燥後、重量測定によりアセトン不溶分の重量(n)[単位:g]を測定し、下記式よりグラフト率を算出した。ここで、Lはグラフト共重合体(A)のゴム質重合体含有率[単位:重量%]である。
グラフト率(%)={[(n)−(m)×L]/[(m)×L]}×100。
(3) Graft ratio of graft copolymer (A) 80 ml of acetone was added to a predetermined amount (m) [unit: g (about 1 g)] of the graft copolymer (A) which was vacuum-dried at 80 ° C. for 4 hours. The solution was refluxed in a hot water bath at 70 ° C. for 3 hours, and the solution was centrifuged at 8800 r / min (10000 G) for 40 minutes. Acetone insoluble matter was filtered, vacuum dried at 80 ° C. for 4 hours, and the weight (n) [unit: g] of acetone insoluble matter was measured by weight measurement, and the graft ratio was calculated from the following formula. Here, L is the rubbery polymer content [unit:% by weight] of the graft copolymer (A).
Graft rate (%) = {[(n) − (m) × L] / [(m) × L]} × 100.

(4)屈折率測定
(4−1)ゴム質重合体の屈折率測定
ゴム質重合体ラテックスを3cm四方の容器に入れ、乾燥させることで厚み30±5μmのフィルムを作成した。このフィルムを試料としてアッベ屈折率計を用いて屈折率を測定した。
(4) Refractive Index Measurement (4-1) Refractive Index Measurement of Rubber Polymer A rubber polymer latex was placed in a 3 cm square container and dried to prepare a film with a thickness of 30 ± 5 μm. Using this film as a sample, the refractive index was measured using an Abbe refractometer.

(4−2)グラフト共重合体(A)の非グラフト成分の屈折率
グラフト共重合体(A)約1gにアセトン80mlを加え、70℃の湯浴中で3時間還流し、この溶液を8800r/min(10000G)で40分間遠心分離した。アセトン不溶分を濾過した後、濾液をロータリーエバポレーターで濃縮し、析出物を80℃で4時間真空乾燥して非グラフト成分のサンプルを得た。220℃に設定した加熱プレスにて厚み30±5μmに調整した非グラフト成分のフィルム状サンプルを作成し、このフィルムを試料としてFT−IRで分析して得られたチャートに現れた各ピークの面積から単量体組成を求めた。各単量体とピークの対応関係は次の通りである。
メタクリル酸メチル単量体単位:エステルのカルボニル基のC=O伸縮振動に帰属される1730cm−1のピークの倍音ピークである3460cm−1のピーク、
スチレン単量体単位:ベンゼン核の振動に帰属される1605cm−1のピーク、
アクリロニトリル単量体単位:−C≡N伸縮に帰属される2240cm−1のピーク。
さらに、これらの共重合体組成から下記式(2)にて屈折率(nD)を求めた。
屈折率(nD)=1.510・MA+1.595・MS+1.490・MM 式(2)
但し、式中の値は以下の通り。
nD:共重合体の屈折率、MA:アクリロニトリル含量(重量%)、MS:スチレン含量(重量%)、MM:メタクリル酸メチル含量(重量%)。
(4-2) Refractive index of non-grafted component of graft copolymer (A) 80 ml of acetone was added to about 1 g of the graft copolymer (A), and the mixture was refluxed in a hot water bath at 70 ° C. for 3 hours. / Min (10000 G) for 40 minutes. After the acetone insoluble matter was filtered, the filtrate was concentrated with a rotary evaporator, and the precipitate was vacuum-dried at 80 ° C. for 4 hours to obtain a sample of non-grafted components. An area of each peak appearing on a chart obtained by analyzing a film sample of a non-graft component adjusted to a thickness of 30 ± 5 μm with a heating press set at 220 ° C. and analyzing this film as a sample by FT-IR From this, the monomer composition was determined. The correspondence between each monomer and peak is as follows.
Methyl methacrylate monomer unit: peak of 3460 cm −1 which is a harmonic overtone peak of 1730 cm −1 attributed to C═O stretching vibration of carbonyl group of ester,
Styrene monomer unit: peak at 1605 cm −1 attributed to vibration of the benzene nucleus,
Acrylonitrile monomer unit: peak at 2240 cm −1 attributed to —C≡N stretching.
Furthermore, the refractive index (nD) was calculated | required by following formula (2) from these copolymer compositions.
Refractive index (nD) = 1.510 · MA + 1.595 · MS + 1.490 · MM Formula (2)
However, the values in the formula are as follows.
nD: refractive index of copolymer, MA: acrylonitrile content (% by weight), MS: styrene content (% by weight), MM: methyl methacrylate content (% by weight).

(4−3)グラフト共重合体(A)のグラフト成分の屈折率
グラフト共重合体(A)約1gにアセトン80mlを加え、70℃の湯浴中で3時間還流し、この溶液を8800r/min(10000G)で40分間遠心分離した。アセトン不溶分を濾過し、80℃で4時間真空乾燥後、220℃に設定した加熱プレスにて厚み30±5μmに調整したアセトン不溶分のフィルム状サンプルを作成した。このフィルムを試料として上記(3−2)と同様の操作でFT−IRによる単量体組成を求めた後、式(2)により屈折率(nD)を求めた。
(4-3) Refractive Index of Graft Component of Graft Copolymer (A) 80 ml of acetone was added to about 1 g of the graft copolymer (A) and refluxed in a 70 ° C. hot water bath for 3 hours. Centrifugation was performed for 40 minutes at min (10000 G). Acetone insoluble matter was filtered, vacuum dried at 80 ° C. for 4 hours, and then a film-like sample of acetone insoluble matter adjusted to a thickness of 30 ± 5 μm with a heating press set at 220 ° C. was prepared. Using this film as a sample, the monomer composition by FT-IR was determined by the same operation as in (3-2) above, and then the refractive index (nD) was determined by equation (2).

(4−4)ビニル系共重合体(B)の屈折率測定
80℃で4時間真空乾燥を行ったビニル系共重合体(B)を用い、上記(3−2)と同様の操作でフィルム状サンプルを作成、FT−IRによる単量体組成を求めた後、式(2)により屈折率(nD)を求めた。
(4-4) Refractive index measurement of vinyl copolymer (B) Using vinyl copolymer (B) that was vacuum-dried at 80 ° C. for 4 hours, the same operation as in (3-2) above was performed. After preparing a sample and determining the monomer composition by FT-IR, the refractive index (nD) was determined by equation (2).

(5)透明性(ヘイズ値、全光線透過率)
80℃熱風乾燥機中で3時間乾燥した透明スチレン系熱可塑性樹脂組成物のペレットを、シリンダー温度230℃に設定した射出成形機(住友重機株式会社製“プロマット”(登録商標)40/25)内に充填し、射出成形した角板成形品(厚さ3mm)のヘイズ値(%)及び全光線透過率(%)を、東洋精機株式会社製直読ヘイズメーターを使用して測定した。
(5) Transparency (haze value, total light transmittance)
An injection molding machine (“Promat” (registered trademark) 40/25 manufactured by Sumitomo Heavy Industries, Ltd.) in which pellets of a transparent styrenic thermoplastic resin composition dried in an 80 ° C. hot air dryer for 3 hours were set to a cylinder temperature of 230 ° C. ) And the haze value (%) and total light transmittance (%) of the square plate molded product (thickness 3 mm) filled and injection molded were measured using a direct reading haze meter manufactured by Toyo Seiki Co., Ltd.

(6)分光光度計測定による波長700nm、450nmの光の透過率
上記(5)記載の角板成形品(厚さ3mm)を用いて、1100〜200nmの透過率を測定可能な分光光度計V−600(日本分光株式会社製)を用いて、700nm及び450nmの透過率を測定した。
なお、700nmの透過率は下記の基準で評価した。
○;透過率が88%以上である
×;透過率が88%未満である
また、450nmの透過率は下記式(1)の算出結果と比較した上で、下記の基準で評価した。
450nm透過率(%)≧90−0.5×R 式(1)
但し、R:透明スチレン系熱可塑性樹脂組成物中のゴム質重合体含有量(重量部)
○;式(1)を満足している
×;式(1)を満足していない。
(6) Transmittance of light with wavelengths of 700 nm and 450 nm as measured by a spectrophotometer A spectrophotometer V capable of measuring a transmittance of 1100 to 200 nm using the square plate molded product (thickness 3 mm) described in (5) above. Using -600 (manufactured by JASCO Corporation), the transmittances at 700 nm and 450 nm were measured.
The transmittance at 700 nm was evaluated according to the following criteria.
○: Transmittance is 88% or more ×; Transmittance is less than 88% The 450 nm transmittance was evaluated according to the following criteria after comparison with the calculation result of the following formula (1).
450 nm transmittance (%) ≧ 90−0.5 × R Formula (1)
However, R: Rubber polymer content (parts by weight) in the transparent styrene-based thermoplastic resin composition
◯: Expression (1) is satisfied ×: Expression (1) is not satisfied

(7)シャルピー衝撃強度
透明スチレン系熱可塑性樹脂組成物を射出成形し、ISO179に準拠した方法でシャルピー衝撃強度を測定した。
(7) Charpy impact strength A transparent styrene-based thermoplastic resin composition was injection molded, and Charpy impact strength was measured by a method based on ISO179.

(8)メルトフローレート
透明スチレン系熱可塑性樹脂組成物をISO1133に準拠した方法でメルトフローレートを測定した。なお、測定温度は220℃、重りは98Nを用いた。
(8) Melt flow rate The melt flow rate of the transparent styrene-based thermoplastic resin composition was measured by a method based on ISO1133. The measurement temperature was 220 ° C. and the weight was 98N.

(参考例1)グラフト共重合体(A−1)
攪拌翼を備えた内容量5リットルの四つ口フラスコにポリブタジエンラテックス(ゴム重合平均粒子径0.30μm、ゲル含有率85%、屈折率1.516)50部(固形分換算)、純水130部、ラウリン酸ナトリウム0.4部、ブドウ糖0.2部、ピロリン酸ナトリウム0.2部、硫酸第一鉄0.01部を反応容器に仕込み、窒素置換後、60℃に温調し、攪拌下スチレン3.2部、アクリロニトリル1.2部、メタクリル酸メチル10.7部及びt−ドデシルメルカプタン0.15部の単量体混合液を45分かけて初期添加した。次いで、クメンハイドロパーオキサイド0.3部、ラウリン酸ナトリウム1.6部及び純水25部の開始剤混合物の投入を開始し、重合を開始させた。開始剤混合物は5時間かけて連続滴下し、同時に並行して、スチレン2.3部、アクリロニトリル0.8部、メタクリル酸メチル7.8部及びt−ドデシルメルカプタン0.11部の混合液を1時間かけて単量体混合物を連続追滴下した後、次いでスチレン6.5部、メタクリル酸メチル17.5部及びt−ドデシルメルカプタン0.26部の混合液を4時間かけて連続滴下した。単量体混合物滴下後、1時間、開始剤混合物のみを連続滴下し重合を終了させた。重合を終了したラテックスを1.5%硫酸で凝固し、ついで水酸化ナトリウムで中和、洗浄、遠心分離、乾燥して、パウダー状のグラフト共重合体(A−1)を得た(単量体重量比率:スチレン24%、アクリロニトリル4%、メタクリル酸メチル72%)。得られたグラフト共重合体(A−1)のグラフト成分の屈折率は1.516であり、ゴム質重合体との屈折率の差は0.000、非グラフト成分の屈折率は1.516であり、ゴム質重合体との屈折率の差は0.000であった。また、グラフト率は47%であった。
(Reference Example 1) Graft copolymer (A-1)
In a four-necked flask with an internal volume of 5 liters equipped with a stirring blade, 50 parts of polybutadiene latex (rubber polymerization average particle diameter 0.30 μm, gel content 85%, refractive index 1.516) (solid content conversion), pure water 130 Part, 0.4 part of sodium laurate, 0.2 part of glucose, 0.2 part of sodium pyrophosphate, 0.01 part of ferrous sulfate were charged into the reaction vessel, and after nitrogen substitution, the temperature was adjusted to 60 ° C. and stirred. A monomer mixture of 3.2 parts of lower styrene, 1.2 parts of acrylonitrile, 10.7 parts of methyl methacrylate and 0.15 part of t-dodecyl mercaptan was initially added over 45 minutes. Next, an initiator mixture of cumene hydroperoxide 0.3 parts, sodium laurate 1.6 parts and pure water 25 parts was started to initiate polymerization. The initiator mixture was continuously dropped over 5 hours, and simultaneously, a mixture of 2.3 parts of styrene, 0.8 part of acrylonitrile, 7.8 parts of methyl methacrylate, and 0.11 part of t-dodecyl mercaptan was 1 The monomer mixture was continuously added dropwise over time, and then a mixed solution of 6.5 parts of styrene, 17.5 parts of methyl methacrylate and 0.26 parts of t-dodecyl mercaptan was continuously added dropwise over 4 hours. After the monomer mixture was dropped, only the initiator mixture was continuously dropped for 1 hour to complete the polymerization. The latex after the polymerization was coagulated with 1.5% sulfuric acid, then neutralized with sodium hydroxide, washed, centrifuged and dried to obtain a powdered graft copolymer (A-1) (single amount) Body weight ratio: styrene 24%, acrylonitrile 4%, methyl methacrylate 72%). The refractive index of the graft component of the obtained graft copolymer (A-1) is 1.516, the refractive index difference from the rubbery polymer is 0.000, and the refractive index of the non-graft component is 1.516. The difference in refractive index from the rubber polymer was 0.000. The graft ratio was 47%.

(参考例2)グラフト共重合体(A−2)
攪拌翼を備えた内容量5リットルの四つ口フラスコにポリブタジエンラテックス(ゴム重合平均粒子径0.30μm、ゲル含有率85%、屈折率1.516)50部(固形分換算)、純水130部、ラウリン酸ナトリウム0.4部、ブドウ糖0.2部、ピロリン酸ナトリウム0.2部、硫酸第一鉄0.01部を反応容器に仕込み、窒素置換後、60℃に温調し、攪拌下スチレン3.6部、アクリロニトリル0.6部、メタクリル酸メチル10.8部及びt−ドデシルメルカプタン0.13部の単量体混合液を45分かけて初期添加した。次いで、クメンハイドロパーオキサイド0.3部、乳化剤であるラウリン酸ナトリウム1.6部及び純水25部の開始剤混合物の投入を開始し、重合を開始させた。開始剤混合物は5時間かけて連続滴下し、同時に並行して、スチレン8.4部、アクリロニトリル1.4部、メタクリル酸メチル25.2部及びt−ドデシルメルカプタン0.39部の混合液を5時間かけて単量体混合物を連続追滴下した。単量体混合物滴下後、1時間、開始剤混合物のみを連続滴下し重合を終了させた。重合を終了したラテックスを1.5%硫酸で凝固し、ついで水酸化ナトリウムで中和、洗浄、遠心分離、乾燥して、パウダー状のグラフト共重合体(A−2)を得た(単量体重量比率:スチレン24%、アクリロニトリル4%、メタクリル酸メチル72%)。得られたグラフト共重合体(A−2)のグラフト成分の屈折率は1.518であり、ゴム質重合体との屈折率の差は0.002、非グラフト成分の屈折率は1.513であり、ゴム質重合体との屈折率の差は0.003であった。また、グラフト率は44%であった。
(Reference Example 2) Graft copolymer (A-2)
In a four-necked flask with an internal volume of 5 liters equipped with a stirring blade, 50 parts of polybutadiene latex (rubber polymerization average particle diameter 0.30 μm, gel content 85%, refractive index 1.516) (solid content conversion), pure water 130 Part, 0.4 part of sodium laurate, 0.2 part of glucose, 0.2 part of sodium pyrophosphate, 0.01 part of ferrous sulfate were charged into the reaction vessel, and after nitrogen substitution, the temperature was adjusted to 60 ° C. and stirred. A monomer mixture of 3.6 parts of lower styrene, 0.6 part of acrylonitrile, 10.8 parts of methyl methacrylate and 0.13 part of t-dodecyl mercaptan was initially added over 45 minutes. Next, an initiator mixture of cumene hydroperoxide 0.3 part, emulsifier sodium laurate 1.6 part and pure water 25 part was started to initiate polymerization. The initiator mixture was continuously dropped over 5 hours, and simultaneously, a mixture of 8.4 parts of styrene, 1.4 parts of acrylonitrile, 25.2 parts of methyl methacrylate and 0.39 parts of t-dodecyl mercaptan was added in parallel. The monomer mixture was continuously added dropwise over time. After the monomer mixture was dropped, only the initiator mixture was continuously dropped for 1 hour to complete the polymerization. The latex after polymerization was coagulated with 1.5% sulfuric acid, then neutralized with sodium hydroxide, washed, centrifuged and dried to obtain a powdered graft copolymer (A-2) (single amount) Body weight ratio: styrene 24%, acrylonitrile 4%, methyl methacrylate 72%). The graft copolymer (A-2) thus obtained has a graft component refractive index of 1.518, a refractive index difference of 0.002 from the rubber polymer, and a non-graft component refractive index of 1.513. The difference in refractive index from the rubber polymer was 0.003. The graft ratio was 44%.

(参考例3)ビニル系共重合体(B−1)
単量体蒸気の還流用コンデンサー及びヘリカルリボン翼を有する2mの完全混合型重合槽と、単軸押出機型予熱機と、2軸押出機型脱モノマー機の先端から1/3長のバレル部にタンデムに接続した加熱装置を有する2軸押出機型フィーダーとからなる連続式塊状重合装置を用いて、重合及び樹脂混合を実施した。
Reference Example 3 Vinyl copolymer (B-1)
A 2m 3 fully mixed polymerization tank with a condenser for monomer vapor reflux and a helical ribbon blade, a single-screw extruder preheater, and a barrel that is 1/3 long from the tip of the twin-screw extruder demonomer Polymerization and resin mixing were carried out using a continuous bulk polymerization apparatus comprising a twin-screw extruder type feeder having a heating device connected in tandem at the part.

まず、スチレン23.5部、アクリロニトリル4.5部、メタクリル酸メチル72.0部、n−オクチルメルカプタン0.15部及びジ−t−ブチルパーオキサイド0.01部からなる単量体混合物を、150kg/時で重合槽に連続的に供給し、重合温度130℃、槽内圧0.08MPaに保って連続塊状重合させた。重合槽出における重合反応混合物の重合率は74〜76%の間に制御した。   First, a monomer mixture comprising 23.5 parts of styrene, 4.5 parts of acrylonitrile, 72.0 parts of methyl methacrylate, 0.15 part of n-octyl mercaptan and 0.01 part of di-t-butyl peroxide, The polymer was continuously supplied to the polymerization tank at 150 kg / hour, and continuous bulk polymerization was performed while maintaining the polymerization temperature at 130 ° C. and the internal pressure of 0.08 MPa. The polymerization rate of the polymerization reaction mixture at the exit from the polymerization vessel was controlled between 74 and 76%.

重合反応混合物は、単軸押出機型予熱機で予熱された後、2軸押出機型脱モノマー機により未反応の単量体をベント口より減圧蒸発回収し、回収した未反応単量体は連続的に重合槽へ還流した。脱モノマー機よりストランド状に吐出されたポリマーは、冷却、ペレタイザーでカッティングすることで、ペレット状のビニル系共重合体(B−1)を得た。得られたビニル系共重合体(B−1)の屈折率は1.516であり、参考例1及び2で使用したゴム質重合体との屈折率の差は0.000であった。   The polymerization reaction mixture is preheated by a single-screw extruder type preheater, and then unreacted monomers are evaporated and recovered from the vent port under reduced pressure by a twin-screw extruder type demonomer. The mixture was continuously refluxed to the polymerization tank. The polymer discharged in a strand form from the monomer removal machine was cooled and cut with a pelletizer to obtain a pellet-shaped vinyl copolymer (B-1). The resulting vinyl copolymer (B-1) had a refractive index of 1.516, and the difference in refractive index from the rubbery polymer used in Reference Examples 1 and 2 was 0.000.

(参考例4)ビニル系共重合体(B−2)
単量体混合物の組成をスチレン21.5部、アクリロニトリル4.5部、メタクリル酸メチル74部とした以外は、参考例3と同様の方法で製造することで、ペレット状のビニル系共重合体(B−2)を得た。得られたビニル系共重合体(B−2)の屈折率は1.514であり、参考例1及び2で使用したゴム質重合体との屈折率の差は0.002であった。
Reference Example 4 Vinyl copolymer (B-2)
A pellet-like vinyl copolymer was produced in the same manner as in Reference Example 3 except that the composition of the monomer mixture was 21.5 parts of styrene, 4.5 parts of acrylonitrile, and 74 parts of methyl methacrylate. (B-2) was obtained. The resulting vinyl copolymer (B-2) had a refractive index of 1.514, and the difference in refractive index from the rubbery polymer used in Reference Examples 1 and 2 was 0.002.

(参考例5)ビニル系共重合体(B−3)
単量体混合物の組成をスチレン25.5部、アクリロニトリル4.5部、メタクリル酸メチル70部とした以外は、参考例3と同様の方法で製造することで、ペレット状のビニル系共重合体(B−3)を得た。得られたビニル系共重合体(B−3)の屈折率は1.518であり、参考例1及び2で使用したゴム質重合体との屈折率の差は0.002であった。
Reference Example 5 Vinyl copolymer (B-3)
A pellet-like vinyl copolymer was produced in the same manner as in Reference Example 3 except that the composition of the monomer mixture was 25.5 parts of styrene, 4.5 parts of acrylonitrile, and 70 parts of methyl methacrylate. (B-3) was obtained. The obtained vinyl copolymer (B-3) had a refractive index of 1.518, and the difference in refractive index from the rubbery polymer used in Reference Examples 1 and 2 was 0.002.

(実施例1)
参考例1で得たグラフト共重合体(A−1)25部と、参考例3で得たビニル系共重合体(B−1)75部とを二軸押出機を使用して220℃で溶融混練し、ストランド状に吐出したポリマーを冷却後、カッティングすることでペレット状の透明スチレン系熱可塑性樹脂組成物を得た。樹脂特性の評価結果を表1に示す。
Example 1
Using a twin screw extruder, 25 parts of the graft copolymer (A-1) obtained in Reference Example 1 and 75 parts of the vinyl copolymer (B-1) obtained in Reference Example 3 were used at 220 ° C. The polymer which was melt-kneaded and discharged in the form of a strand was cooled and then cut to obtain a pellet-like transparent styrene thermoplastic resin composition. The evaluation results of the resin properties are shown in Table 1.

(実施例2)
グラフト共重合体(A−1)35部、ビニル系共重合体(B−1)65部に変更した以外は実施例1と同様にして透明スチレン系熱可塑性樹脂組成物を得た。樹脂特性の評価結果を表1に示す。
(Example 2)
A transparent styrenic thermoplastic resin composition was obtained in the same manner as in Example 1 except that 35 parts of the graft copolymer (A-1) and 65 parts of the vinyl copolymer (B-1) were used. The evaluation results of the resin properties are shown in Table 1.

(比較例1〜5)
グラフト共重合体(A)及びビニル系共重合体(B)の種類を表1の通り変更した以外は実施例1と同様にして透明スチレン系熱可塑性樹脂組成物を得た。樹脂特性の評価結果を表1に示す。
(Comparative Examples 1-5)
A transparent styrene thermoplastic resin composition was obtained in the same manner as in Example 1 except that the types of the graft copolymer (A) and the vinyl copolymer (B) were changed as shown in Table 1. The evaluation results of the resin properties are shown in Table 1.

(比較例6〜8)
グラフト共重合体(A)及びビニル系共重合体(B)の種類を表1の通り変更した以外は実施例2と同様にして透明スチレン系熱可塑性樹脂組成物を得た。樹脂特性の評価結果を表1に示す。
(Comparative Examples 6-8)
A transparent styrene thermoplastic resin composition was obtained in the same manner as in Example 2 except that the types of the graft copolymer (A) and the vinyl copolymer (B) were changed as shown in Table 1. The evaluation results of the resin properties are shown in Table 1.

Figure 0006111770
Figure 0006111770

実施例1、2の通り、本発明の透明スチレン系熱可塑性樹脂組成物は耐衝撃性、流動性のバランスに優れ、特に高度な透明性が得られた。しかし、比較例1〜8で得られた樹脂組成物は分光光度計で測定した450nm及び/又は700nmの透過率が本発明の範囲外であり、透明性に劣るものであった。   As in Examples 1 and 2, the transparent styrenic thermoplastic resin composition of the present invention was excellent in the balance between impact resistance and fluidity, and particularly high transparency was obtained. However, the resin compositions obtained in Comparative Examples 1 to 8 had a transmittance of 450 nm and / or 700 nm measured with a spectrophotometer outside the scope of the present invention, and were inferior in transparency.

本発明で得られる透明スチレン系熱可塑性樹脂組成物は耐衝撃性、流動性のバランスに優れ、特に高度な透明性を有することから、これら特性を生かして、家電製品、通信関連機器及び一般雑貨などの用途分野で幅広く利用することができる。   The transparent styrenic thermoplastic resin composition obtained in the present invention has an excellent balance between impact resistance and fluidity, and has particularly high transparency. Therefore, taking advantage of these characteristics, home appliances, communication-related equipment, and general miscellaneous goods. It can be used widely in application fields such as.

Claims (8)

ゴム質重合体の存在下、少なくとも芳香族ビニル系単量体(a1)、(メタ)アクリル酸エステル系単量体(a2)及びシアン化ビニル系単量体(a3)を含む単量体混合物(a)をグラフト重合してグラフト共重合体(A)を得る工程、少なくとも芳香族ビニル系単量体(b1)、(メタ)アクリル酸エステル系単量体(b2)、シアン化ビニル系単量体(b3)を含む単量体混合物(b)を共重合してビニル系共重合体(B)を得る工程、少なくとも前記グラフト共重合体(A)およびビニル系共重合体(B)を配合する工程を有する透明スチレン系熱可塑性樹脂組成物の製造方法であり、グラフト共重合体(A)の重合において、ビニル系単量体混合物(a)の仕込み組成比率を重合途中で変更することを特徴とする透明スチレン系熱可塑性樹脂組成物の製造方法であって、該透明スチレン系熱可塑性樹脂組成物を厚さ3mmの角板成形品にしたときの分光光度計測定による波長700nmの光の透過率が88%以上、波長450nmの光の透過率が下記式(1)を満たすことを特徴とする、透明スチレン系熱可塑性樹脂組成物の製造方法。
450nm透過率(%)≧90−0.5×R 式(1)
但し、R:透明スチレン系熱可塑性樹脂組成物中のゴム質重合体含有率(重量%)
Monomer mixture containing at least an aromatic vinyl monomer (a1), a (meth) acrylic acid ester monomer (a2) and a vinyl cyanide monomer (a3) in the presence of a rubbery polymer (A) graft polymerization to obtain a graft copolymer (A), at least aromatic vinyl monomer (b1), (meth) acrylic acid ester monomer (b2), vinyl cyanide monomer A step of copolymerizing a monomer mixture (b) containing a monomer (b3) to obtain a vinyl copolymer (B), at least the graft copolymer (A) and the vinyl copolymer (B); Ri manufacturing method der transparent styrene-based thermoplastic resin composition comprising a step of blending, in the polymerization of the graft copolymer (a), changing the vinyl monomer mixture charge composition ratio of (a) polymerizing in the course Transparent styrenic heat characterized by Plastic A method for producing a resin composition, the transparent styrene-based thermoplastic resin composition of 3mm thick rectangular plate transmittance of light having a wavelength of 700nm by a spectrophotometer measurements when the molded article is 88% or more, The manufacturing method of the transparent styrene-type thermoplastic resin composition characterized by the transmittance | permeability of light with a wavelength of 450 nm satisfy | filling following formula (1).
450 nm transmittance (%) ≧ 90−0.5 × R Formula (1)
However, R: Rubber polymer content rate (weight%) in a transparent styrene-type thermoplastic resin composition
ゴム質重合体の重量平均粒子径が0.2〜0.4μmであることを特徴とする、請求項1に記載の透明スチレン系熱可塑性樹脂組成物の製造方法The method for producing a transparent styrenic thermoplastic resin composition according to claim 1, wherein the rubbery polymer has a weight average particle diameter of 0.2 to 0.4 µm. グラフト共重合体(A)10〜50重量部及びビニル系共重合体(B)50〜90重量部を含む、請求項1又は2に記載の透明スチレン系熱可塑性樹脂組成物の製造方法 The manufacturing method of the transparent styrene-type thermoplastic resin composition of Claim 1 or 2 containing 10-50 weight part of graft copolymers (A) and 50-90 weight part of vinyl-type copolymers (B). グラフト共重合体(A)が、ゴム質重合体30〜70重量%存在下、少なくとも芳香族ビニル系単量体、(メタ)アクリル酸エステル系単量体及びシアン化ビニル系単量体を含む単量体混合物(a)70〜30重量%をグラフト重合して得られるものである、請求項1〜3のいずれかに記載の透明スチレン系熱可塑性樹脂組成物の製造方法The graft copolymer (A) contains at least an aromatic vinyl monomer, a (meth) acrylic acid ester monomer, and a vinyl cyanide monomer in the presence of 30 to 70% by weight of a rubbery polymer. The manufacturing method of the transparent styrene-type thermoplastic resin composition in any one of Claims 1-3 which is obtained by graft-polymerizing 70-30 weight% of monomer mixtures (a). グラフト共重合体(A)を構成するゴム質重合体の屈折率とビニル系共重合体(B)の屈折率との差が0.001以内であることを特徴とする、請求項1〜4のいずれかに記載の透明スチレン系熱可塑性樹脂組成物の製造方法The difference between the refractive index of the rubbery polymer constituting the graft copolymer (A) and the refractive index of the vinyl copolymer (B) is within 0.001. The manufacturing method of the transparent styrene-type thermoplastic resin composition in any one of. グラフト共重合体(A)を構成するゴム質重合体の屈折率とグラフト共重合体(A)の非グラフト成分の屈折率との差が0.001以内であることを特徴とする、請求項1〜5のいずれかに記載の透明スチレン系熱可塑性樹脂組成物の製造方法The difference between the refractive index of the rubbery polymer constituting the graft copolymer (A) and the refractive index of the non-graft component of the graft copolymer (A) is within 0.001. The manufacturing method of the transparent styrene-type thermoplastic resin composition in any one of 1-5. グラフト共重合体(A)を構成するゴム質重合体の屈折率とグラフト共重合体(A)のグラフト成分の屈折率との差が0.001以内であることを特徴とする、請求項1〜6のいずれかに記載の透明スチレン系熱可塑性樹脂組成物の製造方法The difference between the refractive index of the rubbery polymer constituting the graft copolymer (A) and the refractive index of the graft component of the graft copolymer (A) is within 0.001. The manufacturing method of the transparent styrene-type thermoplastic resin composition in any one of -6. 請求項1〜7のいずれかに記載の製造方法によって得られる透明スチレン系熱可塑性樹脂組成物を成形してなる成形品の製造方法Any molded article production method of obtained by molding a transparent styrene-based thermoplastic resin composition obtained by the production method according to the claims 1-7.
JP2013057956A 2013-03-21 2013-03-21 Method for producing transparent styrenic thermoplastic resin composition Active JP6111770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057956A JP6111770B2 (en) 2013-03-21 2013-03-21 Method for producing transparent styrenic thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057956A JP6111770B2 (en) 2013-03-21 2013-03-21 Method for producing transparent styrenic thermoplastic resin composition

Publications (3)

Publication Number Publication Date
JP2014181315A JP2014181315A (en) 2014-09-29
JP2014181315A5 JP2014181315A5 (en) 2015-12-24
JP6111770B2 true JP6111770B2 (en) 2017-04-12

Family

ID=51700340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057956A Active JP6111770B2 (en) 2013-03-21 2013-03-21 Method for producing transparent styrenic thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP6111770B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220961A1 (en) 2017-06-01 2018-12-06 東レ株式会社 Thermoplastic resin composition, production method for thermoplastic resin composition, molded article, and production method for molded article
US20230383041A1 (en) * 2021-07-26 2023-11-30 Lg Chem, Ltd. Thermoplastic resin composition
WO2023008807A1 (en) * 2021-07-26 2023-02-02 주식회사 엘지화학 Thermoplastic resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4736253B1 (en) * 1969-08-06 1972-09-12
JP4802410B2 (en) * 2000-07-26 2011-10-26 東レ株式会社 Method for producing rubber-reinforced styrene-based transparent resin composition
JP2003277454A (en) * 2002-03-27 2003-10-02 Nippon A & L Kk Resin molding for high-temperature and high-humidity environment
JP2012136644A (en) * 2010-12-27 2012-07-19 Toray Ind Inc Rubber-reinforced thermoplastic resin composition

Also Published As

Publication number Publication date
JP2014181315A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
JP6519709B2 (en) Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article and method of producing molded article
WO2016186133A1 (en) Heat-resistant resin composition and method for producing same
WO2016186142A1 (en) Copolymer for use as polymer blend compatibilizer, and resin composition
JP6686440B2 (en) Thermoplastic resin composition, method for producing the same and molded article thereof
JP6111770B2 (en) Method for producing transparent styrenic thermoplastic resin composition
JP2012207074A (en) Transparency styrene-based thermoplastic resin composition
KR102535966B1 (en) Styrenic thermoplastic resin composition, manufacturing method of styrenic thermoplastic resin composition, molded article and manufacturing method of molded article
JP2010116427A (en) Thermoplastic resin composition
JP2008174683A (en) Resin composition containing rubbery material
JP6801827B1 (en) Transparent thermoplastic resin composition and its molded product
JP5533080B2 (en) Transparent thermoplastic resin composition
JP2012136644A (en) Rubber-reinforced thermoplastic resin composition
TWI844691B (en) Transparent thermoplastic resin composition, its manufacturing method and molded product, and manufacturing method of molded product
JP2020139054A (en) Transparent thermoplastic resin composition and its molded article
KR20220005536A (en) Thermoplastic resin composition and molded article thereof
JP2021091836A (en) Modified vinyl-based copolymer, method for producing the same, thermoplastic resin composition containing the same, and molding
JP6707817B2 (en) Thermoplastic resin composition and method for producing the same
JP7199595B2 (en) maleimide copolymer
CN113906085B (en) Polydimethylsiloxane rubber mixture and thermoplastic resin composition containing polydimethylsiloxane rubber added with the mixture
WO2022176756A1 (en) Manufacturing method for heat-resistant resin composition
JP5436517B2 (en) Graft copolymer and thermoplastic resin composition
JP2019137769A (en) Thermoplastic resin composition, and molded product

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R151 Written notification of patent or utility model registration

Ref document number: 6111770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151