JP2015170560A - 正極活物質及び非水電解質二次電池 - Google Patents

正極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
JP2015170560A
JP2015170560A JP2014046297A JP2014046297A JP2015170560A JP 2015170560 A JP2015170560 A JP 2015170560A JP 2014046297 A JP2014046297 A JP 2014046297A JP 2014046297 A JP2014046297 A JP 2014046297A JP 2015170560 A JP2015170560 A JP 2015170560A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014046297A
Other languages
English (en)
Inventor
耕司 大平
Koji Ohira
耕司 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014046297A priority Critical patent/JP2015170560A/ja
Publication of JP2015170560A publication Critical patent/JP2015170560A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高性能であり、かつ安全性に優れた正極活物質及び非水電解質二次電池を提供すること。
【解決手段】本発明は、ニッケルを含有するスピネル構造のマンガン酸リチウムであって、AlとVを含有し、XRDでの31°のピーク強度(I)と、38°のピーク強度(I)と、の強度比(I/I)が0.1以下である正極活物質及びこれを用いてなる非水電解質二次電池である。
【選択図】なし

Description

本発明は、正極活物質及びそれを用いてなる非水電解質二次電池に関する。
ノート型コンピュータ、携帯電話、デジタルカメラ等電子機器の普及に伴い、これら電子機器を駆動するための二次電池の需要が拡大している。近年、これら電子機器においては、高機能化の進展に伴い消費電力が増大していることや、小型化が期待されていることから、二次電池の性能の向上が求められている。二次電池の中でも非水電解質二次電池(特に、リチウムイオン二次電池)は高容量化が可能であることから、種々の電子機器への利用が進められている。
非水電解質二次電池は、一般に、正極活物質を有する正極活物質層を正極集電体の表面に形成した正極と、負極活物質を有する負極活物質層を負極集電体の表面に形成した負極とが、非水電解質(非水電解液)を介して接続され、電池ケースに収納される構成を有している。
非水電解質二次電池の代表例であるリチウムイオン二次電池では、正極活物質としてリチウム遷移元素複合酸化物が用いられている。そして、マンガン酸リチウムスピネルは原料が安価であり、出力密度が大きく電位が高いという特徴がある一方で、充放電サイクルの繰り返しに伴って徐々に放電容量が減少し、良好なサイクル特性が得られないという問題があった。
この問題に対して、特許文献1に、マンガン酸リチウムの結晶構造(スピネル型)の安定化を図ることを目指して、所定の構造及び熱的特性を有する正極活物質を用いることで、リチウム二次電池のサイクル特性が向上することが開示されている。
特開2004−14522号公報
その上で、特許文献1に記載のリチウム二次電池ではさらなる性能の向上、特に安全性の向上が求められている。具体的には、スピネル型のマンガン酸リチウム(リチウム遷移金属元素複合酸化物)は、充電時の熱分解により、酸素(ガス)が放出されるという問題があった。酸素(ガス)が放出されると、放出された酸素との反応による発熱(発火)や、放出されたガスが体積の膨張を招き、二次電池自体の損傷を生じさせる問題があった。
本発明は上記実情に鑑みてなされたものであり、高性能であり、かつ安全性に優れた非水電解質二次電池を提供できる正極活物質及び非水電解質二次電池を提供することを課題とする。
上記課題を解決するために、本発明者らは正極活物質について検討を重ねた結果本発明をなすに至った。
本発明の正極活物質は、ニッケルを含有するスピネル構造のマンガン酸リチウムであって、アルミニウムとバナジウムを含有し、X線回折により得られる31°のピーク強度(I)と、38°のピーク強度(I)と、の強度比(I/I)が0.1以下であることを特徴とする。
また、本発明の非水電解質二次電池は、請求項1〜4のいずれかに記載の正極活物質(本発明の正極活物質)を用いてなることを特徴とする。
本発明の正極活物質は、逆スピネル構造をもたらすVを含有したことで、逆スピネル構造の増加によりX線回折により得られる31°のピークが大きくなる。ピーク強度比(I/I)が0.1以下となる、逆スピネル構造の形成が抑制された正極活物質では、スピネル構造と同様の充放電容量を維持しつつ、充電時に酸素(ガス)が放出されることが抑えられる効果を発揮する。
そして、本発明の非水電解質二次電池は、本発明の正極活物質を用いてなるものであり、充電時に酸素(ガス)が放出されることが抑えられる効果を発揮する。
実施形態のリチウムイオン二次電池の構成を示す断面図である。
本発明の正極活物質及び非水電解質二次電池について、実施の形態を用いて具体的に説明する。
(実施形態)
本形態は、図1にその構成を概略断面図で示したコイン型のリチウムイオン二次電池1である。
本形態のリチウムイオン二次電池1は、正極ケース11,シール材12(ガスケット),非水電解質13,正極14,正極集電体140,正極合剤層141,セパレータ15,負極ケース16,負極17,負極集電体170,負極合剤層171,保持部材18などを有する。
本形態のリチウムイオン二次電池1の正極14は、正極活物質を含有する正極合剤層141を有する。正極合剤層141は、正極活物質以外に、必要に応じて、バインダ,導電材等の部材を備える。
[正極活物質]
本形態の正極活物質は、ニッケルを含有するスピネル構造のマンガン酸リチウムであり、更に、アルミニウムとバナジウムを含有する。すなわち、本発明の正極活物質は、LiM(M:Mn,Ni,Al及びV)で示される化合物である。スピネル構造のマンガン酸リチウム(LiMn)は、高い電池性能(高い正極電位)を得られることが知られている。
本形態の正極活物質は、スピネル構造のマンガン酸リチウム(LiMn)のMnの一部がNi,Al及びVで置換された構成となっている。Mnの一部が他の元素で置換されることで、より高い電池性能を得られる。
本形態の正極活物質は、X線回折(XRD)により得られる31°のピーク強度(I)と、38°のピーク強度(I)と、の強度比(I/I)が0.1以下である。31°のピークは、逆スピネル構造に対応したピークであり、38°のピークはスピネル構造に対応したピークである。31°のピーク及び38°のピークは、それぞれ対応する構造を示すピークであることを示し、ピーク位置が変化(ピークシフト)している場合には、変化したピーク(シフトしたピーク)を含む。
本形態の正極活物質は、Vを含有しながらスピネル構造を含むことで、構造が安定化されている。ピーク強度比が0.1以下となることで、よりスピネル構造が安定化され、その結果として、充放電容量を維持しながら、充電時に酸素(ガス)が放出されることが抑えられている。
本形態の正極活物質は、LiNiαMnβAlγδ(α+β+γ+δ=2)で表すことができる。そして、本形態の正極活物質は、アルミニウムとバナジウムを同じ割合(原子比)で含有する(上記化学式中、γ=δ)ことが好ましい。さらに、本形態の正極活物質は、ニッケルを0.4以上の原子比で有する(上記化学式中、0.4<α)ことが好ましい。
すなわち、本形態の正極活物質は、LiNiαMnβAlγδ(0.4<α,1<β<1.5,0<γ+δ(=2γ)<0.5,α+β+2γ=2)で表される化合物であることがより好ましい。更に好ましくは、α,β,γ,δが0.5≦α,1<β<1.5,0<γ+δ(=2γ)<0.5,α+β+2γ=2を満たす化合物である。
本形態の正極活物質がこれらの化合物よりなることで、上記の効果をより発揮できる。
本形態の正極活物質は、上記のように、充電時の構造の変化、すなわち、分解が抑えられている。その結果、充電状態での酸素発生が抑えられる。すなわち、本形態の正極活物質は、充電状態での酸素発生量が0.6mass%以下であることが好ましい。なお、酸素発生量は、後述の実施例に記載の方法で測定される。
[リチウムイオン二次電池]
(正極活物質以外の構成)
本形態のリチウムイオン二次電池1は、上記の正極活物質を用いること以外の構成は、従来のリチウムイオン二次電池と同様とすることができる。
(正極)
正極14は、正極活物質、導電材及び結着材を混合して得られた正極合剤を正極集電体140に塗布して正極合剤層141が形成される。
導電材は、正極14の電気伝導性を確保する。導電材としては、黒鉛の微粒子,アセチレンブラック,ケッチェンブラック,カーボンナノファイバーなどのカーボンブラック,ニードルコークスなどの無定形炭素の微粒子などを使用できるが、これらに限定されない。
結着剤は、正極活物質粒子や導電材を結着する。結着剤としては、例えば、ポリフッ化ビニリデン(PVDF),EPDM,SBR,NBR,フッ素ゴムなどを使用できるが、これらに限定されない。
正極合剤は、溶媒に分散させて正極集電体140に塗布される。溶媒としては、通常は結着剤を溶解する有機溶媒を使用する。例えば、N−メチル−2−ピロリドン(NMP),ジメチルホルムアミド,ジメチルアセトアミド,メチルエチルケトン,シクロヘキサノン,酢酸メチル,アクリル酸メチル,ジエチルトリアミン,N−N−ジメチルアミノプロピルアミン,エチレンオキシド,テトラヒドロフランなどを挙げることができるが、これらに限定されない。また、水に分散剤、増粘剤などを加えてポリテトラフルオロエチレン(PTFE)などで正極活物質をスラリー化する場合もある。
正極集電体140は、例えば、アルミニウム,ステンレスなどの金属を加工したもの、例えば板状に加工した箔,網,パンチドメタル,フォームメタルなどを用いることができるが、これらに限定されない。
(非水電解質)
非水電解質13は、支持塩が有機溶媒に溶解してなるものを用いる。
非水電解質13の支持塩は、その種類が特に限定されるものではないが、LiPF,LiBF,LiClO及びLiAsFから選ばれる無機塩,これらの無機塩の誘導体,LiSOCF,LiC(SOCF及びLiN(SOCF,LiN(SO,LiN(SOCF)(SO),から選ばれる有機塩、並びにこれらの有機塩の誘導体の少なくとも1種であることが望ましい。これらの支持塩は、電池性能を更に優れたものとすることができ、かつその電池性能を室温以外の温度域においても更に高く維持することができる。支持塩の濃度についても特に限定されるものではなく、用途に応じ、支持塩及び有機溶媒の種類を考慮して適切に選択することが好ましい。
支持塩が溶解する有機溶媒(非水溶媒)は、通常の非水電解質に用いられる有機溶媒であれば特に限定されるものではなく、例えばカーボネート類,ハロゲン化炭化水素,エーテル類,ケトン類,ニトリル類,ラクトン類,オキソラン化合物等を用いることができる。特に、プロピレンカーボネート,エチレンカーボネート,1,2−ジメトキシエタン,ジメチルカーボネート,ジエチルカーボネート,エチルメチルカーボネート,ビニレンカーボネート等及びそれらの混合溶媒が適当である。例に挙げたこれらの有機溶媒のうち、特にカーボネート類,エーテル類からなる群より選ばれた1種以上の非水溶媒を用いることにより、支持塩の溶解性、誘電率及び粘度において優れ、電池の充放電効率が高いので、好ましい。
本形態のリチウムイオン二次電池1において、最も好ましい非水電解質13は、支持塩が有機溶媒に溶解したものである。
(負極)
負極17は、負極活物質と結着剤とを混合して得られた負極合剤を負極集電体170の表面に塗布して負極合剤層171が形成される。
負極活物質は、従来の負極活物質を用いることができる。Sn,Si,Sb,Ge,Cの少なくともひとつの元素を含有する負極活物質を挙げることができる。これらの負極活物質のうち、Cは、リチウムイオン二次電池1の電解質イオンを吸蔵・脱離可能な(Li吸蔵能がある)炭素材料であることが好ましく、アモルファスコート天然黒鉛であることがより好ましい。
また、これらの負極活物質のうち、Sn、Sb、Geは、特に、体積変化の多い合金材料である。これらの負極活物質は、Ti−Si、Ag−Sn、Sn−Sb、Ag−Ge、Cu−Sn、Ni−Snなどのように、別の金属と合金をなしていてもよい。
導電材としては、炭素材料、金属粉、導電性ポリマーなどを用いることができる。導電性と安定性の観点から、アセチレンブラック、ケッチェンブラック、カーボンブラックなどの炭素材料を使用することが好ましい。
結着材としては、PTFE、PVDF、フッ素樹脂共重合体(四フッ化エチレン・六フッ化プロピレン共重合体)、SBR、アクリル系ゴム、フッ素系ゴム、ポリビニルアルコール(PVA)、スチレン・マレイン酸樹脂、ポリアクリル酸塩、カルボキシルメチルセルロース(CMC)などを挙げることができる。
溶媒としては、NMPなどの有機溶媒、又は水などを挙げることができる。
負極集電体170としては、従来の集電体を用いることができ、銅、ステンレス、チタンあるいはニッケルなどの金属を加工したもの、例えば板状に加工した箔,網,パンチドメタル,フォームメタルなどを用いることができるが、これらに限定されない。
(その他の構成)
正極ケース11と負極ケース16は絶縁性のシール材12を介して内蔵物を密封する。内蔵物は、非水電解質13,正極14,セパレータ15,負極17,保持部材18などである。
正極ケース11には正極集電体140を介して正極合剤層141が面接触して導電する。負極ケース16には負極集電体170を介して負極合剤層171が面接触する。
正極合剤層141と負極合剤層171との間に介在させるセパレータ15は、正極合剤層141と負極合剤層171とを電気的に絶縁し、非水電解質13を保持する。セパレータ15は、例えば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いる。セパレータ15は、二つの合剤層141,171の電気的な絶縁を担保するために、合剤層141,171よりも大きな寸法で成形される。
保持部材18は、正極集電体140,正極合剤層141,セパレータ15,負極合剤層171,負極集電体170を定位置に保持する役割を担う。弾性片やバネ等の弾性部材を用いると、定位置に保持しやすい。
(その他の形態)
本発明の非水電解質二次電池は、その形状には特に制限を受けず、上記のコイン型のリチウムイオン二次電池以外に、円筒型、角型等、種々の形状の電池や、ラミネート外装体に封入した不定形状の二次電池とすることができる。
以下、実施例を用いて本発明を説明する。
本発明を具体的に説明するための実施例として、正極活物質及びそれを用いたリチウムイオン二次電池を製造した。実施例では、上記の図1に示したリチウムイオン二次電池を製造した。
(実施例)
[正極活物質]
表1に示した組成の正極活物質を準備した。それぞれの正極活物質の組成は、ICPにて確認した。
Figure 2015170560
表1に示したように、試料1〜5の正極活物質は、ニッケルを含有するスピネル構造のマンガン酸リチウムである。そして、試料1〜3の正極活物質は、アルミニウムとバナジウムを含有している。その上で、試料1〜2の正極活物質は、XRDでのピーク強度比(I/I)が0.1以下である。
[リチウムイオン二次電池]
リチウムイオン二次電池は、図1にその構成を示したコイン型のリチウムイオン二次電池1と同様の構成である。
正極は、上記の正極活物質90質量部,導電材(アセチレンブラック)5質量部,バインダ(PVDF)5質量部を溶媒(NMP)に溶解して得られた正極合材をアルミニウム箔よりなる正極集電体140に塗布して正極合剤層141を形成したものを用いた。
負極(対極)には、金属リチウムを用いた。図1中の負極合剤層171に相当する。
非水電解質13は、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%との混合溶媒に、LiPFを1モル/リットルとなるように溶解させて調製されたものを用いた。
リチウムイオン二次電池1は、組み立てられた後に、1/3C×2サイクルの充放電での活性化処理が行われた。
以上により、各試料のリチウムイオン二次電池1が製造された。
[評価]
製造された各試料のリチウムイオン二次電池1の評価を、下記の通り行った。
(電池容量)
各試料のリチウムイオン二次電池1の初回放電容量(電池容量)を測定した。測定結果を表1にあわせて示した。
初回放電容量の測定は、充電は、CC−CV(定電流定電圧)充電で行い、電流値は、1/3Cとし、電圧値は4.85Vとした。放電は、CC(定電流)放電で行い、電流値は、1/3Cとし、電圧値は3.5Vとした。放電時の電池容量を電池容量とした。
表1に示したように、本発明に該当する試料1〜2のリチウムイオン二次電池は、100mAh/g以上の初回放電容量となっており、他の試料3〜4のおよそ80mAh/g程度の場合よりも、初回放電容量が高いことがわかる。すなわち、本発明に該当する試料1〜2のリチウムイオン二次電池は、初回放電容量(電池容量)に優れていることが確認できる。
(酸素発生量)
製造された各試料のリチウムイオン二次電池1を満充電し、その後、二次電池1を分解し正極を取り出した。
取り出された正極を加熱し、発生した酸素量を測定した。測定された酸素量を表1にあわせて示した。
酸素量の測定は、TPD−MSを用いて行った。具体的には、ヘリウム雰囲気下で、20℃/minの昇温速度で1000℃まで昇温し、検出した酸素量を積算した。なお、正極活物質の合剤質量(重量)に対して得られた酸素ガス量(質量)を、mass%て表記した。
表1に示したように、本発明に該当する試料1〜2のリチウムイオン二次電池は、試料3〜5のリチウムイオン二次電池よりも、正極の酸素発生量が少なく、発生量が半分程度になっている。特に、Al及びVを含有しない試料5と比較すると、正極の酸素発生量が格段に少なくなっていることがわかる。すなわち、本発明に該当する試料1〜2は、他の試料と比較して、正極からの酸素の放出が少なくなっており、放出された酸素に起因する不具合の発生が抑えられ、正極の安全性に優れていることがわかる。
以上に示したように、本発明に該当する試料1〜2のリチウムイオン二次電池は、高い電池性能を備えるとともに高い安全性を有していることが確認できた。
1:リチウムイオン二次電池
11:正極ケース
12:シール材(ガスケット)
13:非水電解質
14:正極
140:正極集電体
141:正極合剤層
15:セパレータ
16:負極ケース
17:負極
170:負極集電体
171:負極合剤層
18:保持部材

Claims (5)

  1. ニッケルを含有するスピネル構造のマンガン酸リチウムであって、
    アルミニウムとバナジウムを含有し、
    X線回折により得られる31°のピーク強度(I)と、38°のピーク強度(I)と、の強度比(I/I)が0.1以下であることを特徴とする正極活物質。
  2. アルミニウムとバナジウムを同じ割合で含有する請求項1記載の正極活物質。
  3. ニッケルを0.4以上の原子比で有する請求項1〜2のいずれか1項に記載の正極活物質。
  4. 充電状態での酸素発生量が0.6mass%以下である請求項1〜3のいずれか1項に記載の正極活物質。
  5. 請求項1〜4のいずれかに記載の正極活物質を用いてなることを特徴とする非水電解質二次電池。
JP2014046297A 2014-03-10 2014-03-10 正極活物質及び非水電解質二次電池 Pending JP2015170560A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046297A JP2015170560A (ja) 2014-03-10 2014-03-10 正極活物質及び非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046297A JP2015170560A (ja) 2014-03-10 2014-03-10 正極活物質及び非水電解質二次電池

Publications (1)

Publication Number Publication Date
JP2015170560A true JP2015170560A (ja) 2015-09-28

Family

ID=54203101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046297A Pending JP2015170560A (ja) 2014-03-10 2014-03-10 正極活物質及び非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP2015170560A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200133723A (ko) 2018-03-20 2020-11-30 키모토 컴파니 리미티드 기능성 부재
KR20200135295A (ko) 2018-03-20 2020-12-02 키모토 컴파니 리미티드 기능성 부재

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200133723A (ko) 2018-03-20 2020-11-30 키모토 컴파니 리미티드 기능성 부재
KR20200135295A (ko) 2018-03-20 2020-12-02 키모토 컴파니 리미티드 기능성 부재

Similar Documents

Publication Publication Date Title
JP4985524B2 (ja) リチウム二次電池
JP5050452B2 (ja) 非水電解質二次電池
JP2017528885A (ja) 再充電可能バッテリのための電解質溶液
JP2006286599A (ja) 非水二次電池用負極
CN113078309A (zh) 正极活性材料及使用其的电化学装置和电子装置
JP6477152B2 (ja) 正極材料,非水電解質二次電池用正極及び非水電解質二次電池
JP6504507B2 (ja) リチウム電池
JP2007103246A (ja) 非水電解質二次電池
JPWO2013183769A1 (ja) リチウムイオン二次電池
JP6406049B2 (ja) 正極材料,非水電解質二次電池用正極及び非水電解質二次電池
JP6477153B2 (ja) 正極材料、非水電解質二次電池用正極及び非水電解質二次電池
JP2015170560A (ja) 正極活物質及び非水電解質二次電池
JPWO2019065196A1 (ja) 非水電解質二次電池
WO2017068985A1 (ja) リチウムイオン電池
JP4581503B2 (ja) 非水電解質電池
JP6394978B2 (ja) 正極材料,非水電解質二次電池用正極及び非水電解質二次電池
JPWO2017130245A1 (ja) リチウム電池
JP4158212B2 (ja) リチウム二次電池の製造方法およびリチウム二次電池用正極活物質の製造方法
JP2007294654A (ja) 電気化学キャパシタ
JP7015102B2 (ja) 正極材料,非水電解質二次電池用正極及び非水電解質二次電池
JP2016192314A (ja) 正極材料、非水電解質二次電池用正極及び非水電解質二次電池
JP5228393B2 (ja) リチウムイオン二次電池
JP5028965B2 (ja) 非水電解液二次電池
JP2016192310A (ja) 正極材料,非水電解質二次電池用正極及び非水電解質二次電池
JP6467322B2 (ja) 非水電解質及び非水電解質二次電池