JP2015155838A - 含銅塩化ニッケル溶液中の銅濃度の定量分析方法 - Google Patents

含銅塩化ニッケル溶液中の銅濃度の定量分析方法 Download PDF

Info

Publication number
JP2015155838A
JP2015155838A JP2014030718A JP2014030718A JP2015155838A JP 2015155838 A JP2015155838 A JP 2015155838A JP 2014030718 A JP2014030718 A JP 2014030718A JP 2014030718 A JP2014030718 A JP 2014030718A JP 2015155838 A JP2015155838 A JP 2015155838A
Authority
JP
Japan
Prior art keywords
copper
chloride solution
concentration
containing nickel
nickel chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014030718A
Other languages
English (en)
Other versions
JP6150074B2 (ja
Inventor
雅子 明星
Masako Myojo
雅子 明星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014030718A priority Critical patent/JP6150074B2/ja
Publication of JP2015155838A publication Critical patent/JP2015155838A/ja
Application granted granted Critical
Publication of JP6150074B2 publication Critical patent/JP6150074B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

【課題】ニッケル製錬における塩素浸出工程で得られる、含銅塩化ニッケル溶液中の銅濃度の定量分析方法を提供する。
【解決手段】ニッケル製錬工程における含銅塩化ニッケル溶液へ、塩化物イオンを含む溶液を添加して希釈液とし、当該希釈液の吸光度を測定し、得られた吸光度から含銅塩化ニッケル溶液中の銅濃度を求める含銅塩化ニッケル溶液中の銅濃度の定量分析方法を提供する。
【選択図】図9

Description

本発明は、ニッケルの製錬工程における含銅塩化ニッケル溶液中の銅濃度の定量分析方法に関する。
ニッケルの製錬法では、乾式製錬から産出されたニッケルマット等に硫黄を加え、ニッケル、銅、コバルトなどの混合硫化物を得る。そして当該得られた混合硫化物に対して塩素浸出を行ない、含有されるニッケル、銅、コバルトなどの金属の大部分を浸出した浸出溶液を得る。そして、当該浸出溶液から金属不純物などを除去した後に、電解採取によって電気ニッケルを製造する。
特許文献1は、ニッケル硫化物とニッケルマットとを原料として用い、ニッケルを回収する製錬プロセスの一例が示されている。
当該製錬プロセスは、ニッケル酸化鉱から湿式製錬法により製造したニッケル硫化物を塩素浸出する方法である。即ち、前記ニッケル硫化物と伴に、ニッケルマットを液中の銅イオンにより置換浸出する。そして、当該置換浸出工程から得られる銅とニッケルとを含む置換残渣を、含銅塩化ニッケル溶液中に存在させながら塩素浸出に付す、ニッケル硫化物の塩素浸出方法である。
前記特許文献1の塩素浸出反応は、次の化学反応式(I)と化学反応式(II)、(III)とで表される二段階からなる。
Cl(g)+2Cu→2Cl+2Cu2+・・・化学反応式(I)
NiS(s)+2Cu2+→Ni2++2Cu+S・・・化学反応式(II)
CuS(s)+2Cu2+→4Cu+S(s)・・・化学反応式(III)
化学反応式(I)により、塩素ガスが液中へ吸収され、1価の銅イオンが2価の銅イオンへ酸化される。すると、化学反応式(II)により、2価の銅イオンにより金属成分が浸出される。一方、化学反応式(III)による、前記置換浸出残渣中の銅の浸出反応が行われる。化学反応式(III)で生成した1価の銅イオンは、化学反応式(I)で示される塩素ガスの吸収反応に利用されることになる。
特許文献2は、特許文献1の塩素浸出工程で得られた含銅塩化ニッケル溶液の一部を電解液として用い、陽極に不溶性電極、陰極にチタン電極を用いて電解して銅粉を得る脱銅電解工程の改善に関し、当該工程において銅を効率的に除去する発明である。
具体的には、脱銅電解槽の1槽当たりの給液量、脱銅電解槽への給液中における銅濃度、および、塩素浸出工程における酸化還元電位の少なくとも3つのパラメータから、前記脱銅電解の電流効率を評価する式を予め求めておく。次に、前記脱銅電解槽の1槽当たりの給液量、および、塩素浸出工程における酸化還元電位が、所定値となるように脱銅電解工程の操業を行なう一方、目標とする電流効率を得るために必要な給液中の銅濃度を、前記電流効率評価式から求める。そして、目標とする電流効率を得るために必要な給液中の銅濃度を実現するために、前記脱銅電解工程の操業条件を制御する発明である。
特許文献3は、特許文献2の脱銅電解工程に関し、新規の水を添加することなく、またニッケル及び塩素濃度を大幅に下げることなしに脱銅電解液中の銅濃度を低下させ脱銅電解液中の銅濃度を安定した状態で給液を行うための発明である。
具体的には、図10に示すように、ニッケル電解廃液へ脱塩素処理を施して作られたアノライトの一部を脱銅電解し銅粉を得る工程に給液して、脱銅電解液の銅イオン濃度を調整する発明である。
一方、液中の銅濃度の分析方法として、例えば非特許文献1に、ヨウ素滴定法、機器分析を用いたICP発光分光分析法、原子吸光分析法や吸光光度法が記載されている。
特開2008−240009号公報 特開2001−115288号公報 特開平7−300691号公報
社団法人 日本分析化学会、p.114(1981)、「分析化学便覧」
前記特許文献1係る発明においては、含銅塩化ニッケル溶液中の銅イオンは、塩素ガスの吸収を促進させる効果がある。その為、当該含銅塩化ニッケル溶液中における銅イオンの濃度は、ニッケル浸出率向上において重要なパラメータである。
特許文献2に係る発明は、前記電流効率評価式から求めた給液中の銅濃度を実現するために、脱銅電解工程において、塩素浸出工程からの含銅塩化ニッケル溶液と、ニッケル電解工程からのニッケル電解廃液との混合比を、制御する発明である。
従って、塩素浸出工程で得られた含銅塩化ニッケル溶液中の銅濃度は、前記含銅塩化ニッケル溶液とニッケル電解廃液との混合比を決定する為のパラメータであり、脱銅電解工程における電流効率向上において重要である。
以上説明したように、ニッケル製錬における、塩素浸出工程および脱銅電解工程の両工程において、含銅塩化ニッケル溶液中の銅濃度の把握は重要である。
本発明は、上述の状況の下に為されたものであり、その解決しようとする課題は、ニッケル製錬における塩素浸出工程で得られる、含銅塩化ニッケル溶液中の銅濃度の定量分析方法を提供することである。
上述の課題を解決するため、本発明者らは研究を行った。そして、前記含銅塩化ニッケル溶液へ、塩化物イオンを含む溶液を添加して希釈液とし、当該希釈液の吸光度を測定することにより、当該含銅塩化ニッケル溶液中の銅濃度を求めることができることに想到し、本発明を完成した。
即ち、上述の課題を解決する第1の発明は、
ニッケル製錬工程における含銅塩化ニッケル溶液中の銅濃度を定量分析する方法であって、
当該含銅塩化ニッケル溶液へ、塩化物イオンを含む溶液を添加して希釈液とし、当該希釈液の吸光度を測定し、得られた吸光度から含銅塩化ニッケル溶液中の銅濃度を求めることを特徴とする含銅塩化ニッケル溶液中の銅濃度の定量分析方法である。
第2の発明は、
前記希釈液の吸光度を測定する際、前記希釈液に吸光度検出器を浸漬し、前記希釈液の吸光度を連続的に測定することを特徴とする第1の発明に記載の含銅塩化ニッケル溶液中の銅濃度の定量分析方法である。
第3の発明は、
前記塩化物イオンを含む溶液として、前記ニッケル製錬工程におけるアノライトを用いることを特徴とする第1または第2の発明に記載の含銅塩化ニッケル溶液中の銅濃度の定量分析方法である。
第4の発明は、
前記希釈液の吸光度を測定する際、銅のクロロ錯体の吸光度を測定する第1から第3の発明のいずれかに記載の含銅塩化ニッケル溶液中の銅濃度の定量分析方法である。
第5の発明は、
前記アノライトにより希釈され吸光度を測定された後の希釈液を、ニッケル製錬工程へ戻すことを特徴とする第4の発明に記載の含銅塩化ニッケル溶液中の銅濃度の定量分析方法である。
本発明によれば、被測定液である含銅塩化ニッケル溶液へ塩化物イオンを含む溶液を添加して希釈液とし、当該希釈液の吸光度を測定し、得られた吸光度から銅濃度を求めることにより、銅濃度の定量分析を迅速に行なうことが可能となり、自動化分析も可能となった。
吸光光度法の測定原理を示す模式図である。 浸漬型の吸光度検出器を用いた吸光光度法の測定法を示す模式図である。 含銅塩化ニッケル溶液の模擬液へ吸光光度法を適用した際の、測定波長と吸光度との関係を示したグラフである。 銅濃度一定とし、塩化物イオン濃度を0〜6mol/Lまで変化させた際の、波長880nmにおける吸光度と塩化物イオン濃度の関係を示したグラフである。 含銅塩化ニッケル溶液を濃度6mol/Lの塩酸で5倍希釈した際の、波長880nmの吸光度と含銅塩化ニッケル溶液中の銅濃度との関係を示したグラフである。 含銅塩化ニッケル溶液をアノライトで5倍希釈した際の、波長880nmの吸光度と含銅塩化ニッケル溶液中の銅濃度との関係を示したグラフである。 含銅塩化ニッケル溶液を濃度6mol/Lの塩酸で5倍希釈した際の、吸光度測定に用いた光の波長と吸光度との関係を示したグラフである。 含銅塩化ニッケル溶液を濃度6mol/Lの塩酸で5倍希釈した際の、浸漬型吸光度検出器で測定した吸光度と含銅塩化ニッケル溶液中の銅濃度との関係を示したグラフである。 塩素浸出工程を有するニッケル製錬工程の1例へ本発明を組み込んだ場合の工程フロー図である。 塩素浸出工程を有するニッケル製錬工程の1例を示す工程フロー図である。
ニッケル製錬における、塩素浸出工程および脱銅電解工程の両工程において、含銅塩化ニッケル溶液中の銅濃度の把握は重要である。具体的には、塩素浸出工程および脱銅電解工程の両工程の安定化の為、高い頻度で、更には、連続的に含銅塩化ニッケル溶液中の銅濃度を定量分析して把握し、その分析値を工程へフィードバックして当該工程を制御することが重要である。
しかしながら、上述した含銅塩化ニッケル溶液中の銅濃度を分析して把握するには、以下の課題がある。
(1)被定量分析対象である含銅塩化ニッケル溶液が高濃度であるため、当該含銅塩化ニッケル溶液の給液および廃液配管に塩化物結晶が析出して、配管詰まりを引き起こす可能性がある。
(2)銅濃度の定量分析の自動化を想定した場合、上記(1)で説明した配管詰まりを回避する為、含銅塩化ニッケル溶液の給液配管の有効内径は出来るだけ大きくすることとなる。この為、分析に供する給液流量および廃液流量は、必然的に多量となる。
(3)上記(2)で説明した多量の廃液をニッケル製錬工程外に排出すると、回収金属(ニッケル)のロスとなる。
(4)上記(3)の課題を解決する為、廃液をニッケル製錬工程系内に戻すことが考えられた。しかしながら、廃液をニッケル製錬工程内に戻す為には、当該廃液に、ニッケル製錬工程とは無関係の試薬や溶媒が含有されていないことが求められる。
(5)上記(1)〜(4)に加え、含銅塩化ニッケル溶液中の銅濃度の定量分析方法は、迅速、低コスト、自動化が可能な分析方法であることが求められる。
本発明は上述の課題を解決するものである。以下、本発明の具体的な実施の形態について、1.塩素浸出工程を有するニッケル製錬工程、2.銅濃度の定量分析方法の検討、3.含銅塩化ニッケル溶液における銅濃度の定量分析への吸光光度法の適用、4.ニッケル製錬工程における銅濃度の定量分析方法、の順で図面を参照しながら詳細に説明する。
1.塩素浸出工程を有するニッケル製錬工程
図10は、特許文献3に基づいた塩素浸出工程を有するニッケル製錬工程のフロー図である。以下、図10をニッケル製錬工程のフローの一例として参照しながら本発明を説明する。
なお、図10中の矢線は、溶液またはスラリーの流れの方向を示している。
図10に示すように塩素浸出工程を有する高純度のニッケル精錬は、
(a)ニッケルマット1及び元素硫黄2を後記の含銅塩化ニッケル溶液16b及び脱銅電解廃液17との混合液19により精脱銅を行い、含銅ニッケルスラリー13及び塩化ニッケル溶液11を得るセメンテーション工程3、
(b)前記の塩化ニッケル溶液11中のコバルト、鉄等を除去して高純度化し、ニッケル電解液12を得る浄液工程4、
(c)前記のニッケル電解液12を電解して電気ニッケル9を得るニッケル電解工程5を有し、さらに、
(d)前記のセメンテーション工程3で生成した含銅ニッケルスラリー13を塩素で浸出し、含銅塩化ニッケル溶液16を得る塩素浸出工程6、
(e)前記含銅塩化ニッケル溶液16の一部である、含銅塩化ニッケル溶液16aを脱銅電解液18として用いて脱銅電解し銅粉10を得る脱銅電解工程7、を有している。
一方、前記ニッケル電解工程5で生じたニッケル電解廃液14は、脱塩素処理8を施された液(本発明において「アノライト」と記載する場合がある。)15となり、大部分は前記のニッケル電解工程5へ、アノライト15aとして給液され、一部は前記の塩素浸出工程6へアノライト15bとして給液される。
更に、前記の含銅塩化ニッケル溶液16の一部は、含銅塩化ニッケル溶液16bとして前記の脱銅電解工程7で生じる脱銅電解廃液17と混合21され、含銅塩化ニッケル溶液・脱銅電解廃液の混合液19として前記のセメンテーション工程3へ給液される。
塩素浸出工程6で浸出されて含銅ニッケル溶液16に含有された銅は、セメンテーション工程3で脱銅されるため再び残渣となる。この結果、系内の銅は塩素浸出工程6、脱銅電解工程7及びセメンテーション工程3間を循環することとなる。このままでは銅は、系外に出ることなく系内で蓄積してしまうため、脱銅電解工程7で銅を系外に払い出すことがおこなわれる。
脱銅電解工程7について説明する。
脱銅電解は、前記の含銅ニッケル溶液16aを脱銅電解液18として用い、陽極として不溶性電極を用い、陰極としてチタン電極を用いて脱銅電解して銅粉10をカソードに電着させることによりおこなわれる。カソードに電着した銅粉10は、カソードを振動することによりカソードから分離され、槽内に沈降させ、槽底部より抜き取った液を濾過し、ニッケル電解液で洗浄し、更に水で洗浄して銅粉10を回収する。
ここで、脱銅電解が十分機能しなくなると、上述したように系内に銅が蓄積し、含銅塩化ニッケル溶液16中の銅濃度が上昇してしまう。銅濃度が上昇すると脱銅電解の制御が難しくなり、ますます脱銅電解の制御が難しくなる悪循環に陥り易くなる。
銅濃度の変動を成り行きにまかせた場合、含銅塩化ニッケル溶液16aの銅濃度は一定ではなく、約30〜100g/Lの範囲で変動する。
そこで、当該銅濃度を減らす為に脱銅電解への給液量を減らすことも考えられるが、これは電槽内の銅イオン濃度が高くなり、給液及び廃液配管に塩化物結晶やカルシウム結晶が析出して、配管詰まりが頻繁に生じる、不溶性電極の塩素捕集用隔膜濾布に塩化物結晶やカルシウム結晶が析出して目詰まり等が生じる等の、問題が生じる。
また、脱銅電解液18へ温水を添加して銅濃度を下げることも考えられるが、当該添加水分を除去する為、適当な工程に脱水の工程を新たに設けなければならない。さらに、脱銅電解液18中のニッケル濃度や塩素濃度を下げ過ぎてしまえば、適正な脱銅電解が行われない問題も生じる。
上述の問題解決の為、アノライト15の一部であるアノライト15cを含銅塩化ニッケル溶液16aに混合20して脱銅電解液18とし、前記の(e)脱銅電解工程7に給液することで、脱銅電解液18の銅イオン濃度を調節する構成が採られる。
銅濃度が、例えば約0.01g/L以下と低いアノライト15cを、銅濃度が例えば約30〜100g/Lと高い含銅塩化ニッケル溶液16aに所定量混合する当該構成により、新規の水分を添加することなく、銅濃度が例えば30〜40g/Lに安定した脱銅電解液18を供給することができる。
そして、脱銅電解での脱銅電解液18中の銅濃度を40g/L以下に管理することにより、安定して約80%以上の、液中の銅イオンを全てCu2+として換算したカソード電流効率を得られる。
また、脱銅電解液18中の銅濃度を40g/L以下であれば、液中のCu2+/Cu+比が大きくなり過ぎず、脱銅電解中に生成した金属銅と脱銅電解液18中に多量に存在するCu2+とが、Cu+Cu2+→2Cu+の反応を起こすことを回避できる。この結果、イオンとなった銅が系外に払い出されないまま次工程へ行き、脱銅電解での電流効率が低下してしまう事態を回避できる。
一方、脱銅電解液18中の銅濃度が30g/L以上であれば、ニッケルがカソードに電着してしまう事態を回避できるからである。
2.銅濃度の定量分析方法の検討
「1.塩素浸出工程を有するニッケル製錬工程」にて説明した脱銅電解液18の銅濃度の変動を、例えば30〜40g/Lに安定させる為には、含銅塩化ニッケル溶液16aの銅濃度を迅速に定量分析し、当該銅濃度に応じた量のアノライト15cを混合することが肝要である。
そこで、本発明者らは、含銅塩化ニッケル溶液16aにおける銅濃度を定量分析する方法について検討を行なった。
上述したように、銅濃度の定量分析方法としては、ヨウ素滴定法、ICP発光分光分析法や原子吸光分析法、吸光光度法が用いられている。そこで、本発明者らはこれらの銅濃度の定量分析方法を用いた、含銅塩化ニッケル溶液16中における銅濃度の定量分析方法について、(1)ヨウ素滴定法、(2)ICP発光分光分析法、原子吸光分析法、(3)吸光光度法を検討した。以下、これらの定量分析方法および検討課題について説明する。
(1)ヨウ素滴定法
ヨウ素滴定法は、例えば、被測定液へヨウ化カリウムを加え、遊離したヨウ素をチオ硫酸ナトリウム標準溶液にて滴定し、指示薬の変色により得られた滴定量から銅濃度を算出する分析方法である。この為、共存成分によっては、マスキング剤やpH緩衝剤の添加が必要となる。
また、手分析を行った際は指示薬による終点判定に熟練を要するため、現場分析においては、正確さを確保できない可能性が高い。尤も、市販の自動滴定装置を用いれば終点判定は容易になり、十分な分析精度を確保することができる。しかし試薬添加や試薬調製が煩雑であるため、現場での迅速分析には不適当であると考えられた。
(2)ICP発光分光分析法、原子吸光分析法
ICP発光分光分析法や原子吸光分析法は、各装置固有のダイナミックレンジに収まる濃度に、被測定液を希釈したものを測定対象試料とし、検量線法などにより銅濃度を算出する分析方法である。
しかし、ICP発光分光分析法や原子吸光分析法は、測定装置起因の誤差要因が大きい。さらに、被測定液試料の希釈誤差をも考慮した場合、上述したヨウ素滴定法と比較しても分析精度が劣る。
また、ICP発光分光分析装置、原子吸光分析装置とも精密機械である上、装置のサイズも大きく、現場における含銅塩化ニッケル溶液の迅速測定には、不適当であると考えられた。
(3)吸光光度法
吸光光度法は、呈色溶液、または、定量分析成分(例えば、銅)との呈色反応によって生じた呈色化合物、を含む溶液の吸光度を測定し、検量線法などにより銅濃度を算出する分析方法である。
図1は、吸光光度法の測定原理を示す模式図である。
分析対象である例えば、希釈された含銅塩化ニッケル溶液Xを、光路長Lを有する吸収セルCEに装填し、単色光を吸収セルに照射した際の、入射光量をIとし透過光量をIとした際の、吸光度Aは、次式(1)で定義される。
A=log(I/I)・・・・式(1)
尚、当該吸光度は、市販の分光光度計を用いて測定することができる。
図2は、浸漬型の吸光度検出器を用いた吸光光度測定の例を示す模式図である。
浸漬型の吸光度検出器Dは、被測定液である例えば含銅塩化ニッケル溶液Xに浸漬されることで、発光部Eと受光部Rとが含銅塩化ニッケル溶液X中において光路長Lをもって対向するものである。吸光度検出器Dは被測定液に常時浸漬可能であり、例えば含銅塩化ニッケル溶液Xの吸光度測定結果(A=log(I/I))を、自動且つ連続的に出力することができる。
3.含銅塩化ニッケル溶液における銅濃度の定量分析への吸光光度法の適用
「(3)吸光光度法」は、上述した「(1)ヨウ素滴定法」より、迅速な銅濃度の定量分析が可能な方法である。
因みに、典型的な銅濃度の定量分析時間として、「(3)吸光光度法」では、希釈操作(5分間)+吸光度測定操作(5分間)=10分間程度であるのに対し、「(1)ヨウ素滴定法」では、希釈操作(5分間)+前処理操作(30分間)+滴定操作(15分間)=50分間程度の時間を要する。
また、詳細は後述するが、「(3)吸光光度法」は「(1)ヨウ素滴定法」より分析操作の自動化が容易である。また、後述するように「(3)吸光光度法」は分析廃液を、分析後液として後手に戻すことで、発生をキャンセルできる構成が考えられるが、「(1)ヨウ素滴定法」では必然的に分析廃液が発生する。さらに、分析試薬のコストの観点からも、「(3)吸光光度法」は「(1)ヨウ素滴定法」よりも安価である。
さらに、「(3)吸光光度法」は、上述した「(2)ICP発光分光分析法、原子吸光分析法」と比較して、測定装置が単純でサイズも小さく、現場における含銅塩化ニッケル溶液の迅速測定に適していると考えられた。
以上の検討より、含銅塩化ニッケル溶液における銅濃度の定量分析へは、吸光光度法の適用が好ましいと考えられた。
そして、図10に示す含銅塩化ニッケル溶液16における銅濃度の測定に、吸光光度法を適用することを考えると、被定量分析対象である銅は、含銅塩化ニッケル溶液16中に不純物として存在しているものである。さらに、含銅塩化ニッケル溶液16には、銅、ニッケル以外の金属成分も含有されている。
従って、含銅塩化ニッケル溶液16中における銅を定量分析する為には、銅の呈色反応を用いた吸光光度法を適用することになると考えた。
しかしながら、含銅塩化ニッケル溶液16中の銅濃度は25〜50g/Lであり、銅の呈色反応を用いた高感度な定量分析方法を用いた場合、当該呈色反応の吸光度が飽和してしまう。この結果、含銅塩化ニッケル溶液16中の銅濃度測定に対する吸光光度法の適用は、困難であるとも考えられた。
4.ニッケル製錬工程における銅濃度の定量分析方法
上述の状況の下、本発明者らは、吸光光度法を用いた含銅塩化ニッケル溶液16中の銅濃度測定に対してさらに検討を行ない、本発明に係るニッケル製錬工程における含銅塩化ニッケル溶液中の銅濃度の定量分析方法に想到した。
本発明に係る含銅塩化ニッケル溶液中の銅濃度の定量分析方法ついて、以下、図9および図3〜6を参照しながら、《1》含銅塩化ニッケル溶液中におけるニッケルやコバルトが、銅の定量分析へ与える影響、《2》含銅塩化ニッケル溶液中へ塩化物イオンを含む溶液を加える構成、《3》塩化物イオンを含む溶液としてアノライトを用いる構成、《4》分析後液をニッケル製錬工程へ戻す構成、《5》分析操作の自動化とニッケル製錬工程への組み込み、《6》銅濃度の定量分析に用いる検量線の作成方法、《7》銅濃度の定量分析における妨害成分への対応、《8》本発明の応用分野、の順に説明する。
尚、図9は、上述した図10に示す特許文献3に基づいた塩素浸出工程を有するニッケル製錬工程へ、本発明に係る含銅塩化ニッケル溶液中の銅濃度の定量分析工程を組み込んだ場合の工程フロー図である。そして、図9において付与した符号は、本発明に係る含銅塩化ニッケル溶液中の銅濃度の定量分析工程に対して付与したもの以外は、図10の符号と同様である。
《1》含銅塩化ニッケル溶液中におけるニッケルやコバルトが、銅の定量分析へ与える影響
図9に示す含銅塩化ニッケル溶液16中には、被定量分析元素である銅の他に、ニッケルやコバルトが含有され、それぞれがクロロ錯体として光を吸収する。そして、表1に示すように、含銅塩化ニッケル溶液16中における銅、ニッケルおよびコバルトのおよその濃度比は、Cu:Ni:Co=1:4:0.2である。
図3は、銅、ニッケルおよびコバルトの濃度を、それぞれ0.5g/L、2g/L、0.1g/Lとした2.4mol/L塩酸酸性の模擬液に対し、測定波長と吸光度(光路長は10mm)との関係を示すグラフである。
図3の結果より、本明者らは、例えば波長860〜950nm、好ましくは880nmの光の吸光度を測定することで、呈色反応を用いることなく含銅塩化ニッケル溶液16中の銅濃度を定量分析できるのではないかという構成に想到した。
しかしながら、含銅塩化ニッケル溶液16中において、銅はクロロ錯体として吸光度が測定されるにも拘らず、当該銅のクロロ錯体は、配位子である塩化物イオン濃度の影響を受けてしまう。
因みに、図4は、銅濃度を一定値の1g/Lとし、塩酸に起因する塩化物イオンの濃度を0〜6mol/Lまで変化させた模擬液における、波長880nmの光の吸光度(光路長は10mm)をプロットしたグラフである。図4より、塩化物イオンが増加すると、吸光度も増加する傾向があることが理解できる。
従って、含銅塩化ニッケル溶液16において、吸光光度法により銅をクロロ錯体として検出し、定量分析する際には、当該含銅塩化ニッケル溶液中の塩化物イオン濃度が一定である、という条件下で測定しなければ、正確な定量分析値が得を得ることは困難であると考えられた。
ところが、含銅塩化ニッケル溶液16中の塩化物イオン濃度は、塩素浸出工程6において塩素浸出される金属量に依存するため、塩化物イオン濃度として8〜10mol/Lの間で長期的に変動している。
《2》含銅塩化ニッケル溶液中へ塩化物イオンを含む溶液を加える構成
ここで、本発明者らは、含銅塩化ニッケル溶液16における塩化物イオン濃度の変動による効果を回避する為、当該含銅塩化ニッケル溶液16へ、塩化物イオンを含む溶液を希釈溶媒として加え、当該希釈された含銅塩化ニッケル溶液16中における銅のクロロ錯体量を、吸光度測定を用いて定量分析する構成に想到した。
当該塩化物イオンを含む溶液を希釈溶媒として、例えば、塩酸や塩化ナトリウム溶液を用いることができる。
希釈溶媒の塩化物イオン濃度が高い程、含銅塩化ニッケル溶液の塩化物イオン濃度の変動を抑制することができる。尤も、含銅塩化ニッケル溶液16へ、高濃度塩化物イオンを含む希釈溶媒として、濃度12mol/Lの塩酸を加えると、結晶が析出し測定に供することができなかった。本発明者らの検討の結果、希釈溶媒として塩酸を用いる場合、塩酸濃度は6〜9mol/Lが適切であることが判明した。
図5は、含銅塩化ニッケル溶液16に対し、濃度6mol/Lの塩酸で5倍希釈した際の、波長880nmの光における吸光度と含銅塩化ニッケル溶液中の銅濃度との関係を示したグラフである(詳細は実施例1にて後述する。)。当該銅濃度と吸光度との間に正比例の関係が認められた。そして、最小二乗法により一次の近似式を予め算出することができることが判明した。
《3》塩化物イオンを含む溶液としてアノライトを用いる構成
ここで、本発明者らは、図9に示すように、上述した希釈溶媒としてアノライト15を、アノライト15dとして用いる構成に想到した。当該アノライト15dの組成例を、表2に示す。
図6は、図9に示す含銅塩化ニッケル溶液16cを、同一ニッケル製錬工程で得られたアノライト15dを用いて5倍に希釈22して調製した定量分析用試料23の、波長880nmの光における吸光度と、含銅塩化ニッケル溶液16c中の銅濃度との関係を示したグラフである(詳細は実施例1にて後述する。)。
図6より、含銅塩化ニッケル溶液16c中の銅濃度と吸光度との間には、正比例の関係が認められた。そして、最小二乗法により、銅濃度と吸光度との間で一次の近似式を予め算出することで、図9に示す含銅塩化ニッケル溶液16c中の銅濃度の定量分析24ができることが判明した。
以上、説明したように、図9に示す含銅塩化ニッケル溶液16cを塩酸等の塩化物イオン含有溶液、または、アノライト15dで希釈し、定量分析用試料23の各希釈液試料の吸光度を測定する。そして、図5もしくは図6から得られた近似式をもとに、測定された吸光度に対応する銅濃度を算出することができる。ここで、同一溶液を測定した場合において、吸光度の長期的な変動は小さい為、一度、近似式を決定した後は、含銅塩化ニッケル溶液16の各希釈液試料の吸光度測定のみで、銅濃度を簡単に算出できる。
《4》分析後液をニッケル製錬工程へ戻す構成
好ましいことには、図9に示すように、希釈溶媒としてアノライト15dを用いた場合は、吸光度測定終了後における分析後液25を、再び、含銅塩化ニッケル溶液16aへ混合20する(アノライト15cより上流側で混合することが好ましい。)ことで、ニッケル製錬工程へ戻すことが可能である。
即ち、希釈溶媒としてアノライト15cを用いる構成を採用することで、試薬コストを削減できると伴に、定量分析に伴って必然的に生成する分析後液25を、再びニッケル製錬工程へ戻すという、画期的な効果を挙げることができた。
《5》分析操作の自動化とニッケル製錬工程への組み込み
さらに好ましいことには、本発明に係る、含銅塩化ニッケル溶液へ所定の塩化物イオンを含有する希釈溶媒を添加して希釈し、当該希釈試料中における銅のクロロ錯体の濃度を所定の波長の光で吸光度測定し、予め作成しておいた検量線を用いて含銅塩化ニッケル溶液中の銅濃度を測定する構成は、当該吸光度測定を始めとして自動測定化が容易である。尚、当該検量線の作成については、次項にて説明する。
さらに加えて、上述した、希釈溶媒としてアノライト15dを用い、定量分析24終了後における分析後液25の各希釈液試料を、再び、ニッケル製錬工程へ戻す構成を、併せて採用することができる。
当該自動測定化と、定量分析24終了後における分析後液25吸光度測定終了後に、再び、ニッケル製錬工程へ戻す構成とを併せて採用することで、含銅塩化ニッケル溶液16は、塩素浸出液であることから腐食性が高く、塩濃度も高く、特に冬季は結晶化しやすいため、自動分析には過酷な条件が揃っている溶液であるにも拘わらず、当該含銅塩化ニッケル溶液16c中の銅濃度の自動化された定量分析24の方法を、ニッケル製錬工程内に組み込みができるという、非常に画期的な効果を挙げることができた
《6》銅濃度の定量分析に用いる検量線の作成方法
本発明に係る銅濃度の定量分析24に用いる検量線は、例えばゼロ・スパン校正により一次式の検量線を作成することができる。
具体的には、例えば、「(3)吸光光度法」で説明した図2に示す、浸漬型の吸光度検出器を準備する。
また、検量線のゼロ値を決定する為に、アノライト15dを準備する。また検量線のスパンを決定する為、含銅塩化ニッケル溶液16cを準備する。当該含銅塩化ニッケル溶液16cの銅濃度は、予め、ヨウ素滴定法等を用いて正確に測定しておく。
上述した浸漬型の吸光度検出器を、アノライト15dに浸漬して検量線のゼロ値を決定し、アノライト15dによる含銅塩化ニッケル溶液16の希釈液に浸漬して検量線のスパン校正を行なう。当該検量線のスパン校正時に、予め、ヨウ素滴定法等を用いて正確に測定した含銅塩化ニッケル溶液16cの銅濃度測定値を入力する。
以下、参考までに、含銅塩化ニッケル溶液16c、アノライト15d、および、定量分析用試料23の代表的な組成範囲について記載する。
<含銅塩化ニッケル溶液16c>
Ni:200〜300g/L(代表値:220g/L)
Co:5〜20g/L(代表値:10g/L)
Cu:20〜60g/L(代表値:50g/L)
<アノライト15d>
Ni:50〜100g/L(代表値:70g/L)
Co:0g/L
Cu:0g/L
<定量分析用試料23>
Ni:80〜140g/L(代表値:100g/L)
Co:1〜4g/L(代表値:2g/L)
Cu:4〜12g/L(代表値:10g/L)
《7》銅濃度の定量分析における妨害成分への対応
本発明に係る含銅塩化ニッケル溶液中の銅濃度の定量分析方法において、図3に示すように銅濃度定量分析の吸光度測定波長(860〜950nm、好ましくは880nm)の光に対し、僅かではあるがニッケルの吸光度が検出される。
従って、仮に、含銅塩化ニッケル溶液16において、ニッケル濃度に対して銅濃度が極端に小さく、かつニッケル濃度の変動が大きいといった状況が発生した場合は、本発明に係る含銅塩化ニッケル溶液中の銅濃度の定量分析方法で定量分析される銅濃度が、真値と乖離する可能性が考えられる。そこで、本発明に係る含銅塩化ニッケル溶液中の銅濃度の定量分析方法を、ニッケル製錬工程へ適用する場合は、工程液中のニッケル濃度や塩化物イオン濃度の変動を予めモニターし、銅濃度の定量分析値への影響度を評価しておくことが好ましい。
《8》本発明の応用分野
本発明に係る含銅塩化ニッケル溶液中の銅濃度の定量分析方法は、銅に限らずニッケルやコバルトなどの呈色溶液に対しても応用できるため、他の非鉄金属における湿式製錬工程液の管理法としても適している。
(実施例1)
〈塩酸による希釈〉
含銅塩化ニッケル溶液中の銅濃度を定量分析する為の、吸光度測定に用いる光の波長を選択することを目的として、被定量分析対象であるニッケル湿式製錬工程で得られた含銅塩化ニッケル溶液を準備した。
当該実施例1に係る含銅塩化ニッケル溶液を、濃度6mol/Lの塩酸で5倍希釈して定量分析用試料を得た。得られた当該定量分析用試料を分光光度計(日立ハイテク製 U−2001)に装填し、吸光度と波長との関係を測定した。尚、吸収セルの光路長は1mmである。当該測定結果を図7に示す。
図7より、波長880nm付近の光で極大吸収が認められた。そこで、銅濃度定量分析のための吸光度の測定波長として880nmを選択した。
ニッケル湿式製錬工程における、含銅塩化ニッケル溶液の銅濃度の変動を考慮し、40〜60g/Lの銅濃度範囲をもつ含銅塩化ニッケル溶液の工程液を13試料準備した。
当該含銅塩化ニッケル溶液の13試料を濃度6mol/Lの塩酸で5倍希釈して、定量分析用試料を得た。
当該定量分析用試料の波長880nmにおける吸光度をそれぞれ測定した。
また、当該含銅塩化ニッケル溶液試料に対し、ヨウ素滴定法を用いて銅濃度を厳密に定量分析した。
そして、得られた当該定量分析用試料の13試料に係る吸光度の測定値と、ヨウ素滴定法による銅濃度定量分析値との関係を図5に示す。図5は縦軸に吸光度、横軸にヨウ素滴定法による含銅塩化ニッケル溶液中の銅濃度定量分析値をとり、13試料の値をプロットしたものである。
図5より、含銅塩化ニッケル溶液の13試料における吸光度Aと銅濃度Ccとの間に、正比例の関係が認められた。そこで、最小二乗法により一次の近似式を算出した結果、次式(2)が得られた。
A=0.0224Cc+0.0102、 但し、R=0.9945・・・式(2)
以上より、分析対象となる含銅塩化ニッケル溶液の希釈液である定量分析用試料の吸光度を測定し、式(2)を適用することにより、対応する銅濃度を算出できることが判明した。
具体的には、定量分析用試料の吸光度Aが1.216Absの場合、銅濃度Ccは54g/Lと算出される。
〈アノライトによる希釈〉
「〈塩酸による希釈〉」で説明した被定量分析対象である含銅塩化ニッケル溶液の13試料を、ニッケル湿式製錬工程で得られたアノライトで5倍希釈して定量分析用試料を得た。
得られた当該定量分析用試料を分光光度計に装填し、波長880nmにおける吸光度を測定した。尚、吸収セルの光路長は1mmである。
そして、得られた当該定量分析用試料の13試料に係る吸光度の測定値と、「〈塩酸による希釈〉」で説明した、ヨウ素滴定法を用いた銅濃度の厳密な定量分析値との関係を図6に示す。図6は縦軸に吸光度、横軸にヨウ素滴定法による含銅塩化ニッケル溶液中の銅濃度定量分析値をとり、13試料の値をプロットしたものである。
図6より、含銅塩化ニッケル溶液の13試料における吸光度Aと銅濃度Ccとの間に、正比例の関係が認められた。そこで、最小二乗法により一次の近似式を算出した結果、次式(3)が得られた。
A=0.0134Cc+0.0473、 但し、R=0.9925・・・式(3)
以上より、分析対象となる含銅塩化ニッケル溶液の希釈液である定量分析用試料の吸光度を測定し、式(3)を適用することにより、対応する銅濃度を算出できることが判明した。
〈吸光光度法とヨウ素滴定法とによる定量分析結果の比較〉
本発明に係る含銅塩化ニッケル溶液における銅濃度の定量分析方法の妥当性を確認するために、上述した「〈塩酸による希釈〉」および「〈アノライトによる希釈〉」に係る銅濃度定量分析値と、ヨウ素滴定法による銅濃度定量分析値とを比較した。
当該比較結果を表3に示す。
表3より、「〈塩酸による希釈〉」および「〈アノライトによる希釈〉」に係る吸光光度法での定量分析値と、ヨウ素滴定法での定量分析値との差は、最大でも3g/Lであった。当該結果より、本発明に係る吸光光度法での定量分析方法は、工程管理をする上で十分な精度を有することを確認できた。
尚、本発明に係る吸光光度法での定量分析の所要時間は、1試料あたり約10分間であった。
一方、ヨウ素滴定法は、高精度な定量分析ができる。しかし、操作に熟練を要し、試薬添加などの操作が煩雑であって、定量分析操作において時間やコストが必要である。
因みに、ヨウ素滴定法での定量分析の所要時間は、1試料あたり約50分間であった。
(実施例2)
実施例1と同様に、被定量分析対象であるニッケル湿式製錬工程で得られた含銅塩化ニッケル溶液を7試料準備した。
当該含銅塩化ニッケル溶液を濃度6mol/Lの塩酸で5倍希釈し定量分析用試料とした。当該定量分析用試料に対し、浸漬型の吸光度検出器(笠原理化工業製 CU−502)を用いて波長880nmにおける吸光度を測定した。尚、浸漬型の吸光度検出器の光路長は1mmである。
また、実施例1と同様に、含銅塩化ニッケル溶液の6試料において、ヨウ素滴定法を用いて銅濃度を厳密に定量分析した。
そして、得られた当該定量分析用試料の7試料に係る吸光度の測定値と、ヨウ素滴定法による銅濃度定量分析値との関係を図8に示す。図8は縦軸に吸光度、横軸にヨウ素滴定法による含銅塩化ニッケル溶液中の銅濃度定量分析値をとり、6試料の値をプロットしたものである。
図8より、含銅塩化ニッケル溶液の6試料における吸光度Aと銅濃度Ccとの間に、正比例の関係が認められた。そこで、最小二乗法により一次の近似式を算出した結果、次式(4)が得られた。
A=0.0253Cc+0.0723、 但し、R=0.9869・・・式(4)
以上より、分析対象となる含銅塩化ニッケル溶液の希釈液である定量分析用試料の吸光度を浸漬型の吸光度検出器を用いて測定し、式(4)を適用することにより、対応する銅濃度を算出できることが判明した。
(実施例3)
ニッケル製錬工程から採取した含銅ニッケル溶液である試料液A1(銅濃度52g/L)、同試料液A2(銅濃度58g/L)、同じくニッケル製錬工程から採取したアノライトであって銅を含有しない希釈液B(ニッケル濃度75g/L)を準備した。
そして、試料液A1を希釈液Bで5倍希釈して銅濃度(10.4g/L)の定量分析用試料C1を得、試料液A2を希釈液Bで5倍希釈して銅濃度(11.6g/L)の定量分析用試料C2を得た。
次に、希釈液B、定量分析用試料C1およびC2の吸光度を、実施例1と同様の方法で測定した。当該測定結果を表4に示す。
表4に示す定量分析用試料C1およびC2の吸光度測定の結果より、銅1g/Lあたりの吸光度は、
(0.811−0.734)/(11.6−10.4)=0.064Abs
と見積もられた。
また、表4に示す希釈液Bの吸光度測定の結果より、ニッケル1g/Lあたりの吸光度は、
0.042/75=0.00056Abs
と見積もられた。
ここで、定量分析用試料C1およびC2におけるニッケル濃度の変動を、1ヶ月間モニターした。すると、当該ニッケル濃度の変動は105〜115g/Lの範囲であり、変動幅は10g/L程度であった。
一方、上述した希釈液Bの吸光度測定の結果より、ニッケル濃度が10g/L幅で変動することにより、波長880nmの光の吸光度は0.00056×10=0.0056[Abs]変動する。当該波長880nmの光の吸光度の変動が、定量分析用試料C1およびC2における銅の定量分析測定に与える影響を、定量分析用試料C1液の吸光度から求めると、0.0056/0.734×100=0.76%となる。この程度の影響であれば、吸光光度分析において、ニッケル濃度の変動に起因する銅の定量分析測定に与える影響は、無視できるレベルであることが判明した。
X:被測定溶液
CE:吸収セル
L:光路長
:入射光量
I:透過光量
D:浸漬型の吸光度検出器
E:発光部
R:受光部

Claims (5)

  1. ニッケル製錬工程における含銅塩化ニッケル溶液中の銅濃度を定量分析する方法であって、
    当該含銅塩化ニッケル溶液へ、塩化物イオンを含む溶液を添加して希釈液とし、当該希釈液の吸光度を測定し、得られた吸光度から含銅塩化ニッケル溶液中の銅濃度を求めることを特徴とする含銅塩化ニッケル溶液中の銅濃度の定量分析方法。
  2. 前記希釈液の吸光度を測定する際、前記希釈液に吸光度検出器を浸漬し、前記希釈液の吸光度を連続的に測定することを特徴とする請求項1に記載の含銅塩化ニッケル溶液中の銅濃度の定量分析方法。
  3. 前記塩化物イオンを含む溶液として、前記ニッケル製錬工程におけるアノライトを用いることを特徴とする請求項1または2に記載の含銅塩化ニッケル溶液中の銅濃度の定量分析方法。
  4. 前記希釈液の吸光度を測定する際、銅のクロロ錯体の吸光度を測定する請求項1から3のいずれかに記載の含銅塩化ニッケル溶液中の銅濃度の定量分析方法。
  5. 前記アノライトにより希釈され吸光度を測定された後の希釈液を、ニッケル製錬工程へ戻すことを特徴とする請求項4に記載の含銅塩化ニッケル溶液中の銅濃度の定量分析方法。
JP2014030718A 2014-02-20 2014-02-20 含銅塩化ニッケル溶液中の銅濃度の定量分析方法 Active JP6150074B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014030718A JP6150074B2 (ja) 2014-02-20 2014-02-20 含銅塩化ニッケル溶液中の銅濃度の定量分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030718A JP6150074B2 (ja) 2014-02-20 2014-02-20 含銅塩化ニッケル溶液中の銅濃度の定量分析方法

Publications (2)

Publication Number Publication Date
JP2015155838A true JP2015155838A (ja) 2015-08-27
JP6150074B2 JP6150074B2 (ja) 2017-06-21

Family

ID=54775229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030718A Active JP6150074B2 (ja) 2014-02-20 2014-02-20 含銅塩化ニッケル溶液中の銅濃度の定量分析方法

Country Status (1)

Country Link
JP (1) JP6150074B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060860A (ja) * 2017-09-26 2019-04-18 住友金属鉱山株式会社 銅の価数分別定量方法および銅の価数分別定量システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7291051B2 (ja) 2019-09-25 2023-06-14 日立Astemo株式会社 負荷駆動装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751296A (en) * 1980-07-15 1982-03-26 Shipley Co Apparatus for controlling concentration of plating liquid component
JPS60255745A (ja) * 1984-05-30 1985-12-17 Mitsubishi Gas Chem Co Inc 2,3,5−トリメチルベンゾキノンの製造法
JPH07300691A (ja) * 1994-04-28 1995-11-14 Sumitomo Metal Mining Co Ltd 脱銅電解液の銅イオン濃度の調節方法
WO2008066003A1 (fr) * 2006-11-28 2008-06-05 Nomura Micro Science Co., Ltd. Procédé pour une détermination quantitative de nickel et/ou de cuivre et matériel devant être utilisé dans le procédé
JP2013067841A (ja) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd 塩化ニッケル水溶液中の銅イオン除去方法及び電気ニッケルの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751296A (en) * 1980-07-15 1982-03-26 Shipley Co Apparatus for controlling concentration of plating liquid component
US4499852A (en) * 1980-07-15 1985-02-19 Shipley Company Inc. Apparatus for regulating plating solution in a plating bath
JPS60255745A (ja) * 1984-05-30 1985-12-17 Mitsubishi Gas Chem Co Inc 2,3,5−トリメチルベンゾキノンの製造法
JPH07300691A (ja) * 1994-04-28 1995-11-14 Sumitomo Metal Mining Co Ltd 脱銅電解液の銅イオン濃度の調節方法
WO2008066003A1 (fr) * 2006-11-28 2008-06-05 Nomura Micro Science Co., Ltd. Procédé pour une détermination quantitative de nickel et/ou de cuivre et matériel devant être utilisé dans le procédé
JP2013067841A (ja) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd 塩化ニッケル水溶液中の銅イオン除去方法及び電気ニッケルの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060860A (ja) * 2017-09-26 2019-04-18 住友金属鉱山株式会社 銅の価数分別定量方法および銅の価数分別定量システム
JP7273261B2 (ja) 2017-09-26 2023-05-15 住友金属鉱山株式会社 銅の価数分別定量方法および銅の価数分別定量システム

Also Published As

Publication number Publication date
JP6150074B2 (ja) 2017-06-21

Similar Documents

Publication Publication Date Title
Osburn et al. The use of wet chemical oxidation with high‐amplification isotope ratio mass spectrometry (WCO‐IRMS) to measure stable isotope values of dissolved organic carbon in seawater
CN102680470B (zh) 一种铜电解液中砷锑含量的测定方法
Jin et al. Electrolytic recovery of bismuth and copper as a powder from acidic sulfate effluents using an emew® cell
JP6150074B2 (ja) 含銅塩化ニッケル溶液中の銅濃度の定量分析方法
Muñoz et al. A continuous flow system design for simultaneous determination of heavy metals in river water samples
US8268162B2 (en) Voltammetric device having sample degassing system
JP2017090436A (ja) 重金属元素の定量方法および分離方法
JP7363618B2 (ja) 銅の価数分別定量方法および銅の定量装置
WO2019225433A1 (ja) フッ素濃度測定方法、フッ素濃度測定装置、水処理方法および水処理装置
CN103852509B (zh) 一种氰根电位滴定分析方法
JP6117009B2 (ja) シアン濃度測定方法
CN110161176A (zh) 一种高盐生产废水的cod快速检测方法
Kalliomaki et al. Models for viscosity and density of copper electrorefining electrolytes
JP2017083222A (ja) 溶液中における残留塩素の定量方法
CN104483308A (zh) 一种快速区分316l和304不锈钢的方法
CN111638260A (zh) 一种用于水产干制食品中重金属的检测方法
Munoz et al. Potentiometric Stripping of Arsenic (III) Using a Wall‐Jet Flow Cell and Gold (III) Solution as Chemical Reoxidant
JP7273261B2 (ja) 銅の価数分別定量方法および銅の価数分別定量システム
Cruz A Method For Iron Determination During Copper Electrometallurgy And Its Application To The Calculation Of Current Efficiency
JP2022068888A (ja) ニッケル、コバルト及び銅の定量方法、並びにその定量システム
JP6222048B2 (ja) 脱銅電解工程の給液装置
JP2006138730A (ja) 銅の価数分別定量方法
Silva et al. A simple electrogravimetric experimental setup to determine Cu in alloy samples for teaching purposes
JP5053342B2 (ja) ヒ素、セレン及びアンチモンの分別定量分析方法並びに分別定量分析システム
Hasdemir et al. Simultaneous determination of bismuth and copper by square wave voltammetry in the presence of ethylenediaminetetraacedic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170509

R150 Certificate of patent or registration of utility model

Ref document number: 6150074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150