JP2015189771A - 重油脱硫触媒の再生利用方法 - Google Patents

重油脱硫触媒の再生利用方法 Download PDF

Info

Publication number
JP2015189771A
JP2015189771A JP2014065540A JP2014065540A JP2015189771A JP 2015189771 A JP2015189771 A JP 2015189771A JP 2014065540 A JP2014065540 A JP 2014065540A JP 2014065540 A JP2014065540 A JP 2014065540A JP 2015189771 A JP2015189771 A JP 2015189771A
Authority
JP
Japan
Prior art keywords
catalyst
heavy oil
oil desulfurization
vanadium
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014065540A
Other languages
English (en)
Other versions
JP6335575B2 (ja
Inventor
岩本 隆一郎
Ryuichiro Iwamoto
隆一郎 岩本
圭祐 三宅
Keisuke Miyake
圭祐 三宅
純司 山田
Junji Yamada
純司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2014065540A priority Critical patent/JP6335575B2/ja
Priority to KR1020167026211A priority patent/KR102297022B1/ko
Priority to PCT/JP2015/059504 priority patent/WO2015147222A1/ja
Priority to CN201580016377.9A priority patent/CN106459781B/zh
Priority to TW104110047A priority patent/TWI652339B/zh
Publication of JP2015189771A publication Critical patent/JP2015189771A/ja
Application granted granted Critical
Publication of JP6335575B2 publication Critical patent/JP6335575B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/50Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
    • B01J38/56Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/72Regeneration or reactivation of catalysts, in general including segregation of diverse particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/706Catalytic metal recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

【課題】使用済触媒をさらに有効に再利用できる、重油脱硫触媒の再生利用方法を提供する。【解決手段】重油脱硫触媒の再生利用方法は、1つの重油脱硫装置に充填され、下記の式で表されるメタル許容量MPr1が0未満となる重油脱硫触媒を抜き出す工程と、抜き出された重油脱硫触媒を再生する工程と、再生された重油脱硫触媒を、他の異なる少なくとも1つの重油脱硫装置に充填する工程とを有する。・MPr1=(PV/2Vv)?{8?105?(PD)1.3}?(Sp/Vp)−(VA1+VA2)[PVは新触媒の細孔容積、Vvは1kgの新触媒上にバナジウムが1質量%堆積したときのそれを硫化バナジウムとみなしたときの体積、PDは新触媒の平均細孔直径、Sp、Vpは各々新触媒の1粒の平均外表面積、平均体積、VA1は元の装置で蓄積するバナジウム堆積量(質量%)、VA2は同じ装置で再生触媒を使用した場合のバナジウム堆積量]【選択図】図1

Description

本発明は、重油の水素化脱硫処理に使用した重油脱硫触媒の再生利用方法に関する。
石油精製には、各種の留分を水素化精製処理により精製する工程が多数あり、そのための触媒が各種開発されている。そのような触媒には、ナフサ、灯油および軽油などの脱硫脱窒素触媒、重質軽油の脱硫脱窒素触媒、分解触媒、ならびに残油および重油などの脱硫脱窒素触媒などがある。そのうちでも、比較的沸点が低く、バナジウム等の金属不純物含有量がほとんどないナフサ、灯油および軽油などを水素化精製処理するときに用いられる触媒は、使用による劣化の度合いが少ない。
ナフサ、灯油および軽油などを水素化精製処理するときに用いられる触媒はバナジウムなどの金属不純物による劣化はなく、触媒の劣化は少量の炭素質の蓄積によるものである。したがって、燃焼により触媒から炭素を除去すれば触媒の再利用は可能であった。さらに炭素質の除去についても、触媒上の炭素質の量が少ないため、厳密な燃焼制御を必要とせずに触媒を再生できた。また、使用した触媒の中には劣化の度合いが少ないものもあり、そのような触媒は再生処理をせずにそのまま再利用できた。
最近、重質軽油および減圧軽油などの水素化精製処理触媒についても、再生して再利用しており、その触媒の再生方法および再利用方法が確立されている。たとえば、重質軽油水素化分解プロセスにおいて使用される水素化分解触、およびその前処理のために使用される水素化脱窒素触媒は、水素賦活または酸素賦活により再生され、再利用されている。これらの留出油の水素化精製処理に用いられた触媒は、金属不純物が少ない原料油に使用されるので、バナジウムなどの金属の触媒上の堆積は少ない。また、触媒上に堆積する炭素質も少なく、触媒上に堆積した炭素質は燃えやすい。このため、燃焼による再生時に触媒表面はそれほど高温にならないので、再生処理による触媒の細孔構造および活性金属の担持状態の変化は小さく、重質軽油および減圧軽油などの留出油の処理に再度使用することができた(非特許文献1参照)。
しかし、さらに沸点の高い留分または蒸留できない留分を含む重油は、アスファルテン分などの炭素質化しやすい成分および金属不純物を多く含み、水素化精製処理に使用した後の使用済触媒上に多量の炭素質および金属分が堆積する。炭素質および金属分が同時に蓄積した使用済触媒から炭素質を簡単には除去できないため、高い燃焼温度で炭素質を除去しなければならない。このため、再生処理による触媒の細孔構造および活性金属の担持状態の変化が大きくなり、炭素質の除去した後の触媒の機能が著しく低下した(非特許文献2および非特許文献3参照)。このようなことから、重油の水素化精製処理に使用された触媒は、再利用されることなく処分されていた。
しかし、廃棄物低減および触媒コスト削減のために、重油の水素化精製処理で使用した触媒を再生して再利用することは非常に重要である。再生触媒の再利用方法として、たとえば特許文献1に記載されている重質油水素化処理触媒の再生方法および特許文献2に記載されている重質油の水素化脱硫方法が知られている。特許文献1に記載の重質油水素化処理触媒の再生方法によれば、重質油水素化精製処理プロセスにおいて使用により失活した触媒を再生処理し、その細孔容積、細孔直径、バナジウム堆積量および体積当たりの外表面積から算出されるメタル許容量が特定の値である再生水素化処理触媒を重質油の水素化処理に再び利用することができる。また、特許文献2に記載の重質油の水素化脱硫方法によれば、重質油などの水素化処理プロセスにおいて使用により失活し、利用されなかった触媒を再生処理し、有効に活用することができる。
特許第3708381号公報 特許第3527635号公報
Stadies in Surface and Catalysis vol.88 P199(1994) Catal.Today vol.17 No.4 P539(1993) Catal.Rev.Sci.Eng.33(3&4)P281(1991)
しかしながら、特許文献1に記載されている重質油水素化処理触媒の再生方法では、再生触媒の原料となる使用済触媒の物性は原料や運転条件に依存しており、再生性に大きな影響を与えるため、運転過酷度の高い装置においては、必ずしも再生触媒として利用できるわけではなかった。また、特許文献2に記載されている重質油の水素化脱硫方法は、1装置1回限りの再生方法を提案しているのみで、継続的かつ安定的な再生方法ではなかった。そこで、本発明は、使用済触媒をさらに有効に再利用できる、重油脱硫触媒の再生利用方法を提供することを目的とする。
本発明者らは鋭意研究の結果、重油水素化精製処理で使用して失活した、従来、再生使用できなかった触媒であっても、細孔容積、細孔直径、バナジウム堆積量および体積当たりの外表面積から算出されるメタル許容量を用いて、他の装置での再生触媒の使用の可否を判断して適用することで多くの装置全体で最大限安定に再生触媒を活用できることを見出し、本発明を完成させた。すなわち、本発明は、以下のとおりである。
[1]1つの重油脱硫装置に充填され、下記の式(1)で表されるメタル許容量MPr1が0未満となる重油脱硫触媒を抜き出す工程と、抜き出された重油脱硫触媒を再生する工程と、再生された重油脱硫触媒を、他の異なる少なくとも1つの重油脱硫装置に充填する工程とを有することを特徴とする重油脱硫触媒の再生利用方法。
・MPr1= (PV/2Vv)×{8×105 ×(PD)1.3 }×(Sp/Vp)−(VA1+VA2) ・・・(1)
式(1)において、各記号は各々以下を表す。
PV :新触媒時の細孔容積(m3 /kg)
Vv :1kgの新触媒上にバナジウムが1質量%堆積したときのそれを硫化バナジウムとみなしたときの体積= 3.8×10-6(m3 /%kg)
PD :新触媒時の平均細孔直径(m)
Sp :新触媒時の1粒の平均外表面積(m2
Vp :新触媒時の1粒の平均体積(m3
VA1 :元の装置で蓄積するバナジウム堆積量(質量%)(新触媒基準)
VA2 :同じ装置で再生した触媒を使用した場合のバナジウム堆積量(質量%)(新触媒基準)
[2]再生された重油脱硫触媒を、他の異なる少なくとも1つの重油脱硫装置に充填する工程において、再生された重油脱硫触媒が、下記の式(2)で表されるメタル許容量MPr2が0以上となるように異なる重油脱硫装置に充填される上記[1]に記載の重油脱硫触媒の再生利用方法。
・MPr2= (PV/2Vv)×{8×105 ×(PD)1.3 }×(Sp/Vp)−(VA1+VB1) ・・・ (2)
式(2)において、各記号は各々以下を表す。
PV :新触媒時の細孔容積(m3 /kg)
Vv :1kgの新触媒上にバナジウムが1質量%堆積したときのそれを硫化バナジウムとみなしたときの体積= 3.8×10-6(m3 /%kg)
PD :新触媒時の平均細孔直径(m)
Sp :新触媒時の1粒の平均外表面積(m2
Vp :新触媒時の1粒の平均体積(m3
VA1 :元の装置で蓄積するバナジウム堆積量(質量%)(新触媒基準)
VB1 :新たな装置で再生した触媒を使用した場合に蓄積するバナジウム堆積量(質量%)(新触媒基準)
[3]式(2)で表されるメタル許容量MPr2が1以上5以下となるように、異なる重油脱硫装置に充填される上記[2]に記載の重油脱硫触媒の再生利用方法。
本発明によれば、使用済触媒をさらに有効に再利用できる、重油脱硫触媒の再生利用方法を提供することができる。
図1は、本発明の実施例に使用した下降流型固定床反応器を説明するための模式図である。
本発明における重油脱硫触媒の再生利用方法は、重油脱硫触媒を抜き出す工程と、重油脱硫触媒を再生する工程と、重油脱硫装置に充填する工程とを有する。以下、本発明の重油脱硫触媒の再生利用方法を詳細に説明する。
[重油脱硫触媒を抜き出す工程]
本発明における重油脱硫触媒を抜き出す工程は、1つの重油脱硫装置に充填され、下記の式(1)で表されるメタル許容量MPr1が0未満となる重油脱硫触媒を抜き出す工程である。
・MPr1= (PV/2Vv)×{8×105 ×(PD)1.3}×(Sp/Vp)−(VA1+VA2) ・・・(1)
式(1)において、各記号は各々以下を表す。
PV :新触媒時の細孔容積(m3 /kg)
Vv :1kgの新触媒上にバナジウムが1質量%堆積したときのそれを硫化バナジウムとみなしたときの体積= 3.8×10-6(m3 /%kg)
PD :新触媒時の平均細孔直径(m)
Sp :新触媒時の1粒の平均外表面積(m2
Vp :新触媒時の1粒の平均体積(m3
VA1 :元の装置で蓄積するバナジウム堆積量(質量%)(新触媒基準)
VA2 :同じ装置で再生した触媒を使用した場合のバナジウム堆積量(質量%)(新触媒基準)
(重油脱硫装置)
本発明における重油脱硫装置は、水素化精製処理により、重油に対して脱硫、脱窒素、脱酸素ならびに炭化水素の水素化および分解を実施する。また、重油脱硫装置は、脱硫および脱窒素などの水素化精製のみならず、脱金属およびアスファルテンの水素化分解を実施できる。この点が着目されて、重油脱硫装置は、単に重油の脱硫を目的として使用されるのみならず、残油流動接触分解(RFCC)、コーカー、溶剤脱れきなどの残油アップグレーディングプロセスと組み合わせて使用される場合もある。重油脱硫装置により得られた製品重油は、たとえばRFCC原料、コーカー原料および低硫黄製品重油として利用される。
次に、重油脱硫装置で実施される水素化精製処理を説明する。重油脱硫装置で実施される水素化精製処理は、重油を脱硫できればとくに限定されないが、固定床反応器による水素化精製処理を例に挙げて重油脱硫装置で実施される水素化精製処理を説明する。水素化精製処理の原料となる重油は、常圧残油および減圧残油などの残渣分を含む。しかし、重油は、灯油、軽油および減圧軽油などの留出油のみからなるものは含まない。たとえば、重油は、硫黄分1質量%以上、窒素分200重量ppm以上、残炭分5質量%以上、バナジウム5ppm以上およびアスファルテン分0.5質量%以上を含む。重油には、たとえば、常圧残油以外の原油、アスファルト油、熱分解油、タールサンド油およびこれらの混合油などが挙げられる。水素化精製処理の原料となる重油は上記のようなものであればとくに限定されないが、常圧残油、減圧残油、減圧残油またはアスファルト油と分解軽油との混合油などが水素化精製処理の原料として好適に使用される。
水素化精製処理の反応温度は、好ましくは300〜450℃であり、より好ましくは350〜420℃ 、さらに好ましくは370〜410℃である。水素化精製処理の水素分圧は、好ましくは7.0〜25.0MPaであり、より好ましくは10.0〜18.0MPaである。水素化精製処理の液空間速度は、好ましくは0.01〜10h-1であり、より好ましくは0.1〜5h-1であり、さらに好ましくは0.1〜1h-1である。水素化精製処理の水素/原料油比は、好ましくは500〜2,500Nm3/klであり、より好ましくは700〜2,000Nm3/klである。なお、水素化精製処理により得られた生成油の硫黄含有量および金属分(バナジウム、ニッケルなど)含有量の調整は、たとえば水素化精製処理における反応温度を適宜調節することにより実施できる。
(重油脱硫触媒)
本発明における重油脱硫触媒は、重油の脱硫に通常用いられる触媒(硫化処理済みの触媒を含む。)を少なくとも一度は重油の水素化精製処理に使用した触媒である。通常は、使用により炭素およびバナジウムなどが触媒上に付着している。重油脱硫触媒は、重油の水素化精製処理に使用されるものであれば、とくに限定されない。たとえば、アルミナ担体上にモリブデンを担持したアルミナ触媒を重油脱硫触媒として使用する。この場合、助触媒としてコバルトまたはニッケルが用いられる。
アルミナ担体は、リン、ケイ素およびホウ素の少なくとも1種を含有してもよい。酸化物で換算した場合のリン、ケイ素およびホウ素の少なくとも1種における重油脱硫触媒中の含有量は、好ましくは30.0質量%以下であり、より好ましくは0.1〜10.0質量%であり、さらに好ましくは0.2〜5.0質量%である。ただし、触媒中のリン、ケイ素およびホウ素の少なくとも1種の含有量は、400℃以上の温度で酸化処理し、加熱による減量が起こらなくなったものを基準質量として、リン、ケイ素およびホウ素の少なくとも1種の含有量を質量%で表すものとする。
重油脱硫触媒中のモリブデンの含有量は、好ましくは0.1〜25.0質量%であり、より好ましくは0.2〜8.0質量%である。また、重油脱硫触媒中のコバルトまたはニッケルの含有量は、好ましくは0.1〜10.0質量%であり、より好ましくは0.2〜8.0質量%である。なお、重油脱硫触媒中の金属分含有量は、400℃以上の温度で酸化処理し、加熱による減量が起こらなくなったものを基準質量として、測定対象金属の酸化物の質量を質量%で表すものとする。
重油はアスファルテンおよびバナジウムを多く含むため、重油の水素化精製処理に使用した重油脱硫触媒には、炭素分およびバナジウムが堆積している。炭素分は、重油脱硫触媒の触媒表面を被覆し、重油脱硫触媒の触媒活性を低下させる。しかし、溶剤抽出および酸化燃焼処理などの再生処理により、重油脱硫触媒に堆積している炭素分を除去することができ、重油脱硫触媒の触媒活性を増加させることができる。再生処理する前の使用済みの重油脱硫触媒中の炭素分の含有量は、好ましくは10〜70質量%であり、より好ましくは0.2〜8.0質量%である。重油脱硫触媒中の炭素分の含有量が70質量%よりも大きいと、再生処理しても触媒の活性が十分に増加しなかったり、触媒の活性を増加させるために高い温度で再生処理する必要があるため、触媒の強度が低下したりする場合がある。なお、重油脱硫触媒中の炭素分の含有量は、400℃以上の温度で酸化処理し、加熱による減量が起こらなくなったものを基準質量として、対象触媒中の炭素分の質量を質量%で表すものとする。
再生処理する前の使用済みの重油脱硫触媒中のバナジウムの含有量は、好ましくは35質量%以下であり、より好ましくは20質量%以下である。バナジウムの含有量が35質量%よりも大きいと、再生処理しても触媒の活性が十分に増加しなかったり、触媒の活性を増加させるために高い温度で再生処理する必要があるため、触媒の強度が低下したりする場合がある。重油脱硫触媒に堆積しているバナジウムは、通常、再生処理では除去できない。
使用済触媒中のバナジウムの含有量は、再生処理の前と後との間でほとんど変わらない。このため、使用済触媒中のバナジウムの含有量を使用して算出するメタル許容量MPr1に基づいて、再生処理の前に、再生して使用可能な触媒と再生しても使用できない触媒とを判別することができる。再生しても使用できない触媒を再生処理することは無駄であるので、再生処理の前に、再生しても使用できない触媒を使用済触媒から選別して除去することが好ましい。
水素化精製処理に使用した触媒および再生処理のため酸化処理とくに燃焼処理をした触媒は、処理時の触媒の加熱により触媒の細孔構造および活性金属の担持状態が変化し、触媒活性が低下してしまうことがある。これらを評価する指標として、触媒の比表面積や細孔容量がある。触媒の比表面積および細孔容量は、水素化精製処理および不純物の付着により徐々に減少し、再生処理でも減少しやすい。使用済みの重油脱硫触媒の比表面積および細孔容積は、新触媒の比表面積および細孔容積のそれぞれ70%以上であることが好ましい。使用済みの重油脱硫触媒の比表面積は、好ましくは60〜220m2 /gであり、より好ましくは100〜200m2 /gである。また、使用済みの重油脱硫触媒の細孔容積は、好ましくは0.3〜1.2cc/gであり、より好ましくは0.4〜0.8cc/gである。
なお、新触媒は、触媒として製造され一度も水素化精製処理に使用されていない触媒である。さらに、新触媒は、一旦水素化精製処理に使用されたが装置上のトラブル等のため短期間で使用を中断し、再度そのまま使用する触媒も含む。すなわち、一時的に使用されても特別の賦活処理をしたり、反応器から抜き出して選別、洗浄および酸化などの再生処理をしたりしなくとも、当初から想定されている水素化活性がまだ十分にありそのまま使用できる触媒も新触媒に含まれる。新触媒は、市販されている触媒でもよく、特別に調製した触媒でもよい。また、新触媒は、水素化処理に使用するための前処理として硫化処理を施した触媒でもよい。
(メタル許容量)
上記式(1)のメタル許容量MPr1 は、重油脱硫装置で使用した触媒を再生した触媒を、同じ重油脱硫装置で、所定期間使用可能であるか否かを判断するための指標である。メタル許容量MPr1が0に比べて大きいほど、多量のバナジウムの堆積を許容できるため、余裕をもって、同じ重油脱硫装置でその触媒を所定期間使用することができる。一方、MPr1が0未満である場合(すなわち、負の数値である場合)、触媒の使用期間が所定期間に達する前に、バナジウムの堆積により、再生した触媒の活性は、その重油脱硫装置に使用するには不十分になる。したがって、メタル許容量MPr1を用いることにより、触媒上へのバナジウム堆積により失活した重油脱硫触媒から、上記重油脱硫装置では使用に耐えうる活性を持っていない重油脱硫触媒を選別でき、上記重油脱硫装置では使用できない重油脱硫触媒を特定することができる。そして、本発明においては、メタル許容量MPr1が0未満である触媒を、重油脱硫装置から抜き出す触媒として判断する。以下、上記式(1)を詳細に説明する。
上記式(1)式のメタル許容量MPr1は、触媒がバナジウム堆積により失活し寿命がくるまでに、さらに許容できるバナジウム堆積量の指標である。この値が小さいほどバナジウム堆積を許容できないことになる。本発明において、重油脱硫装置から抜き出す触媒のMPr1は0未満である。なお、市販触媒のMPr1の値は、バナジウム堆積量(VA1+VA2)が0%の場合(新触媒)でも通常は50以下であり、脱メタル触媒では20〜35、脱硫触媒では10〜25である。
上記式(1)の第1項は新触媒時のバナジウム堆積許容量を表し、新触媒の細孔容積等の初期物性により決まるものであり、触媒の使用および再生処理により変化するものではない。PVは新触媒時の細孔容積である。Vvは、1kgの新触媒上にバナジウムが1質量%堆積したときの、そのバナジウムを硫化バナジウムとみなしたときのバナジウムの体積であり、定数3.8×10-6(m3/%kg)である。なお、通常の水素化精製処理ではバナジウムは硫化バナジウムとして堆積すると考えられる。PDは新触媒時の平均細孔直径である。定数8×105×(PD)1.3は、検討をした各種の触媒の解析結果より得られたバナジウムの触媒の細孔中への拡散深さである。拡散深さは通常、(拡散係数/反応速度定数)-0.5に比例し、拡散係数は触媒細孔直径に比例するとされている(参照 改訂五版化学工学便覧第27章)。しかし、本発明者らの研究によれば、本触媒においては上記のように(触媒細孔直径PD)1.3 に比例することが見出された。
Spは新触媒時の1粒の外表面積であり、現実には平均値としての値である。また、Vpは新触媒時の1粒の体積であり、Spと同様平均値である。(Sp/Vp)は平均としての個々の触媒の体積当たりの外表面積であり、新触媒製造時の形状により特定される。
第2項のVA1は、新触媒を重油脱硫装置(後述の他の異なる少なくとも1つの重油脱硫装置と区別できるようにするために、以下、この重油脱硫装置を「A装置」と呼ぶ)で所定期間使用した際に蓄積するバナジウム堆積量(新触媒基準(質量%))の実績値または予測値である。VA2はA装置で使用した新触媒を再生した再生触媒をA装置で必要期間使用した際に蓄積するバナジウム堆積量(新触媒基準(質量%))の実績値あるいは予測値である。VA1が0.5質量%より小さい場合、触媒におけるバナジウムの堆積は少なく、再生しなくとも使用済触媒を再利用できる。したがって、再生処理する使用済触媒は、VA1が1.0質量%以上のものが好ましい。なお、VA1およびVA2は触媒上に堆積したバナジウムの堆積量と表現しているが、触媒に含まれるバナジウムは必ずしも触媒上に堆積していなくともよい。たとえば、触媒の細孔中や触媒の中に進入したり、触媒成分等と反応したりしているバナジウムの量もバナジウムの上記堆積量に含まれる。使用済触媒のVA1およびVA2の値は、通常、0〜70質量%である場合が多い。また、A装置の反応帯域の上流部ではVA1およびVA2の値は、30〜70質量%と高い値である。
[重油脱硫触媒を再生する工程]
本発明における重油脱硫触媒を再生する工程では、抜き出された重油脱硫触媒を再生する。重油脱硫触媒を再生する工程で実施する再生処理は、たとえば、溶剤洗浄による油分などの除去、酸化処理による炭素分、硫黄分および窒素分などの除去、ならびに塊状化したり細粒化したりした触媒を除去することによる正常な形状の触媒の選別などを含む。酸化処理は、好ましくは反応器外で行われる。
大量の炭素分が付着した使用済触媒の好ましい再生処理では、使用済触媒を溶剤でまず洗浄する。好ましい溶剤には、たとえば、トルエン、アセトン、アルコールならびにナフサ、灯油および軽油などの石油類などがある。この洗浄処理では、たとえば、触媒が水素化精製処理反応器中にある間に軽油を循環させて触媒を洗浄し、その後50〜300℃程度の窒素ガスなどのガスを流通させて触媒を乾燥させる。あるいは、軽油を循環させて洗浄した後そのまま抜き出し、発熱や自然発火を防ぐために触媒を軽油で濡れた状態にしておき必要な時に乾燥してもよい。また、反応器から抜き出した使用済触媒から塊状物の粉砕、粉化触媒およびスケールなどを除去し、これを軽油で洗浄しさらにナフサで洗浄して、触媒を乾燥しやすくする方法もある。使用済触媒が少量である場合、トルエンで触媒を洗浄する方法が、触媒から油分を完全に除去するのに適している。
洗浄により油分および不純物を除去した触媒の触媒活性を回復させるためには、さらに酸化処理により触媒に堆積した炭素分を除去する必要がある。酸化処理は、一般には雰囲気温度および酸素濃度を制御した燃焼処理により行う。雰囲気温度が高すぎたり、酸素濃度が高すぎたりすると、触媒表面が高温になり、担持金属の結晶形および担持状態が変化したり、担体の細孔が減少したりして触媒活性が低下する場合がある。また、雰囲気温度が低すぎたり、酸素濃度が低すぎたりすると、燃焼による炭素分の除去が不十分となり触媒活性が十分に回復しない場合がある。燃焼処理の雰囲気温度は、好ましくは200〜800℃であり、より好ましくは300〜600℃である。
燃焼処理における酸素濃度は、燃焼方法、とくに燃焼ガスと触媒との接触状態に対応して制御することが好ましい。たとえば、燃焼処理における酸素濃度は、好ましくは1〜21体積%である。燃焼処理における雰囲気温度、酸素濃度および雰囲気ガスの流速などを調整して触媒の表面温度を制御し、燃焼処理時の触媒中のモリブデンなどの金属の結晶構造および結晶粒子の担持状態の変化を抑えたり、触媒の比表面積および細孔容量の低下を防いだりすることが重要である。
燃焼処理した触媒から粉化した触媒等を除去し、正常な形状の触媒のみを再生触媒として使用することが望ましい。粉化した触媒が触媒中に残留していると、反応器内の触媒層で詰まりおよび偏流が起きたり、反応器中での流体の圧力損失を大きくなったりして反応器の正常な運転が継続できなくなることがある。
[重油脱硫装置に充填する工程]
本発明における重油脱硫装置に充填する工程では、再生された重油脱硫触媒を、他の異なる少なくとも1つの重油脱硫装置に充填する。これにより、重油脱硫触媒を抜き出す工程で重油脱硫触媒を抜き出した重油脱硫装置では再利用できない使用済触媒であっても再利用することができ、使用済触媒をさらに有効に再利用できる。
再生された重油脱硫触媒を充填する重油脱硫装置は、重油脱硫触媒を抜き出す工程で重油脱硫触媒を抜き出した重油脱硫装置と異なる重油脱硫装置であれば、とくに限定されない。また、再生された重油脱硫触媒を充填する重油脱硫装置は1基であってもよいし、2基以上であってもよい。重油脱硫装置に充填する工程における重油脱硫装置は、重油脱硫触媒を抜き出す工程で説明したものと同様の重油脱硫装置であるので、重油脱硫装置の説明は省略する。
本発明においては、下記の式(2)で表されるメタル許容量MPr2が0以上となるような重油脱硫装置に、再生された重油脱硫触媒を充填するようにしてもよい。これにより、使用済触媒を再利用できる、他の重油脱硫装置を適切に選択することができるとすることが望ましい。
・MPr2= (PV/2Vv)×{8×105×(PD)1.3}×(Sp/Vp)−(VA1+VB1) ・・・ (2)
式(2)において、各記号は各々以下を表す。
PV :新触媒時の細孔容積(m3 /kg)
Vv :1kgの新触媒上にバナジウムが1質量%堆積したときのそれを硫化バナジウムとみなしたときの体積= 3.8×10-6(m3 /%kg)
PD :新触媒時の平均細孔直径(m)
Sp :新触媒時の1粒の平均外表面積(m2
Vp :新触媒時の1粒の平均体積(m3
VA1 :元の装置で蓄積するバナジウム堆積量(質量%)(新触媒基準)
VB1 :新たな装置で再生した触媒を使用した場合に蓄積するバナジウム堆積量(質量%)(新触媒基準)
上記式(2)のメタル許容量MPr2は、重油脱硫装置(A装置)で使用した触媒を再生した触媒を、上記重油脱硫装置(A装置)と異なる重油脱硫装置(以下、B装置)で、所定期間使用可能であるか否かを判断するための指標である。メタル許容量MPr2が0に比べて大きいほど、余裕をもって、B装置でその触媒を所定期間使用することができる。一方、MPr2が0未満である場合、触媒の使用期間が所定期間に達する前に、バナジウムの堆積により、再生した触媒の活性は、そのB装置に使用するには不十分になる。しかし、VA2>VB1のような場合、A装置で使用できなくてもB装置では使用可能となる可能性がある。これをメタル許容量MPr2の指標を用いることで定量的に判断することが可能となる。B装置におけるメタル許容量MPr2は0以上であるが、好ましくは1以上5以下であり、さらに好ましくは3以上5以下である。なお、上記式(2)は、「VA1+VA2」を「VA1+VB1」の変更した以外は、上記(1)と同様であるので、上記式(2)の説明は省略する。また、VB1は、新触媒をB装置で所定期間使用した際に蓄積するバナジウム堆積量(新触媒基準質量%)の実績値または予測値である。
前記式(1)のメタル許容量MPr1が0未満であるので、装置Aでは、使用済触媒を使用することはできない。しかし、上記式(2)のメタル許容量MPr2は0以上であるので、装置Bでは、使用済触媒を使用することができる。このように、触媒のメタル許容量MPr2に基づいて装置Aでは使用できない使用済触媒を使用できる装置を適切に選択することができる。また、VA1は、複数回、再生して使用した後の積算バナジウム蓄積量として定義することができ、MPr2は、複数回、再生処理して使用した後の触媒の使用可否判断にも使用できる。なお、A装置から抜き出され、再生された触媒を、必ずしも一つのB装置で使用する必要はなく、上記のMPr2で示される条件を満たせば分割して複数の装置に使用することができる。
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。
[原料重油の性状]
各実施例および比較例に使用する原料重油について、以下の評価を行った。原料重油には常圧残油を使用した。
(密度)
JIS K 2249に準拠して15℃における常圧残油の密度を測定した。
(動粘度)
JIS K 2283に準拠して50℃における常圧残油の動粘度を測定した。
(残炭分の含有量)
JIS K 2270に準拠して常圧残油の残炭分の含有量を測定した。
(アスファルテン分の含有量)
IP 143に準拠して常圧残油のアスファルテン分の含有量を測定した。
(硫黄分の含有量)
JIS K 2541に準拠して常圧残油の硫黄分の含有量を測定した。
(窒素分の含有量)
JIS K 2609に準拠して常圧残油の窒素分の含有量を測定した。
(バナジウムの含有量)
石油学会法JPI−5S−10−79に準拠して常圧残油のバナジウムの含有量を測定した。
(ニッケルの含有量)
石油学会法JPI−5S−11−79に準拠して常圧残油のニッケルの含有量を測定した。
(蒸留性状)
JIS K 2254に準拠して常圧残油の蒸留性状を測定した。
[触媒の性状]
各実施例および比較例に使用した触媒について、以下の評価を行った。
バナジウム等の元素分析については650℃で1時間焼成した後、モリブデンおよびバナジウムについては灰分を酸で溶解後、誘導結合プラズマ発光吸光分析法にて、また、コバルトおよびニッケルについては灰分と四ほう酸リチウムの混合物を高周波過熱でビードを作り、蛍光X線分析法で分析した。炭素含有量についても、15%(触媒中の炭素分含有量は、対象触媒を400℃以上で減量しなくなるまで酸化処理したものを基準として、対象触媒中の炭素の質量%で表わすものとする、以下同じ)以下、好ましくは10%以下とすることが望ましい。炭素含有量は使用済み段階では10〜70%程度であることが多いが、再生処理により炭素分を触媒上から除去しその含有量を低減できる。炭素分が多すぎるとこれが触媒表面を覆い触媒活性を低下させるが、再生処理により炭素含有量を減少させれば活性を回復させることができる。なお、炭素、硫黄の分析は粉砕試料をC−S同時分析計で分析した。触媒の平均長さはノギスにて任意に抽出した10粒の粒子の断面に垂直方向の長さを測定して平均した。1粒の平均外表面積及び平均体積は粒子断面積の形状と平均長さから計算で求めた。
[生成油の性状]
各実施例および比較例で水素化精製処理により原料重油から得られた生成油について、上記の原料重油の性状の評価と同じ評価を行った。生成油の性状の評価方法は、上記の原料重油の性状の評価方法と同じであるので、生成油の性状の評価方法の説明は省略する。
[各実施例および比較例で使用する新触媒の製造]
630gの酸化モリブデンおよびNiO換算で150gの塩基性炭酸ニッケルを、りんご酸180gを用いてイオン交換水に溶解させ、2000ミリリットルの含浸液を作製した。この含浸液の水分量を、下記担体の吸水量に見合うように調製し、4,000gの四葉型アルミナ担体(比表面積230m2/g、平均細孔径120オングストローム、細孔容量0.69ml/g)をこの含浸液に15分間含浸させた。含浸液を含浸させたアルミナ担体を120℃で3時間乾燥し、500℃で5時間焼成し、新触媒1を得た。
[各実施例および比較例で使用する再生触媒の製造]
(実施例1)
−新触媒による水素化精製処理−
図1に示すように下降流型固定床反応器を4ベッド(体積基準で4等分)に分割し、最上流部ベッド( 「第1ベッド」という、以下同様)に市販の脱メタル触媒を、残り3ベッド(第2〜第4ベッド)に新触媒1を充填した。なお、新触媒1の物性およびメタル許容量を下記の表1に示す。通常の予備硫化処理を行った後、下記の表2に示す性状の常圧残油1を用いて、下記の表3に示す反応条件1で、硫黄分が一定(0.3質量%以下)になるよう反応温度を調整しながら330日間、水素化精製処理を行った。330日目の反応温度は396 ℃ であった。水素化精製処理により常圧残油1から得られた生成油1の性状を下記の表4に示す。
−再生処理−
上記反応器中の触媒1を軽油により洗浄し、さらに窒素ガスを流通させながら乾燥および冷却した後、反応器の第2〜4ベッドから使用済触媒を取り出して、よく混合して使用済触媒1を得た。なお、使用済触媒1の物性およびメタル許容量を下記の表1に示す。その後、ふるい分けにより使用済触媒1から塊状物および粉化物を除去した。塊状物および粉化物を除去した、約300gの使用済触媒1を、回転式焼成炉(回転速度:5回転/分)を使用して100%窒素ガスを100cc/分の流量で供給しながら、300℃の加熱温度で1時間乾燥処理した。その後、50%窒素ガス−50%空気の混合ガスを100cc/分の流量で供給しながら、450℃の焼成温度で3時間焼成し、焼成した使用済触媒1を冷却後、ふるい分けにより塊状物および粉化物を使用済触媒1から除去し、再生触媒1を得た。再生触媒1の物性およびメタル許容量を下記の表1に示す。なお、VA2の値は、後述の比較例1のV2の値を使用した。
−再生触媒による水素化精製処理−
下降流型固定床反応器を4ベッド(体積基準で4等分)に分割し、第1ベッドに市販脱メタル触媒を、そのすぐ下の第2〜第4ベッドに再生触媒1を充填した。これを、通常の予備硫化処理を行った後、下記の表2に示す性状の常圧残油2を用いて、下記の表3に示す反応条件2で、硫黄分が一定(0.3質量%以下)になるよう反応温度を調整しながら330日間、水素化精製処理を行った。330日目の反応温度は398 ℃ であった。水素化精製処理により常圧残油2から得られた生成油2Aの性状を下記の表4に示す。なお、下降流型固定床反応器は新触媒による水素化精製処理に使用したものと同じであるが、常圧残油1よりもバナジウムの含有量が低い常圧残油2を原料重油として用いることにより、この反応器をバナジウムの堆積が少ない他の反応器とみなすことができる。
−再生処理−
上記使用済みの触媒1の再生処理と同様な方法で、使用済みの再生触媒1を再生処理して、再生触媒2Aを得た。再生触媒2Aの物性およびメタル許容量を下記の表1に示す。
(比較例1)
−新触媒による水素化精製処理−
実施例1と同じように、下記の表2に示す性状の常圧残油1と新触媒1とを用いて、下記の表3に示す反応条件1で、水素化精製処理を行った。
−再生処理−
実施例1と同じように、使用済触媒1を再生して、再生触媒1を得た。
−再生触媒による水素化精製処理−
下降流型固定床反応器を4ベッド(体積基準で4等分)に分割し、第1ベッドに市販脱メタル触媒を、そのすぐ下の第2〜第4ベッドに再生触媒1を充填した。これを、通常の予備硫化処理を行った後、下記の表2に示す性状の常圧残油1を用いて、下記の表3に示す反応条件1で、硫黄分が一定(0.3質量%以下)になるよう反応温度を調整しながら330日間、水素化精製処理を行った。330日目の反応温度は408 ℃ であった。水素化精製処理により常圧残油1から得られた生成油2Bの性状を下記の表4に示す。
−再生処理−
上記使用済みの触媒1の再生処理と同様な方法で、使用済みの再生触媒1を再生処理して、再生触媒2Bを得た。再生触媒2Bの物性およびメタル許容量を下記の表1に示す。
Figure 2015189771
Figure 2015189771
Figure 2015189771
Figure 2015189771
実施例1および比較例1の結果から、MPr1の値が0未満になるような使用済触媒であっても、MPr2の値が0以上になる他の装置に使用することにより、使用済触媒をさらに所定期間使用できることがわかった。なお、実施例1の生成油2Aの硫黄分の割合は、比較例1の生成油2Bの硫黄分の割合よりも大きいが、触媒に与える負荷の低い装置では生成油の硫黄分の目標値が高いので、実施例1の使用済触媒の使用については問題ない。一方、比較例1の使用済触媒では、触媒に与える負荷の高い装置を想定しており、生成油の硫黄分の目標値も低いので、比較例1の生成油2Bの性状は不十分である。
1 第1ベッド
2 第2ベッド
3 第3ベッド
4 第4ベッド

Claims (3)

  1. 1つの重油脱硫装置に充填され、下記の式(1)で表されるメタル許容量MPr1が0未満となる重油脱硫触媒を抜き出す工程と、
    前記抜き出された重油脱硫触媒を再生する工程と、
    前記再生された重油脱硫触媒を、他の異なる少なくとも1つの重油脱硫装置に充填する工程とを有することを特徴とする重油脱硫触媒の再生利用方法。
    ・MPr1= (PV/2Vv)×{8×105 ×(PD)1.3 }×(Sp/Vp)−(VA1+VA2) ・・・(1)
    式(1)において、各記号は各々以下を表す。
    PV :新触媒時の細孔容積(m3 /kg)
    Vv :1kgの新触媒上にバナジウムが1質量%堆積したときのそれを硫化バナジウムとみなしたときの体積= 3.8×10-6(m3 /%kg)
    PD :新触媒時の平均細孔直径(m)
    Sp :新触媒時の1粒の平均外表面積(m2
    Vp :新触媒時の1粒の平均体積(m3
    VA1 :元の装置で蓄積するバナジウム堆積量(質量%)(新触媒基準)
    VA2 :同じ装置で再生した触媒を使用した場合のバナジウム堆積量(質量%)(新触媒基準)
  2. 前記再生された重油脱硫触媒を、他の異なる少なくとも1つの重油脱硫装置に充填する工程において、
    前記再生された重油脱硫触媒が、下記の式(2)で表されるメタル許容量MPr2が0以上となるように異なる重油脱硫装置に充填される請求項1に記載の重油脱硫触媒の再生利用方法。
    ・MPr2= (PV/2Vv)×{8×105 ×(PD)1.3 }×(Sp/Vp)−(VA1+VB1) ・・・ (2)
    式(2)において、各記号は各々以下を表す。
    PV :新触媒時の細孔容積(m3 /kg)
    Vv :1kgの新触媒上にバナジウムが1質量%堆積したときのそれを硫化バナジウムとみなしたときの体積= 3.8×10-6(m3 /%kg)
    PD :新触媒時の平均細孔直径(m)
    Sp :新触媒時の1粒の平均外表面積(m2
    Vp :新触媒時の1粒の平均体積(m3
    VA1 :元の装置で蓄積するバナジウム堆積量(質量%)(新触媒基準)
    VB1 :新たな装置で再生した触媒を使用した場合に蓄積するバナジウム堆積量(質量%)(新触媒基準)
  3. 前記式(2)で表されるメタル許容量MPr2が1以上5以下となるように、異なる重油脱硫装置に充填される請求項2に記載の重油脱硫触媒の再生利用方法。
JP2014065540A 2014-03-27 2014-03-27 重油脱硫触媒の再生利用方法 Active JP6335575B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014065540A JP6335575B2 (ja) 2014-03-27 2014-03-27 重油脱硫触媒の再生利用方法
KR1020167026211A KR102297022B1 (ko) 2014-03-27 2015-03-26 중유 탈황 촉매의 재생 이용 방법
PCT/JP2015/059504 WO2015147222A1 (ja) 2014-03-27 2015-03-26 重油脱硫触媒の再生利用方法
CN201580016377.9A CN106459781B (zh) 2014-03-27 2015-03-26 重油脱硫催化剂的再生利用方法
TW104110047A TWI652339B (zh) 2014-03-27 2015-03-27 Recycling method for heavy oil desulfurization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065540A JP6335575B2 (ja) 2014-03-27 2014-03-27 重油脱硫触媒の再生利用方法

Publications (2)

Publication Number Publication Date
JP2015189771A true JP2015189771A (ja) 2015-11-02
JP6335575B2 JP6335575B2 (ja) 2018-05-30

Family

ID=54195726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065540A Active JP6335575B2 (ja) 2014-03-27 2014-03-27 重油脱硫触媒の再生利用方法

Country Status (5)

Country Link
JP (1) JP6335575B2 (ja)
KR (1) KR102297022B1 (ja)
CN (1) CN106459781B (ja)
TW (1) TWI652339B (ja)
WO (1) WO2015147222A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US20210214634A1 (en) * 2020-01-12 2021-07-15 Vijay Sukhdeo Nano technology to reduce sulfur content

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129271A (ja) * 1998-10-27 2000-05-09 Idemitsu Kosan Co Ltd 触媒の充填、抜き出し方法
JP2013212447A (ja) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd 重質油水素化処理触媒の再生方法及び使用方法並びに重質油水素化処理触媒。

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527635A (en) 1975-07-08 1977-01-20 Fuji Electric Co Ltd Wide-area audio response system
JP3527635B2 (ja) 1998-05-26 2004-05-17 出光興産株式会社 重質油の水素化脱硫方法
TW548329B (en) * 1998-09-30 2003-08-21 Idemitsu Kosan Co Regenerated hydrogenation catalyst and methods of hydrogenating heavy oil
JP3708381B2 (ja) 1998-09-30 2005-10-19 出光興産株式会社 重質油水素化処理触媒の再生方法及び再生水素化処理触媒
CN102773107B (zh) * 2011-05-10 2016-01-20 中国石油化工股份有限公司 一种金属Ni加氢催化剂的再生方法
CN103272653B (zh) * 2013-06-09 2015-01-07 神华集团有限责任公司 一种失活催化剂再生和密度分级系统及其工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129271A (ja) * 1998-10-27 2000-05-09 Idemitsu Kosan Co Ltd 触媒の充填、抜き出し方法
JP2013212447A (ja) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd 重質油水素化処理触媒の再生方法及び使用方法並びに重質油水素化処理触媒。

Also Published As

Publication number Publication date
TW201542800A (zh) 2015-11-16
JP6335575B2 (ja) 2018-05-30
WO2015147222A1 (ja) 2015-10-01
CN106459781B (zh) 2018-06-15
CN106459781A (zh) 2017-02-22
KR20160138413A (ko) 2016-12-05
KR102297022B1 (ko) 2021-09-02
TWI652339B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
JP4610664B1 (ja) 再生水素化処理用触媒の製造方法及び石油製品の製造方法
US20180002617A1 (en) Processing of heavy hydrocarbon feeds
WO1999065604A1 (fr) Catalyseur d'hydrogenation et procede d'hydrogenation d'huile lourde
JP6335575B2 (ja) 重油脱硫触媒の再生利用方法
US10358608B2 (en) Process for hydrocracking heavy oil and oil residue
JP6420961B2 (ja) 重油脱硫触媒の再生利用方法
WO1999061557A1 (fr) Procede d'hydrotraitement pour des huiles residuelles
JP4891934B2 (ja) 再生水素化処理用触媒の製造方法及び石油製品の製造方法
JP3715893B2 (ja) 水素化処理触媒の再生方法
KR102329701B1 (ko) 사용된 수소처리 촉매의 회생 방법
JP3957122B2 (ja) 重質炭化水素油の水素化精製方法
JP3708381B2 (ja) 重質油水素化処理触媒の再生方法及び再生水素化処理触媒
JP3516383B2 (ja) 重質油の水素化処理方法
JP3527635B2 (ja) 重質油の水素化脱硫方法
JP2004161786A (ja) 重質油水素化処理触媒の再生方法
JPH11335676A (ja) 重質油の水素化脱窒素方法
JP5695548B2 (ja) 予備硫化済み再生水素化処理用触媒の製造方法、再生水素化処理用触媒の製造方法、水素化処理用触媒の再生処理条件の選別方法、及び石油製品の製造方法
JP2000109852A (ja) 重質油の水素化処理方法
KR20010032428A (ko) 재생 수소화 처리촉매 및 중질유의 수소화 처리방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180501

R150 Certificate of patent or registration of utility model

Ref document number: 6335575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150