JP2015152632A - 光波長フィルタ - Google Patents

光波長フィルタ Download PDF

Info

Publication number
JP2015152632A
JP2015152632A JP2014023640A JP2014023640A JP2015152632A JP 2015152632 A JP2015152632 A JP 2015152632A JP 2014023640 A JP2014023640 A JP 2014023640A JP 2014023640 A JP2014023640 A JP 2014023640A JP 2015152632 A JP2015152632 A JP 2015152632A
Authority
JP
Japan
Prior art keywords
waveguide
propagation mode
wavelength filter
optical wavelength
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014023640A
Other languages
English (en)
Inventor
秀彰 岡山
Hideaki Okayama
秀彰 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2014023640A priority Critical patent/JP2015152632A/ja
Publication of JP2015152632A publication Critical patent/JP2015152632A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

【課題】TM波に対してブラッグ反射率が十分に大きい光波長フィルタ、TE波とTM波に対してブラッグ反射率が等しい光波長フィルタ、及び偏波無依存で光経路を切り換える波長選択性経路切換機能を有する光波長フィルタを提供する。
【解決手段】高次伝搬モードのTM波を反射する第1グレーティング導波路10と、基本伝搬モードのTE波を反射する第2グレーティング導波路30と、基本伝搬モードのTM波を高次伝搬モードのTM波に、あるいは高次伝搬モードのTM波を基本伝搬モードのTM波に変換する伝搬モード変換部20とを備えている。第2グレーティング導波路側から、基本伝搬モードの多波長のTE波とTM波とが混合した入力光Pが入力されると、入力光Pを入力した側から、基本伝搬モードの単一波長のTE波とTM波とが混合した出力光Qが出力される。
【選択図】図3

Description

この発明は、波長の相違に基づき光経路を切り換える波長選択性経路切換機能を有する合分波素子に適用して好適な光波長フィルタに関し、特に偏波無依存で波長選択を行う光波長フィルタに関する。
近年、加入者系光アクセスシステムは、1つの局側光回線終端装置(OLT: Optical Line Terminal)と複数の加入者側光回線終端装置(ONU: Optical Network Unit)を、光ファイバ及びスターカプラを介して接続し、OLTを複数のONUが共有する、受動光ネットワーク(PON: Passive Optical Network)通信システムが主流となっている。この通信システムでは、OLTからONUへ向けた下り通信とONUからOLTに向けた上り通信とが相互に干渉し合わないように、下り通信に使われる光信号波長と上り通信に使われる光信号波長とを違えている。
従って、下り通信と上り通信のそれぞれに使われる互いに波長の異なる光信号を分波し、かつ合波するために合分波素子が必要である。OLTやONUにおいて波長の異なる光信号を分波しかつ合波する機能を実現させるために、一般に、光波長フィルタ、フォトダイオード(PD:Photodiode)、レーザーダイオード(LD: Laser diode)が空間結合される。空間結合させるためには、光波長フィルタ、PD、LD間で光軸を合わせるためのアライメント作業が必要となるが、この光軸合わせのための作業を不要とする、導波路を利用して構成される光波長フィルタが開発されている。また、この光波長フィルタを形成するに当たり、小型化と量産性に優れることから、シリコン系素材を導波路材料として用いる技術が注目されている。(例えば、特許文献1〜5参照)。
加入者系光アクセスシステムで使用可能な光波長フィルタには、マッハ-ツェンダ干渉計を利用するもの、方向性光結合器を利用するもの、あるいは導波路型光回折格子を利用するもの等が知られている。シリコン導波路で構成されるマッハ-ツェンダ干渉計を利用する光波長フィルタは、多段に接続する構成としなければならないため、素子を小型化することが難しい。また、光波長フィルタとして方向性光結合器を利用する場合、方向性光結合器の素子長が数百μm程度になるので、この場合も素子を小型化するのが困難である。
そこで、シリコン基板を使って形成される導波路型光回折格子を利用した光波長フィルタも開示されている(非特許文献1参照)。また、多モード導波路におけるモード変換型の導波路型光回折格子を利用した光波長フィルタも開示されている(特許文献6参照)。あるいは、導波路型光回折格子と方向性光結合器を組み合わせて構成された光波長フィルタも開示されている(非特許文献2参照)。
導波路型光回折格子を利用する光波長フィルタは、ブラッグ反射率を十分大きくすれば、透過波長帯域での透過率を一定に保つことができる。そして、マッハ-ツェンダ干渉計を利用する光波長フィルタでは、素子構造部分を多段に接続しなければ実現できない単一波長光成分だけの選択機能が、導波路型光回折格子を利用する光波長フィルタでは、単一の素子構造部分で反射することで実現されるという特徴がある。
米国特許第4,860,294号明細書 米国特許第5,764,826号明細書 米国特許第5,960,135号明細書 米国特許第7,072,541号明細書 特開平08−163028号公報 特開2006−235380号公報
Hirohito Yamada, et. al,. "Si Photonic Wire Waveguide Devices" IEICE Transactions of Electronics vol. E90-C, No. 1, p. 59, January 2007. Wei Shi, et. al,. "Add-Drop Filters in Silicon Grating-Assisted Asymmetric Couplers" Optical Fiber Communication Conference 2012 OTh3D.3.
しかしながら、従来の光回折格子を利用する光波長フィルタは、TM(Transverse Magnetic)波に対する導波路型の光回折格子の回折効率(すなわちブラッグ反射率)がTE(Transverse Electric)波に対するブラッグ反射率より低いという、波長選択機能に偏波依存性がある。
このため、従来の導波路型光回折格子を利用する光波長フィルタには偏波依存性があり、TM波とTE波とが混在されている光信号を処理する必要のある加入者系光アクセスシステムで利用するには対応しにくい欠点を有している。そこで、波長選択特性に偏波の依存性が無い光回折格子を利用する光波長フィルタの実現が望まれる。
光回折格子を利用する光波長フィルタにおける偏波の依存性の原因の一つは、上述したように、TM波に対するブラッグ反射率がTE波に対するブラッグ反射率よりも低いという性質にある。
この発明の発明者は、導波路型の光回折格子のブラッグ反射率が、光回折格子が形成された導波路を伝搬する伝搬モードに依存することに着目した。そして、TM波に対して高次伝搬モードとなるように光回折格子が形成された導波路を構成すれば、基本伝搬モードに対するブラッグ反射率に比べてTM波の反射率を向上させることが可能であることを見出した。TM波のブラッグ反射率が向上させられれば、TE波のブラッグ反射率と等しくすることが可能となる。そして、TM波の伝搬モードを高次数の伝搬モードにすれば、ブラッグ反射率を向上させることができることを見出した。
そこで、この発明の発明者は、高次伝搬モードのTM波を反射するグレーティング導波路と、基本伝搬モードのTE波を反射するグレーティング導波路と、基本伝搬モードのTM波を高次伝搬モードのTM波にあるいは高次伝搬モードのTM波を基本伝搬モードのTM波に変換する伝搬モード変換部とを適宜組み合わせることによって、偏波無依存で波長選択を行い、経路を切り換えることが可能な光波長フィルタが実現されることを、シミュレーション等によって確かめた。
受動光ネットワーク通信システムの光伝送路である光ファイバは光信号を基本伝播モードで伝送するシングルモードファイバであるので、光信号のTM波については基本伝播モードから高次伝搬モードに変換して波長フィルタリングする構成とすれば、波長選択特性に偏波の依存性が無い偏波無依存の光波長フィルタを実現させることが可能となる。
そこで、この発明の目的は、波長選択性経路切換機能を有する光波長フィルタを実現するため、TM波に対してブラッグ反射率が十分に大きい光波長フィルタ、及びTE波とTM波に対してブラッグ反射率が等しい光波長フィルタを提供することにある。また、加入者系光アクセスシステムにおいて利用して好適な、偏波無依存で光経路を切り換える波長選択性経路切換機能を有する光波長フィルタを提供することにある。
この発明の要旨によれば、上述の目的を達成するため、光波長フィルタは、以下の特徴を具えている。
第1の発明は、高次伝搬モードのTM波を反射するグレーティング導波路と、基本伝搬モードのTM波を高次伝搬モードのTM波に、あるいは高次伝搬モードのTM波を基本伝搬モードのTM波に変換する伝搬モード変換部とを備えた光波長フィルタである。グレーティング導波路と伝搬モード変換部とは直列に接続されており、伝搬モード変換部から、基本伝搬モードの多波長のTM波の入力光を入力すると、伝搬モード変換部から、基本伝搬モードの単一波長のTM波の出力光が出力される。
第2の発明は、高次伝搬モードのTM波を反射する第1グレーティング導波路と、基本伝搬モードのTE波を反射する第2グレーティング導波路と、基本伝搬モードのTM波を高次伝搬モードのTM波に、あるいは高次伝搬モードのTM波を基本伝搬モードのTM波に変換する伝搬モード変換部とを備えた光波長フィルタである。第1グレーティング導波路、伝搬モード変換部、及び第2グレーティング導波路は、この順に直列に接続されている。第2グレーティング導波路から、基本伝搬モードの多波長のTE波とTM波とが混合した入力光が入力されると、第2グレーティング導波路の入力光を入力した側から、基本伝搬モードの単一波長のTE波とTM波とが混合した出力光が出力される。
第3の発明は、第2の発明の光波長フィルタを2つ備え、一方の光波長フィルタを第1光波長フィルタとし、他方の光波長フィルタを第2光波長フィルタとし、第1光波長フィルタと第2光波長フィルタとは並列に配置されており、第1光波長フィルタと第2光波長フィルタは光合分岐器で接合されている光波長フィルタである。光合分岐器の入力端から入力された入力光は、第1光波長フィルタと第2光波長フィルタとに等しく分配されて等しくブラッグ反射されて波長選択された単一波長の出力光が、再び光合分岐器の出力端から出力される。
第1の発明である光波長フィルタによれば、基本伝搬モードのTM波が伝搬モード変換部に入力されると高次伝搬モードのTM波に変換されて、この高次伝搬モードのTM波がグレーティング導波路によってブラッグ反射されるので、高いブラッグ反射率が得られる。そしてブラッグ反射された高次伝搬モードのTM波は、再び伝搬モード変換部で基本伝搬モードのTM波に変換されて出力されるので、基本伝搬モードのTM波に対してグレーティング導波路に設定された波長の光が選択されて出力される。すなわち、TM波に対してブラッグ反射率が十分に大きい光波長フィルタが実現する。
第2の発明である光波長フィルタによれば、第1グレーティング導波路と第2グレーティング導波路とによってそれぞれ反射されるブラッグ波長を等しく設定しておけば、この光波長フィルタに入力された多波長の入力光は、TM波及びTE波に対して等しく波長選択されて単一波長の出力光が出力される。すなわち、偏波無依存で波長選択する光波長フィルタが実現する。
第3の発明である光波長フィルタによれば、光合分岐器に入力された入力光は、第1光波長フィルタと第2光波長フィルタとに等しく分配される。第1光波長フィルタと第2光波長フィルタとは共に、この第2の発明の光波長フィルタであるから、この第2の発明の光波長フィルタに入力された多波長の入力光は、TM波及びTE波に対して等しく波長選択されて、単一波長の出力光が出力される。従って、第1光波長フィルタと第2光波長フィルタからは等しくブラッグ反射されて波長選択された単一波長の出力光が、再び光合分岐器で入力端とは異なる出力端から出力される。すなわち、偏波無依存で光経路を切り換える波長選択性経路切換機能を有する光波長フィルタが実現する。
高次伝搬モードのTM波を反射するグレーティング導波路の概略的構成を示す斜視図である。 第1の発明の光波長フィルタの実施形態についての説明に供する図である。(A)に示す光波長フィルタは、伝搬モード変換部が第1導波路と2本の第2導波路を備えて形成されており、(B)に示す光波長フィルタは、伝搬モード変換部が主導波路と入出力導波路とを備えて形成されている。 第2の発明の光波長フィルタの実施形態についての説明に供する図である。 第3の発明の光波長フィルタの実施形態についての説明に供する図である。(A)に示す光波長フィルタは、伝搬モード変換部が3dBカプラで構成されており、(B)に示す光波長フィルタは、伝搬モード変換部が非対称幅分岐器で構成されている。 図1に示した第1グレーティング導波路に、基本伝搬モードのTE波とTM波を入力し、これらがブラッグ反射されて出力される出力光の強度の波長依存性を示す図である。 図2(A)に示した第1の発明の光波長フィルタに、基本伝搬モードのTE波とTM波を入力し、これらがブラッグ反射されて出力される出力光の強度の波長依存性を示す図である。
以下、図を参照して、この発明の実施形態につき説明する。なお、この発明の光波長フィルタの概略的構成を示す図1〜図4は、この発明の実施形態に係る一構成例を示すものであり、この発明を図示例に限定するものではない。また、以下の説明において、特定の構成素材及び設計条件等を用いることがあるが、これら構成素材及び設計条件等は好適例の一つに過ぎず、従って、何らこれらに限定されない。
<第1の発明の光波長フィルタ>
図1を参照して、高次伝搬モードのTM波を反射するグレーティング導波路5の実施形態の構成について説明する。図1は、グレーティング導波路5の概略的構成を示す斜視図である。図1に示すように、グレーティング導波路5は、次のように構成されている。
この実施形態のグレーティング導波路5は、シリコン基板1上に、グレーティング導波路パターン構造体が形成されている。そして、導波路パターンを形成している導波路コア2をクラッド層3が囲っている。導波路コア2の底面とシリコン基板1の上面との距離を、1μm以上に設定すると、導波路コア2を伝搬する光がシリコン基板1に染み出すことを有効に防止できる。
グレーティング導波路5は、導波路コア2の側面に周期的に溝4を設けることによって形成される。図1では、2次伝搬モードの(図中電場の振幅分布である光電界分布を模式的に曲線6で示してある)TM波が導波路コア2に入力されて(入力光5a)、ブラッグ反射されて出力される(出力光5b)様子を示している。ここでは、高次伝搬モードとして2次伝搬モードを取り上げてあるが、より高次伝搬モードでも同様である。
導波路コア2の側面に溝4を設けて構成されるグレーティング導波路は、導波路コア2の上面あるいは下面に溝を設けて構成されるグレーティングと比べるとその形成の容易さが特長である。しかしながら、導波路の側面に溝4を設けて構成されるグレーティング導波路は、基本伝搬モードのTM波に対するブラッグ反射率を高くすることが難しいことがシミュレーションをした結果判明した。そして、このブラッグ反射率の向上を図るには、TM波を高次伝搬モードとすればよいこともシミュレーションをした結果判明した。
グレーティング導波路のTE波及びTM波のそれぞれに対するブラッグ反射条件は以下に示す式(1)及び式(2)によって与えられる。
2π/Λ=4πn(e)/λ (1)
2π/Λ=4πn(m)/λ (2)
ここで、Λはグレーティングの周期、λはブラッグ反射される光の真空中での波長、n(e)、n(m)は、それぞれTE波、TM波に対する等価屈折率である。等価屈折率n(e)、n(m)が等しければ伝搬定数も等しくできる。
導波路幅によって等価屈折率は調整可能であるので、式(1)及び式(2)を満たすλが等しくなる等価屈折率n(e)、n(m)を与えるように、導波路コア2の導波路幅を決定することが可能である。したがって、TE波に対してもTM波に対しても等しい波長のブラッグ反射光が得られる導波路コア2の導波路幅を設定すれば、図1に示すグレーティング導波路5をTE波であるかTM波であるかに係らず同一波長のブラッグ反射が得られる、偏波無依存の光波長フィルタとして構成することができる。
図2を用いて第1の発明の光波長フィルタの実施形態について説明する。図2に示す光波長フィルタは、グレーティング導波路5と、伝搬モード変換部20とを備えている。
図2(A)は、伝搬モード変換部20が第1導波路21と2本の第2導波路(22a及び22b)を備えて形成されていることを特徴とする。図2(B)は伝搬モード変換部20が主導波路25と入出力導波路23とを備え、これらが方向性光結合器を形成するように形成されていることを特徴とする。
図2(A)に示す光波長フィルタは、その構成部分である伝搬モード変換部20が第1導波路21と、この第1導波路21の左側に第2導波路22a、右側に第2導波路22bが配置され、第1導波路21と第2導波路(22a 22b)とを結合する接続部200が備えられている。そして、第1導波路21は、接続部200に向けて導波路幅がテーパ状に広げられており、第2導波路(22a 22b)は、接続部200に向けて導波路幅がテーパ状に狭められている。また、第1導波路21と第2導波路(22a 22b)の間隔は、接続部200に向けて狭められており、第1導波路21と第2導波路(22a 22b)の導波路幅は、接続部200に達した位置で互いに等しく形成されている。接続部200は、グレーティング導波路5に接合されている。
図2(B)に示す光波長フィルタは、その構成部分である伝搬モード変換部20が主導波路25と入出力導波路23とを備えている。主導波路25の一端は、グレーティング導波路5に接続されており、入出力導波路23の一部24は、主導波路25と並列に接近して配置されて方向性光結合器を形成するように配置されている。入出力導波路23の一部24は、導波路幅が徐々に狭まるテーパ状に形成されている。そして、入出力導波路23の一部24の導波路幅と主導波路25の幅とは、入出力導波路23のTM波基本伝搬モードに対する伝搬定数と主導波路25のTM波の高次伝搬モードの伝搬定数とが等しくなるように設定されている。これによって、入出力導波路23と主導波路25との互いの伝搬定数が一致する位相整合条件が満たされる構成となっている。入出力導波路23の導波路幅をテーパ状とすることで、広い波長範囲での位相整合が実現される。
<第2の発明の光波長フィルタ>
図3を参照して第2の発明の光波長フィルタの実施形態について説明する。図3に示す光波長フィルタは、高次伝搬モードのTM波を反射する第1グレーティング導波路10と、基本伝搬モードのTE波を反射する第2グレーティング導波路30と、基本伝搬モードのTM波を高次伝搬モードのTM波に、あるいは高次伝搬モードのTM波を基本伝搬モードのTM波に変換する伝搬モード変換部20とを備えている。
第1グレーティング導波路10の導波路幅と溝の周期は、高次伝搬モードのTM波が反射されるように最適化されており、第2グレーティング導波路30の導波路幅と溝の周期は、基本伝搬モードのTE波が反射されるように最適化されている。したがって、第1グレーティング導波路10の溝の周期と第2グレーティング導波路30の溝の周期は異なっている。
第1グレーティング導波路10、伝搬モード変換部20、及び第2グレーティング導波路30がこの順に直列に接続されている。そして、第2グレーティング導波路30側から、基本伝搬モードの多波長のTE波とTM波とが混合した入力光Pが入力されると、入力光Pを入力した側から、基本伝搬モードの単一波長のTE波とTM波とが混合した出力光Qが出力される。
第2の発明の光波長フィルタは、その構成部分である伝搬モード変換部20を、図2(A)を参照して説明した光波長フィルタの伝搬モード変換部20と同一構造とすることができる。この場合は、第2グレーティング導波路30の一端を,伝搬モード変換部20を構成する第1導波路21に接続する。また、伝搬モード変換部20を、図2(B)を参照して説明した光波長フィルタの伝搬モード変換部20と同一構造とすることができる。この場合は、第2グレーティング導波路30の一端を入出力導波路23の入力端に接続する。
<第3の発明の光波長フィルタ>
図4を用いて第3の発明の光波長フィルタの実施形態について説明する。図4に示す光波長フィルタは、図3を参照して説明した光波長フィルタを2つ備え、一方の光波長フィルタを第1光波長フィルタ301とし、他方の光波長フィルタを第2光波長フィルタ302とし、第1光波長フィルタ301と第2光波長フィルタ302とを並列に配置し、第1光波長フィルタ301と第2光波長フィルタ302が光合分岐器で接合されて形成されている。この光合分岐器は、図4(A)に示すように3dBカプラ33とすることも、あるいは図4(B)に示すように非対称幅分岐器34とすることもできる。3dBカプラ33及び非対称幅分岐器34はいずれも、2入力2出力の光合分岐器である。
3dBカプラ33は、多モード干渉(Multi Mode Interference)型導波路を利用するタイプであっても、方向性光結合器を利用するタイプであってもよい。3dBカプラ33とグレーティングとの組み合わせによって入力光と出力光とを分離可能とできることは周知の事項であって、これはマッハ-ツェンダ干渉計の動作原理が応用されたものである。
3dBカプラ33の入力ポートPから入力光を入力すると第1光波長フィルタ301と第2光波長フィルタ302のそれぞれに等しい強度に分配されて入力される。第1光波長フィルタ301からのブラッグ反射光と第2光波長フィルタ302からのブラッグ反射光は3dBカプラ33の出力ポートQに移行され出力される。
非対称幅分岐器34は、第1分岐路34aと第2分岐路34bを備えて構成される。第1分岐路34aと第2分岐路34bとの間隔が最も狭い、第1光波長フィルタ301と第2光波長フィルタ302との接合付近で、第1分岐路34aと第2分岐路34bの両者の導波路幅が等しくなるように設定されている。このような構成とすることで、第1分岐路34aを入力側とし、第2分岐路34bを出力側とする光合分岐器として機能することが知られている(特開2010-231058号公報参照)。
図4(B)に示す非対称幅分岐器34を構成要素とする経路を切り換えることが可能な光波長フィルタにあっては、第1光波長フィルタ301と第2光波長フィルタ302とを構成するそれぞれの溝の位置を半周期ずれて配置する必要がある。すなわち、並列して配置される第1光波長フィルタ301と第2光波長フィルタ302との互いの溝の位置が、一方の光波長フィルタの溝の位置が他方の光波長フィルタでは溝が形成されていない位置に対応するように両光波長フィルタを配置する必要がある。
第1分岐路34aから入力光Pを入力すると対称伝搬モードが励起され、第1光波長フィルタ301と第2光波長フィルタ302のそれぞれに等しい強度に分配されて入力される。第1光波長フィルタ301からのブラッグ反射光と第2光波長フィルタ302からのブラッグ反射光の位相は、上述したように第1光波長フィルタ301と第2光波長フィルタ302との互いの溝の位置が半周期ずれていることによりその位相がπずれており、そのためこれらブラッグ反射光は非対称幅分岐器34に互いに反対位相で到達する。反対称伝搬モードは第2分岐路34bに移行され、この第2分岐路34bから出力光Qとして出力される。
<光波長フィルタの動作>
次に、シミュレーションによって、この発明の光波長フィルタの特性を検証したので、その結果について説明する。シミュレーションは、FDTD(Finite Difference Time Domain)法によって光電場の強度分布を求めることによって行った。シミュレーションを実行するに当たっては、グレーティング導波路の寸法、溝の周期等の値は適宜設定することによって、この発明の光波長フィルタの特性が判明しやすいようにした。
まず、図1に示した高次伝搬モードのTM波を反射するグレーティング導波路5に、基本伝搬モードのTE波とTM波を入力し、これらがブラッグ反射されて出力される出力光の強度を調べた結果を図5に示す。すなわち、図5示した特性は、図1に示した第1の発明の光波長フィルタの透過・反射特性を示すものでもある。ここでのシミュレーションでは、導波路コア2の厚みは300 nmでありその屈折率は3.48、クラッド層3の屈折率は1.46とした。また、グレーティング導波路の全長は10μm、グレーティング周期Λは265 nm、溝4の深さ(導波路への切り込み量)は70 nmであるとした。
図5では、実線でグレーティング導波路5から透過されるTE波の強度を示し、一点破線で同じく透過されるTM波の強度を示し、粗い点線でブラッグ反射されて出力されるTE波の強度を示し、細かな点線で同じく反射されて出力されるTM波の強度を示している。図5の横軸は波長をμm単位で目盛って示してあり、縦軸は光強度をdB目盛で示してある。
図5において、反射されて出力されるTM波の強度(細かな点線で示されている)がRと示す位置でピークを形成している。また、反射されて出力されるTE波の強度(粗い点線でしめされている)がSと示す位置でピークを形成している。このピークSで示されるTE波の反射強度は、詳しい解析の結果、基本伝搬モードで入力されたTE波が基本伝搬モードでブラッグ反射されたものであることが判明した。一方、TM波に関しては、基本伝搬モードで入力され基本伝搬モードで反射されて出力される成分はほとんどなく、ピークRで示されるTM波の反射成分は、基本伝搬モードで入力されて2次伝搬モードへの回折波としてブラッグ反射されて出力された成分であることが判明した。そしてピークSで示されるTE波の反射強度よりもむしろ、ピークRで示されるTM波の反射強度が強くなっている。
TM波の基本伝搬モードは、その光電場分布のピーク位置が導波路の中心部分にあり、グレーティングを構成する溝4との重なりが小さいためブラッグ反射率が小さくなっているものであることが判明した。一方、TM波の2次伝搬モードの光電場分布は導波路の側壁部分で大きくなるので溝4との重なりも大きくなり、その結果ブラッグ反射率が大きくなったものと判断される。
これに対してTE波の基本伝搬モードの光電場分布は、導波路の周辺部分においても十分に大きく、そのため基本伝搬モードで入力されたTE波が十分な強度を以って基本伝搬モードでブラッグ反射されるものと考えられる。
図3に示した第2の発明の光波長フィルタの構成で、TE波とTM波に対するブラッグ反射波長が等しくなるように設定すれば、偏波無依存で波長選択可能な光波長フィルタが実現される。ただし、第2グレーティング導波路30でブラッグ反射されるTM波のブラッグ反射波長と、第1グレーティング導波路10でブラッグ反射されるTE波のブラッグ反射波長とが、共にこの第2の発明の光波長フィルタが利用されるシステム(例えば、PON通信システム)において使用される波長帯域内に入らないように設定する必要がある。
次に、図2(A)に示した第1の発明の光波長フィルタに、基本伝搬モードのTE波とTM波を入力し、これらがブラッグ反射されて出力される出力光の強度を調べた結果を図6に示す。すなわち、図6示した特性は、図2(A)に示した第1の発明の光波長フィルタの透過・反射特性を示すものでもある。ここでのシミュレーションでは、導波路のコア(グレーティング導波路)2の厚みは300 nm、幅は800 nmでありその屈折率は3.48、クラッド層3の屈折率は1.46とした。また、グレーティング導波路の全長は10μm、グレーティング周期Λは470.5 nm、溝4の深さ(導波路への切り込み量)は50 nmであるとした。更に、第1導波路21の幅は入力端で270 nm、第2導波路(22a、22b)の幅は入力端で320 nm、第1導波路21、第2導波路(22a、22b)のいずれも接続部200に達した位置でその導波路幅は300 nmと設定した。接続部200での第1導波路21と第2導波路(22a、22b)の間隔(両導波路間の隙間)は140 nmであり、第1導波路21と第2導波路(22a、22b)の入力端での間隔(両導波路間の隙間)は340 nmに設定した。伝搬モード変換部20の全長は10μmとした。
上述の寸法で伝搬モード変換部20を形成すると、TM波の基本伝搬モードを2次の伝搬モードに変換する変換効率は-10dB以上が実現されることがシミュレーションの結果判明している。
図6の横軸は波長をμm単位で目盛って示してあり、縦軸は光強度をdB目盛りで示してある。図6では、実線でグレーティング導波路5から透過されるTM波の強度を示し、一点破線で反射されて出力されるTM波の強度を示している。実線で示されている透過されるTM波は、基本伝搬モードで第1導波路21から入力され、伝搬モード変換部20で2次伝搬モードに変換されグレーティング導波路5を透過して出力される透過光である。一方、一点破線で示されている反射されて出力されるTM波は、基本伝搬モードで第1導波路21から入力され、伝搬モード変換部20で2次伝搬モードに変換されグレーティング導波路5からブラッグ反射されて再び伝搬モード変換部20で2次伝搬モードから基本伝搬モードに変換されて第1導波路21から出力されたブラッグ反射光である。
図6において、反射されて出力されるTM波の強度(一点破線で示されている)がRと示す位置でピークを形成している。図6に示しように、2次伝搬モードのTM波がグレーティング導波路5でブラッグ反射されるブラッグ反射波長がRで示す波長になっていることを示している。また、詳しいシミュレーションによって、図2(A)に示した伝搬モード変換部20において、TM波の基本伝搬モードが-1dB以上の効率で2次伝搬モードに変換されることも判明した。
以上、図5及び図6を参照して説明したように、グレーティング導波路においてTM波を2次の伝搬モードに変換してブラッグ反射率を向上させることができることが確かめられた。これによって、TM波に対してブラッグ反射率が十分に大きく、TE波とTM波に対してブラッグ反射率が等しい光波長フィルタが実現されることが実証された。
<光波長フィルタの製造方法>
光波長フィルタを構成する導波路パターン構造体は、例えば、SOI(Silicon on Insulator)基板を入手して、以下の工程によって形成できる。SOI基板は、広く市販品として入手可能であり、シリコン基板に酸化シリコン層、及びこの酸化シリコン層上に導波路の厚みの寸法に等しい厚みのシリコン層が形成されている。
SOI基板の酸化シリコン層上に形成されているシリコン層に対して、上述の導波路パターン構造体を残してドライエッチング等を行い、他の部分のシリコン層を取り除く。それに続き、エッチング処理で残された導波路パターンを導波構造のコアとして取り囲む酸化シリコン層を化学気相成長(CVD: Chemical Vapor Deposition)法等によって形成する。そして、酸化シリコン層の上面が平坦になるように研磨し、この酸化シリコン層を上部クラッド層として形成する。
クラッド層となる、導波路パターンを導波路構造のコアとして取り囲む酸化シリコン層は、SOI基板入手時にシリコン基板に既に形成されている酸化シリコン層を下部クラッド層とし、導波路コアを形成した後にCVDで形成される酸化シリコン層を上部クラッド層として構成される。
このように、この発明の光波長フィルタを構成する導波路パターン構造体は、SOI基板を用いて周知のエッチング処理、CVD法等によって形成することが可能であるので、量産性に優れ低コストで簡便に形成することが可能である。
1:シリコン基板
2:導波路コア
3:クラッド層
4:溝
5:グレーティング導波路
5a:導波路コアへの入力光
5b:導波路コアからの出力光
10:第1グレーティング導波路
20:伝搬モード変換部
21:第1導波路
22a、22b:第2導波路
23:入出力導波路
24:入出力導波路の一部
25:主導波路
30:第2グレーティング導波路
33:3dBカプラ
34:非対称幅分岐器
200:接続部
301:第1光波長フィルタ
302:第2光波長フィルタ

Claims (9)

  1. 高次伝搬モードのTM(Transverse Magnetic)波を反射するグレーティング導波路と、
    基本伝搬モードのTM波を高次伝搬モードのTM波に、あるいは高次伝搬モードのTM波を基本伝搬モードのTM波に変換する伝搬モード変換部と
    を備え、
    前記グレーティング導波路と前記伝搬モード変換部が直列に接続されており、
    前記伝搬モード変換部から、基本伝搬モードの多波長のTM波の入力光を入力し、
    前記伝搬モード変換部から、基本伝搬モードの単一波長のTM波の出力光を出力する
    ことを特徴とする光波長フィルタ。
  2. 前記伝搬モード変換部は、第1導波路と、当該第1導波路の両側に1本ずつ設けられる第2導波路と、当該第1及び第2導波路を結合する接続部を備え、
    前記第1導波路は、前記接続部に向けて導波路幅がテーパ状に広げられており、
    前記第2導波路は、前記接続部に向けて導波路幅がテーパ状に狭められており、
    前記第1導波路と前記第2導波路の間隔は、前記接続部に向けて狭められており、
    前記第1導波路と前記第2導波路の導波路幅は、前記接続部に達した位置で互いに等しく形成されており、
    前記接続部は、前記グレーティング導波路に接合されている
    ことを特徴とする請求項1に記載の光波長フィルタ。
  3. 前記伝搬モード変換部は、主導波路と入出力導波路とを備え、
    前記主導波路の一端は、前記グレーティング導波路に接続されており、
    前記入出力導波路の一部は、前記主導波路と方向性光結合器を形成するように、前記主導波路と並列に接近して配置されており、
    前記入出力導波路の一部の導波路幅と前記主導波路の幅とは、前記入出力導波路のTM波基本伝搬モードに対する伝搬定数と前記主導波路のTM波の高次伝搬モードの伝搬定数とが等しくなるように設定されている
    ことを特徴とする請求項1に記載の光波長フィルタ。
  4. 高次伝搬モードのTM(Transverse Magnetic)波を反射する第1グレーティング導波路と、
    基本伝搬モードのTE(Transverse Electric)波を反射する第2グレーティング導波路と、
    基本伝搬モードのTM波を高次伝搬モードのTM波に、あるいは高次伝搬モードのTM波を基本伝搬モードのTM波に変換する伝搬モード変換部と
    を備え、
    前記第1グレーティング導波路、前記伝搬モード変換部、及び前記第2グレーティング導波路がこの順に直列に接続されており、
    前記第2グレーティング導波路から、基本伝搬モードの多波長のTE波とTM波とが混合した入力光を入力し、
    前記第2グレーティング導波路の前記入力光を入力した側から、基本伝搬モードの単一波長のTE波とTM波とが混合した出力光を出力する
    ことを特徴とする光波長フィルタ。
  5. 前記伝搬モード変換部は、第1導波路と、当該第1導波路の両側に1本ずつ設けられる第2導波路と、当該第1及び第2導波路を結合する接続部を備え、
    前記第1導波路は、前記接続部に向けて導波路幅がテーパ状に広げられており、
    前記第2導波路は、前記接続部に向けて導波路幅がテーパ状に狭められており、
    前記第1導波路と前記第2導波路の間隔は、前記接続部に向けて狭められており、
    前記第1導波路と前記第2導波路の導波路幅は、前記接続部に達した位置で互いに等しく形成されており、
    前記接続部は、前記第1グレーティング導波路に接合されており、
    前記第1導波路の前記接続部に接続された端と反対側の他端は、前記第2グレーティング導波路に接続されている
    ことを特徴とする請求項4に記載の光波長フィルタ。
  6. 前記伝搬モード変換部は、主導波路と入出力導波路とを備え、
    前記主導波路の一端は、前記第1グレーティング導波路に接続されており、
    前記入出力導波路の一部は、前記主導波路と並列に接近して配置されて方向性光結合器を形成するように形成されて配置されており、
    前記入出力導波路の一部の導波路幅と前記主導波路の幅とは、前記入出力導波路のTM波基本伝搬モードに対する伝搬定数と前記主導波路のTM波の高次伝搬モードの伝搬定数とが等しくなるように設定されており、
    前記入出力導波路の一部の反射側の他端は、前記第2グレーティング導波路に接続されている
    ことを特徴とする請求項4に記載の光波長フィルタ。
  7. 第1光波長フィルタと第2光波長フィルタとを並列に配置し、
    前記第1光波長フィルタと前記第2光波長フィルタを光合分岐器で接合されており、
    前記光合分岐器の入力端から入力された入力光は、前記第1光波長フィルタと前記第2光波長フィルタとに等しく分配されて等しくブラッグ反射されて波長選択された単一波長の出力光が、再び前記光合分岐器の出力端から出力され、
    前記第1光波長フィルタ及び第2光波長フィルタが、請求項4〜6のいずれかに記載の光波長フィルタである
    ことを特徴とする光波長フィルタ。
  8. 請求項7に記載の光波長フィルタであって、前記光合分岐器が3dBカプラであることを特徴とする光波長フィルタ。
  9. 請求項7に記載の光波長フィルタであって、前記光合分岐器が非対称幅分岐器であり、
    前記第1光波長フィルタと前記第2光波長フィルタは、それぞれのブラッグ反射光が、前記光合分岐器に反対位相で到達される
    ことを特徴とする光波長フィルタ。
JP2014023640A 2014-02-10 2014-02-10 光波長フィルタ Pending JP2015152632A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014023640A JP2015152632A (ja) 2014-02-10 2014-02-10 光波長フィルタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023640A JP2015152632A (ja) 2014-02-10 2014-02-10 光波長フィルタ

Publications (1)

Publication Number Publication Date
JP2015152632A true JP2015152632A (ja) 2015-08-24

Family

ID=53894994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023640A Pending JP2015152632A (ja) 2014-02-10 2014-02-10 光波長フィルタ

Country Status (1)

Country Link
JP (1) JP2015152632A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448651A (zh) * 2016-09-08 2017-02-22 哈尔滨工程大学 一种波导高阶模式转换器
JP2018054936A (ja) * 2016-09-29 2018-04-05 沖電気工業株式会社 波長フィルタ
JP2019144390A (ja) * 2018-02-20 2019-08-29 沖電気工業株式会社 光波長フィルタ
CN117233888A (zh) * 2023-11-10 2023-12-15 武汉华工正源光子技术有限公司 光栅滤波器及基于布拉格光栅的波分复用解复用器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448651A (zh) * 2016-09-08 2017-02-22 哈尔滨工程大学 一种波导高阶模式转换器
JP2018054936A (ja) * 2016-09-29 2018-04-05 沖電気工業株式会社 波長フィルタ
JP2019144390A (ja) * 2018-02-20 2019-08-29 沖電気工業株式会社 光波長フィルタ
CN117233888A (zh) * 2023-11-10 2023-12-15 武汉华工正源光子技术有限公司 光栅滤波器及基于布拉格光栅的波分复用解复用器
CN117233888B (zh) * 2023-11-10 2024-03-19 武汉华工正源光子技术有限公司 光栅滤波器及基于布拉格光栅的波分复用解复用器

Similar Documents

Publication Publication Date Title
JP6089077B1 (ja) 導波路型光回折格子及び光波長フィルタ
JP6372142B2 (ja) 光波長分波器
JP6554571B1 (ja) 光波長フィルタ
US9151901B2 (en) Wavelength-selective path-switching element
JP5880209B2 (ja) 光素子
JP6300437B2 (ja) 光導波路素子
Saber et al. A CMOS compatible ultracompact silicon photonic optical add-drop multiplexer with misaligned sidewall Bragg gratings
JP2010223991A (ja) 光波長フィルタ及び光合分波素子
JP2015152632A (ja) 光波長フィルタ
D'Mello et al. Compact, angled polarization splitter: characterization of broadband performance and fabrication tolerance
Shi et al. Silicon-based on-chip diplexing/triplexing technologies and devices
JP6264922B2 (ja) 光波長フィルタ及び合分波素子
JP6630806B1 (ja) 光導波路回路
JP7023317B2 (ja) 光波長フィルタ及び波長分離光回路
JP7023318B2 (ja) 光波長フィルタ
Jeong et al. Polarization insensitive CWDM optical demultiplexer based on polarization splitter-rotator and delayed interferometric optical filter
JP6476265B1 (ja) 光導波路素子
JP6019150B2 (ja) 光波長フィルタ
JP6771606B2 (ja) 光波長フィルタ
JP6127079B2 (ja) 光波長フィルタ
JP2014071318A (ja) 光素子とその使用方法、及び光集積回路とその検査方法
KR101782593B1 (ko) 기울어진 브래그 격자와 모드 분류 광도파로를 이용한 폴리머 광도파로 파장 가변 필터
JP2013205456A (ja) 波長選択性経路切換素子
Boeck High performance silicon photonic filters for dense wavelength-division multiplexing applications
Huang et al. A coupled-waveguide grating resonator filter