WO2022176756A1 - Manufacturing method for heat-resistant resin composition - Google Patents

Manufacturing method for heat-resistant resin composition Download PDF

Info

Publication number
WO2022176756A1
WO2022176756A1 PCT/JP2022/005269 JP2022005269W WO2022176756A1 WO 2022176756 A1 WO2022176756 A1 WO 2022176756A1 JP 2022005269 W JP2022005269 W JP 2022005269W WO 2022176756 A1 WO2022176756 A1 WO 2022176756A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
heat
maleimide
resistant resin
Prior art date
Application number
PCT/JP2022/005269
Other languages
French (fr)
Japanese (ja)
Inventor
広平 西野
正道 遠藤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023500786A priority Critical patent/JPWO2022176756A1/ja
Publication of WO2022176756A1 publication Critical patent/WO2022176756A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/105Esters; Ether-esters of monocarboxylic acids with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention relates to a method for producing a heat-resistant resin composition with excellent impact resistance.
  • ABS resin is a thermoplastic resin with acrylonitrile, butadiene, and styrene as main components. widely used for On the other hand, in applications where heat resistance is required, such as automobile interior materials, the heat resistance may be insufficient. Techniques for improving heat resistance include the following, and maleimide-based copolymers and ⁇ -methylstyrene-based copolymers are used (Patent Documents 1 to 3). The higher the heat resistance of the maleimide copolymer, the more the heat resistance of the ABS resin can be improved with a small addition amount. requires kneading at high processing temperatures.
  • An object of the present invention is to provide a method for producing a heat-resistant resin composition having excellent impact resistance.
  • the present invention (1) A method for producing a heat-resistant resin composition comprising a step of melt-kneading a maleimide-based copolymer (A) and an ABS-based resin (B) with an extruder, wherein the melt-kneading is performed by 2-t -butyl-6-(3′-t-butyl-5′-methyl-2′-hydroxybenzyl)-4-methylphenyl acrylate and 2,4-di-t-amyl-6-[1-(3,5-di-t -
  • a method for producing a heat-resistant resin composition which is carried out in the presence of at least one radical scavenger (C) selected from amyl-2-hydroxyphenyl)ethyl]phenyl acrylate,
  • C radical scavenger
  • melt-kneading is performed in the presence of two or more antioxidants (D) selected from hindered phenol-based antioxidants and phosphorus-based antioxidants;
  • D antioxidants
  • the maleimide-based copolymer (A) and the ABS-based resin (B) are melt-kneaded in an extruder in the presence of a radical scavenger. It is possible to obtain a heat-resistant resin composition that suppresses deterioration of polybutadiene in the resin and has excellent impact resistance.
  • the heat-resistant resin composition of the present invention is a heat-resistant resin composition obtained by melt-kneading a maleimide-based copolymer (A) and an ABS-based resin (B) in an extruder. SAN resin may be included in the process.
  • the Vicat softening temperature of the heat-resistant resin composition is preferably 115°C or higher, more preferably 120°C or higher.
  • the production method of the present invention is more effective when the content of the maleimide-based copolymer with high melt viscosity is high, that is, when the Vicat softening temperature of the heat-resistant resin composition is high, since a higher processing temperature is required. is.
  • the maleimide-based copolymer (A) is a copolymer having maleimide-based monomer units and styrene-based monomer units.
  • the present invention can further have acrylonitrile-based monomer units and unsaturated dicarboxylic acid anhydride-based monomer units.
  • Maleimide-based monomer units include, for example, N-methylmaleimide, N-butylmaleimide, N-alkylmaleimide such as N-cyclohexylmaleimide, N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-methoxyphenylmaleimide, N-tribromophenylmaleimide and the like. Among these, N-phenylmaleimide is preferred.
  • the maleimide-based monomer units may be used alone or in combination of two or more.
  • a raw material comprising a maleimide-based monomer can be used as for the maleimide-based monomer.
  • the maleimide-based copolymer (A) preferably contains 30 to 70% by mass, more preferably 35 to 60% by mass, of maleimide-based monomer units in 100% by mass of the maleimide-based copolymer (A). more preferred.
  • the content of maleimide-based monomer units is, for example, 30, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 55, 60, or 70 mass. % and may be in a range between any two of the numbers exemplified here.
  • an ABS resin which is an ABS-based resin (B) described later, is an essential component, and at least one selected from ASA resins, AES resins, and SAN resins. Also, the compatibility with resins in which one type of resin is used in combination is improved, and the impact strength of the resin composition is excellent.
  • the content of maleimide-based monomer units is a value measured by 13C-NMR.
  • Styrenic monomer units include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, ⁇ - and methyl-p-methylstyrene.
  • styrene is preferable from the viewpoints of industrial availability, low cost, copolymerization with various monomers, and light weight and excellent moldability.
  • the styrene-based monomer units may be used alone or in combination of two or more.
  • the maleimide-based copolymer (A) preferably contains 20 to 60% by mass, more preferably 35 to 55% by mass, of styrene-based monomer units in 100% by mass of the maleimide-based copolymer (A). more preferred. Specifically, for example, 20, 30, 40, 45, 46, 47, 48, 49, 50, 55, or 60% by mass, and within the range between any two of the numerical values exemplified here good too. If the content of the styrene-based monomer unit is within this range, the ABS resin, which is the ABS-based resin (B) described later, is an essential component, and optionally at least one selected from ASA resin, AES resin, and SAN resin. Also, the compatibility with resins in which one type of resin is used in combination is improved, and the impact strength of the resin composition is excellent. The content of styrene-based monomer units is a value measured by 13C-NMR.
  • Acrylonitrile-based monomer units include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile, and the like. Among these, acrylonitrile is preferable from the viewpoint of industrial availability. Acrylonitrile-based monomer units may be used alone, or two or more of them may be used in combination.
  • the maleimide-based copolymer (A) preferably contains 0 to 20% by mass of acrylonitrile-based monomer units in 100% by mass of the maleimide-based copolymer (A), and may contain 0 to 15% by mass. more preferred.
  • the content of the acrylonitrile-based monomer unit is within this range, the chemical resistance of the resin composition will be excellent.
  • the content of acrylonitrile-based monomer units is a value measured by 13C-NMR.
  • the unsaturated dicarboxylic anhydride monomer units include maleic anhydride, itaconic anhydride, citraconic anhydride, and aconitic anhydride. Among these, maleic anhydride is preferable from the viewpoint of industrial availability.
  • the unsaturated dicarboxylic anhydride-based monomer units may be used alone or in combination of two or more.
  • the maleimide-based copolymer (A) preferably contains 0 to 10% by mass of unsaturated dicarboxylic anhydride-based monomer units in 100% by mass of the maleimide-based copolymer (A), and preferably 0 to 5% by mass. % is more preferable.
  • the content of the unsaturated dicarboxylic acid anhydride-based monomer unit is within this range, the thermal stability of the maleimide-based copolymer is excellent.
  • the content of unsaturated dicarboxylic acid anhydride-based monomer units is a value measured by a titration method.
  • the maleimide-based copolymer (A) in one aspect of the present invention contains 30 to 70% by mass of maleimide-based monomer units and 20% by mass of styrene-based monomer units in 100% by mass of the maleimide-based copolymer (A). It preferably contains up to 60% by mass, 0 to 20% by mass of acrylonitrile-based monomer units, and 0 to 10% by mass of unsaturated dicarboxylic acid anhydride-based monomer units.
  • maleimide-based copolymer (A) More preferably, 35 to 60% by mass of maleimide-based monomer units, 35 to 55% by mass of styrene-based monomer units, and acrylonitrile-based monomer units in 100% by mass of the maleimide-based copolymer (A) 0 to 15% by mass, and 0 to 5% by mass of unsaturated dicarboxylic acid anhydride-based monomer units. If the structural unit is within the above range, the maleimide-based copolymer (A) will be excellent in fluidity, heat resistance, and thermal stability.
  • the glass transition temperature (midpoint glass transition temperature: Tmg) of the maleimide copolymer (A) is preferably 175°C to 210°C, and more It is preferably 185°C to 205°C.
  • the glass transition temperature is a value measured by DSC under the measurement conditions described below.
  • the weight average molecular weight (Mw) of the maleimide-based copolymer (A) is preferably 60,000 to 150,000, more preferably 70,000 to 140,000. Specifically, it is, for example, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 150,000, and may be within a range between any two of the numerical values exemplified here. If the weight average molecular weight (Mw) of the maleimide-based copolymer (A) is within the above range, the impact strength of the resin composition will be excellent.
  • the weight average molecular weight of the maleimide-based copolymer (A) is a polystyrene-equivalent value measured by gel permeation chromatography (GPC), and was measured under the following conditions.
  • a known method can be employed as the method for producing the maleimide-based copolymer (A). For example, there is a method of copolymerizing a monomer mixture comprising styrene-based monomers, maleimide-based monomers, unsaturated dicarboxylic acid anhydride-based monomers, and other copolymerizable monomers.
  • the unsaturated dicarboxylic anhydride-based monomer unit part of is reacted with ammonia or a primary amine to imidize and convert to maleimide-based monomer units (hereinafter referred to as "post-imidation method").
  • Polymerization modes of the maleimide-based copolymer (A) include, for example, solution polymerization and bulk polymerization.
  • Solution polymerization is preferable from the viewpoint that a maleimide-based copolymer (A) having a more uniform copolymer composition can be obtained by polymerizing while performing partial addition or the like.
  • the solvent for solution polymerization is preferably non-polymerizable from the viewpoint that by-products are less likely to occur and adverse effects are less likely to occur.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and acetophenone
  • ethers such as tetrahydrofuran and 1,4-dioxane
  • aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene
  • N,N-dimethylformamide dimethyl
  • examples include sulfoxide and N-methyl-2-pyrrolidone, and methyl ethyl ketone and methyl isobutyl ketone are preferred from the standpoint of ease of solvent removal during devolatilization recovery of the maleimide copolymer (A).
  • Any of a continuous polymerization system, a batch system (batch system), and a semi-batch system can be applied to the polymerization process.
  • the polymerization method is not particularly limited, but radical polymerization is preferable from the viewpoint of being able to produce with high productivity by a simple process.
  • a polymerization initiator and a chain transfer agent can be used in solution polymerization or bulk polymerization, and the polymerization temperature is preferably in the range of 80 to 150°C.
  • Polymerization initiators include, for example, azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylproponitrile, azobismethylbutyronitrile, benzoyl peroxide, t-butyl peroxybenzoate, 1 , 1-di(t-butylperoxy)cyclohexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, di-t-butylperoxide, dicumylperoxide, ethyl- Peroxides such as 3,3-di-(t-butylperoxy)butyrate, which may be used alone or in combination of two or more.
  • an azo compound or an organic peroxide having a 10-hour half-life of 70 to 120°C is preferable to use an azo compound or an organic peroxide having a 10-hour half-life of 70 to 120°C.
  • the amount of the polymerization initiator used is not particularly limited, but it is preferable to use 0.1 to 1.5% by mass based on 100% by mass of the total monomer units, more preferably 0.1 to It is 1.0% by mass. If the amount of the polymerization initiator used is 0.1% by mass or more, a sufficient polymerization rate can be obtained, which is preferable. When the amount of the polymerization initiator used is 1.5% by mass or less, the polymerization rate can be suppressed, so the reaction control becomes easy, and the target molecular weight can be easily obtained.
  • Chain transfer agents include, for example, n-octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, ⁇ -methylstyrene dimer, ethyl thioglycolate, limonene, terpinolene and the like.
  • the amount of the chain transfer agent used is not particularly limited as long as the target molecular weight is obtained, but it is 0.1 to 0.8% by mass with respect to 100% by mass of the total monomer units. is preferred, and more preferably 0.15 to 0.5% by mass. If the amount of chain transfer agent used is 0.1% by mass to 0.8% by mass, the target molecular weight can be easily obtained.
  • Introduction of maleimide-based monomer units into the maleimide-based copolymer (A) includes a method of copolymerizing maleimide-based monomers and a post-imidization method.
  • the post-imidation method is preferable because the amount of residual maleimide monomer in the maleimide copolymer (A) is reduced.
  • the post-imidization method involves copolymerizing a monomer mixture consisting of a styrene-based monomer, an unsaturated dicarboxylic anhydride-based monomer, and other copolymerizable monomers, and then adding an unsaturated dicarboxylic acid.
  • Primary amines include, for example, alkylamines such as methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-octylamine, cyclohexylamine and decylamine.
  • Amines and aromatic amines such as chloro- or bromo-substituted alkylamines, aniline, toluidine, naphthylamine, among which aniline is preferred.
  • a catalyst can be used to improve the dehydration ring closure reaction in the reaction between the primary amine and the unsaturated dicarboxylic anhydride monomer units.
  • Catalysts are, for example, tertiary amines such as trimethylamine, triethylamine, tripropylamine, tributylamine, N,N-dimethylaniline, N,N-diethylaniline.
  • the temperature for post-imidization is preferably 100 to 250°C, more preferably 120 to 200°C. If the imidization reaction temperature is 100° C. or higher, the reaction rate is improved, which is preferable from the viewpoint of productivity. If the temperature of the imidization reaction is 250° C. or lower, it is possible to suppress deterioration in physical properties due to thermal deterioration of the maleimide copolymer (A), which is preferable.
  • a method of removing volatiles such as the solvent used in the solution polymerization and unreacted monomers from the solution of the maleimide copolymer (A) after the solution polymerization or the solution after the post-imidation can employ a known method.
  • a vacuum devolatilization tank with a heater or a devolatilization extruder with a vent can be used.
  • the devolatilized molten maleimide copolymer (A) is transferred to a granulation process, extruded into strands from a multi-hole die, and pelletized by a cold cut method, an air hot cut method, or an underwater hot cut method. can be processed.
  • the content of the maleimide copolymer (A) in the resin composition is 5 to 45% by mass when the total amount of the maleimide copolymer (A) and the ABS resin (B) is 100% by mass. is preferably 7 to 35% by mass, more preferably 10 to 30% by mass, still more preferably 20 to 30% by mass. Specifically, for example, 5, 10, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, or 45% by mass, the numerical values illustrated here may be in the range between any two of If the content of the maleimide-based copolymer (A) is too small, the heat resistance of the resin composition may not be sufficiently improved. If the amount is too large, fluidity may decrease and moldability may deteriorate.
  • the resin contained in the resin composition may be substantially only the maleimide copolymer (A) and the ABS resin.
  • ABS resin (B)> The ABS-based resin (B) is a resin containing ABS resin as an essential component and optionally at least one resin selected from ASA resin, AES resin and SAN resin.
  • the ABS resin is a graft copolymer obtained by graft-copolymerizing a rubber-like polymer with at least a styrene-based monomer and an acrylonitrile-based monomer.
  • butadiene-based rubbers such as polybutadiene and styrene-butadiene copolymers are used as rubber-like polymers.
  • two or more of these rubber-like polymers may be used in combination.
  • an ASA resin When using an acrylic rubber such as butyl acrylate or ethyl acrylate, an ASA resin may be used, and when using an ethylene rubber such as an ethylene- ⁇ -olefin copolymer, an AES resin may be used together.
  • the content of the ABS resin in the ABS resin (B) is preferably 10 to 100% by mass, more preferably 15 to 60% by mass based on 100% by mass of the ABS resin (B). Specifically, for example, it is 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, or 100% by mass, and within the range between any two of the numerical values illustrated here There may be.
  • the ABS-based resin (B) may be substantially only ABS resin.
  • the content of the polybutadiene component in the ABS resin (B) is preferably 10 to 35% by mass, more preferably 15 to 30% by mass, based on 100% by mass of the ABS resin (B) from the viewpoint of impact strength. % by mass. Specifically, it is, for example, 10, 15, 20, 25, 30, or 35% by mass, and may be within a range between any two of the numerical values exemplified here.
  • a known method can be adopted as a method for producing a graft copolymer such as an ABS resin.
  • production methods using emulsion polymerization and continuous bulk polymerization can be mentioned.
  • a method by emulsion polymerization is preferable because it is easy to adjust the content of the rubber-like polymer in the final resin composition.
  • a method for producing a graft copolymer by emulsion polymerization includes a method in which a styrene-based monomer and an acrylonitrile-based monomer are emulsion-graft-polymerized in a latex of a rubber-like polymer (hereinafter referred to as "emulsion graft polymerization method"). ).
  • emulsion graft polymerization method A latex of a graft copolymer can be obtained by an emulsion graft polymerization method.
  • emulsion graft polymerization method water, an emulsifier, a polymerization initiator, and a chain transfer agent are used, and the polymerization temperature is preferably in the range of 30 to 90°C.
  • emulsifiers include anionic surfactants, onionic surfactants, and amphoteric surfactants.
  • Polymerization initiators include, for example, organic peroxides such as cumene hydroperoxide, diisopropylene peroxide, t-butylperoxyacetate, t-hexylperoxybenzoate, and t-butylperoxybenzoate, potassium persulfate, and ammonium persulfate.
  • Chain transfer agents include, for example, n-octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, ⁇ -methylstyrene dimer, ethyl thioglycolate, limonene, terpinolene and the like.
  • the graft copolymer latex can be coagulated by a known method to recover the graft copolymer. For example, a coagulant is added to the latex of the graft copolymer to coagulate it, followed by washing and dehydration with a dehydrator, followed by drying to obtain a powdery graft copolymer.
  • a coagulant is added to the latex of the graft copolymer to coagulate it, followed by washing and dehydration with a dehydrator, followed by drying to obtain a powdery graft copolymer.
  • the content of the rubber-like polymer in the graft copolymer obtained by the emulsion graft polymerization method is preferably 40 to 70% by mass, more preferably 45 to 65% by mass, from the viewpoint of impact resistance. .
  • the content of the rubber-like polymer can be adjusted, for example, by adjusting the ratio of the styrene-based monomer and the acrylonitrile-based monomer to the rubber-like polymer used during emulsion graft polymerization.
  • the constituent units excluding the rubber-like polymer of the graft copolymer obtained by the emulsion graft polymerization method include 65 to 85% by mass of styrene-based monomer units and acrylonitrile-based monomers.
  • the body unit content is preferably 15 to 35% by mass.
  • the gel content of the graft copolymer is preferably particulate.
  • the gel content is particles of a rubber-like polymer obtained by graft copolymerization of a styrene-based monomer and an acrylonitrile-based monomer, and is a component that is insoluble in organic solvents such as methyl ethyl ketone and toluene and separated by centrifugation.
  • organic solvents such as methyl ethyl ketone and toluene and separated by centrifugation.
  • an occlusion structure in which the styrene-acrylonitrile copolymer is encapsulated in the form of particles is formed inside the particles of the rubber-like polymer.
  • the gel portion exists as a particulate dispersed phase in the continuous phase of the styrene-acrylonitrile copolymer.
  • the gel content can be calculated by dissolving the resin composition obtained by melt-blending the graft copolymer and the styrene-acrylonitrile-based copolymer in methyl ethyl ketone and centrifuging.
  • the volume average particle size of the gel portion of the graft copolymer is preferably in the range of 0.10 to 1.0 ⁇ m, more preferably 0.15 to 0.1 ⁇ m, from the viewpoint of impact resistance and appearance of molded articles. 50 ⁇ m.
  • the volume average particle size is obtained by cutting an ultra-thin section from a pellet of a resin composition obtained by melt-blending a graft copolymer and a styrene-acrylonitrile-based copolymer and observing it with a transmission electron microscope (TEM). It is a value calculated from image analysis of dispersed particles.
  • the volume average particle size can be adjusted, for example, by the particle size of the latex of the rubber-like polymer used in the emulsion graft polymerization.
  • the particle size of the latex of the rubber-like polymer can be adjusted by the addition method of the emulsifier and the amount of water used during the emulsion polymerization.
  • the graft ratio of the graft copolymer is preferably 10 to 100% by mass, more preferably 20 to 70% by mass.
  • the graft ratio is determined by the styrene-acrylonitrile copolymer in which the particles of the rubber-like polymer are bonded by the graft contained per unit mass of the rubber-like polymer and the styrene-acrylonitrile-based copolymer included in the particles. represent quantity.
  • the graft rate is determined by the ratio of the monomer to the rubber-like polymer, the type and amount of the initiator, the amount of the chain transfer agent, the amount of the emulsifier, the polymerization temperature, and the charging method (batch/multistage/continuous). , the addition rate of the monomer, and the like.
  • the toluene swelling degree of the graft copolymer is preferably 5 to 20 times from the viewpoint of impact resistance and molded product appearance.
  • the degree of swelling in toluene represents the degree of cross-linking of rubber-like polymer particles. is calculated from the mass ratio of the dry state after removing
  • the degree of swelling of toluene is affected by, for example, the degree of cross-linking of the rubber-like polymer used in the emulsion graft polymerization, which depends on the initiator, emulsifier, polymerization temperature, divinylbenzene, etc. in the emulsion polymerization of the rubber-like polymer. It can be adjusted by adding a polyfunctional monomer or the like.
  • a SAN resin is a copolymer having styrene-based monomer units and acrylonitrile-based monomer units, for example, a styrene-acrylonitrile-based copolymer.
  • copolymerizable monomers for the SAN resin include (meth)acrylic acid ester-based monomers such as methyl methacrylate, acrylic acid ester-based monomers such as butyl acrylate and ethyl acrylate, methacrylic acid, and the like. (Meth)acrylic acid-based monomers, acrylic acid-based monomers such as acrylic acid, and N-substituted maleimide-based monomers such as N-phenylmaleimide can be used.
  • the constituent units of the SAN resin preferably contain 60 to 90% by mass of styrene monomer units and 10 to 40% by mass of vinyl cyanide monomer units, more preferably 65 to 80% by mass of styrene monomer units. % by mass, vinyl cyanide monomer unit is 20 to 35% by mass. If the structural unit is within the above range, the resulting resin composition will have an excellent balance between impact strength and fluidity. Styrenic monomer units and vinyl cyanide monomer units are values measured by 13C-NMR.
  • a known method can be adopted as the method for manufacturing the SAN resin.
  • it can be produced by bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or the like.
  • the operating method of the reactor any of a continuous system, a batch system (batch system), and a semi-batch system can be applied. Bulk polymerization or solution polymerization is preferred from the aspects of quality and productivity, and continuous polymerization is preferred.
  • solvents for bulk polymerization or solution polymerization include alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane.
  • alkylbenzenes such as benzene, toluene, ethylbenzene and xylene
  • ketones such as acetone and methyl ethyl ketone
  • aliphatic hydrocarbons such as hexane and cyclohexane.
  • polymerization initiators include, for example, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(t-butylperoxy)butane, 2,2-di(4,4-di-t-butyl peroxycyclohexyl)propane, peroxyketals such as 1,1-di(t-amylperoxy)cyclohexane, hydroperoxides such as cumene hydroperoxide and t-butyl hydroperoxide, t-butyl peroxyacetate , alkyl peroxides such as t-amyl peroxy isononanoate, dialkyl peroxides such as t-butyl cumyl peroxide, di-t-butyl peroxide, dicumyl
  • Chain transfer agents include, for example, n-octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, ⁇ -methylstyrene dimer, ethyl thioglycolate, limonene, terpinolene and the like.
  • a well-known method can be adopted as a devolatilization method for removing volatile matter such as unreacted monomers and the solvent used for solution polymerization from the solution after polymerization of the SAN resin.
  • a vacuum devolatilization tank with a preheater or a devolatilization extruder with a vent can be used.
  • the devolatilized molten SAN resin is transferred to a granulation step, extruded in a strand form from a multi-hole die, and processed into pellets by a cold cut method, an air hot cut method, or an underwater hot cut method.
  • the weight average molecular weight of the SAN resin is preferably 50,000 to 250,000, more preferably 70,000 to 200,000, from the viewpoint of impact resistance and moldability of the resin composition. Specifically, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 200,000. It may be in a range between the two.
  • the weight average molecular weight of the SAN resin is a polystyrene-equivalent value measured in a THF solvent using gel permeation chromatography (GPC), and is a value measured in the same manner as for the maleimide-based copolymer (A). be.
  • the weight average molecular weight can be adjusted by the type and amount of chain transfer agent during polymerization, solvent concentration, polymerization temperature, and type and amount of polymerization initiator.
  • ABS resin (B) for example, there is a method of using two types of powdery ABS resin obtained by an emulsion polymerization method and pellet-like SAN resin obtained by a continuous bulk polymerization method. Further, the powdery ABS resin obtained by emulsion polymerization and the pelletized SAN resin obtained by continuous bulk polymerization were once melt-blended using an extruder or the like to obtain a pelletized ABS resin (B). methods of using things.
  • a known method can be adopted as a method of melt-kneading the maleimide-based copolymer (A) and the ABS-based resin (B) using an extruder.
  • a known extruder can be used, and examples thereof include a twin-screw extruder, a single-screw extruder, a multi-screw extruder, and a continuous kneader with a twin-screw rotor. From the viewpoint of being able to arbitrarily set the screw configuration and adjust the kneading property, it is preferable to use a twin-screw extruder, and an intermeshing co-rotating twin-screw extruder is generally widely used. used and more preferred.
  • the space in which the cylinder is arranged is divided into a plurality of sections from the input section of the raw material to the discharge section, the temperature of each section is controlled It is configured so that it can be
  • the cylinder temperature of the kneading section in the present invention is the set temperature of the section where the kneading section cylinder (mixing element) is arranged and which has the highest temperature among the sections where the material to be melt-kneaded is kneaded.
  • the cylinder temperature in the kneading section of the extruder in an embodiment of the present invention is above 260°C, preferably 270-330°C. If the cylinder temperature of the kneading section is 260° C. or less, the dispersibility of the maleimide-based copolymer deteriorates, and the melt viscosity becomes too high, making extrusion difficult.
  • Radical scavenger (C)> Melt-kneading includes 2-t-butyl-6-(3′-t-butyl-5′-methyl-2′-hydroxybenzyl)-4-methylphenyl acrylate and 2,4-di-t-amyl-6-[1-( It is carried out in the presence of at least one radical scavenger (C) selected from 3,5-di-t-amyl-2-hydroxyphenyl)ethyl]phenyl acrylates. In the absence of the radical scavenger, the impact resistance of the heat-resistant resin composition is lowered.
  • the radical scavenger (C) can be supplied to the extruder together with the maleimide-based copolymer (A) and the ABS-based resin (B) during melt-kneading in the extruder. Alternatively, it may be contained in advance in the maleimide-based copolymer (A) or the ABS-based resin (B).
  • the content of the radical scavenger (C) with respect to a total of 100 parts by mass of the maleimide copolymer (A) and the ABS resin (B) is preferably 0.1 to 0.6 parts by mass, and 0.2 parts by mass. More preferably, it is up to 0.4 parts by mass.
  • the content (mass ratio) of the polybutadiene component in the ABS resin to the radical scavenger (C) is preferably 30 to 200, more preferably 50 to 110. is more preferred. Specifically, for example, 30, 35, 40, 45, 50, 55, 70, 80, 90, 100, 110, 120, 150, or 200, a range between any two of the numerical values exemplified here may be within
  • an antioxidant can be used in combination, and it is preferable to use a hindered phenol-based antioxidant as the antioxidant, and a phosphorus-based antioxidant may be used in combination. Addition of an antioxidant can prevent yellowing or the like during molding of the heat-resistant resin composition or during actual use.
  • a hindered phenolic antioxidant is an antioxidant that has a phenolic hydroxyl group in its basic skeleton.
  • Hindered phenolic antioxidants include, for example, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, ethylenebis(oxyethylene)bis[3-(5-tert-butyl- 4-hydroxy-m-tolyl)propionate], 3,9-bis[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]- 2,4,8,10-tetraoxaspiro[5.5]undecane, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 4,6-bis(octyl thiomethyl)-o-cresol, 4,6-bis[(dodec
  • octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate ethylenebis(oxyethylene)bis[3-(5-tert-butyl-4-hydroxy-m-tolyl) propionate] and pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]. More preferred is octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate.
  • the hindered phenol-based antioxidants may be used alone or in combination of two or more.
  • Phosphorus-based antioxidants are phosphites, which are trivalent phosphorus compounds.
  • Phosphorus-based antioxidants include, for example, 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-t-butylbenz [d, f ][1,3,2]dioxaphosphepine, 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9- Diphosphaspiro[5.5]undecane, bis(2,4-dicumylphenyl)pentaerythritol diphosphite, 2,2′-methylenebis(4,6-di-tert-butyl-1-phenyloxy)(2-ethylhexyl) oxy) phosphorous, tris(2,4-di-tert-butylphenyl)phosphite
  • Undecane bis(2,4-dicumylphenyl)pentaerythritol diphosphite, 2,2′-methylenebis(4,6-di-tert-butyl-1-phenyloxy)(2-ethylhexyloxy)phosphorus, tris ( 2,4-di-tert-butylphenyl)phosphite and bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite.
  • the heat-resistant resin composition When producing the heat-resistant resin composition, other resin components, impact modifiers, fluidity modifiers, hardness modifiers, antioxidants, inorganic fillers, luster are added to the extent that the effects of the present invention are not impaired. Extinguisher, flame retardant, auxiliary flame retardant, anti-drip agent, slidability agent, heat dissipation material, electromagnetic wave absorber, plasticizer, lubricant, release agent, ultraviolet absorber, light stabilizer, antibacterial agent, antifungal agent agents, antistatic agents, carbon black, titanium oxide, pigments, dyes and the like may be added.
  • a maleimide-based copolymer (A-1) was produced by the following method. 62 parts by mass of styrene, 11 parts by mass of maleic anhydride, 0.2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and 31 parts by mass of methyl ethyl ketone were placed in an autoclave having a volume of about 120 liters equipped with a stirrer.
  • A-1 contains 48% by mass of styrene units, 51% by mass of N-phenylmaleimide units, and 1% by mass of maleic anhydride units, has a weight average molecular weight Mw of 130,000, and has a glass transition temperature (midpoint glass transition temperature: Tmg) was 202°C.
  • a reactor equipped with a stirrer 97 parts by mass of polybutadiene latex (solid content concentration 50 mass%, average particle diameter 0.3 ⁇ m), styrene content 24 mass% styrene-butadiene latex 12 parts by mass (solid content concentration 70 % by mass, average particle size is 0.5 ⁇ m), 1 part by mass of sodium stearate, 0.2 parts by mass of sodium formaldehyde sulfoxylate, 0.01 part by mass of tetrasodium ethylenediamine tetraacetic acid, ferrous sulfate 0.005 parts by mass and 200 parts of pure water were charged and heated to 50°C.
  • a SAN resin (B-2) was produced by the following method. It was produced by continuous bulk polymerization. Polymerization was carried out in a volume of 30 L using one complete mixing tank type agitating tank as a reactor. A raw material solution of 60% by mass of styrene, 22% by mass of acrylonitrile and 18% by mass of ethylbenzene was prepared and continuously supplied to the reactor at a flow rate of 9.5 L/h.
  • t-butyl peroxyisopropyl monocarbonate as a polymerization initiator and n-dodecylmercaptan as a chain transfer agent were continuously added to the supply line of the raw material solution so as to have concentrations of 160 ppm and 400 ppm, respectively, to the raw material solution.
  • the reaction temperature of the reactor was adjusted to 145°C.
  • a polymer solution continuously taken out from the reactor was supplied to a vacuum devolatilization tank equipped with a preheater to separate unreacted styrene, acrylonitrile and ethylbenzene.
  • the temperature of the preheater was adjusted so that the polymer temperature in the devolatilization tank was 235° C., and the pressure in the devolatilization tank was 0.4 kPa.
  • the polymer was extracted from the vacuum devolatilization tank by a gear pump, extruded into strands, cooled with cooling water, and cut to obtain SAN resin (B-2) in the form of pellets.
  • the constituent units of (B-2) were 73.5% by mass of styrene units and 26.5% by mass of acrylonitrile units. Moreover, the weight average molecular weight was 146,000.
  • ABS resin (B-3)> A commercially available ABS resin GR-3000 (manufactured by Denka Co., Ltd.) was used.
  • Example/Comparative example> A maleimide copolymer, an ABS resin, a radical scavenger, and an antioxidant were melt-kneaded using an extruder under the formulations and conditions shown in Table 1 to produce a heat-resistant resin composition.
  • an extruder a twin-screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) is used, and the cylinder temperature in the kneading section shown in Table 1, the screw rotation speed is 250 rpm, and the feed rate is 30 kg / hr Extrusion was performed. rice field.
  • the radical scavengers and antioxidants used are as follows. Table 1 shows the evaluation results.
  • melt mass flow rate The melt mass flow rate was measured at 220° C. under a load of 98 N according to JIS K7210.
  • the Vicat softening point was measured according to JIS K7206 by Method 50 (50 N load, 50° C./hour heating rate) using a test piece of 10 mm ⁇ 10 mm and a thickness of 4 mm.
  • the HDT & VSPT test equipment manufactured by Toyo Seiki Seisakusho Co., Ltd. was used as a measuring machine.
  • the Charpy impact strength was measured according to JIS K7111-1, using notched test pieces and adopting an edgewise impact direction. A digital impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd. was used as the measuring machine.
  • a heat-resistant resin composition with excellent impact resistance can be obtained even if the maleimide-based copolymer and the ABS-based resin are melt-kneaded at a high processing temperature. Since melt-kneading is possible at a high processing temperature, a maleimide copolymer with high heat resistance can be used, and the heat resistance of ABS resin can be improved with a small addition amount. In addition, it becomes possible to increase the blending amount of the maleimide-based copolymer having high melt viscosity, and it becomes possible to produce a heat-resistant resin composition having high heat resistance.

Abstract

Provided is a manufacturing method for a heat-resistant resin composition that excels in shock resistance. Provided is a manufacturing method for a heat-resistant resin composition including a step for melt-kneading a maleimide-based copolymer (A) and an ABS-based resin (B) with an extruding machine, said manufacturing method for a heat-resistant resin composition being such that the melt-kneading is carried out in the presence of at least one radical scavenger (C) selected from among 2-t-butyl-6-(3'-t-butyl-5'-methyl-2'-hydroxybenzyl)-4-methylphenyl acrylate and 2, 4-di-t-amyl-6-[1-(3, 5-di-t-amyl-2-hydroxyphenyl) ethyl] phenyl acrylate.

Description

耐熱性樹脂組成物の製造方法METHOD FOR MANUFACTURING HEAT-RESISTANT RESIN COMPOSITION
 本発明は、耐衝撃性に優れた耐熱性樹脂組成物の製造方法に関するものである。 The present invention relates to a method for producing a heat-resistant resin composition with excellent impact resistance.
 ABS樹脂はアクリロニトリル、ブタジエン、スチレンを主成分とする熱可塑性樹脂であり、その優れた機械的強度、外観、耐薬品性、成形性等を活かし、自動車、家電、OA機器、住宅建材、日用品などに幅広く使用されている。一方、自動車の内装材のように耐熱性が要求される用途では、耐熱性が不足することがある。耐熱性を高める技術としては下記があり、マレイミド系共重合体やα-メチルスチレン系共重合体等が使用される(特許文献1~3)。マレイミド系共重合体の耐熱性が高いほど、少量の添加量でABS樹脂の耐熱性を向上することができるが、マレイミド系共重合体の溶融粘度が高くなり、ABS樹脂と均一に混練するためには高い加工温度で混練を行う必要がある。また、熱可塑性樹脂を製造する方法として、直接造粒法を採用することにより、樹脂に酸化劣化を生じる乾燥工程を不要とするとともに、直接造粒にあたって特定のフェノール系化合物を存在させる方法が知られている(特許文献4)。 ABS resin is a thermoplastic resin with acrylonitrile, butadiene, and styrene as main components. widely used for On the other hand, in applications where heat resistance is required, such as automobile interior materials, the heat resistance may be insufficient. Techniques for improving heat resistance include the following, and maleimide-based copolymers and α-methylstyrene-based copolymers are used (Patent Documents 1 to 3). The higher the heat resistance of the maleimide copolymer, the more the heat resistance of the ABS resin can be improved with a small addition amount. requires kneading at high processing temperatures. In addition, by adopting the direct granulation method as a method for producing thermoplastic resins, a drying process that causes oxidative deterioration of the resin becomes unnecessary, and a method of allowing a specific phenolic compound to exist in direct granulation is known. (Patent Document 4).
特開昭58-183729号公報JP-A-58-183729 特開2003-41080号公報JP-A-2003-41080 WO2010/082617号公報WO2010/082617 特開平5-78430号公報JP-A-5-78430
 本発明は、耐衝撃性に優れた耐熱性樹脂組成物の製造方法を提供することを課題とする。 An object of the present invention is to provide a method for producing a heat-resistant resin composition having excellent impact resistance.
 本発明者らの検討の結果、マレイミド系共重合体とABS系樹脂を押出機で溶融混練する際に、ラジカル捕捉剤の存在下で行うことで、ABS樹脂中のポリブタジエンの劣化を抑制し、耐衝撃性に優れた耐熱性樹脂組成物が得られることを見出した。
 即ち、本発明は、
(1)マレイミド系共重合体(A)と、ABS系樹脂(B)を、押出機で溶融混練する工程を含む耐熱性樹脂組成物の製造方法であって、前記溶融混練が、2-t-ブチル-6-(3'-t-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレートおよび2,4ージーtーアミルー6-〔1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル〕フェニルアクリレートから選ばれた少なくとも一種のラジカル捕捉剤(C)の存在下で行われる、耐熱性樹脂組成物の製造方法、
(2)前記溶融混練が、押出機の混練部のシリンダー温度が260℃を超える温度で行われる、(1)に記載の耐熱性樹脂組成物の製造方法、
(3)前記マレイミド系共重合体(A)のガラス転移温度が175℃~210℃である、(1)または(2)に記載の耐熱性樹脂組成物の製造方法、
(4)前記マレイミド系共重合体(A)と前記ABS系樹脂(B)の合計100質量部に対する前記ラジカル捕捉剤(C)の含有量が0.1~0.6質量部である、(1)~(3)のいずれか一つに記載の耐熱性樹脂組成物の製造方法、
(5)前記押出機が二軸押出機である、(1)~(4)のいずれか一つに記載の耐熱性樹脂組成物の製造方法、
(6)前記耐熱性樹脂組成物のビカット軟化温度が115℃以上である、(1)~(5)のいずれか一つに記載の耐熱性樹脂組成物の製造方法、
(7)前記溶融混練が、ヒンダードフェノール系酸化防止剤およびリン系酸化防止剤から選択される2種類以上の酸化防止剤(D)の存在下で行われる、(1)~(6)のいずれか一つに記載の耐熱性樹脂組成物の製造方法、
に関する。
As a result of studies by the present inventors, it was found that when the maleimide-based copolymer and the ABS-based resin are melt-kneaded in an extruder, deterioration of the polybutadiene in the ABS resin is suppressed by performing the melt-kneading in the presence of a radical scavenger. It has been found that a heat-resistant resin composition having excellent impact resistance can be obtained.
That is, the present invention
(1) A method for producing a heat-resistant resin composition comprising a step of melt-kneading a maleimide-based copolymer (A) and an ABS-based resin (B) with an extruder, wherein the melt-kneading is performed by 2-t -butyl-6-(3′-t-butyl-5′-methyl-2′-hydroxybenzyl)-4-methylphenyl acrylate and 2,4-di-t-amyl-6-[1-(3,5-di-t - A method for producing a heat-resistant resin composition, which is carried out in the presence of at least one radical scavenger (C) selected from amyl-2-hydroxyphenyl)ethyl]phenyl acrylate,
(2) The method for producing a heat-resistant resin composition according to (1), wherein the melt-kneading is performed at a cylinder temperature of the kneading section of the extruder at a temperature exceeding 260°C.
(3) The method for producing a heat-resistant resin composition according to (1) or (2), wherein the maleimide copolymer (A) has a glass transition temperature of 175° C. to 210° C.
(4) The content of the radical scavenger (C) is 0.1 to 0.6 parts by mass with respect to a total of 100 parts by mass of the maleimide copolymer (A) and the ABS resin (B), 1) A method for producing a heat-resistant resin composition according to any one of (3),
(5) The method for producing a heat-resistant resin composition according to any one of (1) to (4), wherein the extruder is a twin-screw extruder;
(6) The method for producing a heat-resistant resin composition according to any one of (1) to (5), wherein the heat-resistant resin composition has a Vicat softening temperature of 115° C. or higher.
(7) of (1) to (6), wherein the melt-kneading is performed in the presence of two or more antioxidants (D) selected from hindered phenol-based antioxidants and phosphorus-based antioxidants; A method for producing the heat-resistant resin composition according to any one of
Regarding.
 本発明の耐熱性樹脂組成物の製造方法は、マレイミド系共重合体(A)とABS系樹脂(B)を押出機で溶融混練する際に、ラジカル捕捉剤の存在下で行うことで、ABS樹脂中のポリブタジエンの劣化を抑制し、耐衝撃性に優れた耐熱性樹脂組成物が得られる。 In the method for producing the heat-resistant resin composition of the present invention, the maleimide-based copolymer (A) and the ABS-based resin (B) are melt-kneaded in an extruder in the presence of a radical scavenger. It is possible to obtain a heat-resistant resin composition that suppresses deterioration of polybutadiene in the resin and has excellent impact resistance.
二軸押出機のシリンダーを模式的に示した図である。It is the figure which showed the cylinder of a twin-screw extruder typically.
<用語の説明>
 本願明細書において、例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
<Description of terms>
In the specification of the present application, for example, the description “A to B” means A or more and B or less.
 以下、本発明の実施形態について、詳細に説明する。以下に示す実施形態は互いに組み合わせ可能である。 Hereinafter, embodiments of the present invention will be described in detail. The embodiments shown below can be combined with each other.
<1.樹脂組成物>
 本発明の耐熱性樹脂組成物は、マレイミド系共重合体(A)と、ABS系樹脂(B)を、押出機で溶融混練して得られる耐熱性樹脂組成物であり、押出機で溶融混練する際にSAN樹脂を含んでもよい。耐熱性樹脂組成物のビカット軟化温度は、115℃以上であることが好ましく、120℃以上であることがより好ましい。本発明の製造方法は、溶融粘度の高いマレイミド系共重合体の含有量が多い時、つまり耐熱性樹脂組成物のビカット軟化温度が高い時には、より高い加工温度が必要となるため、より効果的である。
<1. Resin composition>
The heat-resistant resin composition of the present invention is a heat-resistant resin composition obtained by melt-kneading a maleimide-based copolymer (A) and an ABS-based resin (B) in an extruder. SAN resin may be included in the process. The Vicat softening temperature of the heat-resistant resin composition is preferably 115°C or higher, more preferably 120°C or higher. The production method of the present invention is more effective when the content of the maleimide-based copolymer with high melt viscosity is high, that is, when the Vicat softening temperature of the heat-resistant resin composition is high, since a higher processing temperature is required. is.
<2.マレイミド系共重合体(A)>
 マレイミド系共重合体(A)とは、マレイミド系単量体単位、スチレン系単量体単位を有する共重合体である。本発明においては、更にアクリロニトリル系単量体単位、不飽和ジカルボン酸無水物系単量体単位をさらに有することができる。
<2. Maleimide-based copolymer (A)>
The maleimide-based copolymer (A) is a copolymer having maleimide-based monomer units and styrene-based monomer units. The present invention can further have acrylonitrile-based monomer units and unsaturated dicarboxylic acid anhydride-based monomer units.
 マレイミド系単量体単位とは、例えば、N-メチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミド等のN-アルキルマレイミド、及びN-フェニルマレイミド、N-クロルフェニルマレイミド、N-メチルフェニルマレイミド、N-メトキシフェニルマレイミド、N-トリブロモフェニルマレイミド等である。これらの中でも、N-フェニルマレイミドが好ましい。マレイミド系単量体単位は、単独でも良いが2種類以上を併用しても良い。マレイミド系単量体単位については、例えば、マレイミド系単量体からなる原料を用いることができる。または、不飽和ジカルボン酸単量体単位からなる原料をアンモニア又は第1級アミンでイミド化することによって得ることができる。
 マレイミド系共重合体(A)は、マレイミド系共重合体(A)100質量%中にマレイミド系単量体単位を30~70質量%含有することが好ましく、35~60質量%含有することがより好ましい。マレイミド系単量体単位の含有量は、具体的には例えば、30、35、36、37、38、39、40、41、42、43、44、45、50、55、60、又は70質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。マレイミド系単量体単位の含有量がこの範囲内であれば、後述するABS系樹脂(B)である、ABS樹脂を必須成分とし、さらに任意でASA樹脂、AES樹脂、SAN樹脂から選ばれる少なくも1種類の樹脂を併用する樹脂との相溶性が向上し、樹脂組成物の衝撃強度が優れる。マレイミド系単量体単位の含有量は、13C-NMRによって測定した値である。
Maleimide-based monomer units include, for example, N-methylmaleimide, N-butylmaleimide, N-alkylmaleimide such as N-cyclohexylmaleimide, N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-methoxyphenylmaleimide, N-tribromophenylmaleimide and the like. Among these, N-phenylmaleimide is preferred. The maleimide-based monomer units may be used alone or in combination of two or more. As for the maleimide-based monomer unit, for example, a raw material comprising a maleimide-based monomer can be used. Alternatively, it can be obtained by imidizing a raw material composed of unsaturated dicarboxylic acid monomer units with ammonia or a primary amine.
The maleimide-based copolymer (A) preferably contains 30 to 70% by mass, more preferably 35 to 60% by mass, of maleimide-based monomer units in 100% by mass of the maleimide-based copolymer (A). more preferred. Specifically, the content of maleimide-based monomer units is, for example, 30, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 55, 60, or 70 mass. % and may be in a range between any two of the numbers exemplified here. If the content of maleimide-based monomer units is within this range, an ABS resin, which is an ABS-based resin (B) described later, is an essential component, and at least one selected from ASA resins, AES resins, and SAN resins. Also, the compatibility with resins in which one type of resin is used in combination is improved, and the impact strength of the resin composition is excellent. The content of maleimide-based monomer units is a value measured by 13C-NMR.
 スチレン系単量体単位とは、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン等である。これらの中でも、工業的に入手しやすく、低コストで使用でき、様々なモノマーと共重合が可能である観点、および軽量で成形性に優れる観点からスチレンが好ましい。スチレン系単量体単位は、単独でも良いが2種類以上を併用してもよい。
 マレイミド系共重合体(A)は、マレイミド系共重合体(A)100質量%中にスチレン系単量体単位を20~60質量%含有することが好ましく、35~55質量%含有することがより好ましい。具体的には例えば、20、30、40、45、46、47、48、49、50、55、又は60質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。スチレン系単量体単位の含有量がこの範囲内であれば、後述するABS系樹脂(B)である、ABS樹脂を必須成分とし、さらに任意でASA樹脂、AES樹脂、SAN樹脂から選ばれる少なくも1種類の樹脂を併用する樹脂との相溶性が向上し、樹脂組成物の衝撃強度が優れる。スチレン系単量体単位の含有量は、13C-NMRによって測定した値である。
Styrenic monomer units include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, α-methylstyrene, α- and methyl-p-methylstyrene. Among these, styrene is preferable from the viewpoints of industrial availability, low cost, copolymerization with various monomers, and light weight and excellent moldability. The styrene-based monomer units may be used alone or in combination of two or more.
The maleimide-based copolymer (A) preferably contains 20 to 60% by mass, more preferably 35 to 55% by mass, of styrene-based monomer units in 100% by mass of the maleimide-based copolymer (A). more preferred. Specifically, for example, 20, 30, 40, 45, 46, 47, 48, 49, 50, 55, or 60% by mass, and within the range between any two of the numerical values exemplified here good too. If the content of the styrene-based monomer unit is within this range, the ABS resin, which is the ABS-based resin (B) described later, is an essential component, and optionally at least one selected from ASA resin, AES resin, and SAN resin. Also, the compatibility with resins in which one type of resin is used in combination is improved, and the impact strength of the resin composition is excellent. The content of styrene-based monomer units is a value measured by 13C-NMR.
 アクリロニトリル系単量体単位とは、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等である。これらの中でも、工業的に入手しやすい観点から、アクリロニトリルが好ましい。アクリロニトリル系単量体単位は単独でも良いが2種類以上を併用してもよい。
 マレイミド系共重合体(A)は、マレイミド系共重合体(A)100質量%中にアクリロニトリル系単量体単位を0~20質量%含有することが好ましく、0~15質量%含有することがより好ましい。具体的には例えば、0、5、6、7、8、9、10、15、又は20質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。アクリロニトリル系単量体単位の含有量がこの範囲内であれば、樹脂組成物の耐薬品性が優れる。アクリロニトリル系単量体単位の含有量は、13C-NMRによって測定した値である。
Acrylonitrile-based monomer units include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile, and the like. Among these, acrylonitrile is preferable from the viewpoint of industrial availability. Acrylonitrile-based monomer units may be used alone, or two or more of them may be used in combination.
The maleimide-based copolymer (A) preferably contains 0 to 20% by mass of acrylonitrile-based monomer units in 100% by mass of the maleimide-based copolymer (A), and may contain 0 to 15% by mass. more preferred. Specifically, for example, it is 0, 5, 6, 7, 8, 9, 10, 15, or 20% by mass, and may be within a range between any two of the numerical values exemplified here. If the content of the acrylonitrile-based monomer unit is within this range, the chemical resistance of the resin composition will be excellent. The content of acrylonitrile-based monomer units is a value measured by 13C-NMR.
 不飽和ジカルボン酸無水物系単量体単位とは、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物等である。これらの中でも、工業的に入手しやすい観点から、マレイン酸無水物が好ましい。不飽和ジカルボン酸無水物系単量体単位は、単独でも良いが2種類以上を併用してもよい。
 マレイミド系共重合体(A)は、マレイミド系共重合体(A)100質量%中に不飽和ジカルボン酸無水物系単量体単位を0~10質量%含有することが好ましく、0~5質量%含有することがより好ましい。具体的には例えば、0、1、2、3、4、5、6、7、8、9、又は10質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。不飽和ジカルボン酸無水物系単量体単位の含有量がこの範囲内であれば、マレイミド系共重合体の熱安定性が優れる。不飽和ジカルボン酸無水物系単量体単位の含有量は、滴定法によって測定した値である。
The unsaturated dicarboxylic anhydride monomer units include maleic anhydride, itaconic anhydride, citraconic anhydride, and aconitic anhydride. Among these, maleic anhydride is preferable from the viewpoint of industrial availability. The unsaturated dicarboxylic anhydride-based monomer units may be used alone or in combination of two or more.
The maleimide-based copolymer (A) preferably contains 0 to 10% by mass of unsaturated dicarboxylic anhydride-based monomer units in 100% by mass of the maleimide-based copolymer (A), and preferably 0 to 5% by mass. % is more preferable. Specifically, for example, it is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% by mass, and within the range between any two of the numerical values illustrated here good too. When the content of the unsaturated dicarboxylic acid anhydride-based monomer unit is within this range, the thermal stability of the maleimide-based copolymer is excellent. The content of unsaturated dicarboxylic acid anhydride-based monomer units is a value measured by a titration method.
 本発明の一態様におけるマレイミド系共重合体(A)は、マレイミド系共重合体(A)100質量%中にマレイミド系単量体単位を30~70質量%、スチレン系単量体単位を20~60質量%、アクリロニトリル系単量体単位を0~20質量%、不飽和ジカルボン酸無水物系単量体単位を0~10質量%含有することが好ましい。更に好ましくは、マレイミド系共重合体(A)100質量%中にマレイミド系単量体単位を35~60質量%、スチレン系単量体単位を35~55質量%、アクリロニトリル系単量体単位を0~15質量%、不飽和ジカルボン酸無水物系単量体単位を0~5質量%含有する。構成単位が上記範囲内であれば、マレイミド系共重合体(A)の流動性、耐熱性、熱安定性が優れる。 The maleimide-based copolymer (A) in one aspect of the present invention contains 30 to 70% by mass of maleimide-based monomer units and 20% by mass of styrene-based monomer units in 100% by mass of the maleimide-based copolymer (A). It preferably contains up to 60% by mass, 0 to 20% by mass of acrylonitrile-based monomer units, and 0 to 10% by mass of unsaturated dicarboxylic acid anhydride-based monomer units. More preferably, 35 to 60% by mass of maleimide-based monomer units, 35 to 55% by mass of styrene-based monomer units, and acrylonitrile-based monomer units in 100% by mass of the maleimide-based copolymer (A) 0 to 15% by mass, and 0 to 5% by mass of unsaturated dicarboxylic acid anhydride-based monomer units. If the structural unit is within the above range, the maleimide-based copolymer (A) will be excellent in fluidity, heat resistance, and thermal stability.
 樹脂組成物の耐熱性を効率的に向上させるという点で、マレイミド系共重合体(A)のガラス転移温度(中間点ガラス転移温度:Tmg)は175℃~210℃であることが好ましく、より好ましくは185℃~205℃である。ガラス転移温度はDSCにて測定される値であり、下記記載の測定条件における測定値である。
   装置名:セイコーインスツルメンツ(株)社製 Robot DSC6200
   昇温速度:10℃/分
From the viewpoint of efficiently improving the heat resistance of the resin composition, the glass transition temperature (midpoint glass transition temperature: Tmg) of the maleimide copolymer (A) is preferably 175°C to 210°C, and more It is preferably 185°C to 205°C. The glass transition temperature is a value measured by DSC under the measurement conditions described below.
Device name: Robot DSC6200 manufactured by Seiko Instruments Inc.
Heating rate: 10°C/min
 マレイミド系共重合体(A)の重量平均分子量(Mw)は6万~15万であることが好ましく、より好ましくは7万~14万である。具体的には例えば、6、7、8、9、10、11、12、13、14、又は15万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。マレイミド系共重合体(A)の重量平均分子量(Mw)が上記範囲内であれば、樹脂組成物の衝撃強度が優れる。マレイミド系共重合体(A)の重量平均分子量(Mw)を制御するには、重合温度、重合時間、および重合開始剤添加量の調整に加えて、溶媒濃度および連鎖移動剤添加量を調整する等の方法がある。マレイミド系共重合体(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、次の条件で測定した。
  装置名:SYSTEM-21 Shodex(昭和電工株式会社製)
  カラム:PL gel MIXED-Bを3本直列
  温度:40℃
  検出:示差屈折率
  溶媒:テトラヒドロフラン
  濃度:2質量%
  検量線:標準ポリスチレン(PS)(PL社製)を用いて作製した。
The weight average molecular weight (Mw) of the maleimide-based copolymer (A) is preferably 60,000 to 150,000, more preferably 70,000 to 140,000. Specifically, it is, for example, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 150,000, and may be within a range between any two of the numerical values exemplified here. If the weight average molecular weight (Mw) of the maleimide-based copolymer (A) is within the above range, the impact strength of the resin composition will be excellent. In order to control the weight average molecular weight (Mw) of the maleimide-based copolymer (A), in addition to adjusting the polymerization temperature, the polymerization time, and the amount of the polymerization initiator added, the solvent concentration and the amount of the chain transfer agent added are adjusted. There are other methods. The weight average molecular weight of the maleimide-based copolymer (A) is a polystyrene-equivalent value measured by gel permeation chromatography (GPC), and was measured under the following conditions.
Device name: SYSTEM-21 Shodex (manufactured by Showa Denko K.K.)
Column: 3 PL gel MIXED-B in series Temperature: 40°C
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass
Calibration curve: prepared using standard polystyrene (PS) (manufactured by PL).
 マレイミド系共重合体(A)の製造方法としては、公知の方法が採用できる。例えば、スチレン系単量体、マレイミド系単量体、不飽和ジカルボン酸無水物系単量体、その他の共重合可能な単量体からなる単量体混合物を共重合させる方法がある。スチレン系単量体、不飽和ジカルボン酸無水物系単量体、その他の共重合可能な単量体からなる単量体混合物を共重合させた後、不飽和ジカルボン酸無水物系単量体単位の一部をアンモニア又は第1級アミンを反応させてイミド化し、マレイミド系単量体単位に変換させる方法がある(以下、「後イミド化法」と称する)。 A known method can be employed as the method for producing the maleimide-based copolymer (A). For example, there is a method of copolymerizing a monomer mixture comprising styrene-based monomers, maleimide-based monomers, unsaturated dicarboxylic acid anhydride-based monomers, and other copolymerizable monomers. After copolymerizing a monomer mixture consisting of a styrene-based monomer, an unsaturated dicarboxylic anhydride-based monomer, and other copolymerizable monomers, the unsaturated dicarboxylic anhydride-based monomer unit part of is reacted with ammonia or a primary amine to imidize and convert to maleimide-based monomer units (hereinafter referred to as "post-imidation method").
 マレイミド系共重合体(A)の重合様式は、例えば、溶液重合、塊状重合等がある。分添等を行いながら重合することで、共重合組成がより均一なマレイミド系共重合体(A)を得られるという観点から、溶液重合が好ましい。溶液重合の溶媒は、副生成物が出来難く、悪影響が少ないという観点から非重合性であることが好ましい。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等であり、マレイミド系共重合体(A)の脱揮回収時における溶媒除去の容易性から、メチルエチルケトン、メチルイソブチルケトンが好ましい。重合プロセスは、連続重合式、バッチ式(回分式)、半回分式のいずれも適用できる。重合方法は、特に限定されないが、簡潔なプロセスによって生産性よく製造することが可能である観点から、ラジカル重合が好ましい。 Polymerization modes of the maleimide-based copolymer (A) include, for example, solution polymerization and bulk polymerization. Solution polymerization is preferable from the viewpoint that a maleimide-based copolymer (A) having a more uniform copolymer composition can be obtained by polymerizing while performing partial addition or the like. The solvent for solution polymerization is preferably non-polymerizable from the viewpoint that by-products are less likely to occur and adverse effects are less likely to occur. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and acetophenone, ethers such as tetrahydrofuran and 1,4-dioxane, aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene, N,N-dimethylformamide, dimethyl Examples include sulfoxide and N-methyl-2-pyrrolidone, and methyl ethyl ketone and methyl isobutyl ketone are preferred from the standpoint of ease of solvent removal during devolatilization recovery of the maleimide copolymer (A). Any of a continuous polymerization system, a batch system (batch system), and a semi-batch system can be applied to the polymerization process. The polymerization method is not particularly limited, but radical polymerization is preferable from the viewpoint of being able to produce with high productivity by a simple process.
 溶液重合或いは塊状重合では、重合開始剤、連鎖移動剤を用いることができ、重合温度は80~150℃の範囲であることが好ましい。重合開始剤は、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロポニトリル、アゾビスメチルブチロニトリル等のアゾ系化合物、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、エチル-3,3-ジ-(t-ブチルパーオキシ)ブチレート等のパーオキサイド類であり、これらの1種あるいは2種類以上を組み合わせて使用してもよい。重合の反応速度や重合率制御の観点から、10時間半減期が70~120℃であるアゾ系化合物や有機過酸化物を用いるのが好ましい。重合開始剤の使用量は、特に限定されるものではないが、全単量体単位100質量%に対して0.1~1.5質量%使用することが好ましく、さらに好ましくは0.1~1.0質量%である。重合開始剤の使用量が0.1質量%以上であれば、十分な重合速度が得られるため好ましい。重合開始剤の使用量が1.5質量%以下であれば、重合速度が抑制できるため反応制御が容易になり、目標分子量を得ることが簡単になる。連鎖移動剤は、例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、α-メチルスチレンダイマー、チオグリコール酸エチル、リモネン、ターピノーレン等がある。連鎖移動剤量の使用量は、目標分子量が得られる範囲であれば、特に限定されるものではないが、全単量体単位100質量%に対して0.1~0.8質量%であることが好ましく、さらに好ましくは0.15~0.5質量%である。連鎖移動剤の使用量が0.1質量%~0.8質量%であれば、目標分子量を容易に得ることができる。 A polymerization initiator and a chain transfer agent can be used in solution polymerization or bulk polymerization, and the polymerization temperature is preferably in the range of 80 to 150°C. Polymerization initiators include, for example, azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylproponitrile, azobismethylbutyronitrile, benzoyl peroxide, t-butyl peroxybenzoate, 1 , 1-di(t-butylperoxy)cyclohexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, di-t-butylperoxide, dicumylperoxide, ethyl- Peroxides such as 3,3-di-(t-butylperoxy)butyrate, which may be used alone or in combination of two or more. From the viewpoint of polymerization reaction rate and polymerization rate control, it is preferable to use an azo compound or an organic peroxide having a 10-hour half-life of 70 to 120°C. The amount of the polymerization initiator used is not particularly limited, but it is preferable to use 0.1 to 1.5% by mass based on 100% by mass of the total monomer units, more preferably 0.1 to It is 1.0% by mass. If the amount of the polymerization initiator used is 0.1% by mass or more, a sufficient polymerization rate can be obtained, which is preferable. When the amount of the polymerization initiator used is 1.5% by mass or less, the polymerization rate can be suppressed, so the reaction control becomes easy, and the target molecular weight can be easily obtained. Chain transfer agents include, for example, n-octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, α-methylstyrene dimer, ethyl thioglycolate, limonene, terpinolene and the like. The amount of the chain transfer agent used is not particularly limited as long as the target molecular weight is obtained, but it is 0.1 to 0.8% by mass with respect to 100% by mass of the total monomer units. is preferred, and more preferably 0.15 to 0.5% by mass. If the amount of chain transfer agent used is 0.1% by mass to 0.8% by mass, the target molecular weight can be easily obtained.
 マレイミド系共重合体(A)へのマレイミド系単量体単位の導入は、マレイミド系単量体を共重合させる方法と後イミド化法がある。後イミド化法の方が、マレイミド系共重合体(A)中の残存マレイミド系単量体量が少なくなるので好ましい。後イミド化法とは、スチレン系単量体、不飽和ジカルボン酸無水物系単量体、その他の共重合可能な単量体からなる単量体混合物を共重合させた後、不飽和ジカルボン酸無水物系単量体単位の一部をアンモニア又は第1級アミンを反応させてイミド化し、マレイミド系単量体単位に変換させる方法である。第1級アミンとは、例えば、メチルアミン、エチルアミン、n-プロピルアミン、iso-プロピルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-オクチルアミン、シクロヘキシルアミン、デシルアミン等のアルキルアミン類及びクロル又はブロム置換アルキルアミン、アニリン、トルイジン、ナフチルアミン等の芳香族アミンがあり、この中でもアニリンが好ましい。これらの第1級アミンは、単独で使用しても2種類以上を組み合わせて使用してもよい。後イミド化の際、第1級アミンと不飽和ジカルボン酸無水物単量体単位との反応において、脱水閉環反応を向上させるために触媒を使用することができる。触媒は、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の第3級アミンである。後イミド化の温度は、100~250℃であることが好ましく、より好ましくは120~200℃である。イミド化反応の温度が100℃以上であれば、反応速度が向上し、生産性の面から好ましい。イミド化反応の温度が250℃以下であれば、マレイミド系共重合体(A)の熱劣化による物性低下を抑制できるので好ましい。 Introduction of maleimide-based monomer units into the maleimide-based copolymer (A) includes a method of copolymerizing maleimide-based monomers and a post-imidization method. The post-imidation method is preferable because the amount of residual maleimide monomer in the maleimide copolymer (A) is reduced. The post-imidization method involves copolymerizing a monomer mixture consisting of a styrene-based monomer, an unsaturated dicarboxylic anhydride-based monomer, and other copolymerizable monomers, and then adding an unsaturated dicarboxylic acid. In this method, part of the anhydride-based monomer units are reacted with ammonia or a primary amine to imidize them and convert them into maleimide-based monomer units. Primary amines include, for example, alkylamines such as methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-octylamine, cyclohexylamine and decylamine. Amines and aromatic amines such as chloro- or bromo-substituted alkylamines, aniline, toluidine, naphthylamine, among which aniline is preferred. These primary amines may be used alone or in combination of two or more. During post-imidization, a catalyst can be used to improve the dehydration ring closure reaction in the reaction between the primary amine and the unsaturated dicarboxylic anhydride monomer units. Catalysts are, for example, tertiary amines such as trimethylamine, triethylamine, tripropylamine, tributylamine, N,N-dimethylaniline, N,N-diethylaniline. The temperature for post-imidization is preferably 100 to 250°C, more preferably 120 to 200°C. If the imidization reaction temperature is 100° C. or higher, the reaction rate is improved, which is preferable from the viewpoint of productivity. If the temperature of the imidization reaction is 250° C. or lower, it is possible to suppress deterioration in physical properties due to thermal deterioration of the maleimide copolymer (A), which is preferable.
 マレイミド系共重合体(A)の溶液重合終了後の溶液或いは後イミド化終了後の溶液から、溶液重合に用いた溶媒や未反応の単量体などの揮発分を取り除く方法(脱揮方法)は、公知の手法が採用できる。例えば、加熱器付きの真空脱揮槽やベント付き脱揮押出機を用いることができる。脱揮された溶融状態のマレイミド系共重合体(A)は、造粒工程に移送され、多孔ダイよりストランド状に押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット状に加工することができる。 A method of removing volatiles such as the solvent used in the solution polymerization and unreacted monomers from the solution of the maleimide copolymer (A) after the solution polymerization or the solution after the post-imidation (devolatilization method). can employ a known method. For example, a vacuum devolatilization tank with a heater or a devolatilization extruder with a vent can be used. The devolatilized molten maleimide copolymer (A) is transferred to a granulation process, extruded into strands from a multi-hole die, and pelletized by a cold cut method, an air hot cut method, or an underwater hot cut method. can be processed.
 樹脂組成物中のマレイミド系共重合体(A)の含有量は、マレイミド系共重合体(A)とABS系樹脂(B)の合計量を100質量%とした場合に、5~45質量%であることが好ましく、より好ましくは7~35質量%、さらに好ましくは10~30質量%、さらに好ましくは20~30質量%である。具体的には例えば、5、10、15、20、21、22、23、24、25、26、27、28、29、30、35、40、又は45質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。マレイミド系共重合体(A)の含有量が少なすぎると樹脂組成物の耐熱性が十分に向上しないことがある。多すぎると、流動性が低下し、成形性が悪化することがある。なお、樹脂組成物に含まれる樹脂は、実質的にマレイミド系共重合体(A)とABS樹脂のみであってもよい。 The content of the maleimide copolymer (A) in the resin composition is 5 to 45% by mass when the total amount of the maleimide copolymer (A) and the ABS resin (B) is 100% by mass. is preferably 7 to 35% by mass, more preferably 10 to 30% by mass, still more preferably 20 to 30% by mass. Specifically, for example, 5, 10, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, or 45% by mass, the numerical values illustrated here may be in the range between any two of If the content of the maleimide-based copolymer (A) is too small, the heat resistance of the resin composition may not be sufficiently improved. If the amount is too large, fluidity may decrease and moldability may deteriorate. The resin contained in the resin composition may be substantially only the maleimide copolymer (A) and the ABS resin.
<3.ABS系樹脂(B)>
 ABS系樹脂(B)は、ABS樹脂を必須成分とし、さらに任意でASA樹脂、AES樹脂、SAN樹脂から選ばれる少なくも1種類の樹脂を併用する樹脂である。ABS樹脂は、ゴム状重合体に、少なくともスチレン系単量体及びアクリロニトリル系単量体をグラフト共重合させたグラフト共重合体である。例えば、ゴム状重合体として、ポリブタジエン、スチレン-ブタジエン共重合体等のブタジエン系ゴムを用いる。グラフト共重合時に、これらのゴム状重合体を2種類以上組合せて使用してもよい。アクリル酸ブチルやアクリル酸エチル等からなるアクリル系ゴムを用いる場合はASA樹脂、エチレン-α-オレフィン共重合体等のエチレン系ゴムを用いる場合はAES樹脂を併用することもできる。
 ABS系樹脂(B)中のABS樹脂の含有量は、ABS系樹脂(B)100質量%中10~100質量%であることが好ましく、より好ましくは15~60質量%である。具体的には例えば、10、15、20、25、30、35、40、45、50、60、70、又は100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、ABS系樹脂(B)は、実質的にABS樹脂のみであってもよい。
 また、ABS系樹脂(B)中のポリブタジエン成分の含有量は、衝撃強度の観点から、ABS系樹脂(B)100質量%中10~35質量%であることが好ましく、より好ましくは15~30質量%である。具体的には例えば、10、15、20、25、30、又は35質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<3. ABS resin (B)>
The ABS-based resin (B) is a resin containing ABS resin as an essential component and optionally at least one resin selected from ASA resin, AES resin and SAN resin. The ABS resin is a graft copolymer obtained by graft-copolymerizing a rubber-like polymer with at least a styrene-based monomer and an acrylonitrile-based monomer. For example, butadiene-based rubbers such as polybutadiene and styrene-butadiene copolymers are used as rubber-like polymers. At the time of graft copolymerization, two or more of these rubber-like polymers may be used in combination. When using an acrylic rubber such as butyl acrylate or ethyl acrylate, an ASA resin may be used, and when using an ethylene rubber such as an ethylene-α-olefin copolymer, an AES resin may be used together.
The content of the ABS resin in the ABS resin (B) is preferably 10 to 100% by mass, more preferably 15 to 60% by mass based on 100% by mass of the ABS resin (B). Specifically, for example, it is 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, or 100% by mass, and within the range between any two of the numerical values illustrated here There may be. The ABS-based resin (B) may be substantially only ABS resin.
Further, the content of the polybutadiene component in the ABS resin (B) is preferably 10 to 35% by mass, more preferably 15 to 30% by mass, based on 100% by mass of the ABS resin (B) from the viewpoint of impact strength. % by mass. Specifically, it is, for example, 10, 15, 20, 25, 30, or 35% by mass, and may be within a range between any two of the numerical values exemplified here.
 ABS樹脂等のグラフト共重合体の製造方法としては、公知の手法が採用できる。例えば、乳化重合や連続塊状重合による製造方法が挙げられる。乳化重合による方法は、最終的な樹脂組成物中のゴム状重合体の含有量を調整し易いことから好ましい。 A known method can be adopted as a method for producing a graft copolymer such as an ABS resin. For example, production methods using emulsion polymerization and continuous bulk polymerization can be mentioned. A method by emulsion polymerization is preferable because it is easy to adjust the content of the rubber-like polymer in the final resin composition.
 乳化重合によるグラフト共重合体の製造方法は、ゴム状重合体のラテックスに、スチレン系単量体とアクリロニトリル系単量体を乳化グラフト重合させる方法がある(以下、「乳化グラフト重合法」と称する)。乳化グラフト重合法により、グラフト共重合体のラテックスを得ることができる。 A method for producing a graft copolymer by emulsion polymerization includes a method in which a styrene-based monomer and an acrylonitrile-based monomer are emulsion-graft-polymerized in a latex of a rubber-like polymer (hereinafter referred to as "emulsion graft polymerization method"). ). A latex of a graft copolymer can be obtained by an emulsion graft polymerization method.
 乳化グラフト重合法では、水、乳化剤、重合開始剤、連鎖移動剤を用い、重合温度は30~90℃の範囲であることが好ましい。乳化剤は、例えば、アニオン系界面活性剤、オニオン系界面活性剤、両性界面活性剤等がある。重合開始剤は、例えば、クメンハイドロパーオキサイド、ジイソプロピルエンゼンパーオキサイド、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシベンゾエート等の有機過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩類、アゾビスブチロニトリル等のアゾ系化合物、鉄イオン等の還元剤、ナトリウムホルムアルデヒドスルホキシレート等の二次還元剤及びエチレンジアミン4酢酸2ナトリウム等のキレート剤等がある。連鎖移動剤は、例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、α-メチルスチレンダイマー、チオグリコール酸エチル、リモネン、ターピノーレン等がある。 In the emulsion graft polymerization method, water, an emulsifier, a polymerization initiator, and a chain transfer agent are used, and the polymerization temperature is preferably in the range of 30 to 90°C. Examples of emulsifiers include anionic surfactants, onionic surfactants, and amphoteric surfactants. Polymerization initiators include, for example, organic peroxides such as cumene hydroperoxide, diisopropylene peroxide, t-butylperoxyacetate, t-hexylperoxybenzoate, and t-butylperoxybenzoate, potassium persulfate, and ammonium persulfate. azo compounds such as azobisbutyronitrile; reducing agents such as iron ions; secondary reducing agents such as sodium formaldehyde sulfoxylate; and chelating agents such as disodium ethylenediaminetetraacetate. Chain transfer agents include, for example, n-octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, α-methylstyrene dimer, ethyl thioglycolate, limonene, terpinolene and the like.
 グラフト共重合体のラテックスは、公知の方法により凝固し、グラフト共重合体を回収することができる。例えば、グラフト共重合体のラテックスに凝固剤を加えて凝固し、脱水機で洗浄脱水し、乾燥工程を経ることで粉末状のグラフト共重合体が得られる。 The graft copolymer latex can be coagulated by a known method to recover the graft copolymer. For example, a coagulant is added to the latex of the graft copolymer to coagulate it, followed by washing and dehydration with a dehydrator, followed by drying to obtain a powdery graft copolymer.
 乳化グラフト重合法によって得られるグラフト共重合体中のゴム状重合体の含有量は、耐衝撃性の観点から、40~70質量%であることが好ましく、より好ましくは45~65質量%である。ゴム状重合体の含有量は、例えば、乳化グラフト重合する際、ゴム状重合体に対するスチレン系単量体及びアクリロニトリル系単量体の使用比率によって調整することができる。 The content of the rubber-like polymer in the graft copolymer obtained by the emulsion graft polymerization method is preferably 40 to 70% by mass, more preferably 45 to 65% by mass, from the viewpoint of impact resistance. . The content of the rubber-like polymer can be adjusted, for example, by adjusting the ratio of the styrene-based monomer and the acrylonitrile-based monomer to the rubber-like polymer used during emulsion graft polymerization.
 乳化グラフト重合法によって得られるグラフト共重合体のゴム状重合体を除いた構成単位は、耐衝撃性や耐薬品性の観点から、スチレン系単量体単位65~85質量%、アクリロニトリル系単量体単位15~35質量%であることが好ましい。 From the viewpoint of impact resistance and chemical resistance, the constituent units excluding the rubber-like polymer of the graft copolymer obtained by the emulsion graft polymerization method include 65 to 85% by mass of styrene-based monomer units and acrylonitrile-based monomers. The body unit content is preferably 15 to 35% by mass.
 グラフト共重合体のゲル分は、粒子状であることが好ましい。ゲル分とは、スチレン系単量体とアクリロニトリル系単量体がグラフト共重合したゴム状重合体の粒子であり、メチルエチルケトンやトルエン等の有機溶媒に不溶で遠心分離によって分離される成分である。ゴム状重合体の粒子内部に、スチレン-アクリロニトリル系共重合体が粒子状に内包されたオクルージョン構造を形成することもある。グラフト共重合体とスチレン-アクリロニトリル系共重合体とを溶融ブレンドすると、ゲル分は、スチレン-アクリロニトリル系共重合体の連続相の中に、粒子状で分散相として存在する。ゲル分は、質量Wのグラフト共重合体をメチルエチレンケトンに溶解し、遠心分離機を用いて、20000rpmにて遠心分離して不溶分を沈降させ、デカンテーションにより上澄み液を除去して不溶分を得て、真空乾燥後の乾燥した不溶分の質量Sから、ゲル分(質量%)=(S/W)×100の式で算出した値である。また、グラフト共重合体とスチレン-アクリロニトリル系共重合体とを溶融ブレンドした樹脂組成物を同様に、メチルエチルケトンに溶解し、遠心分離することで、ゲル分を算出することができる。 The gel content of the graft copolymer is preferably particulate. The gel content is particles of a rubber-like polymer obtained by graft copolymerization of a styrene-based monomer and an acrylonitrile-based monomer, and is a component that is insoluble in organic solvents such as methyl ethyl ketone and toluene and separated by centrifugation. In some cases, an occlusion structure in which the styrene-acrylonitrile copolymer is encapsulated in the form of particles is formed inside the particles of the rubber-like polymer. When the graft copolymer and the styrene-acrylonitrile copolymer are melt-blended, the gel portion exists as a particulate dispersed phase in the continuous phase of the styrene-acrylonitrile copolymer. The gel content is obtained by dissolving the graft copolymer having a mass of W in methylethylene ketone, centrifuging at 20000 rpm using a centrifuge to precipitate the insoluble matter, and removing the supernatant by decantation to obtain the insoluble matter. It is a value calculated from the mass S of the dried insoluble matter after vacuum drying by the formula: gel content (mass%) = (S/W) x 100. Likewise, the gel content can be calculated by dissolving the resin composition obtained by melt-blending the graft copolymer and the styrene-acrylonitrile-based copolymer in methyl ethyl ketone and centrifuging.
 グラフト共重合体のゲル分の体積平均粒子径は、耐衝撃性及び成形品の外観の観点から、0.10~1.0μmの範囲であることが好ましく、より好ましくは0.15~0.50μmである。体積平均粒子径は、グラフト共重合体とスチレン-アクリロニトリル系共重合体とを溶融ブレンドした樹脂組成物のペレットから超薄切片を切り出し、透過型電子顕微鏡(TEM)の観察を行い、連続相に分散した粒子の画像解析から算出した値である。体積平均粒子径は、例えば、乳化グラフト重合の際に使用するゴム状重合体のラテックスの粒子径によって調整することができる。ゴム状重合体のラテックスの粒子径は、乳化重合時に乳化剤の添加方法や水の使用量などで調整することができるが、好ましい範囲とするためには重合時間が長く生産性が低いので、0.1μm前後の粒子径のゴム状重合体を短時間で重合させ、化学的凝集法や物理的凝集法を用いてゴム粒子を肥大化する方法がある。 The volume average particle size of the gel portion of the graft copolymer is preferably in the range of 0.10 to 1.0 μm, more preferably 0.15 to 0.1 μm, from the viewpoint of impact resistance and appearance of molded articles. 50 μm. The volume average particle size is obtained by cutting an ultra-thin section from a pellet of a resin composition obtained by melt-blending a graft copolymer and a styrene-acrylonitrile-based copolymer and observing it with a transmission electron microscope (TEM). It is a value calculated from image analysis of dispersed particles. The volume average particle size can be adjusted, for example, by the particle size of the latex of the rubber-like polymer used in the emulsion graft polymerization. The particle size of the latex of the rubber-like polymer can be adjusted by the addition method of the emulsifier and the amount of water used during the emulsion polymerization. There is a method in which a rubber-like polymer having a particle size of about 1 μm is polymerized in a short period of time and the rubber particles are enlarged by using a chemical coagulation method or a physical coagulation method.
 グラフト共重合体のグラフト率は、耐衝撃性の観点から、10~100質量%であることが好ましく、より好ましくは20~70質量%である。グラフト率は、ゲル分(G)とゴム状重合体の含有量(RC)より、グラフト率(質量%)=[(G-RC)/R]×100で算出した値である。グラフト率は、ゴム状重合体の粒子が、ゴム状重合体の単位質量当たりに含有するグラフトによって結合しているスチレン-アクリロニトリル系共重合体及び粒子に内包されるスチレン-アクリロニトリル系共重合体の量を表す。グラフト率は、例えば、乳化グラフト重合する際、単量体とゴム状重合体の比率、開始剤の種類及び量、連鎖移動剤量、乳化剤量、重合温度、仕込み方法(一括/多段/連続)、単量体の添加速度などにより調整することができる。 From the viewpoint of impact resistance, the graft ratio of the graft copolymer is preferably 10 to 100% by mass, more preferably 20 to 70% by mass. The graft ratio is a value calculated from the gel content (G) and the content (RC) of the rubber-like polymer by graft ratio (% by mass)=[(G-RC)/R]×100. The graft ratio is determined by the styrene-acrylonitrile copolymer in which the particles of the rubber-like polymer are bonded by the graft contained per unit mass of the rubber-like polymer and the styrene-acrylonitrile-based copolymer included in the particles. represent quantity. For example, when emulsion graft polymerization is performed, the graft rate is determined by the ratio of the monomer to the rubber-like polymer, the type and amount of the initiator, the amount of the chain transfer agent, the amount of the emulsifier, the polymerization temperature, and the charging method (batch/multistage/continuous). , the addition rate of the monomer, and the like.
 グラフト共重合体のトルエン膨潤度は、耐衝撃性と成形品外観の観点から、5~20倍であることが好ましい。トルエン膨潤度は、ゴム状重合体の粒子の架橋度を表し、グラフト共重合体をトルエンに溶解し、不溶分を遠心分離或いはろ過によって分離し、トルエンで膨潤した状態の質量と真空乾燥によってトルエンを除去した乾燥状態の質量比から算出される。トルエン膨潤度は、例えば、乳化グラフト重合する際に使用するゴム状重合体の架橋度の影響を受け、これはゴム状重合体の乳化重合時の開始剤、乳化剤、重合温度、ジビニルベンゼン等の多官能単量体の添加などによって調整することができる。 The toluene swelling degree of the graft copolymer is preferably 5 to 20 times from the viewpoint of impact resistance and molded product appearance. The degree of swelling in toluene represents the degree of cross-linking of rubber-like polymer particles. is calculated from the mass ratio of the dry state after removing The degree of swelling of toluene is affected by, for example, the degree of cross-linking of the rubber-like polymer used in the emulsion graft polymerization, which depends on the initiator, emulsifier, polymerization temperature, divinylbenzene, etc. in the emulsion polymerization of the rubber-like polymer. It can be adjusted by adding a polyfunctional monomer or the like.
 SAN樹脂とは、スチレン系単量体単位とアクリロニトリル系単量体単位を有する共重合体であり、例えば、スチレン-アクリロニトリル系共重合体がある。 A SAN resin is a copolymer having styrene-based monomer units and acrylonitrile-based monomer units, for example, a styrene-acrylonitrile-based copolymer.
 SAN樹脂のその他の共重合可能な単量体として、メタクリル酸メチル等の(メタ)アクリル酸エステル系単量体、アクリル酸ブチルやアクリル酸エチル等のアクリル酸エステル系単量体、メタクリル酸等の(メタ)アクリル酸系単量体、アクリル酸等のアクリル酸系単量体、N-フェニルマレイミド等のN-置換マレイミド系単量体を用いることができる。 Other copolymerizable monomers for the SAN resin include (meth)acrylic acid ester-based monomers such as methyl methacrylate, acrylic acid ester-based monomers such as butyl acrylate and ethyl acrylate, methacrylic acid, and the like. (Meth)acrylic acid-based monomers, acrylic acid-based monomers such as acrylic acid, and N-substituted maleimide-based monomers such as N-phenylmaleimide can be used.
 SAN樹脂の構成単位は、スチレン系単量体単位60~90質量%、シアン化ビニル単量体単位10~40質量%であることが好ましく、より好ましくは、スチレン系単量体単位65~80質量%、シアン化ビニル単量体単位20~35質量%である。構成単位が上記範囲内であれば、得られる樹脂組成物の衝撃強度と流動性のバランスに優れる。スチレン系単量体単位、シアン化ビニル単量体単位は13C-NMRによって測定した値である。 The constituent units of the SAN resin preferably contain 60 to 90% by mass of styrene monomer units and 10 to 40% by mass of vinyl cyanide monomer units, more preferably 65 to 80% by mass of styrene monomer units. % by mass, vinyl cyanide monomer unit is 20 to 35% by mass. If the structural unit is within the above range, the resulting resin composition will have an excellent balance between impact strength and fluidity. Styrenic monomer units and vinyl cyanide monomer units are values measured by 13C-NMR.
 SAN樹脂の製造方法としては、公知の方法が採用できる。例えば、塊状重合、溶液重合、懸濁重合、乳化重合等により製造することができる。反応装置の操作法としては、連続式、バッチ式(回分式)、半回分式のいずれも適用できる。品質面や生産性の面から、塊状重合或いは溶液重合が好ましく、連続式であることが好ましい。塊状重合或いは溶液重合の溶媒としては、例えば、ベンゼン、トルエン、エチルベンゼン及びキシレン等のアルキルベンゼン類やアセトンやメチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素等がある。 A known method can be adopted as the method for manufacturing the SAN resin. For example, it can be produced by bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or the like. As for the operating method of the reactor, any of a continuous system, a batch system (batch system), and a semi-batch system can be applied. Bulk polymerization or solution polymerization is preferred from the aspects of quality and productivity, and continuous polymerization is preferred. Examples of solvents for bulk polymerization or solution polymerization include alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane.
 SAN樹脂の塊状重合或いは溶液重合では、重合開始剤、連鎖移動剤を用いることができ、重合温度は120~170℃の範囲であることが好ましい。重合開始剤は、例えば、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタン、2,2-ジ(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、1,1-ジ(t-アミルパーオキシ)シクロヘキサン等のパーオキシケタール類、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、t-ブチルパーオキシアセテート、t-アミルパーオキシイソノナノエート等のアルキルパーオキサイド類、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキサイド等のジアルキルパーオキサイド類、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルモノカーボネート等のパーオキシエステル類、t-ブチルパーオキシイソプロピルカーボネート、ポリエーテルテトラキス(t-ブチルパーオキシカーボネート)等のパーオキシカーボネート類、N,N'-アゾビス(シクロヘキサン-1-カルボニトリル)、N,N'-アゾビス(2-メチルブチロニトリル)、N,N'-アゾビス(2,4-ジメチルバレロニトリル)、N,N'-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等があり、これらの1種あるいは2種類以上を組み合わせて使用してもよい。連鎖移動剤は、例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、α-メチルスチレンダイマー、チオグリコール酸エチル、リモネン、ターピノーレン等がある。 In bulk polymerization or solution polymerization of SAN resin, a polymerization initiator and a chain transfer agent can be used, and the polymerization temperature is preferably in the range of 120 to 170°C. Polymerization initiators include, for example, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(t-butylperoxy)butane, 2,2-di(4,4-di-t-butyl peroxycyclohexyl)propane, peroxyketals such as 1,1-di(t-amylperoxy)cyclohexane, hydroperoxides such as cumene hydroperoxide and t-butyl hydroperoxide, t-butyl peroxyacetate , alkyl peroxides such as t-amyl peroxy isononanoate, dialkyl peroxides such as t-butyl cumyl peroxide, di-t-butyl peroxide, dicumyl peroxide, di-t-hexyl peroxide, Peroxy esters such as t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl peroxy isopropyl monocarbonate, t-butyl peroxy isopropyl carbonate, polyether tetrakis (t-butyl peroxy carbonate) and the like Peroxycarbonates, N,N'-azobis(cyclohexane-1-carbonitrile), N,N'-azobis(2-methylbutyronitrile), N,N'-azobis(2,4-dimethylvaleronitrile) , N,N'-azobis[2-(hydroxymethyl)propionitrile] and the like, and these may be used alone or in combination of two or more. Chain transfer agents include, for example, n-octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, α-methylstyrene dimer, ethyl thioglycolate, limonene, terpinolene and the like.
 SAN樹脂の重合終了後の溶液から、未反応の単量体や溶液重合に用いた溶媒などの揮発分を取り除く脱揮方法は、公知の手法が採用できる。例えば、予熱器付きの真空脱揮槽やベント付き脱揮押出機を用いることができる。脱揮された溶融状態のSAN樹脂は、造粒工程に移送され、多孔ダイよりストランド状に押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット状に加工することができる。 A well-known method can be adopted as a devolatilization method for removing volatile matter such as unreacted monomers and the solvent used for solution polymerization from the solution after polymerization of the SAN resin. For example, a vacuum devolatilization tank with a preheater or a devolatilization extruder with a vent can be used. The devolatilized molten SAN resin is transferred to a granulation step, extruded in a strand form from a multi-hole die, and processed into pellets by a cold cut method, an air hot cut method, or an underwater hot cut method.
 SAN樹脂の重量平均分子量は、樹脂組成物の耐衝撃性と成形性の観点から、5万~25万であることが好ましく、より好ましくは7万~20万である。具体的には例えば、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。SAN樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、THF溶媒中で測定されるポリスチレン換算の値であり、マレイミド系共重合体(A)と同様の方法で測定した値である。重量平均分子量は、重合時の連鎖移動剤の種類及び量、溶媒濃度、重合温度、重合開始剤の種類及び量によって調整することができる。 The weight average molecular weight of the SAN resin is preferably 50,000 to 250,000, more preferably 70,000 to 200,000, from the viewpoint of impact resistance and moldability of the resin composition. Specifically, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 200,000. It may be in a range between the two. The weight average molecular weight of the SAN resin is a polystyrene-equivalent value measured in a THF solvent using gel permeation chromatography (GPC), and is a value measured in the same manner as for the maleimide-based copolymer (A). be. The weight average molecular weight can be adjusted by the type and amount of chain transfer agent during polymerization, solvent concentration, polymerization temperature, and type and amount of polymerization initiator.
 ABS系樹脂(B)として、例えば、乳化重合法によって得られた粉末状のABS樹脂と、連続式の塊状重合法によって得られたペレット状のSAN樹脂の2種類を使用する方法が挙げられる。また、乳化重合法によって得られた粉末状のABS樹脂と、連続塊状重合によって得られたペレット状のSAN樹脂を一旦、押出機等で溶融ブレンドし、ペレット状のABS系樹脂(B)としたものを使用する方法が挙げられる。 As the ABS resin (B), for example, there is a method of using two types of powdery ABS resin obtained by an emulsion polymerization method and pellet-like SAN resin obtained by a continuous bulk polymerization method. Further, the powdery ABS resin obtained by emulsion polymerization and the pelletized SAN resin obtained by continuous bulk polymerization were once melt-blended using an extruder or the like to obtain a pelletized ABS resin (B). methods of using things.
 押出機を用いて、マレイミド系共重合体(A)と、ABS系樹脂(B)を溶融混練する方法は、公知の方法が採用できる。押出機は公知の装置を使用することができ、例えば、二軸スクリュー押出機、単軸スクリュー押出機、多軸スクリュー押出機、二軸ロータ付きの連続混練機などが挙げられる。スクリュー構成を任意に設定することができ混練性を調整することが可能である観点から、二軸押出機を使用することが好ましく、噛み合い形同方向回転二軸スクリュー押出機が、一般的に広く使用されており、更に好ましい。 A known method can be adopted as a method of melt-kneading the maleimide-based copolymer (A) and the ABS-based resin (B) using an extruder. A known extruder can be used, and examples thereof include a twin-screw extruder, a single-screw extruder, a multi-screw extruder, and a continuous kneader with a twin-screw rotor. From the viewpoint of being able to arbitrarily set the screw configuration and adjust the kneading property, it is preferable to use a twin-screw extruder, and an intermeshing co-rotating twin-screw extruder is generally widely used. used and more preferred.
 本発明の実施形態における二軸押出機は、例えば図1に示されるように、シリンダーが配置される空間を、原料の投入部から放出部にかけて複数の区画に分割し、各区画の温度を制御することができるように構成されている。本発明における混練部のシリンダー温度とは、溶融混練する材料を混練する区画のうち、混練部シリンダー(ミキシングエレメント)が配置され、最も温度が高い区画の設定温度である。本発明の実施形態における押出機の混練部のシリンダー温度は260℃を超える温度であり、好ましくは270~330℃である。混練部のシリンダー温度が260℃以下では、マレイミド系共重合体の分散性が悪化することや、溶融粘度が高すぎるために押出が困難となる。 Twin-screw extruder in the embodiment of the present invention, for example, as shown in FIG. 1, the space in which the cylinder is arranged is divided into a plurality of sections from the input section of the raw material to the discharge section, the temperature of each section is controlled It is configured so that it can be The cylinder temperature of the kneading section in the present invention is the set temperature of the section where the kneading section cylinder (mixing element) is arranged and which has the highest temperature among the sections where the material to be melt-kneaded is kneaded. The cylinder temperature in the kneading section of the extruder in an embodiment of the present invention is above 260°C, preferably 270-330°C. If the cylinder temperature of the kneading section is 260° C. or less, the dispersibility of the maleimide-based copolymer deteriorates, and the melt viscosity becomes too high, making extrusion difficult.
<4.ラジカル補足剤(C)>
 溶融混練は、2-t-ブチル-6-(3'-t-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレートおよび2,4ージーtーアミルー6-〔1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル〕フェニルアクリレートから選ばれた少なくとも一種のラジカル捕捉剤(C)の存在下で行われる。前記ラジカル捕捉剤が存在しない場合、耐熱性樹脂組成物の耐衝撃性が低下する。ラジカル捕捉剤(C)は、押出機での溶融混練の際に、マレイミド系共重合体(A)と、ABS系樹脂(B)とともに押出機に供給することができる。また、マレイミド系共重合体(A)或いは、ABS系樹脂(B)の中にあらかじめ含有させておいてもよい。
 マレイミド系共重合体(A)とABS系樹脂(B)の合計100質量部に対するラジカル捕捉剤(C)の含有量は、0.1~0.6質量部であることが好ましく、0.2~0.4質量部であることがより好ましい。具体的には例えば、0.1、0.2、0.3、0.4、0.5又は0.6であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 また、ラジカル捕捉剤(C)に対するABS樹脂中のポリブタジエン成分の含有量(質量比)(ポリブタジエン分/ラジカル捕捉剤(C))は、30~200であることが好ましく、50~110であることがより好ましい。具体的には例えば、30、35、40、45、50、55、70、80、90、100、110、120、150、又は200であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<4. Radical scavenger (C)>
Melt-kneading includes 2-t-butyl-6-(3′-t-butyl-5′-methyl-2′-hydroxybenzyl)-4-methylphenyl acrylate and 2,4-di-t-amyl-6-[1-( It is carried out in the presence of at least one radical scavenger (C) selected from 3,5-di-t-amyl-2-hydroxyphenyl)ethyl]phenyl acrylates. In the absence of the radical scavenger, the impact resistance of the heat-resistant resin composition is lowered. The radical scavenger (C) can be supplied to the extruder together with the maleimide-based copolymer (A) and the ABS-based resin (B) during melt-kneading in the extruder. Alternatively, it may be contained in advance in the maleimide-based copolymer (A) or the ABS-based resin (B).
The content of the radical scavenger (C) with respect to a total of 100 parts by mass of the maleimide copolymer (A) and the ABS resin (B) is preferably 0.1 to 0.6 parts by mass, and 0.2 parts by mass. More preferably, it is up to 0.4 parts by mass. Specifically, for example, it is 0.1, 0.2, 0.3, 0.4, 0.5 or 0.6, even if it is within the range between any two of the numerical values illustrated here good.
In addition, the content (mass ratio) of the polybutadiene component in the ABS resin to the radical scavenger (C) (polybutadiene content/radical scavenger (C)) is preferably 30 to 200, more preferably 50 to 110. is more preferred. Specifically, for example, 30, 35, 40, 45, 50, 55, 70, 80, 90, 100, 110, 120, 150, or 200, a range between any two of the numerical values exemplified here may be within
 溶融混練の際、さらに酸化防止剤を併用することができ、酸化防止剤はヒンダードフェノール系酸化防止剤を使用することが好ましく、リン系酸化防止剤を併用してもよい。酸化防止剤の添加により耐熱性樹脂組成物の成形加工時や実使用時の黄変等を防止することができる。 At the time of melt-kneading, an antioxidant can be used in combination, and it is preferable to use a hindered phenol-based antioxidant as the antioxidant, and a phosphorus-based antioxidant may be used in combination. Addition of an antioxidant can prevent yellowing or the like during molding of the heat-resistant resin composition or during actual use.
 ヒンダードフェノール系酸化防止剤とは、基本骨格にフェノール性水酸基を持つ酸化防止剤である。ヒンダードフェノール系酸化防止剤は、例えば、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕、3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、4,6-ビス(オクチルチオメチル)-o-クレゾール、4,6-ビス〔(ドデシルチオ)メチル〕-o-クレゾール、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、4,4'-チオビス(6-t-ブチル-3-メチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、ビス-[3,3-ビス-(4'-ヒドロキシ-3'-tert―ブチルフェニル)-ブタン酸]-グリコールエステル、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-〔1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)エチル〕-4,6-ジ-t-ペンチルフェニルアクリレート等が挙げられる。好ましくは、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]である。より好ましくはオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートである。ヒンダードフェノール系酸化防止剤は、単独でもよいが2種類以上を組み合わせて使用してもよい。 A hindered phenolic antioxidant is an antioxidant that has a phenolic hydroxyl group in its basic skeleton. Hindered phenolic antioxidants include, for example, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, ethylenebis(oxyethylene)bis[3-(5-tert-butyl- 4-hydroxy-m-tolyl)propionate], 3,9-bis[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]- 2,4,8,10-tetraoxaspiro[5.5]undecane, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 4,6-bis(octyl thiomethyl)-o-cresol, 4,6-bis[(dodecylthio)methyl]-o-cresol, 2,4-dimethyl-6-(1-methylpentadecyl)phenol, tetrakis[methylene-3-(3, 5-di-t-butyl-4-hydroxyphenyl)propionate]methane, 4,4′-thiobis(6-t-butyl-3-methylphenol), 1,1,3-tris(2-methyl-4- Hydroxy-5-t-butylphenyl)butane, 4,4′-butylidenebis(3-methyl-6-t-butylphenol), bis-[3,3-bis-(4′-hydroxy-3′-tert-butyl phenyl)-butanoic acid]-glycol ester, 2-t-butyl-6-(3-t-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate, 2-[1-(2-hydroxy -3,5-di-t-pentylphenyl)ethyl]-4,6-di-t-pentylphenyl acrylate and the like. Preferably, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, ethylenebis(oxyethylene)bis[3-(5-tert-butyl-4-hydroxy-m-tolyl) propionate], and pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]. More preferred is octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate. The hindered phenol-based antioxidants may be used alone or in combination of two or more.
 リン系酸化防止剤とは、三価のリン化合物である亜リン酸エステル類である。リン系酸化防止剤は、例えば、6-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-t-ブチルベンズ〔d,f〕〔1,3,2〕ジオキサホスフェピン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ〔5.5〕ウンデカン、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、ビス〔2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル〕エチルエステル亜リン酸、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、4,4'-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスホナイト等が挙げられる。好ましくは、6-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-t-ブチルベンズ〔d,f〕〔1,3,2〕ジオキサホスフェピン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ〔5.5〕ウンデカン、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイトである。より好ましくは、6-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-t-ブチルベンズ〔d,f〕〔1,3,2〕ジオキサホスフェピン、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイトであり、さらに好ましくは6-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-t-ブチルベンズ〔d,f〕〔1,3,2〕ジオキサホスフェピン、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイトである。リン系酸化防止剤は、単独でもよいが2種類以上を組み合わせて使用してもよい。 Phosphorus-based antioxidants are phosphites, which are trivalent phosphorus compounds. Phosphorus-based antioxidants include, for example, 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-t-butylbenz [d, f ][1,3,2]dioxaphosphepine, 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9- Diphosphaspiro[5.5]undecane, bis(2,4-dicumylphenyl)pentaerythritol diphosphite, 2,2′-methylenebis(4,6-di-tert-butyl-1-phenyloxy)(2-ethylhexyl) oxy) phosphorous, tris(2,4-di-tert-butylphenyl)phosphite, bis[2,4-bis(1,1-dimethylethyl)-6-methylphenyl]ethyl ester phosphorous acid, bis(2 ,4-di-tert-butylphenyl)pentaerythritol diphosphite, cyclic neopentanetetrayl bis(octadecylphosphite), bis(nonylphenyl)pentaerythritol diphosphite, 4,4'-biphenylene diphosphinic acid tetrakis ( 2,4-di-tert-butylphenyl), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, tetrakis(2,4-di-tert-butyl-5-methylphenyl)- 4,4'-biphenylene diphosphonite and the like. Preferably, 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-t-butylbenz[d,f][1,3, 2] dioxaphosphepine, 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] Undecane, bis(2,4-dicumylphenyl)pentaerythritol diphosphite, 2,2′-methylenebis(4,6-di-tert-butyl-1-phenyloxy)(2-ethylhexyloxy)phosphorus, tris ( 2,4-di-tert-butylphenyl)phosphite and bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite. More preferably, 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-t-butylbenz[d,f][1,3 ,2] dioxaphosphepine, bis(2,4-dicumylphenyl)pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, bis(2,4-di-tert -butylphenyl)pentaerythritol diphosphite, more preferably 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-t -butylbenz[d,f][1,3,2]dioxaphosphepine, bis(2,4-dicumylphenyl)pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)penta Erythritol diphosphite. Phosphorus-based antioxidants may be used alone or in combination of two or more.
 耐熱性樹脂組成物の製造時には、本発明の効果を損ねない範囲で、その他の樹脂成分、耐衝撃改質材、流動性改質材、硬度改質材、酸化防止剤、無機充填剤、艶消し剤、難燃剤、難燃助剤、ドリップ防止剤、摺動性付与剤、放熱材、電磁波吸収材、可塑剤、滑剤、離型剤、紫外線吸収剤、光安定剤、抗菌剤、抗カビ剤、帯電防止剤、カーボンブラック、酸化チタン、顔料、染料等を配合してもよい。 When producing the heat-resistant resin composition, other resin components, impact modifiers, fluidity modifiers, hardness modifiers, antioxidants, inorganic fillers, luster are added to the extent that the effects of the present invention are not impaired. Extinguisher, flame retardant, auxiliary flame retardant, anti-drip agent, slidability agent, heat dissipation material, electromagnetic wave absorber, plasticizer, lubricant, release agent, ultraviolet absorber, light stabilizer, antibacterial agent, antifungal agent agents, antistatic agents, carbon black, titanium oxide, pigments, dyes and the like may be added.
 以下、詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。 Detailed contents will be described below using examples, but the present invention is not limited to the following examples.
<マレイミド系共重合体(A-1)の製造例>
以下の方法でマレイミド系共重合体(A-1)を製造した。
攪拌機を備えた容積約120リットルのオートクレーブ中に、スチレン62質量部、マレイン酸無水物11質量部、2、4-ジフェニル-4-メチル-1-ペンテン0.2質量部、メチルエチルケトン31質量部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温し、マレイン酸無水物28質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.19質量部をメチルエチルケトン110質量部に溶解した溶液を7時間かけて連続的に添加した。添加後、120℃に昇温し、30分反応させて重合を終了させた。その後、重合液にアニリン35質量部、トリエチルアミン0.6質量部を加え140℃で7時間反応させた。反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のマレイミド系共重合体(A-1)を得た。(A-1)は、スチレン単位48質量%、N-フェニルマレイミド単位51質量%、無水マレイン酸単位1質量%であり、重量平均分子量Mwは13万、ガラス転移温度(中間点ガラス転移温度:Tmg)は202℃であった。
<Production Example of Maleimide Copolymer (A-1)>
A maleimide-based copolymer (A-1) was produced by the following method.
62 parts by mass of styrene, 11 parts by mass of maleic anhydride, 0.2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and 31 parts by mass of methyl ethyl ketone were placed in an autoclave having a volume of about 120 liters equipped with a stirrer. After charging and replacing the inside of the system with nitrogen gas, the temperature was raised to 92° C., and 28 parts by mass of maleic anhydride and 0.19 parts by mass of t-butyl peroxy-2-ethylhexanoate were added to 110 parts by mass of methyl ethyl ketone. The solution dissolved in parts was added continuously over 7 hours. After the addition, the temperature was raised to 120° C. and the reaction was allowed to proceed for 30 minutes to complete the polymerization. After that, 35 parts by mass of aniline and 0.6 parts by mass of triethylamine were added to the polymerization solution and reacted at 140° C. for 7 hours. After completion of the reaction, the imidization reaction solution was charged into a vent-type screw extruder, and volatile matter was removed to obtain a maleimide copolymer (A-1) in the form of pellets. (A-1) contains 48% by mass of styrene units, 51% by mass of N-phenylmaleimide units, and 1% by mass of maleic anhydride units, has a weight average molecular weight Mw of 130,000, and has a glass transition temperature (midpoint glass transition temperature: Tmg) was 202°C.
<ABS樹脂(B-1)>
 ABS樹脂(B-1)は、乳化グラフト重合法にて作製した。攪拌機を備えた反応缶中に、ポリブタジエンラテックス97質量部(固形分濃度50質量%、平均粒子径が0.3μm)、スチレン含有量24質量%のスチレン-ブタジエンラテックス12質量部(固形分濃度70質量%、平均粒子径が0.5μm、)、ステアリン酸ソーダ1質量部、ソジウムホルムアルデヒドスルホキシレート0.2質量部、テトラソジウムエチレンジアミンテトラアセチックアシッド0.01質量部、硫酸第一鉄0.005質量部、及び純水200部を仕込み、温度を50℃に加熱した。ここにスチレン75質量%及びアクリロニトリル25質量%の単量体混合物43質量部、t-ドデシルメルカプタン0.2質量部、t-ブチルパーオキシアセテート0.06質量部を5時間で連続的に分割添加した。分割添加終了後、ジイソプロピルエンゼンパーオキサイドを0.04質量部加え、70℃でさらに2時間かけて重合を完結させ、ABS樹脂のラテックスを得た。得られたラテックスにイルガノックス1076(チバスペシャリティケミカル社製)を0.3部添加した後、硫酸マグネシウムと硫酸を用い、凝固時のスラリーのpHが6.8となるよう凝固を行い、洗浄脱水後、乾燥することで粉末状のABS樹脂(B-1)を得た。原料の配合比より、ゴム状重合体含有量は57質量%である。ゴム状重合体を除いた構成単位は、NMRによって測定し、スチレン単位が75質量%、アクリロニトリル単位が25質量%であった。樹脂組成物とした後の透過型電子顕微鏡の観察より、ABS樹脂は粒子状に分散しており、体積平均粒子径は0.4μmであった。
<ABS resin (B-1)>
ABS resin (B-1) was prepared by an emulsion graft polymerization method. In a reactor equipped with a stirrer, 97 parts by mass of polybutadiene latex (solid content concentration 50 mass%, average particle diameter 0.3 μm), styrene content 24 mass% styrene-butadiene latex 12 parts by mass (solid content concentration 70 % by mass, average particle size is 0.5 μm), 1 part by mass of sodium stearate, 0.2 parts by mass of sodium formaldehyde sulfoxylate, 0.01 part by mass of tetrasodium ethylenediamine tetraacetic acid, ferrous sulfate 0.005 parts by mass and 200 parts of pure water were charged and heated to 50°C. 43 parts by mass of a monomer mixture of 75% by mass of styrene and 25% by mass of acrylonitrile, 0.2 parts by mass of t-dodecylmercaptan, and 0.06 parts by mass of t-butyl peroxyacetate were continuously added in portions over 5 hours. did. After completion of the divisional addition, 0.04 part by mass of diisopropylene peroxide was added, and the polymerization was completed at 70° C. over an additional 2 hours to obtain a latex of ABS resin. After adding 0.3 parts of Irganox 1076 (manufactured by Ciba Specialty Chemical Co., Ltd.) to the obtained latex, magnesium sulfate and sulfuric acid are used to coagulate so that the pH of the slurry becomes 6.8 at the time of coagulation, followed by washing and dehydration. After that, it was dried to obtain a powdery ABS resin (B-1). The content of the rubber-like polymer is 57% by mass based on the blending ratio of the raw materials. The constituent units excluding the rubber-like polymer were measured by NMR to be 75% by mass of styrene units and 25% by mass of acrylonitrile units. Observation with a transmission electron microscope after making the resin composition revealed that the ABS resin was dispersed in the form of particles and had a volume average particle diameter of 0.4 μm.
<SAN樹脂(B-2)>
 以下の方法でSAN樹脂(B-2)を製造した。
連続式の塊状重合にて作製した。反応器として完全混合槽型撹拌槽を1基使用し、30Lの容量で重合を行った。スチレン60質量%、アクリロニトリル22質量%、エチルベンゼン18質量%の原料溶液を作製し、反応器に9.5L/hの流量で連続的に供給した。また、原料溶液に対して、重合開始剤としてt-ブチルパーオキシイソプロピルモノカーボネートを160ppm、連鎖移動剤としてn-ドデシルメルカプタン400ppmの濃度となるよう、原料溶液の供給ラインに連続的に添加した。反応器の反応温度は145℃となるよう調整した。反応器から連続的に取り出されたポリマー溶液は、予熱器付き真空脱揮槽に供給され、未反応のスチレン及びアクリロニトリル、エチルベンゼンを分離した。脱揮槽内のポリマー温度が235℃となるように予熱器の温度を調整し、脱揮槽内の圧力は0.4kPaとした。ギヤーポンプにより真空脱揮槽からポリマーを抜出し、ストランド状に押出して冷却水にて冷却後、切断してペレット状のSAN樹脂(B-2)を得た。(B-2)の構成単位は、スチレン単位が73.5質量%、アクリロニトリル単位が26.5質量%であった。また、重量平均分子量は14.6万であった。
<SAN Resin (B-2)>
A SAN resin (B-2) was produced by the following method.
It was produced by continuous bulk polymerization. Polymerization was carried out in a volume of 30 L using one complete mixing tank type agitating tank as a reactor. A raw material solution of 60% by mass of styrene, 22% by mass of acrylonitrile and 18% by mass of ethylbenzene was prepared and continuously supplied to the reactor at a flow rate of 9.5 L/h. In addition, t-butyl peroxyisopropyl monocarbonate as a polymerization initiator and n-dodecylmercaptan as a chain transfer agent were continuously added to the supply line of the raw material solution so as to have concentrations of 160 ppm and 400 ppm, respectively, to the raw material solution. The reaction temperature of the reactor was adjusted to 145°C. A polymer solution continuously taken out from the reactor was supplied to a vacuum devolatilization tank equipped with a preheater to separate unreacted styrene, acrylonitrile and ethylbenzene. The temperature of the preheater was adjusted so that the polymer temperature in the devolatilization tank was 235° C., and the pressure in the devolatilization tank was 0.4 kPa. The polymer was extracted from the vacuum devolatilization tank by a gear pump, extruded into strands, cooled with cooling water, and cut to obtain SAN resin (B-2) in the form of pellets. The constituent units of (B-2) were 73.5% by mass of styrene units and 26.5% by mass of acrylonitrile units. Moreover, the weight average molecular weight was 146,000.
<ABS樹脂(B-3)>
一般に市販されているABS樹脂GR-3000(デンカ株式会社製)を使用した。
<ABS resin (B-3)>
A commercially available ABS resin GR-3000 (manufactured by Denka Co., Ltd.) was used.
<実施例・比較例>
マレイミド系共重合体、ABS系樹脂、ラジカル捕捉剤、酸化防止剤を表1に示す配合および条件で押出機を用いて溶融混錬し、耐熱性樹脂組成物の製造を行った。押出機は、二軸スクリュー押出機(東芝機械株式会社製 TEM-35B)を使用し、表1に示す混練部のシリンダー温度で、スクリュー回転数は250rpm、フィード量は30kg/hrで押出を行った。使用したラジカル捕捉剤、酸化防止剤は次の通りである。評価結果を表1に示す。なお、比較例3では混練部のシリンダー温度が低く、トルクオーバーで規定の吐出量での押出が不可であった。
(C-1)2-t-ブチル-6-(3'-t-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレート (住友化学社製 スミライザーGS)
(C-2)2,4ージーtーアミルー6-〔1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル〕フェニルアクリレート (住友化学社製 スミライザーGM)
(D-1)ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート] (BASFジャパン株式会社製 Irganox 1010)
(D-2)トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト (BASFジャパン株式会社製 Irgafos 168)
<Example/Comparative example>
A maleimide copolymer, an ABS resin, a radical scavenger, and an antioxidant were melt-kneaded using an extruder under the formulations and conditions shown in Table 1 to produce a heat-resistant resin composition. As the extruder, a twin-screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) is used, and the cylinder temperature in the kneading section shown in Table 1, the screw rotation speed is 250 rpm, and the feed rate is 30 kg / hr Extrusion was performed. rice field. The radical scavengers and antioxidants used are as follows. Table 1 shows the evaluation results. In Comparative Example 3, the cylinder temperature in the kneading section was low, and the extrusion at the specified discharge rate was impossible due to torque over.
(C-1) 2-t-butyl-6-(3′-t-butyl-5′-methyl-2′-hydroxybenzyl)-4-methylphenyl acrylate (Sumilizer GS manufactured by Sumitomo Chemical Co., Ltd.)
(C-2) 2,4-di-t-amyl-6-[1-(3,5-di-t-amyl-2-hydroxyphenyl)ethyl]phenyl acrylate (Sumilizer GM manufactured by Sumitomo Chemical Co., Ltd.)
(D-1) Pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (Irganox 1010 manufactured by BASF Japan Ltd.)
(D-2) Tris (2,4-di-tert-butylphenyl) phosphite (Irgafos 168 manufactured by BASF Japan Ltd.)
(メルトマスフローレイト)
 メルトマスフローレイトは、JIS K7210に基づき、220℃、98N荷重にて測定した。
(melt mass flow rate)
The melt mass flow rate was measured at 220° C. under a load of 98 N according to JIS K7210.
(ビカット軟化温度)
 ビカット軟化点は、JIS K7206に基づき、50法(荷重50N、昇温速度50℃/時間)で試験片は10mm×10mm、厚さ4mmのものを用いて測定した。なお、測定機は東洋精機製作所社製HDT&VSPT試験装置を使用した。
(Vicat softening temperature)
The Vicat softening point was measured according to JIS K7206 by Method 50 (50 N load, 50° C./hour heating rate) using a test piece of 10 mm×10 mm and a thickness of 4 mm. In addition, the HDT & VSPT test equipment manufactured by Toyo Seiki Seisakusho Co., Ltd. was used as a measuring machine.
(シャルピー衝撃強さ)
 シャルピー衝撃強さは、JIS K7111-1に基づき、ノッチあり試験片を用い、打撃方向はエッジワイズを採用して測定した。なお、測定機は東洋精機製作所社製デジタル衝撃試験機を使用した。
(Charpy impact strength)
The Charpy impact strength was measured according to JIS K7111-1, using notched test pieces and adopting an edgewise impact direction. A digital impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd. was used as the measuring machine.
(色相YI値)
 射出成形機IS-50EP(東芝機械株式会社製)により、プレート(9cm×5cm)を成形温度240℃で成形し、色差計COLOR-7e2(倉敷紡績株式会社製)により黄色度YIを測定した。
(hue YI value)
A plate (9 cm×5 cm) was molded at a molding temperature of 240° C. with an injection molding machine IS-50EP (manufactured by Toshiba Machine Co., Ltd.), and the yellowness index YI was measured with a color difference meter COLOR-7e2 (manufactured by Kurashiki Boseki Co., Ltd.).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、耐熱性樹脂組成物を溶融混練するためには、混練部のシリンダー温度を高めに設定する必要があるが、ラジカル捕捉剤の存在下で溶融混練することで、耐衝撃性に優れた耐熱性樹脂組成物を製造することが可能となることが見いだせる。 From the results in Table 1, in order to melt-knead the heat-resistant resin composition, it is necessary to set the cylinder temperature of the kneading unit higher, but by melt-kneading in the presence of a radical scavenger, impact resistance It can be found that it becomes possible to produce a heat-resistant resin composition excellent in
 本発明の製造方法により、マレイミド系共重合体とABS系樹脂を高い加工温度で溶融混練しても、耐衝撃性に優れた耐熱性樹脂組成物を得ることができる。高い加工温度で溶融混練が可能であることから、耐熱性の高いマレイミド系共重合体が使用することができ、少量の添加量でABS系樹脂の耐熱性改善が可能となる。また、溶融粘度の高いマレイミド系共重合体の配合量を増やすことが可能となり、耐熱性の高い耐熱性樹脂組成物を製造することも可能となる。 According to the production method of the present invention, a heat-resistant resin composition with excellent impact resistance can be obtained even if the maleimide-based copolymer and the ABS-based resin are melt-kneaded at a high processing temperature. Since melt-kneading is possible at a high processing temperature, a maleimide copolymer with high heat resistance can be used, and the heat resistance of ABS resin can be improved with a small addition amount. In addition, it becomes possible to increase the blending amount of the maleimide-based copolymer having high melt viscosity, and it becomes possible to produce a heat-resistant resin composition having high heat resistance.

Claims (7)

  1. マレイミド系共重合体(A)と、ABS系樹脂(B)を、押出機で溶融混練する工程を含む耐熱性樹脂組成物の製造方法であって、前記溶融混練が、2-t-ブチル-6-(3'-t-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレートおよび2,4ージーtーアミルー6-〔1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル〕フェニルアクリレートから選ばれた少なくとも一種のラジカル捕捉剤(C)の存在下で行われる、耐熱性樹脂組成物の製造方法。 A method for producing a heat-resistant resin composition comprising a step of melt-kneading a maleimide-based copolymer (A) and an ABS-based resin (B) with an extruder, wherein the melt-kneading is performed by 2-t-butyl- 6-(3′-t-butyl-5′-methyl-2′-hydroxybenzyl)-4-methylphenyl acrylate and 2,4-di-t-amyl-6-[1-(3,5-di-t-amyl- A method for producing a heat-resistant resin composition, carried out in the presence of at least one radical scavenger (C) selected from 2-hydroxyphenyl)ethyl]phenyl acrylate.
  2. 前記溶融混練が、押出機の混練部のシリンダー温度が260℃を超える温度で行われる、請求項1に記載の耐熱性樹脂組成物の製造方法。 2. The method for producing a heat-resistant resin composition according to claim 1, wherein the melt-kneading is performed at a cylinder temperature exceeding 260[deg.] C. in the kneading section of the extruder.
  3. 前記マレイミド系共重合体(A)のガラス転移温度が175℃~210℃である、請求項1または2に記載の耐熱性樹脂組成物の製造方法。 The method for producing a heat-resistant resin composition according to claim 1 or 2, wherein the maleimide-based copolymer (A) has a glass transition temperature of 175°C to 210°C.
  4. 前記マレイミド系共重合体(A)と前記ABS系樹脂(B)の合計100質量部に対する前記ラジカル捕捉剤(C)の含有量が0.1~0.6質量部である、請求項1~3のいずれか一項に記載の耐熱性樹脂組成物の製造方法。 Claims 1 to 1, wherein the content of the radical scavenger (C) is 0.1 to 0.6 parts by mass with respect to a total of 100 parts by mass of the maleimide copolymer (A) and the ABS resin (B). 4. A method for producing a heat-resistant resin composition according to any one of 3.
  5. 前記押出機が二軸押出機である、請求項1~4のいずれか一項に記載の耐熱性樹脂組成物の製造方法。 The method for producing a heat-resistant resin composition according to any one of claims 1 to 4, wherein the extruder is a twin-screw extruder.
  6. 前記耐熱性樹脂組成物のビカット軟化温度が115℃以上である、請求項1~5のいずれか一項に記載の耐熱性樹脂組成物の製造方法。 The method for producing a heat-resistant resin composition according to any one of claims 1 to 5, wherein the heat-resistant resin composition has a Vicat softening temperature of 115°C or higher.
  7. 前記溶融混練が、ヒンダードフェノール系酸化防止剤およびリン系酸化防止剤から選択される2種類以上の酸化防止剤(D)の存在下で行われる、請求項1~6のいずれか一項に記載の耐熱性樹脂組成物の製造方法。 The melt-kneading is performed in the presence of two or more antioxidants (D) selected from hindered phenol antioxidants and phosphorus antioxidants, according to any one of claims 1 to 6. A method for producing the heat-resistant resin composition described.
PCT/JP2022/005269 2021-02-17 2022-02-10 Manufacturing method for heat-resistant resin composition WO2022176756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023500786A JPWO2022176756A1 (en) 2021-02-17 2022-02-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021023144 2021-02-17
JP2021-023144 2021-02-17

Publications (1)

Publication Number Publication Date
WO2022176756A1 true WO2022176756A1 (en) 2022-08-25

Family

ID=82931700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005269 WO2022176756A1 (en) 2021-02-17 2022-02-10 Manufacturing method for heat-resistant resin composition

Country Status (3)

Country Link
JP (1) JPWO2022176756A1 (en)
TW (1) TW202244172A (en)
WO (1) WO2022176756A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578430A (en) * 1991-09-24 1993-03-30 Sumitomo Chem Co Ltd Production of thermoplastic resin having excellent impact resistance
JP2005097343A (en) * 2003-09-22 2005-04-14 Asahi Kasei Chemicals Corp Maleimide-compound-containing rubber-reinforced styrene resin composition excellent in heat stability
WO2010082617A1 (en) * 2009-01-16 2010-07-22 電気化学工業株式会社 Maleimide copolymer, process for the production thereof, and heat-resistant resin compositions containing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578430A (en) * 1991-09-24 1993-03-30 Sumitomo Chem Co Ltd Production of thermoplastic resin having excellent impact resistance
JP2005097343A (en) * 2003-09-22 2005-04-14 Asahi Kasei Chemicals Corp Maleimide-compound-containing rubber-reinforced styrene resin composition excellent in heat stability
WO2010082617A1 (en) * 2009-01-16 2010-07-22 電気化学工業株式会社 Maleimide copolymer, process for the production thereof, and heat-resistant resin compositions containing same

Also Published As

Publication number Publication date
JPWO2022176756A1 (en) 2022-08-25
TW202244172A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP7021319B2 (en) Heat-resistant resin composition and its manufacturing method
KR102571541B1 (en) Copolymer and Resin Compositions for Polymer Blend Compatibilizers
WO2022176756A1 (en) Manufacturing method for heat-resistant resin composition
US20230265288A1 (en) Heat resistance resin composition and injection molded body thereof
EP3960814B1 (en) Thermoplastic resin composition and molded article thereof
JP7199595B2 (en) maleimide copolymer
WO2022071050A1 (en) Production method for heat-resistant resin composition
JP2022173868A (en) Antibacterial heat resistant resin composition
JP2023149057A (en) Antibacterial heat-resistant resin composition
WO2022181486A1 (en) Abs resin modifier, resin composition, molded body, and method for producing resin composition
KR20230083312A (en) heat resistant resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756076

Country of ref document: EP

Kind code of ref document: A1