JP2015145498A - resin composition - Google Patents

resin composition Download PDF

Info

Publication number
JP2015145498A
JP2015145498A JP2015040262A JP2015040262A JP2015145498A JP 2015145498 A JP2015145498 A JP 2015145498A JP 2015040262 A JP2015040262 A JP 2015040262A JP 2015040262 A JP2015040262 A JP 2015040262A JP 2015145498 A JP2015145498 A JP 2015145498A
Authority
JP
Japan
Prior art keywords
resin composition
resin
component
mass
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015040262A
Other languages
Japanese (ja)
Other versions
JP6267140B2 (en
Inventor
成弘 唐川
Masahiro Karakawa
成弘 唐川
中村 茂雄
Shigeo Nakamura
茂雄 中村
嘉生 西村
Yoshio Nishimura
嘉生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2015040262A priority Critical patent/JP6267140B2/en
Publication of JP2015145498A publication Critical patent/JP2015145498A/en
Application granted granted Critical
Publication of JP6267140B2 publication Critical patent/JP6267140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/58Amines together with other curing agents with polycarboxylic acids or with anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition suitable for forming an insulating layer of a circuit board, which allows formation of a conductive layer that has high peeling strength even if an insulating layer obtained by curing the resin composition has low surface roughness degree.SOLUTION: The resin composition comprises: (A) a polyfunctional epoxy resin (excluding a phenoxy resin); (B) a phenolic curing agent and/or an active ester curing agent; (C) a thermoplastic resin selected from a phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamide-imide resin, polyether sulfone resin, and polysulfone resin; (D) an inorganic filler; and (E) at least one quaternary phosphonium curing accelerator selected from a tetrabutylphosphonium decane acid salt, (4-methylphenyl)triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, and butyltriphenylphosphonium thiocyanate.

Description

本発明は、多層プリント配線板等の回路基板の絶縁層形成に好適な樹脂組成物、及び該樹脂組成物より得られる接着フィルム、プリプレグ等の絶縁樹脂シート、並びに該樹脂組成物の硬化物により絶縁層が形成された回路基板に関する。   The present invention provides a resin composition suitable for forming an insulating layer of a circuit board such as a multilayer printed wiring board, an insulating film obtained from the resin composition, an insulating resin sheet such as a prepreg, and a cured product of the resin composition. The present invention relates to a circuit board on which an insulating layer is formed.

近年の電子機器の小型化、高性能化により、回路基板のさらなる微細配線化が求められている。絶縁層表面を粗化した後、めっきにより導体層を形成する場合、粗度を大きくすればピール強度は増大するが、微細配線化に不利となる。従って、できるだけ低粗度で導体層のピール強度を高くするという相反する性能を同時に満たすことが望まれている。
例えば、エポキシ樹脂と、特定のフェノール系硬化剤、ポリビニルアセタールを配合したエポキシ樹脂組成物が、多層プリント配線板の絶縁層に使用した場合に、得られる粗化面は粗度が比較的小さくてもめっき導体と高い密着力で密着し得ること(特許文献1)が開示されている。
With recent downsizing and higher performance of electronic devices, further fine wiring of circuit boards is required. When the conductor layer is formed by plating after roughening the surface of the insulating layer, increasing the roughness increases the peel strength, but is disadvantageous for making fine wiring. Therefore, it is desired to simultaneously satisfy the conflicting performance of increasing the peel strength of the conductor layer with the lowest possible roughness.
For example, when an epoxy resin composition containing an epoxy resin, a specific phenolic curing agent, and polyvinyl acetal is used for an insulating layer of a multilayer printed wiring board, the resulting roughened surface has a relatively low roughness. Also disclosed is that it can be adhered to the plated conductor with high adhesion (Patent Document 1).

特開2007−254710号公報JP 2007-254710 A

本発明は、回路基板の絶縁層形成に好適な樹脂組成物において、該樹脂組成物を硬化して得られる絶縁層表面の粗度が低くても、高いピール強度を有する導体層が形成可能な樹脂組成物を提供することを目的とする。   According to the present invention, in a resin composition suitable for forming an insulating layer of a circuit board, a conductor layer having high peel strength can be formed even if the roughness of the surface of the insulating layer obtained by curing the resin composition is low. It aims at providing a resin composition.

上記課題に鑑み、本発明者らは樹脂組成物中における硬化促進剤の影響に着目した。そして、本発明者らは、多官能エポキシ樹脂、熱可塑性樹脂、無機充填剤を含む樹脂組成物において、特定の硬化剤と特定のリン系硬化剤とを組み合わせて使用することにより、該樹脂組成物を硬化して形成した絶縁層においては、絶縁層表面が低粗度でも、形成された導体層が高いピール強度を有することを見出し、本発明を完成させた。すなわち、本発明は以下の内容を含むものである。   In view of the above problems, the present inventors paid attention to the influence of the curing accelerator in the resin composition. Then, the present inventors use a combination of a specific curing agent and a specific phosphorus curing agent in a resin composition containing a polyfunctional epoxy resin, a thermoplastic resin, and an inorganic filler. In an insulating layer formed by curing an object, the present invention has been completed by finding that the formed conductor layer has a high peel strength even when the surface of the insulating layer has low roughness. That is, the present invention includes the following contents.

[1](A)多官能エポキシ樹脂、(B)フェノール系硬化剤及び/又は活性エステル系硬化剤、(C)熱可塑性樹脂、(D)無機充填材、(E)テトラブチルホスホニウムデカン酸塩、(4−メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネートから選ばれる1種以上の4級ホスホニウム系硬化促進剤を含有する樹脂組成物。
[2] 成分(A)と成分(B)の不揮発分の合計質量に対する成分(E)の質量の比率が100:0.05〜100:2となる範囲で成分(E)を含む、上記[1]記載の樹脂組成物。
[3] 樹脂組成物中に存在するエポキシ基と成分(B)の硬化剤の反応基の比率がモル比で1:0.3〜1:1となる範囲で成分(B)を含む、上記[1]又は[2]記載の樹脂組成物。
[4] 樹脂組成物の不揮発分を100質量%とした場合、成分(C)の含有量が1〜20質量%である、上記[1]〜[3]のいずれかに記載の樹脂組成物。
[5] 樹脂組成物の不揮発分を100質量%とした場合、成分(D)の含有量が10〜70質量%である上記[1]〜[4]のいずれかに記載の樹脂組成物。
[6]
ピール強度が0.4kgf/cm〜2kgf/cmであり、表面粗さが30nm〜400nmであることを特徴とする、上記[1]〜[5]のいずれかに記載の樹脂組成物。
[7][1]〜[6]のいずれかに記載の樹脂組成物が支持体上に層形成されている接着フィルム。
[8][1]〜[6]のいずれかに記載の樹脂組成物がシート状繊維基材中に含浸されているプリプレグ。
[9][1]〜[6]のいずれかに記載の樹脂組成物の硬化物により絶縁層が形成されている回路基板。
[1] (A) polyfunctional epoxy resin, (B) phenolic curing agent and / or active ester curing agent, (C) thermoplastic resin, (D) inorganic filler, (E) tetrabutylphosphonium decanoate , (4-methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, and a resin composition containing one or more quaternary phosphonium-based curing accelerators selected from butyltriphenylphosphonium thiocyanate.
[2] Including the component (E) in a range where the ratio of the mass of the component (E) to the total mass of the non-volatile components of the component (A) and the component (B) is 100: 0.05 to 100: 2. 1] The resin composition according to the above.
[3] The component (B) is contained in a range where the ratio of the epoxy group present in the resin composition and the reactive group of the curing agent of the component (B) is 1: 0.3 to 1: 1 in a molar ratio. The resin composition according to [1] or [2].
[4] The resin composition according to any one of [1] to [3], wherein the content of the component (C) is 1 to 20% by mass when the nonvolatile content of the resin composition is 100% by mass. .
[5] The resin composition according to any one of [1] to [4], wherein the content of the component (D) is 10 to 70% by mass when the nonvolatile content of the resin composition is 100% by mass.
[6]
The resin composition according to any one of [1] to [5] above, wherein the peel strength is 0.4 kgf / cm to 2 kgf / cm, and the surface roughness is 30 nm to 400 nm.
[7] An adhesive film in which the resin composition according to any one of [1] to [6] is layered on a support.
[8] A prepreg in which the resin composition according to any one of [1] to [6] is impregnated in a sheet-like fiber base material.
[9] A circuit board on which an insulating layer is formed of a cured product of the resin composition according to any one of [1] to [6].

本発明の樹脂組成物は、回路基板の絶縁層形成に好適であり、該樹脂組成物を硬化して得られる絶縁層は、表面の粗度が低くても、高いピール強度を有する導体層が形成可能であり、回路基板の微細配線化に有利となる。   The resin composition of the present invention is suitable for forming an insulating layer on a circuit board, and the insulating layer obtained by curing the resin composition is a conductor layer having a high peel strength even if the surface roughness is low. It can be formed, which is advantageous for the fine wiring of the circuit board.

本発明は、(A)多官能エポキシ樹脂、(B)フェノール系硬化剤及び/又は活性エステル系硬化剤、(C)熱可塑性樹脂、(D)無機充填材、(E)特定の硬化促進剤を含有することを特徴とする樹脂組成物である。   The present invention includes (A) a polyfunctional epoxy resin, (B) a phenolic curing agent and / or an active ester curing agent, (C) a thermoplastic resin, (D) an inorganic filler, and (E) a specific curing accelerator. It is a resin composition characterized by containing.

[(A)多官能エポキシ樹脂]
本発明における成分(A)多官能エポキシ樹脂は、本発明の効果を奏すれば特に限定さないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert−ブチル−カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、トリメチロール型エポキシ樹脂、ハロゲン化エポキシ樹脂等が挙げられる。
[(A) Multifunctional epoxy resin]
The component (A) polyfunctional epoxy resin in the present invention is not particularly limited as long as the effects of the present invention are achieved. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, tert-butyl -Catechol type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring contained An epoxy resin, a cyclohexane dimethanol type epoxy resin, a trimethylol type epoxy resin, a halogenated epoxy resin, etc. are mentioned.

エポキシ樹脂は2種以上を併用してもよいが、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含有するのが好ましい。樹脂組成物中の不揮発成分を100質量%とした場合に、少なくとも50質量%以上は1分子中に2個以上のエポキシ基を有するエポキシ樹脂であるのが好ましい。またさらに、1分子中に2以上のエポキシ基を有し、温度20℃で液状の芳香族系エポキシ樹脂であるエポキシ樹脂、および1分子中に3以上エポキシ基を有し、温度20℃で固体状の芳香族系エポキシ樹脂を含有する態様が好ましい。なお、本発明でいう芳香族系エポキシ樹脂とは、その分子内に芳香環構造を有するエポキシ樹脂を意味する。   Two or more epoxy resins may be used in combination, but it is preferable to contain an epoxy resin having two or more epoxy groups in one molecule. When the nonvolatile component in the resin composition is 100% by mass, at least 50% by mass is preferably an epoxy resin having two or more epoxy groups in one molecule. Furthermore, an epoxy resin that is an aromatic epoxy resin that has two or more epoxy groups in one molecule and is liquid at a temperature of 20 ° C, and a solid that has three or more epoxy groups in one molecule and has a temperature of 20 ° C. The aspect which contains a shape-like aromatic epoxy resin is preferable. In addition, the aromatic epoxy resin as used in the field of this invention means the epoxy resin which has an aromatic ring structure in the molecule | numerator.

また、エポキシ樹脂として、液状エポキシ樹脂と固形エポキシ樹脂を併用する場合、その配合割合(液状:固形)は質量比で1:0.1〜1:2の範囲が好ましい。かかる範囲を超えて液状エポキシ樹脂の割合が多すぎると、樹脂組成物の粘着性が高くなり、接着フィルムの形態で使用する場合に、真空ラミネート時の脱気性が低下しボイドが発生しやすくなる傾向にある。また真空ラミネート時に保護フィルムや支持フィルムの剥離性の低下や、硬化後の耐熱性が低下する傾向にある。また、樹脂組成物の硬化物において十分な破断強度が得られにくい傾向にある。一方、かかる範囲を超えて固形エポキシ樹脂の割合が多すぎると、接着フィルムの形態で使用する場合に、十分な可撓性が得られず、取り扱い性が低下する、ラミネートの際の十分な流動性が得られにくいなどの傾向がある。   Moreover, when using together a liquid epoxy resin and a solid epoxy resin as an epoxy resin, the mixture ratio (liquid: solid) has the preferable range of 1: 0.1-1: 2 by mass ratio. If the proportion of the liquid epoxy resin is too large beyond this range, the tackiness of the resin composition increases, and when used in the form of an adhesive film, the deaeration during vacuum lamination is reduced and voids are likely to occur. There is a tendency. Moreover, there exists a tendency for the peelability of a protective film and a support film to fall at the time of vacuum lamination, and the heat resistance after hardening to fall. Moreover, it exists in the tendency for sufficient breaking strength to be hard to be obtained in the hardened | cured material of a resin composition. On the other hand, if the proportion of the solid epoxy resin is too large beyond this range, sufficient flexibility cannot be obtained when using it in the form of an adhesive film, and the handleability is lowered. There is a tendency that it is difficult to obtain.

本発明の樹脂組成物において、樹脂組成物中の不揮発成分を100質量%とした場合、エポキシ樹脂の含有量は10〜50質量%であるのが好ましく、より好ましくは20〜45質量%であり、とりわけ好ましくは25〜42質量%である。エポキシ樹脂(A)の含有量がこの範囲から外れると、樹脂組成物の硬化性が低下する傾向にある。   In the resin composition of the present invention, when the nonvolatile component in the resin composition is 100% by mass, the content of the epoxy resin is preferably 10 to 50% by mass, more preferably 20 to 45% by mass. Particularly preferred is 25 to 42% by mass. When the content of the epoxy resin (A) is out of this range, the curability of the resin composition tends to decrease.

[(B)フェノール系硬化剤及び/又は活性エステル系硬化剤]
本発明における成分(B)のフェノール系硬化剤及び/又は活性エステル系硬化剤は、本発明の効果を奏すれば特に限定されないが、各々単独で用いてもよく、混合して用いてもよい。特に硬化物の機械特性の観点から、フェノール系硬化剤が好ましい。
[(B) Phenolic curing agent and / or active ester curing agent]
The phenol-based curing agent and / or active ester-based curing agent of component (B) in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but each may be used alone or in combination. . In particular, from the viewpoint of mechanical properties of the cured product, a phenolic curing agent is preferable.

フェノール系硬化剤は、フェノール骨格又はナフトール骨格を含む化合物であり、エポキシ樹脂の硬化作用を有するものをいう。フェノール系硬化剤としては、耐熱性、耐水性の観点から、ノボラック構造を有するフェノール系硬化剤やノボラック構造を有するナフトール系硬化剤が好ましい。市販品としては、例えば、MEH−7700、MEH−7810、MEH−7851(明和化成社製)、NHN、CBN、GPH(日本化薬(株)製)、SN170、SN180、SN190、SN475、SN485、SN495、SN375、SN395(東都化成(株)製)、LA7052、LA7054(大日本インキ化学工業(株)製)等が挙げられる。活性エステル系硬化剤はフェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を有し、エポキシ樹脂の硬化作用を有するものをいう。活性エステル系硬化剤としては、EXB−9460(大日本インキ化学工業(株)製)、DC808、YLH1030(ジャパンエポキシレジン(株)製)が挙げられる。   The phenolic curing agent is a compound containing a phenol skeleton or a naphthol skeleton, and has a curing action for an epoxy resin. As the phenolic curing agent, a phenolic curing agent having a novolak structure or a naphthol curing agent having a novolak structure is preferable from the viewpoint of heat resistance and water resistance. Examples of commercially available products include MEH-7700, MEH-7810, MEH-7785 (Maywa Kasei Co., Ltd.), NHN, CBN, GPH (Nippon Kayaku Co., Ltd.), SN170, SN180, SN190, SN475, SN485, SN495, SN375, SN395 (manufactured by Tohto Kasei Co., Ltd.), LA7052, LA7054 (manufactured by Dainippon Ink & Chemicals, Inc.), and the like. The active ester curing agent has an ester group with high reaction activity, such as phenol ester, thiophenol ester, N-hydroxyamine ester, ester of heterocyclic hydroxy compound, and has a curing action of epoxy resin. Say. Examples of the active ester curing agent include EXB-9460 (manufactured by Dainippon Ink & Chemicals, Inc.), DC808, and YLH1030 (manufactured by Japan Epoxy Resin Co., Ltd.).

本発明において、樹脂組成物中のフェノール系硬化剤及び/又は活性エステル系硬化剤の含有量は、樹脂組成物中に存在するエポキシ樹脂のエポキシ基の合計数と硬化剤の反応基の合計数の比率が1:0.3〜1:2となる量にするのが好ましく、さらには1:0.4〜1:1.5となる量にするのがより好ましい。なお樹脂組成物中に存在するエポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基(活性水酸基、活性エステル基)の合計数とは、各硬化剤の固形分質量を反応基当量で除した値をすべての硬化剤について合計した値である。硬化剤の含有量がかかる好ましい範囲を外れると、樹脂組成物を硬化して得られる硬化物の耐熱性が不十分となるなどの傾向がある。   In the present invention, the content of the phenolic curing agent and / or active ester curing agent in the resin composition is the total number of epoxy groups of the epoxy resin and the total number of reactive groups of the curing agent present in the resin composition. It is preferable that the ratio is 1: 0.3 to 1: 2, more preferably 1: 0.4 to 1: 1.5. The total number of epoxy groups of the epoxy resin present in the resin composition is a value obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins, and the reactive group of the curing agent. The total number of (active hydroxyl group, active ester group) is a value obtained by totaling the values obtained by dividing the solid content mass of each curing agent by the reactive group equivalent for all curing agents. When the content of the curing agent is out of the preferable range, there is a tendency that the heat resistance of the cured product obtained by curing the resin composition becomes insufficient.

[(C)熱可塑性樹脂]
本発明における成分(C)熱可塑性樹脂は、本発明の効果を奏すれば特に限定されないが、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂等が挙げられ、フェノキシ樹脂、ポリビニルアセタール樹脂が好ましく、特にフェノキシ樹脂が好ましい。熱可塑性樹脂は2種以上を混合して用いてもよい。熱可塑性樹脂の含有量は、樹脂組成物中の不揮発分100質量%に対し、1〜20質量%の範囲であるのが好ましく、5〜15質量%の範囲であるのがより好ましい。含有量が少なすぎると、硬化物の可撓性が低下する傾向にあり、含有量が多すぎると、樹脂組成物の粘度が高くなりすぎて、ラミネート性が低下し、回路上の配線パターンへの埋め込みなどが困難になる傾向にある。熱可塑性樹脂の重量平均分子量は8000〜70000の範囲であるのが好ましく、さらに好ましくは10000〜60000、さらに好ましくは20000〜60000である。分子量が小さすぎると導体層のピール強度が低下する傾向にあり、分子量が大きすぎると、粗度が大きくなりやすい、熱膨張率が大きくなりやすいなどの傾向となる。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC−9A/RID−6Aを、カラムとして昭和電工(株)社製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
[(C) Thermoplastic resin]
The component (C) thermoplastic resin in the present invention is not particularly limited as long as the effects of the present invention are achieved. For example, phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, polysulfone resin, etc. Phenoxy resin and polyvinyl acetal resin are preferable, and phenoxy resin is particularly preferable. Two or more thermoplastic resins may be mixed and used. The content of the thermoplastic resin is preferably in the range of 1 to 20% by mass and more preferably in the range of 5 to 15% by mass with respect to 100% by mass of the nonvolatile content in the resin composition. If the content is too small, the flexibility of the cured product tends to decrease. If the content is too large, the viscosity of the resin composition becomes too high and the laminating property decreases, leading to a wiring pattern on the circuit. Tend to be difficult to embed. It is preferable that the weight average molecular weight of a thermoplastic resin is the range of 8000-70000, More preferably, it is 10000-60000, More preferably, it is 20000-60000. If the molecular weight is too small, the peel strength of the conductor layer tends to decrease. If the molecular weight is too large, the roughness tends to increase and the thermal expansion coefficient tends to increase. The weight average molecular weight is measured by gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured at a column temperature of 40 ° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.

フェノキシ樹脂としては、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、トリメチルシクロヘキサン骨格から選択される1種以上の骨格を有するものが挙げられる。フェノキシ樹脂は2種以上を混合して用いてもよい。フェノキシ樹脂の末端はフェノール性水酸基、エポキシ基等のいずれの官能基でもよい。市販品としては、例えば、ジャパンエポキシレジン(株)製1256、4250(ビスフェノールA骨格含有フェノキシ樹脂)、ジャパンエポキシレジン製YX8100(ビスフェノールS骨格含有フェノキシ樹脂)、ジャパンエポキシレジン製YX6954(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)や、その他東都化成(株)製FX280、FX293、ジャパンエポキシレジン(株)製YL7553、YL6794、YL7213、YL7290、YL7482等が挙げられる。   Examples of the phenoxy resin include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene skeleton, Examples thereof include those having one or more skeletons selected from a trimethylcyclohexane skeleton. Two or more phenoxy resins may be mixed and used. The terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group. Examples of commercially available products include 1256, 4250 (bisphenol A skeleton-containing phenoxy resin) manufactured by Japan Epoxy Resin Co., Ltd., YX8100 (bisphenol S skeleton-containing phenoxy resin) manufactured by Japan Epoxy Resin, YX6954 (containing bisphenolacetophenone skeleton) manufactured by Japan Epoxy Resin. Phenoxy resin), FX280, FX293 manufactured by Toto Kasei Co., Ltd., YL7553, YL6794, YL7213, YL7290, YL7482 manufactured by Japan Epoxy Resin Co., Ltd. and the like.

ポリビニルアセタール樹脂の具体例としては、電気化学工業(株)製、電化ブチラール4000−2、5000−A、6000−C、6000−EP、積水化学工業(株)製エスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられる。ポリイミド樹脂の具体例としては、新日本理化(株)製のポリイミド「リカコートSN20」および「リカコートPN20」が挙げられる。また、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(特開2006−37083号公報記載のもの)、ポリシロキサン骨格含有ポリイミド(特開2002−12667号公報、特開2000−319386号公報等に記載のもの)等の変性ポリイミドが挙げられる。ポリアミドイミド樹脂の具体例としては、東洋紡績(株)製のポリアミドイミド「バイロマックスHR11NN」および「バイロマックスHR16NN」が挙げられる。また、日立化成工業(株)製のポリシロキサン骨格含有ポリアミドイミド「KS9100」、「KS9300」等の変性ポリアミドイミドが挙げられる。ポリエーテルスルホン樹脂の具体例としては、住友化学(株)社製のポリエーテルスルホン「PES5003P」等が挙げられる。ポリスルホン樹脂の具体例としては、ソルベンアドバンストポリマーズ(株)社製のポリスルホン「P1700」、「P3500」等が挙げられる。これら各種熱可塑性樹脂は2種以上を混合して用いてもよい。   Specific examples of the polyvinyl acetal resin include those manufactured by Denki Kagaku Kogyo Co., Ltd., electrified butyral 4000-2, 5000-A, 6000-C, 6000-EP, Sekisui Chemical Co., Ltd., ESREC BH series, BX series, and KS. Series, BL series, BM series and the like. Specific examples of the polyimide resin include polyimide “Rika Coat SN20” and “Rika Coat PN20” manufactured by Shin Nippon Rika Co., Ltd. Also, a linear polyimide obtained by reacting a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride (as described in JP 2006-37083 A), a polysiloxane skeleton-containing polyimide (JP 2002-2002). And modified polyimides such as those described in JP-A No. 12667 and JP-A No. 2000-319386. Specific examples of the polyamideimide resin include polyamideimides “Bilomax HR11NN” and “Bilomax HR16NN” manufactured by Toyobo Co., Ltd. In addition, modified polyamideimides such as polysiloxane skeleton-containing polyamideimides “KS9100” and “KS9300” manufactured by Hitachi Chemical Co., Ltd. may be mentioned. Specific examples of the polyethersulfone resin include polyethersulfone “PES5003P” manufactured by Sumitomo Chemical Co., Ltd. Specific examples of the polysulfone resin include polysulfone “P1700” and “P3500” manufactured by Solven Advanced Polymers Co., Ltd. These various thermoplastic resins may be used in combination of two or more.

[(D)の無機充填材]
本発明における成分(D)無機充填材は、本発明の効果を奏すれば特に限定されないが、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、これらの中でも無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ等のシリカが特に好適である。シリカとしては球状のものが好ましい。無機充填材は2種以上を組み合わせて使用してもよい。
[Inorganic filler of (D)]
The component (D) inorganic filler in the present invention is not particularly limited as long as the effects of the present invention are achieved. For example, silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, carbonate Calcium, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, etc. Of these, silica such as amorphous silica, fused silica, crystalline silica, and synthetic silica is particularly suitable. The silica is preferably spherical. Two or more inorganic fillers may be used in combination.

無機充填材の平均粒径は1μm以下であるのが好ましく、0.8μm以下がより好ましく、0.7μm以下がとりわけ好ましい。平均粒径が1μmを超える場合、メッキにより形成される導体層のピール強度が低下する傾向にある。なお、無機充填材の平均粒径が小さくなりすぎると、樹脂組成物を樹脂ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下する傾向にあるため、平均粒径は0.05μm以上であるのが好ましい。無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製 LA−500等を使用することができる。   The average particle size of the inorganic filler is preferably 1 μm or less, more preferably 0.8 μm or less, and particularly preferably 0.7 μm or less. When the average particle diameter exceeds 1 μm, the peel strength of the conductor layer formed by plating tends to decrease. If the average particle size of the inorganic filler is too small, when the resin composition is a resin varnish, the viscosity of the varnish tends to increase and the handleability tends to decrease, so the average particle size is 0.05 μm. The above is preferable. The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring apparatus, LA-500 manufactured by Horiba Ltd. can be used.

無機充填材は、耐湿性、分散性等の向上のため、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン、N−2(アミノエチル)アミノプロビルトリメトキシシラン等のアミノシラン系カップリング剤、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤、メルカトプロピルトリメトキシシラン、メルカトプロピルトリエトキシシラン等のメルカプトシラン系カップリング剤、メチルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等のシラン系カップリング剤、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5−ヘキサメテルシクロトリシラザン等のオルガノシラザン化合物、ブチルチタネートダイマー、チタンオクチレングリコレート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシチタンビスラクテート、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリーn−ブトキシチタンモノステアレート、テトラ−n−ブチルチタネート、テトラ(2−エチルヘキシル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリイソステアロイイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミドエチル・アミノエチル)チタネートのチタネート系カップリング剤などの1種以上の表面処理剤で処理されていてもよい。   Inorganic fillers include aminopropylmethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, and N-2 (aminoethyl) amino to improve moisture resistance, dispersibility, and the like. Aminosilane coupling agents such as provirtrimethoxysilane, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxy (Cyclohexyl) Epoxysilane coupling agents such as ethyltrimethoxysilane, mercaptosilane coupling agents such as mercatopropyltrimethoxysilane, mercatopropyltriethoxysilane, methyltrimethoxysilane, Silane coupling agents such as tadecyltrimethoxysilane, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, hexamethyldisilazane, hexaphenyldisilazane, dimethylaminotrimethylsilane, trisilazane, cyclotri Organosilazane compounds such as silazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane, butyl titanate dimer, titanium octylene glycolate, diisopropoxytitanium bis (triethanolaminate), dihydroxytitanium bislactate, Dihydroxybis (ammonium lactate) titanium, bis (dioctylpyrophosphate) ethylene titanate, bis (dioctylpyrophosphate) oxyacetate Totitanate, tri-n-butoxy titanium monostearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2 , 2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, isopropyl trioctanoyl titanate, isopropyl tricumyl phenyl titanate, isopropyl triisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl dimethacrylisostearoyl Titanate, isopropyltri (dioctylphosphate) titanate, isopropyltridodecylbenzenesulfonylthio It may be treated with one or more surface treating agents such as titanate, isopropyltris (dioctylpyrophosphate) titanate, titanate coupling agent of isopropyltri (N-amidoethyl / aminoethyl) titanate.

無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、株式会社堀場製作所製 LA−500等を使用することができる。   The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring apparatus, LA-500 manufactured by Horiba Ltd. can be used.

無機充填材の含有量は、樹脂組成物中の不揮発分100質量%に対して、10〜70質量%の範囲であるのが好ましく、15〜65質量%の範囲であるのがより好ましく、20〜60質量%であるのが更に好ましい。無機充填剤の含有量が少なすぎると、熱膨張率が上昇する傾向にあり、含有量が多すぎると、絶縁樹脂シートの可撓性が低下する傾向にある。   The content of the inorganic filler is preferably in the range of 10 to 70% by mass and more preferably in the range of 15 to 65% by mass with respect to 100% by mass of the nonvolatile content in the resin composition. More preferably, it is -60 mass%. If the content of the inorganic filler is too small, the coefficient of thermal expansion tends to increase. If the content is too large, the flexibility of the insulating resin sheet tends to decrease.

[4級ホスホニウム系硬化促進剤]
本発明における成分(E)4級ホスホニウム系硬化促進剤は、本発明の効果を奏すれば特に限定されないが、ここで、4級とは、アルキル基、アラルキル基、アリール基から選ばれる官能基を示す。具体的には、4級ホスホニウムチオシアネート、4級ホスホニウム長鎖脂肪酸塩が挙げられる。特に、テトラブチルホスホニウムデカン酸塩、(4−メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネートが好ましい。成分(A)と成分(B)の不揮発分の合計質量に対する成分(E)の含有量(質量%)の下限値は、0.05が好ましく、0.07がより好ましく、0.09が更に好ましく、0.11が更に一層好ましく、0.13が殊更好ましく、0.15が特に好ましい。成分(A)と成分(B)の不揮発分の合計質量に対する成分(E)の含有量(質量%)の上限値は、2が好ましく、1がより好ましく、0.8が更に好ましく、0.7が更に一層好ましく、0.6が殊更好ましく、0.5が特に好ましい。成分(E)の比率が0.05未満では、目的とする低粗度の効果が得られ難い傾向となり、2を超えるとピール強度が低下する傾向となる。
[Quaternary phosphonium curing accelerator]
The component (E) quaternary phosphonium-based curing accelerator in the present invention is not particularly limited as long as the effects of the present invention are exhibited. Here, the quaternary is a functional group selected from an alkyl group, an aralkyl group, and an aryl group. Indicates. Specific examples include quaternary phosphonium thiocyanate and quaternary phosphonium long chain fatty acid salts. In particular, tetrabutylphosphonium decanoate, (4-methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, and butyltriphenylphosphonium thiocyanate are preferable. The lower limit of the content (% by mass) of the component (E) with respect to the total mass of the non-volatile components of the component (A) and the component (B) is preferably 0.05, more preferably 0.07, and further 0.09 Preferably, 0.11 is even more preferred, 0.13 is even more preferred, and 0.15 is particularly preferred. The upper limit of the content (% by mass) of the component (E) relative to the total mass of the non-volatile components of the component (A) and the component (B) is preferably 2, more preferably 1, still more preferably 0.8, and 7 is still more preferred, 0.6 is particularly preferred, and 0.5 is particularly preferred. If the ratio of the component (E) is less than 0.05, the desired low roughness effect tends not to be obtained, and if it exceeds 2, the peel strength tends to decrease.

本発明の樹脂組成物は(A)成分、(B)成分、(C)成分、(D)成分、(E)成分を含み、該樹脂組成物を硬化して得られる絶縁層表面の粗度が低くても、高いピール強度を有する導体層が形成可能な樹脂組成物を提供することができる。   The resin composition of the present invention comprises (A) component, (B) component, (C) component, (D) component, and (E) component, and the surface roughness of the insulating layer obtained by curing the resin composition. Even if it is low, the resin composition which can form the conductor layer which has high peel strength can be provided.

本発明の(A)成分、(B)成分、(C)成分、(D)成分、(E)成分を含有する樹脂組成物の硬化物のピール強度は、後述する<メッキ導体層の引き剥がし強さ(ピール強度)の測定及び評価>に記載の測定方法により把握することができる。   The peel strength of the cured product of the resin composition containing the (A) component, (B) component, (C) component, (D) component, and (E) component of the present invention will be described later. Strength (peel strength) measurement and evaluation> can be grasped by the measurement method described in>.

本発明の樹脂組成物の硬化物のピール強度(kgf/cm)の上限値は、0.8が好ましく、0.9がより好ましく、1.0が更に好ましく、1.1が更に一層好ましく、1.2が殊更好ましく、2が特に好ましい。本発明の樹脂組成物の硬化物のピール強度(kgf/cm)の下限値は、0.4が好ましく、0.5がより好ましく、0.6が更に好ましい。   The upper limit of the peel strength (kgf / cm) of the cured product of the resin composition of the present invention is preferably 0.8, more preferably 0.9, still more preferably 1.0, and even more preferably 1.1. 1.2 is particularly preferred and 2 is particularly preferred. The lower limit of the peel strength (kgf / cm) of the cured product of the resin composition of the present invention is preferably 0.4, more preferably 0.5, and still more preferably 0.6.

本発明の(A)成分、(B)成分、(C)成分、(D)成分、(E)成分を含有する樹脂組成物の硬化物の表面粗さは、後述する<粗化後の表面粗さ(Ra値)の測定及び評価>に記載の測定方法により把握することができる。   The surface roughness of the cured product of the resin composition containing the component (A), the component (B), the component (C), the component (D), and the component (E) of the present invention is described below. Roughness (Ra value) measurement and evaluation> It can be grasped by the measurement method described in>.

本発明の樹脂組成物の硬化物の表面粗さ(nm)の上限値は、700が好ましく、500がより好ましく、400が更に好ましく、300が更に一層好ましく、200が殊更好ましく、170が特に好ましい。本発明の樹脂組成物の硬化物の表面粗さ(nm)の下限値は、150が好ましく、120がより好ましく、90が更に好ましく、70が更に一層好ましく、50が殊更好ましく、30が特に好ましい。   The upper limit of the surface roughness (nm) of the cured product of the resin composition of the present invention is preferably 700, more preferably 500, still more preferably 400, still more preferably 300, even more preferably 200, and particularly preferably 170. . The lower limit of the surface roughness (nm) of the cured product of the resin composition of the present invention is preferably 150, more preferably 120, still more preferably 90, still more preferably 70, even more preferably 50, and particularly preferably 30. .

[ゴム粒子]
本発明の樹脂組成物は、硬化物の機械強度を高める、応力緩和効果等の目的で固体状のゴム粒子を含有することができる。ゴム粒子は、樹脂組成物を調製する際の有機溶媒にも溶解せず、エポキシ樹脂等の樹脂組成物中の成分とも相溶せず、樹脂組成物のワニス中では分散状態で存在するものが好ましい。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。ゴム粒子としては、例えば、コアシェル型ゴム粒子、架橋アクリルニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、粒子がコア層とシェル層を有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマー、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマー、中間層がゴム状ポリマー、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス層は例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N、(ガンツ化成(株)商品名)、メタブレンKW−4426(三菱レイヨン(株)商品名)が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER−91(平均粒径0.5μm、JSR(株)製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK−500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.5μm)(三菱レイヨン(株)製)を挙げることができる。
[Rubber particles]
The resin composition of the present invention can contain solid rubber particles for the purpose of increasing the mechanical strength of the cured product and for reducing the stress. The rubber particles are not dissolved in the organic solvent when preparing the resin composition, are not compatible with components in the resin composition such as an epoxy resin, and exist in a dispersed state in the varnish of the resin composition. preferable. Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles. Examples of the rubber particles include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, the outer shell layer is a glassy polymer and the inner core layer is a rubbery polymer. Examples include a three-layer structure in which the shell layer is a glassy polymer, the intermediate layer is a rubbery polymer, and the core layer is a glassy polymer. The glass layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, (Ganz Kasei Co., Ltd. trade name), and Metabrene KW-4426 (Mitsubishi Rayon Co., Ltd. trade name). Specific examples of the acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include Methbrene W300A (average particle size 0.1 μm), W450A (average particle size 0.5 μm) (manufactured by Mitsubishi Rayon Co., Ltd.).

配合するゴム粒子の平均粒径は0.005〜1μmの範囲が好ましく、0.2〜0.6μmの範囲がより好ましい。本発明におけるゴム粒子の平均粒径は、動的光散乱法を用いて測定することが出来る。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、FPRA−1000(大塚電子(株)社製)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。   The average particle size of the rubber particles to be blended is preferably in the range of 0.005 to 1 μm, and more preferably in the range of 0.2 to 0.6 μm. The average particle diameter of the rubber particles in the present invention can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and the particle size distribution of the rubber particles is created on a mass basis using FPRA-1000 (manufactured by Otsuka Electronics Co., Ltd.). The average particle size can be measured.

ゴム粒子を配合する場合の含有量は、樹脂組成物中の不揮発分100質量%に対し、1〜10質量%の範囲であるのが好ましく、2〜5質量%の範囲であるのがより好ましい。   When the rubber particles are blended, the content is preferably in the range of 1 to 10% by mass and more preferably in the range of 2 to 5% by mass with respect to 100% by mass of the nonvolatile content in the resin composition. .

[その他の熱硬化性樹脂]
本発明の樹脂組成物は、必要に応じて本発明の効果が発揮される範囲でマレイミド化合物、ビスアリルナジイミド化合物、ビニルベンジル樹脂、ビニルベンジルエーテル樹脂などのその他の熱硬化性樹脂を配合することもできる。このような熱硬化性樹脂は2種以上を混合して用いてもよい。マレイミド樹脂としてはBMI1000、BMI2000、BMI3000、BMI4000、BMI5100(大和化成工業(株)製)、BMI、BMI−70、BMI−80(ケイ・アイ化成(株)製)、ANILIX−MI(三井化学ファイン(株)製)、ビスアリルナジイミド化合物としてはBANI−M、BANI−X(丸善石油化学工業(株)製)ビニルベンジル樹脂としてはV5000(昭和高分子(株)製)、ビニルベンジルエーテル樹脂としてはV1000X、V1100X(昭和高分子(株)製)が挙げられる。
[Other thermosetting resins]
The resin composition of the present invention is blended with other thermosetting resins such as a maleimide compound, a bisallyl nadiimide compound, a vinyl benzyl resin, and a vinyl benzyl ether resin within a range in which the effects of the present invention are exhibited as necessary. You can also Such thermosetting resins may be used in combination of two or more. As maleimide resins, BMI1000, BMI2000, BMI3000, BMI4000, BMI5100 (manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI, BMI-70, BMI-80 (manufactured by KEI Kasei Co., Ltd.), ANILIX-MI (Mitsui Chemical Fine) BANI-M, BANI-X (manufactured by Maruzen Petrochemical Co., Ltd.) as a vinyl benzyl resin, V5000 (manufactured by Showa Polymer Co., Ltd.), vinyl benzyl ether resin V1000X, V1100X (manufactured by Showa Polymer Co., Ltd.).

[難燃剤]
本発明の樹脂組成物は、本発明の効果が発揮される範囲で難燃剤を含有しても良い。難燃剤は2種以上を混合して用いてもよい。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、三光(株)製のHCA、HCA−HQ、HCA−NQ等のホスフィン化合物、昭和高分子(株)製のHFB−2006M等のリン含有ベンゾオキサジン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のPPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX310等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルミド化合物、大塚化学(株)社製のSPB100、SPE100等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)社製のB−30、B−325、B−315、B−308、B−303、UFH−20等の水酸化アルミニウム等が挙げられる。
[Flame retardants]
The resin composition of the present invention may contain a flame retardant as long as the effects of the present invention are exhibited. Two or more flame retardants may be mixed and used. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. Examples of organophosphorus flame retardants include phosphine compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd., and Ajinomoto Fine Techno. Reefos 30, 50, 65, 90, 110, TPP, RPD, BAPP, CPD, TCP, TXP, TBP, TOP, KP140, TIBP, PPQ manufactured by Hokuko Chemical Co., Ltd., Clariant Phosphorus ester compounds such as OP930 manufactured by Daihachi Chemical Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., phosphorus-containing epoxy resins such as FX289 manufactured by Toto Kasei Co., Ltd., and FX310, and phosphorus-containing phenoxy such as ERF001 manufactured by Toto Kasei Co., Ltd. Examples thereof include resins. Examples of the organic nitrogen-containing phosphorus compound include phosphate ester compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., and phosphazene compounds such as SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd. As the metal hydroxide, magnesium hydroxide such as UD65, UD650, UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308 manufactured by Sakai Kogyo Co., Ltd. Examples thereof include aluminum hydroxide such as B-303 and UFH-20.

[樹脂添加剤]
本発明の樹脂組成物は、本発明の効果が発揮される範囲で、上述した以外の他の各種樹脂添加剤を任意で含有しても良い。樹脂添加剤としては、例えばシリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、シランカップリング剤、トリアゾール化合物、チアゾール化合物、トリアジン化合物、ポルフィリン化合物等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。また、キュアゾール2MZ、2E4MZ、C11Z、C11Z−CN、C11Z−CNS、C11Z−A、2MZ−OK、2MA−OK、2PHZ(四国化成工業(株)商品名)等のイミダゾール化合物;ノバキュア(旭化成工業(株)商品名)、フジキュア(富士化成工業(株)商品名)等のアミンアダクト化合物;1、8−ジアザビシクロ(5、4、0)ウンデセン−7(以下DBUと略称する)系テトラフェニルボレート塩等の3級アミン化合物;等のアミン系硬化促進剤などが挙げられる。
[Resin additive]
The resin composition of the present invention may optionally contain various resin additives other than those described above as long as the effects of the present invention are exhibited. Examples of the resin additive include organic fillers such as silicon powder, nylon powder and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based and polymer-based antifoaming agents or leveling agents, and silane coupling. Examples thereof include adhesion-imparting agents such as an agent, a triazole compound, a thiazole compound, a triazine compound, and a porphyrin compound, and a colorant such as phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black. Also, imidazole compounds such as Curezol 2MZ, 2E4MZ, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2MZ-OK, 2MA-OK, 2PHZ (trade names of Shikoku Kasei Kogyo Co., Ltd.); Amine adduct compounds such as Fujicure (Fuji Kasei Kogyo Co., Ltd.); 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter abbreviated as DBU) tetraphenylborate salt And tertiary amine compounds such as amine-based curing accelerators.

本発明の樹脂組成物の調製方法は、特に限定されるものではなく、例えば、配合成分を、必要により溶媒等を添加し、回転ミキサーなどを用いて混合する方法などが挙げられる。   The method for preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method in which the components are mixed using a rotary mixer or the like, if necessary, by adding a solvent or the like.

本発明の樹脂組成物の用途は、特に限定されないが、接着フィルム、プリプレグ等の絶縁樹脂シート、回路基板、ソルダーレジスト、アンダ−フィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が必要とされる用途の広範囲に使用できる。なかでも、支持体上に塗布し樹脂組成物層を形成させて接着フィルムとするか、または繊維からなるシート状繊維基材中に該樹脂組成物を含浸させてプリプレグとすることが好ましい。本発明の樹脂組成物はワニス状態で回路基板に塗布して絶縁層を形成することもできるが、工業的には、一般に、接着フィルムまたはプリプレグ等のシート状積層材料の形態として絶縁層形成に用いられるのが好ましい。   The use of the resin composition of the present invention is not particularly limited, but includes insulating resin sheets such as adhesive films and prepregs, circuit boards, solder resists, underfill materials, die bonding materials, semiconductor encapsulants, hole filling resins, and component embeddings. It can be used in a wide range of applications that require a resin composition such as a resin. Especially, it is preferable to apply | coat on a support body and to form a resin composition layer to make an adhesive film, or to impregnate this resin composition in the sheet-like fiber base material which consists of fibers to make a prepreg. The resin composition of the present invention can be applied to a circuit board in a varnish state to form an insulating layer, but industrially, in general, the insulating layer is formed in the form of a sheet-like laminated material such as an adhesive film or a prepreg. It is preferably used.

[接着フィルム]
本発明の接着フィルムは、当業者に公知の方法、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、支持体上に、この樹脂ワニスを塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することができる。
[Adhesive film]
The adhesive film of the present invention is prepared by a method known to those skilled in the art, for example, by preparing a resin varnish in which a resin composition is dissolved in an organic solvent, applying the resin varnish on a support, and further heating or blowing hot air. It can manufacture by drying an organic solvent by etc. and forming a resin composition layer.

有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は1種を使用しても2種以上を組み合わせて用いてもよい。   Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol. And aromatic hydrocarbons such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. One organic solvent may be used, or two or more organic solvents may be used in combination.

乾燥条件は特に限定されないが、樹脂組成物層への有機溶剤の含有割合は10質量%以下が好ましく、より好ましくは5質量%以下となるように乾燥させる。乾燥条件は、簡単な実験により適宜、好適な乾燥条件を設定することができる。ワニス中の有機溶媒量によっても異なるが、例えば30〜60質量%の有機溶剤を含むワニスを50〜150℃で3〜10分程度乾燥させることができる。   The drying conditions are not particularly limited, but the organic solvent content in the resin composition layer is preferably 10% by mass or less, and more preferably 5% by mass or less. As drying conditions, suitable drying conditions can be appropriately set by simple experiments. Although it depends on the amount of organic solvent in the varnish, for example, a varnish containing 30 to 60% by mass of an organic solvent can be dried at 50 to 150 ° C. for about 3 to 10 minutes.

接着フィルムにおいて形成される樹脂組成物層の厚さは、導体層の厚さ以上とするのが好ましい。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。樹脂組成物層は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。   The thickness of the resin composition layer formed in the adhesive film is preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm. The resin composition layer may be protected by a protective film described later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.

本発明における支持体としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミドなどのプラスチックフィルムが挙げられる。プラスチックフィルムとしては、とくにPETが好ましい。支持体として銅箔、アルミニウム箔等の金属箔を使用し、金属箔付接着フィルムとすることもできる。保護フィルムは、同様のプラスチックフィルムを用いるのが好ましい。また支持体及び保護フィルムはマット処理、コロナ処理の他、離型処理を施してあってもよい。また、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤で離型処理が施してあってもよい。   Examples of the support in the present invention include polyolefins such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyesters such as polyethylene naphthalate, plastic films such as polycarbonate and polyimide. Can be mentioned. As the plastic film, PET is particularly preferable. A metal foil such as a copper foil or an aluminum foil can be used as a support, and an adhesive film with a metal foil can be obtained. The protective film is preferably a similar plastic film. Further, the support and the protective film may be subjected to release treatment in addition to mat treatment and corona treatment. The release treatment may be performed with a release agent such as a silicone resin release agent, an alkyd resin release agent, or a fluororesin release agent.

支持体の厚さは特に限定されないが、10〜150μmの範囲が好ましく、25〜50μmの範囲で用いられるのがより好ましい。また保護フィルムの厚さも特に制限されないが、1〜40μmの範囲が好ましく、10〜30μmの範囲で用いられるのがより好ましい。   Although the thickness of a support body is not specifically limited, The range of 10-150 micrometers is preferable and it is more preferable to use in the range of 25-50 micrometers. The thickness of the protective film is not particularly limited, but is preferably in the range of 1 to 40 μm, and more preferably in the range of 10 to 30 μm.

本発明における支持体は、内層回路基板等にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持体を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができ、また硬化後の絶縁層の表面平滑性を向上させることができる。硬化後に剥離する場合、支持体には予め離型処理が施されるのが好ましい。なお、支持体上に形成される樹脂組成物層は、層の面積が支持体の面積より小さくなるように形成するのが好ましい。また接着フィルムは、ロール状に巻き取って、保存、貯蔵することができる。   The support in the present invention is peeled off after being laminated on an inner layer circuit board or the like, or after forming an insulating layer by heat curing. If the support is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing step can be prevented, and the surface smoothness of the insulating layer after curing can be improved. In the case of peeling after curing, the support is preferably subjected to a release treatment in advance. In addition, it is preferable to form the resin composition layer formed on a support body so that the area of a layer may become smaller than the area of a support body. The adhesive film can be wound up in a roll shape and stored and stored.

[接着フィルムを用いた多層プリント配線板等の製造方法]
次に、本発明の接着フィルムを用いて本発明の多層プリント配線板等の回路基板を製造する方法について説明する。樹脂組成物層が保護フィルムで保護されている場合はこれらを剥離した後、樹脂組成物層を内層回路基板に直接接するように、内層回路基板の片面又は両面にラミネートする。本発明の接着フィルムにおいては真空ラミネート法により減圧下で内層回路基板にラミネートする方法が好適に用いられる。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び内層回路基板を必要により加熱(プレヒート)しておいてもよい。
[Method for producing multilayer printed wiring board using adhesive film]
Next, a method for producing a circuit board such as the multilayer printed wiring board of the present invention using the adhesive film of the present invention will be described. When the resin composition layer is protected with a protective film, the resin composition layer is peeled off and then laminated on one or both sides of the inner circuit board so that the resin composition layer is in direct contact with the inner circuit board. In the adhesive film of the present invention, a method of laminating the inner layer circuit board under reduced pressure by a vacuum laminating method is preferably used. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the inner layer circuit board may be heated (preheated) as necessary before lamination.

本発明における内層回路基板とは、主として、ガラスエポキシ、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層が交互に層形成され、片面又は両面がパターン加工された導体層(回路)となっている、多層プリント配線板を製造する際に、さらに絶縁層および導体層が形成されるべき中間製造物も本発明における内層回路基板に含まれる。内層回路基板において、導体回路層表面は黒化処理等により予め粗化処理が施されていた方が絶縁層の内層回路基板への密着性の観点から好ましい。   The inner layer circuit board in the present invention is mainly a conductor layer (circuit) patterned on one or both sides of a substrate such as a glass epoxy, metal substrate, polyester substrate, polyimide substrate, BT resin substrate, thermosetting polyphenylene ether substrate, etc. The one formed by. In addition, when manufacturing a multilayer printed wiring board in which conductor layers and insulating layers are alternately formed, and one or both surfaces are patterned conductor layers (circuits), an insulating layer and a conductor layer are further formed. The intermediate product to be included is also included in the inner layer circuit board in the present invention. In the inner layer circuit board, the surface of the conductor circuit layer is preferably roughened by a blackening process or the like from the viewpoint of adhesion of the insulating layer to the inner layer circuit board.

ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m)とし、空気圧が20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。 The laminating conditions are preferably a pressure bonding temperature (laminating temperature) of 70 to 140 ° C. and a pressure bonding pressure of preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2 ). Lamination is preferably performed under a reduced pressure of 20 mmHg (26.7 hPa) or less.

真空ラミネートは市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製 バキュームアップリケーター、(株)名機製作所製 真空加圧式ラミネーター、(株)日立インダストリイズ製 ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。   The vacuum lamination can be performed using a commercially available vacuum laminator. Commercially available vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like.

また、減圧下、加熱及び加圧を行う積層工程は、一般の真空ホットプレス機を用いて行うことも可能である。例えば、加熱されたSUS板等の金属板を支持体層側からプレスすることにより行うことができる。   Moreover, the lamination process which heats and pressurizes under reduced pressure can also be performed using a general vacuum hot press machine. For example, it can be performed by pressing a metal plate such as a heated SUS plate from the support layer side.

プレス条件として、減圧度は1×10−2MPa以下が好ましく、1×10−3MPa以下がより好ましい。加熱及び加圧は、1段階で行うことも出来るが、樹脂のしみだしを制御する観点から2段階以上に条件を分けて行うのが好ましい。例えば、1段階目のプレスを、温度が70〜150℃、圧力が1〜15kgf/cm2の範囲、2段階目のプレスを、温度が150〜200℃、圧力が1〜40kgf/cm2の範囲で行うのが好ましい。各段階の時間は30〜120分で行うのが好ましい。市販されている真空ホットプレス機としては、例えば、MNPC−V−750−5−200(株)名機製作所製)、VH1−1603(北川精機(株)製)等が挙げられる。   As pressing conditions, the degree of reduced pressure is preferably 1 × 10 −2 MPa or less, and more preferably 1 × 10 −3 MPa or less. Although heating and pressurization can be carried out in one stage, it is preferable to carry out the conditions separately in two or more stages from the viewpoint of controlling the oozing of the resin. For example, the first stage press has a temperature of 70 to 150 ° C. and the pressure is in the range of 1 to 15 kgf / cm 2, and the second stage press has the temperature of 150 to 200 ° C. and the pressure is in the range of 1 to 40 kgf / cm 2 It is preferred to do so. The time for each stage is preferably 30 to 120 minutes. Examples of commercially available vacuum hot press machines include MNPC-V-750-5-200 (manufactured by Meiki Seisakusho), VH1-1603 (manufactured by Kitagawa Seiki Co., Ltd.), and the like.

このように接着フィルムを内層回路基板にラミネートした後、支持体を剥離する場合は剥離し、樹脂組成物を熱硬化することにより内層回路基板に絶縁層を形成することができる。加熱硬化の条件は150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分である。   After laminating the adhesive film on the inner layer circuit board in this way, the support can be peeled off and the resin composition can be thermally cured to form an insulating layer on the inner layer circuit board. The conditions of heat curing are selected in the range of 20 to 180 minutes at 150 to 220 ° C, more preferably 30 to 120 minutes at 160 to 200 ° C.

絶縁層を形成した後、硬化前に支持体を剥離しなかった場合は、ここで剥離する。次に内層回路基板上に形成された絶縁層に穴開けを行いビアホール、スルーホールを形成する。穴あけは例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけがもっとも一般的な方法である。   If the support is not peeled off after the insulating layer is formed, it is peeled off here. Next, holes are formed in the insulating layer formed on the inner circuit board to form via holes and through holes. Drilling can be performed by a known method such as drilling, laser, or plasma, or a combination of these methods if necessary. However, drilling by a laser such as a carbon dioxide laser or YAG laser is the most common method. .

次いで、絶縁層表面に粗化処理を行う。本発明における粗化処理は、酸化剤を使用した湿式粗化方法で行うのが好ましい。酸化剤としては、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等が挙げられる。好ましくはビルトアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)を用いて粗化を行うのが好ましい。   Next, a roughening process is performed on the surface of the insulating layer. The roughening treatment in the present invention is preferably performed by a wet roughening method using an oxidizing agent. Examples of the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. Preferably, an alkaline permanganate solution (eg, potassium permanganate, sodium hydroxide solution of sodium permanganate), which is an oxidizer widely used for roughening an insulating layer in the production of multilayer printed wiring boards by a built-up method. It is preferable to perform roughening using.

絶縁層表面を粗化処理した粗化面の粗さは、微細配線を形成する上で、Ra値で0.05〜0.5μmであるのが好ましい。なお、Ra値とは、表面粗さを表す数値の一種であり、算術平均粗さと呼ばれるものであって、具体的には測定領域内で変化する高さの絶対値を平均ラインである表面から測定して算術平均したものである。例えば、ビーコインスツルメンツ社製WYKO NT3300を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値により求めることができる。   The roughness of the roughened surface obtained by roughening the surface of the insulating layer is preferably 0.05 to 0.5 μm in Ra value when forming fine wiring. The Ra value is a kind of numerical value representing the surface roughness, and is called arithmetic average roughness. Specifically, the absolute value of the height changing in the measurement region is determined from the surface that is the average line. Measured and arithmetically averaged. For example, by using WYKO NT3300 manufactured by Becoin Instruments Co., Ltd., it can be obtained from a numerical value obtained by setting the measurement range to 121 μm × 92 μm with a VSI contact mode and a 50 × lens.

次に、粗化処理により凸凹のアンカーが形成された樹脂組成物層表面に、無電解メッキと電解メッキを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。なお導体層形成後、150〜200℃で20〜90分アニール(anneal)処理することにより、導体層のピール強度をさらに向上、安定化させることができる。導体層のピール強度は、0.6kgf/cm以上であるのが好ましい。   Next, a conductor layer is formed on the surface of the resin composition layer on which uneven anchors are formed by the roughening treatment by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. After forming the conductor layer, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes. The peel strength of the conductor layer is preferably 0.6 kgf / cm or more.

また、導体層をパターン加工し回路形成する方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。   Moreover, as a method of patterning the conductor layer to form a circuit, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.

[プリプレグ]
本発明のプリプレグは、本発明の樹脂組成物を繊維からなるシート状繊維基材にホットメルト法又はソルベント法により含浸させ、加熱により半硬化させることにより製造することができる。すなわち、本発明の樹脂組成物が繊維からなるシート状繊維基材に含浸した状態となるプリプレグとすることができる。
[Prepreg]
The prepreg of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like fiber substrate made of fibers by a hot melt method or a solvent method and semi-curing by heating. That is, it can be set as the prepreg which will be in the state which the resin composition of this invention impregnated the sheet-like fiber base material which consists of fibers.

繊維からなるシート状繊維基材としては、例えばガラスクロスやアラミド繊維等、プリプレグ用繊維として常用されているものを用いることができる。   As the sheet-like fiber base material composed of fibers, for example, glass cloth and aramid fibers, which are commonly used as prepreg fibers, can be used.

ホットメルト法は、樹脂を有機溶剤に溶解することなく、樹脂を樹脂と剥離性の良い塗工紙に一旦コーティングし、それをシート状繊維基材にラミネートする、あるいはダイコーターにより直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様、樹脂を有機溶剤に溶解した樹脂ワニスにシート状繊維基材を浸漬し、樹脂ワニスをシート状繊維基材に含浸させ、その後乾燥させる方法である。   In the hot melt method, without dissolving the resin in an organic solvent, the resin is once coated on the resin and a coated paper having good releasability, and then laminated on a sheet-like fiber substrate, or directly applied by a die coater. Thus, a prepreg is manufactured. Similarly to the adhesive film, the solvent method is a method in which a sheet-like fiber base material is immersed in a resin varnish obtained by dissolving a resin in an organic solvent, the resin varnish is impregnated into the sheet-like fiber base material, and then dried.

[プリプレグを用いた多層プリント配線板等の製造方法]
次に本発明のプリプレグを用いて本発明の多層プリント配線板等の回路基板を製造する方法について説明する。内層回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートを挟み加圧・加熱条件下でプレス積層する。圧力は好ましくは5〜40kgf/cm(49×10〜392×10N/m)、温度は好ましくは120〜200℃で20〜100分の範囲で成型するのが好ましい。また接着フィルムと同様に真空ラミネート法により内層回路基板にラミネートした後、加熱硬化することによっても製造可能である。その後、前述の方法と同様、酸化剤により硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成することで、多層プリント配線板等の回路基板を製造することができる。
[Method for producing multilayer printed wiring board using prepreg]
Next, a method for producing a circuit board such as the multilayer printed wiring board of the present invention using the prepreg of the present invention will be described. One or several prepregs of the present invention are stacked on the inner layer circuit board, and a metal plate is sandwiched through a release film, and press laminated under pressure and heating conditions. The pressure is preferably 5 to 40 kgf / cm 2 (49 × 10 4 to 392 × 10 4 N / m 2 ), and the temperature is preferably 120 to 200 ° C. for 20 to 100 minutes. In addition, as with the adhesive film, it can be produced by laminating on an inner layer circuit board by a vacuum laminating method and then heat-curing. Thereafter, in the same manner as described above, the surface of the prepreg cured with an oxidizing agent is roughened, and then the conductor layer is formed by plating, whereby a circuit board such as a multilayer printed wiring board can be manufactured.

以下、実施例及び比較例を用いて本発明をより詳細に説明するが、これらは本発明をいかなる意味においても制限するものではない。なお、以下の記載において、「部」は「質量部」を意味する。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, these do not restrict | limit this invention in any meaning. In the following description, “part” means “part by mass”.

(実施例1)
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「jER828EL」)35部と、ビフェニル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000H」)35部、フェノキシ樹脂(重量平均分子量38000、ジャパンエポキシレジン(株)製「YX6954」不揮発分30質量%のメチルエチルケトン(以下「MEK」と略称する。)とシクロヘキサノンの1:1溶液)40部とをMEK10部、シクロヘキサノン3部に撹拌しながら加熱溶解させた。そこへ、フェノールノボラック系硬化剤(DIC(株)製「LA−7054」不揮発分60質量%のMEK溶液、フェノール性水酸基当量124)45部、4級ホスホニウム系硬化促進剤である(4−メチルフェニル)トリフェニルホスホニウムチオシアネート(北興化学工業(株)製、「TPTP−SCN」不揮発分10質量%のジメチルホルムアミド(以下「DMF」と略称する。)溶液)2部、球形シリカ(平均粒径0.5μm、アミノシラン処理付「SOC2」アドマテックス社製)70部、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスをポリエチレンテレフタレート(厚さ38μm、以下「PET」と略称する。)上に、乾燥後の樹脂厚みが40μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥した(残留溶媒量約2質量%)。次いで樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリット(slit)し、これより507×336mmサイズのシート状の接着フィルムを得た。
Example 1
35 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Japan Epoxy Resin Co., Ltd.), 35 parts biphenyl type epoxy resin (epoxy equivalent 269, “NC3000H” manufactured by Nippon Kayaku Co., Ltd.), phenoxy MEK 10 parts, cyclohexanone 40 parts of resin (weight average molecular weight 38000, "YX6954" manufactured by Japan Epoxy Resins Co., Ltd., 30 parts by mass of methyl ethyl ketone (hereinafter abbreviated as "MEK") and cyclohexanone 1: 1) The mixture was dissolved in 3 parts with stirring. Thereto, a phenol novolac-based curing agent (“LA-7054” manufactured by DIC Corporation, MEK solution having a nonvolatile content of 60% by mass, phenolic hydroxyl group equivalent 124) 45 parts, a quaternary phosphonium-based curing accelerator (4-methyl Phenyl) triphenylphosphonium thiocyanate (manufactured by Hokuko Chemical Co., Ltd., “TPTP-SCN” dimethylformamide (hereinafter abbreviated as “DMF”) solution having a nonvolatile content of 10% by mass), spherical silica (average particle size 0) The resin varnish was prepared by uniformly dispersing 70 parts with 5 μm, “SOC2” (manufactured by Admatechs Co., Ltd.) and a high-speed rotary mixer. Next, the resin varnish was applied onto polyethylene terephthalate (thickness 38 μm, hereinafter abbreviated as “PET”) with a die coater so that the resin thickness after drying was 40 μm, and 80 to 120 ° C. (average (100 ° C.) for 6 minutes (residual solvent amount: about 2% by mass). Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.

(実施例2)
実施例1の4級ホスホニウム系硬化促進剤である(4−メチルフェニル)トリフェニルホスホニウムチオシアネート(北興化学工業(株)製、「TPTP−SCN」不揮発分10質量%のDMF溶液)2部を、同じく4級ホスホニウム系硬化促進剤であるテトラフェニルホスホニウムチオシアネート(北興化学工業(株)製、「TPP−SCN」不揮発分5質量%のDMF溶液)4部に変更する以外は、全く同様にして接着フィルムを得た。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
(Example 2)
2 parts of (4-methylphenyl) triphenylphosphonium thiocyanate (manufactured by Hokuko Chemical Co., Ltd., “TPTP-SCN” in a DMF solution having a nonvolatile content of 10% by mass), which is a quaternary phosphonium-based curing accelerator of Example 1, Adhering in exactly the same way except changing to 4 parts tetraphenylphosphonium thiocyanate (manufactured by Hokuko Chemical Co., Ltd., “TPP-SCN” DMF solution with a nonvolatile content of 5% by mass), which is also a quaternary phosphonium-based curing accelerator. A film was obtained. Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

(実施例3)
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「jER828EL」)18部と、ビフェニル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000L」)20部、ナフタレン型4官能エポキシ樹脂(エポキシ当量162、DIC(株)製「HP−4700」)6部、フェノキシ樹脂(重量平均分子量38000、ジャパンエポキシレジン(株)製「YL7553」不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)12部とをMEK8部、シクロヘキサノン8部に撹拌しながら加熱溶解させた。そこへ、フェノールノボラック系硬化剤(DIC(株)製「LA−7054」不揮発分60質量%のMEK溶液、フェノール性水酸基当量124)13部、活性エステル系硬化剤(DIC(株)製「EXB−9460」不揮発分65質量%のトルエン溶液、活性エステル当量223)20部、4級ホスホニウム系硬化促進剤であるテトラブチルホスホニウムデカン酸塩(北興化学工業(株)製、「TBP−DA」)0.2部、球形シリカ(平均粒径0.5μm、アミノシラン処理付「SOC2」アドマテックス社製)75部、ポリビニルブチラール樹脂溶液(ガラス転移温度105℃、積水化学工業(株)製「KS−1」不揮発分15質量%のエタノールとトルエンの1:1溶液)18部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
(Example 3)
18 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Japan Epoxy Resin Co., Ltd.), 20 parts biphenyl type epoxy resin (epoxy equivalent 269, “NC3000L” manufactured by Nippon Kayaku Co., Ltd.), naphthalene 6 parts of type 4 functional epoxy resin (epoxy equivalent 162, “HP-4700” manufactured by DIC Corporation), phenoxy resin (weight average molecular weight 38000, “YL7553” manufactured by Japan Epoxy Resins Co., Ltd.) MEK having a nonvolatile content of 30% by mass and 12 parts of a cyclohexanone (1: 1 solution) was dissolved in 8 parts of MEK and 8 parts of cyclohexanone with heating while stirring. There, 13 parts of a phenol novolac-based curing agent (“LA-7054” manufactured by DIC Corporation, MEK solution having a nonvolatile content of 60% by mass, phenolic hydroxyl group equivalent 124), an active ester curing agent (“EXB manufactured by DIC Corporation”) -9460 "Toluene solution with a nonvolatile content of 65 mass%, active ester equivalent 223) 20 parts, Tetrabutylphosphonium decanoate which is a quaternary phosphonium-based curing accelerator (" TBP-DA "manufactured by Hokuko Chemical Co., Ltd.) 0.2 parts, 75 parts of spherical silica (average particle size 0.5 μm, “SOC2” with aminosilane treatment, manufactured by Admatechs), polyvinyl butyral resin solution (glass transition temperature 105 ° C., “KS-” manufactured by Sekisui Chemical Co., Ltd.) 1 ”18 parts of ethanol / toluene with a non-volatile content of 15% by mass) (18 parts) are mixed and dispersed uniformly with a high-speed rotary mixer. To prepare a varnish. Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

(実施例4)
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「jER828EL」)25部と、ビフェニル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000L」)25部、ナフタレン型4官能エポキシ樹脂(エポキシ当量162、DIC(株)製「HP−4700」)6部、フェノキシ樹脂(重量平均分子量38000、ジャパンエポキシレジン(株)製「YL7553」不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)12部とをMEK5部、シクロヘキサノン5部に撹拌しながら加熱溶解させた。そこへ、フェノールノボラック系硬化剤(DIC(株)製「LA−7054」不揮発分60質量%のMEK溶液、フェノール性水酸基当量124)36部、4級ホスホニウム系硬化促進剤であるブチルトリフェニルホスホニウムチオシアネート(北興化学工業(株)製、「TPPB−SCN」不揮発分10質量%のDMF溶液)2部、球形シリカ(平均粒径0.5μm、アミノシラン処理付「SOC2」アドマテックス社製)190部、ポリビニルブチラール樹脂溶液(ガラス転移温度105℃、積水化学工業(株)製「KS−1」不揮発分15質量%のエタノールとトルエンの1:1溶液)12部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
Example 4
25 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Japan Epoxy Resin Co., Ltd.), 25 parts biphenyl type epoxy resin (epoxy equivalent 269, “NC3000L” manufactured by Nippon Kayaku Co., Ltd.), naphthalene 6 parts of type 4 functional epoxy resin (epoxy equivalent 162, “HP-4700” manufactured by DIC Corporation), phenoxy resin (weight average molecular weight 38000, “YL7553” manufactured by Japan Epoxy Resins Co., Ltd.) MEK having a nonvolatile content of 30% by mass and 12 parts of a 1: 1 solution of cyclohexanone) was dissolved in 5 parts of MEK and 5 parts of cyclohexanone with heating while stirring. Thereto, 36 parts of phenol novolac-based curing agent (“LA-7054” manufactured by DIC Corporation, MEK solution having a nonvolatile content of 60% by mass, phenolic hydroxyl group equivalent 124), butyltriphenylphosphonium which is a quaternary phosphonium-based curing accelerator. 2 parts of thiocyanate (manufactured by Hokuko Chemical Co., Ltd., “TPPB-SCN” DMF solution having a nonvolatile content of 10% by mass), 190 parts of spherical silica (average particle size 0.5 μm, “SOC2” with aminosilane treatment, manufactured by Admatechs) , 12 parts of a polyvinyl butyral resin solution (glass transition temperature 105 ° C., “KS-1” manufactured by Sekisui Chemical Co., Ltd., a 1: 1 solution of ethanol and toluene with a nonvolatile content of 15% by mass) are mixed uniformly with a high-speed rotating mixer To obtain a resin varnish. Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

(比較例1)
実施例1の4級ホスホニウム系硬化促進剤を加えないこと以外は、全く同様にして接着フィルムを得た。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
(Comparative Example 1)
An adhesive film was obtained in exactly the same manner except that the quaternary phosphonium-based curing accelerator of Example 1 was not added. Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

(比較例2)
実施例1の4級ホスホニウム系硬化促進剤である(4−メチルフェニル)トリフェニルホスホニウムチオシアネート(北興化学工業(株)製、「TPTP−SCN」不揮発分10質量%のDMF溶液)2部を、同じく4級ホスホニウム系硬化促進剤であるDBU系テトラフェニルボレート塩(サンアプロ株式会社製、「U−CAT 5002」不揮発分10質量%のMEK溶液)2部に変更する以外は、全く同様にして接着フィルムを得た。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
(Comparative Example 2)
2 parts of (4-methylphenyl) triphenylphosphonium thiocyanate (manufactured by Hokuko Chemical Co., Ltd., “TPTP-SCN” in a DMF solution having a nonvolatile content of 10% by mass), which is a quaternary phosphonium-based curing accelerator of Example 1, Adhering in exactly the same manner except that it is changed to 2 parts of DBU-based tetraphenylborate salt ("U-CAT 5002", MEK solution with a nonvolatile content of 10% by mass), which is also a quaternary phosphonium-based curing accelerator. A film was obtained. Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

(比較例3)
実施例3の4級ホスホニウム系硬化促進剤であるテトラブチルホスホニウムデカン酸塩(北興化学工業(株)製、「TBP−DA」)0.2部を、同じく4級ホスホニウム系硬化促進剤であるトリフェニルホスフィントリフェニルボラン(北興化学工業(株)製、「TPP−S」不揮発分10質量%のDMF溶液)2部に変更する以外は、全く同様にして接着フィルムを得た。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
(Comparative Example 3)
0.2 part of tetrabutylphosphonium decanoate (made by Hokuko Chemical Co., Ltd., “TBP-DA”), which is a quaternary phosphonium curing accelerator of Example 3, is also a quaternary phosphonium curing accelerator. An adhesive film was obtained in exactly the same manner except that the content was changed to 2 parts of triphenylphosphine triphenylborane (manufactured by Hokuko Chemical Co., Ltd., “TPP-S” DMF solution having a nonvolatile content of 10 mass%). Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

(比較例4)
実施例1の4級ホスホニウム系硬化促進剤である(4−メチルフェニル)トリフェニルホスホニウムチオシアネート(北興化学工業(株)製、「TPTP−SCN」不揮発分10質量%のDMF溶液)2部を、同じく4級ホスホニウム系硬化促進剤であるテトラフェニルホスホニウムテトラフェニルボレート(北興化学工業(株)製、「TPP−K」)0.2部に変更する以外は、全く同様にして接着フィルムを得た。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
(Comparative Example 4)
2 parts of (4-methylphenyl) triphenylphosphonium thiocyanate (manufactured by Hokuko Chemical Co., Ltd., “TPTP-SCN” in a DMF solution having a nonvolatile content of 10% by mass), which is a quaternary phosphonium-based curing accelerator of Example 1, An adhesive film was obtained in exactly the same manner except that it was changed to 0.2 parts of tetraphenylphosphonium tetraphenylborate (“TPP-K” manufactured by Hokuko Chemical Co., Ltd.), which is also a quaternary phosphonium-based curing accelerator. . Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

<ピール強度およびRa値測定用サンプルの調製>
(1)内層回路基板の下地処理
内層回路を形成したガラス布基材エポキシ樹脂両面銅張積層板[銅箔の厚さ18μm、基板厚み0.3mm、松下電工(株)製R5715ES]の両面をメック(株)製CZ8100に浸漬して銅表面の粗化処理をおこなった。
<Preparation of peel strength and Ra value measurement sample>
(1) Ground treatment of inner layer circuit board Both sides of a glass cloth base epoxy resin double-sided copper clad laminate [copper foil thickness 18 μm, substrate thickness 0.3 mm, Matsushita Electric Works R5715ES] on which an inner layer circuit is formed The copper surface was roughened by dipping in CZ8100 manufactured by MEC Co., Ltd.

(2)接着フィルムのラミネート
実施例及び比較例で作成した接着フィルムを、バッチ式真空加圧ラミネーターMVLP−500(名機(株)製商品名)を用いて、内層回路基板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。
(2) Lamination of adhesive film The adhesive film created in the examples and comparative examples was laminated on both sides of the inner layer circuit board using a batch type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). . Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds.

(3)樹脂組成物の硬化
ラミネートされた接着フィルムからPETフィルムを剥離し、180℃、30分の硬化条件で樹脂組成物を硬化し絶縁層を形成した。
(3) Curing of resin composition The PET film was peeled from the laminated adhesive film, and the resin composition was cured under a curing condition of 180 ° C for 30 minutes to form an insulating layer.

(4)粗化処理
絶縁層を形成した内層回路基板を、膨潤液である、アトテックジャパン(株)のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガンドPに60℃で5分間浸漬し、次に粗化液として、アトテックジャパン(株)のコンセントレート・コンパクトP(KMnO4:60g/L、NaOH:40g/Lの水溶液)に80℃で20分間浸漬、最後に中和液として、アトテックジャパン(株)のリダクションショリューシン・セキュリガントPに40℃で5分間浸漬した。この基板を用いて粗化処理後の絶縁層表面の表面粗さ(Ra値)の測定を行った。
(4) Roughening treatment The inner layer circuit board on which the insulating layer is formed is immersed in a swelling dip seculigand P containing diethylene glycol monobutyl ether of Atotech Japan Co., Ltd. for 5 minutes at 60 ° C., and then roughened. As a chemical solution, it is immersed in an Atotech Japan Co., Ltd. Concentrate Compact P (KMnO4: 60 g / L, NaOH: 40 g / L aqueous solution) at 80 ° C. for 20 minutes, and finally as a neutralizing solution, Atotech Japan Co., Ltd. Were dipped in 40 g of reduction Shoryushin securigant P for 5 minutes. Using this substrate, the surface roughness (Ra value) of the surface of the insulating layer after the roughening treatment was measured.

(5)セミアディティブ工法によるメッキ
絶縁層表面に回路を形成するために、内層回路基板を、PdClを含む無電解メッキ用溶液に浸漬し、次に無電解銅メッキ液に浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成の後に、硫酸銅電解メッキを行い、30±5μmの厚さで導体層を形成した。次に、アニール処理を180℃にて60分間行った。この回路基板についてメッキ導体層のピール強度の測定を行った。
(5) Plating by semi-additive method In order to form a circuit on the surface of the insulating layer, the inner layer circuit board was immersed in an electroless plating solution containing PdCl 2 and then immersed in an electroless copper plating solution. After annealing at 150 ° C. for 30 minutes, an etching resist was formed, and after pattern formation by etching, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 30 ± 5 μm. Next, annealing was performed at 180 ° C. for 60 minutes. The peel strength of the plated conductor layer was measured for this circuit board.

<メッキ導体層の引き剥がし強さ(ピール強度)の測定及び評価>
回路基板の導体層に、幅10mm、長さ100mmの切込みをカッターを用いていれ、この一端を剥がしてつかみ具(株式会社ティー・エス・イー、オートコム型試験機 AC−50C−SL)で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重を測定した。荷重が0.75kgf/cm以上の場合を「◎」とし、0.75kgf/cm未満0.62kgf/cm以上の場合を「○」とし、0.62kgf/cm未満0.40kgf/cm以上の場合を「△」とし、0.40kgf/cm未満の場合を「×」として評価した。
<Measurement and Evaluation of Peeling Strength (Peel Strength) of Plating Conductor Layer>
Use a cutter to cut the conductor layer of the circuit board with a width of 10 mm and a length of 100 mm. Remove one end and use a gripping tool (TSE, Inc., Autocom type testing machine AC-50C-SL). The load was measured when 35 mm was grabbed and peeled in the vertical direction at a speed of 50 mm / min at room temperature. When the load is 0.75 kgf / cm or more, “◎”, when the load is less than 0.75 kgf / cm, 0.62 kgf / cm or more, “◯”, and when less than 0.62 kgf / cm, 0.40 kgf / cm or more Was evaluated as “x”, and the case of less than 0.40 kgf / cm was evaluated as “x”.

<粗化後の表面粗さ(Ra値)の測定及び評価>
非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値を測定した。そして10点の平均の表面粗さを求めることによりRa値とした。Ra値が500nm以上の場合を「××」とし、500nm未満420nm以上の場合を「×」とし、420nm未満380nm以上の場合を「△」とし、380nm未満300nm以上の場合を「○」とし、300nm未満200nm以上の場合を「◎」とし、200nm未満の場合を「◎◎」として評価した。
<Measurement and evaluation of surface roughness (Ra value) after roughening>
Using a non-contact type surface roughness meter (BYCO Instruments WYKO NT3300), a numerical value obtained with a measurement range of 121 μm × 92 μm was measured with a VSI contact mode and a 50 × lens. The Ra value was determined by obtaining the average surface roughness of 10 points. The case where the Ra value is 500 nm or more is “XX”, the case where it is less than 500 nm and 420 nm or more is “X”, the case where it is less than 420 nm and 380 nm or more is “Δ”, and the case where it is less than 380 nm and 300 nm or more is “◯”, The case of less than 300 nm and 200 nm or more was evaluated as “◎”, and the case of less than 200 nm was evaluated as “◎”.

実施例及び比較例で得られたワニスを使用した評価サンプルのメッキ導体層のピール強度及び粗化後の表面粗さ(Ra値)の結果について下記の表1に記載した。表1から明らかなように、実施例の樹脂組成物においては、絶縁層の表面粗度が低いにも関わらず、高いピール強度を有する導体層が形成されている。このように本発明においては、低い表面粗さが達成されるので、微細配線化に有利なことがわかる。4級ホスホニウム系硬化促進剤を添加していない比較例1では、同等のピール強度を得るための粗度が増大している。比較例2は、アミン系硬化剤を使用しているが、やはり粗度が増大する結果となった。比較例3、4では、硬化促進剤として同様のトリフェニルホスフィン系硬化促進剤を用いているが、実施例と比較し、低粗度かつ高ピールの両立は達成されなかった。   The results of peel strength and roughened surface roughness (Ra value) of the plated conductor layers of the evaluation samples using the varnishes obtained in Examples and Comparative Examples are shown in Table 1 below. As is clear from Table 1, in the resin compositions of the examples, a conductor layer having a high peel strength is formed even though the surface roughness of the insulating layer is low. Thus, in this invention, since low surface roughness is achieved, it turns out that it is advantageous to miniaturization. In Comparative Example 1 in which no quaternary phosphonium-based curing accelerator is added, the roughness for obtaining the same peel strength is increased. In Comparative Example 2, an amine curing agent was used, but the result was that the roughness increased. In Comparative Examples 3 and 4, the same triphenylphosphine-based curing accelerator was used as the curing accelerator, but both low roughness and high peel were not achieved as compared with the Examples.

Figure 2015145498
Figure 2015145498

樹脂組成物を硬化して得られる絶縁層表面の粗度が低くても、高いピール強度を有する導体層が形成可能である樹脂組成物、接着フィルム、プリプレグ、多層プリント配線板を提供できるようになった。更にこれらを搭載した、コンピューター、携帯電話、デジタルカメラ、テレビ、等の電気製品や、自動二輪車、自動車、電車、船舶、航空機、等の乗物も提供できるようになった。   To provide a resin composition, an adhesive film, a prepreg, and a multilayer printed wiring board capable of forming a conductor layer having high peel strength even when the surface roughness of the insulating layer obtained by curing the resin composition is low. became. Furthermore, electric products such as computers, mobile phones, digital cameras, and televisions, and vehicles such as motorcycles, automobiles, trains, ships, and airplanes equipped with these can be provided.

Claims (17)

(A)多官能エポキシ樹脂(但し、フェノキシ樹脂を除く)、(B)フェノール系硬化剤及び/又は活性エステル系硬化剤、(C)フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、及びポリスルホン樹脂から選択される熱可塑性樹脂、(D)無機充填材、並びに(E)テトラブチルホスホニウムデカン酸塩、(4−メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、及びブチルトリフェニルホスホニウムチオシアネートから選ばれる1種以上の4級ホスホニウム系硬化促進剤を含有する樹脂組成物。 (A) Polyfunctional epoxy resin (excluding phenoxy resin), (B) phenolic curing agent and / or active ester curing agent, (C) phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamideimide resin, poly A thermoplastic resin selected from ether sulfone resins and polysulfone resins, (D) inorganic fillers, and (E) tetrabutylphosphonium decanoate, (4-methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, and A resin composition containing one or more quaternary phosphonium curing accelerators selected from butyltriphenylphosphonium thiocyanate. 成分(A)と成分(B)の不揮発分の合計質量に対する成分(E)の質量の比率が100:0.05〜100:2となる範囲で成分(E)を含む、請求項1記載の樹脂組成物。 The component (E) is contained in the range in which the ratio of the mass of the component (E) to the total mass of the non-volatile components of the component (A) and the component (B) is 100: 0.05 to 100: 2. Resin composition. 樹脂組成物中に存在するエポキシ基と成分(B)の硬化剤の反応基の比率がモル比で1:0.3〜1:2となる範囲で成分(B)を含む、請求項1又は2記載の樹脂組成物。 The component (B) is contained in the range in which the ratio of the epoxy group present in the resin composition and the reactive group of the curing agent of the component (B) is 1: 0.3 to 1: 2 in molar ratio. 2. The resin composition according to 2. 樹脂組成物中の不揮発分を100質量%とした場合、成分(C)の含有量が1〜20質量%である、請求項1〜3のいずれか1項に記載の樹脂組成物。 The resin composition of any one of Claims 1-3 whose content of a component (C) is 1-20 mass% when the non volatile matter in a resin composition is 100 mass%. 樹脂組成物中の不揮発分を100質量%とした場合、成分(D)の含有量が10〜70質量%である請求項1〜4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the content of the component (D) is 10 to 70 mass% when the nonvolatile content in the resin composition is 100 mass%. 樹脂組成物中の不揮発成分を100質量%とした場合、成分(A)の含有量が10〜50質量%である請求項1〜5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the content of the component (A) is 10 to 50 mass% when the nonvolatile component in the resin composition is 100 mass%. 成分(A)が、ビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂、及びビフェニル型エポキシ樹脂から選択される請求項1〜6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the component (A) is selected from a bisphenol A type epoxy resin, a naphthalene type epoxy resin, and a biphenyl type epoxy resin. 成分(A)が、液状エポキシ樹脂及び固形エポキシ樹脂である請求項1〜7のいずれか1項に記載の樹脂組成物。 Component (A) is a liquid epoxy resin and a solid epoxy resin, The resin composition of any one of Claims 1-7. 成分(C)の重量平均分子量が8000〜70000の範囲である請求項1〜8のいずれか1項に記載の樹脂組成物。 The weight average molecular weight of a component (C) is the range of 8000-70000, The resin composition of any one of Claims 1-8. 成分(D)の平均粒径が0.05〜1μmである請求項1〜9のいずれか1項に記載の樹脂組成物。 The resin composition according to claim 1, wherein the component (D) has an average particle size of 0.05 to 1 μm. 成分(D)がシリカである請求項1〜10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the component (D) is silica. 成分(D)が表面処理剤で処理されている請求項1〜11のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the component (D) is treated with a surface treatment agent. 樹脂組成物の硬化物とその表面に形成された導体層との間のピール強度が3.9N/cm〜19.6N/cmであり、樹脂組成物の硬化物の表面粗さが30nm〜400nmである請求項1〜12のいずれか1項に記載の樹脂組成物。 The peel strength between the cured product of the resin composition and the conductor layer formed on the surface thereof is 3.9 N / cm to 19.6 N / cm, and the surface roughness of the cured product of the resin composition is 30 nm to 400 nm. It is these. The resin composition of any one of Claims 1-12. 回路基板の絶縁層形成用である請求項1〜13のいずれか1項に記載の樹脂組成物。 The resin composition according to claim 1, which is for forming an insulating layer on a circuit board. 請求項1〜14のいずれか1項に記載の樹脂組成物が支持体上に層形成されている接着フィルム。 The adhesive film by which the resin composition of any one of Claims 1-14 is layer-formed on the support body. 請求項1〜14のいずれか1項に記載の樹脂組成物がシート状繊維基材中に含浸されているプリプレグ。 A prepreg in which the resin composition according to any one of claims 1 to 14 is impregnated in a sheet-like fiber base material. 請求項1〜14のいずれか1項に記載の樹脂組成物の硬化物により絶縁層が形成されている回路基板。 The circuit board by which the insulating layer is formed with the hardened | cured material of the resin composition of any one of Claims 1-14.
JP2015040262A 2009-01-30 2015-03-02 Resin composition Active JP6267140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015040262A JP6267140B2 (en) 2009-01-30 2015-03-02 Resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009019069 2009-01-30
JP2009019069 2009-01-30
JP2015040262A JP6267140B2 (en) 2009-01-30 2015-03-02 Resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010548592A Division JP6027304B2 (en) 2009-01-30 2010-01-29 Resin composition

Publications (2)

Publication Number Publication Date
JP2015145498A true JP2015145498A (en) 2015-08-13
JP6267140B2 JP6267140B2 (en) 2018-01-24

Family

ID=42395766

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010548592A Active JP6027304B2 (en) 2009-01-30 2010-01-29 Resin composition
JP2015040262A Active JP6267140B2 (en) 2009-01-30 2015-03-02 Resin composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010548592A Active JP6027304B2 (en) 2009-01-30 2010-01-29 Resin composition

Country Status (5)

Country Link
JP (2) JP6027304B2 (en)
KR (1) KR101690095B1 (en)
CN (1) CN102300901B (en)
TW (1) TWI494364B (en)
WO (1) WO2010087526A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065908A (en) * 2016-10-18 2018-04-26 日立化成株式会社 Sealing resin composition, and rearrangement wafer, semiconductor package and method for producing semiconductor package using the same
KR20190059873A (en) 2016-09-29 2019-05-31 세키스이가가쿠 고교가부시키가이샤 Cured body and multi-layer substrate
KR20190059872A (en) 2016-09-29 2019-05-31 세키스이가가쿠 고교가부시키가이샤 Interlayer insulating material and multilayer printed wiring board
CN110168015A (en) * 2017-03-14 2019-08-23 三井金属矿业株式会社 Resin combination, resin copper foil, dielectric layer, copper clad laminate, capacitor element and built-in capacitor printed circuit board

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664008B2 (en) * 2010-08-10 2015-02-04 日立化成株式会社 Resin composition, cured resin, wiring board and method for manufacturing wiring board
WO2012020713A2 (en) * 2010-08-10 2012-02-16 日立化成工業株式会社 Resin composition, cured resin product, wiring board, and manufacturing method for wiring board
KR101897955B1 (en) * 2012-01-23 2018-09-12 아지노모토 가부시키가이샤 Resin composition
CN102746798B (en) * 2012-07-10 2014-07-16 广东汕头超声电子股份有限公司覆铜板厂 High-heat-conductivity semi-cured glue film and preparation method of high-heat-conductivity semi-cured glue film
CN102746622A (en) * 2012-07-26 2012-10-24 哈尔滨玻璃钢研究院 Prepreg with moderate-temperature cured epoxy resin as substrate material and preparation method thereof
JP2014028880A (en) * 2012-07-31 2014-02-13 Ajinomoto Co Inc Resin composition
KR101350997B1 (en) * 2012-08-21 2014-01-14 주식회사 신아티앤씨 Epoxy compound having excellent electrical properities and manufacturing method thereof
JP6205692B2 (en) * 2012-09-03 2017-10-04 味の素株式会社 Thermosetting epoxy resin composition, insulating film forming adhesive film and multilayer printed wiring board
WO2014040261A1 (en) * 2012-09-14 2014-03-20 广东生益科技股份有限公司 Epoxy resin compound, and, prepreg and clad copper laminate manufactured using the compound
EP2896653B1 (en) * 2012-09-14 2017-05-31 Shengyi Technology Co., Ltd Epoxy resin composition, and, prepreg and copper clad laminate manufactured using the composition
TWI633011B (en) * 2012-10-15 2018-08-21 Ajinomoto Co., Inc. Resin composition
JP6308344B2 (en) * 2013-04-08 2018-04-11 味の素株式会社 Curable resin composition
CN103333466B (en) * 2013-06-20 2015-08-26 天津凯华绝缘材料股份有限公司 A kind of High-flexibility epoxy resin and synthetic method thereof with inierpeneirating network structure
CN103589383B (en) * 2013-11-03 2015-03-25 江苏金瀚电子科技发展有限公司 Polyester resin composition used for flexible flat cables
US20150376447A1 (en) 2014-06-30 2015-12-31 Nippon Steel & Sumikin Chemical Co., Ltd. Curable resin composition containing aromatic polyester, and cured article thereof
KR101577686B1 (en) * 2014-12-22 2015-12-29 주식회사 이녹스 adhesive resin for dicing die-bonding film, attach film for dicing die-bonding film including the same and dicing die-bonding film including the same
JP6710955B2 (en) * 2015-12-16 2020-06-17 味の素株式会社 Prepreg
JP6947246B2 (en) * 2015-12-16 2021-10-13 味の素株式会社 Prepreg
KR101772871B1 (en) * 2016-07-11 2017-08-30 주식회사 두산 Composite substrate for antenna module and preparation method thereof
KR102538165B1 (en) 2016-07-29 2023-05-31 혹꼬우 가가꾸 고오교오 가부시끼가이샤 New phosphonium compounds
JP6940508B2 (en) * 2016-08-30 2021-09-29 リンテック株式会社 Resin compositions, resin sheets, and semiconductor devices
JP6534986B2 (en) * 2016-11-29 2019-06-26 味の素株式会社 Resin composition
CN108727942A (en) * 2017-04-24 2018-11-02 味之素株式会社 Resin combination
KR101958322B1 (en) * 2017-05-29 2019-03-18 주식회사 에스씨플러스 metal adhesive composition
JP7296191B2 (en) * 2018-01-09 2023-06-22 味の素株式会社 Curable resin composition, resin sheet, printed wiring board and semiconductor device
JP6848950B2 (en) * 2018-10-30 2021-03-24 味の素株式会社 Resin composition
KR102160528B1 (en) * 2018-12-27 2020-09-28 한화글로벌에셋 주식회사 Low dielectric coverlay film and coverlay film composition for the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381187A (en) * 1986-09-25 1988-04-12 Ibiden Co Ltd Thermosetting adhesive sheet
JPH07304933A (en) * 1994-05-13 1995-11-21 Taiyo Ink Mfg Ltd Curable resin composition, multilayered printed wiring board using the same, and manufacture thereof
JPH0832243A (en) * 1994-07-18 1996-02-02 Sumitomo Bakelite Co Ltd Production of multilayer printed wiring board
JPH10275983A (en) * 1997-03-31 1998-10-13 Ibiden Co Ltd Mutilayer printed-wiring board
JP2001098049A (en) * 1999-09-29 2001-04-10 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for sealing semiconductor
JP2001181375A (en) * 1999-10-13 2001-07-03 Ajinomoto Co Inc Epoxy resin composition, adhesive film and pre-preg thereby, multilayer printed circuit board using same and its producing method
JP2002161150A (en) * 2000-11-28 2002-06-04 Japan Gore Tex Inc Prepreg and laminated board using it and substrate for printed wiring board
JP2006213797A (en) * 2005-02-02 2006-08-17 Nippon Paint Co Ltd Thermosetting dielectric resin composition and thermosetting dielectric resin film
JP2007254709A (en) * 2005-11-29 2007-10-04 Ajinomoto Co Inc Resin composition for insulation layer of multi-layer printed circuit board
JP2007254710A (en) * 2005-11-29 2007-10-04 Ajinomoto Co Inc Resin composition for interlayer insulation layer of multi-layer printed circuit board
JP2009227962A (en) * 2008-02-26 2009-10-08 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing and semiconductor device
JP2010129816A (en) * 2008-11-28 2010-06-10 Lintec Corp Semiconductor chip laminated body and adhesive agent composition for laminating semiconductor chip
JP2010168470A (en) * 2009-01-22 2010-08-05 Ajinomoto Co Inc Resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240976B2 (en) 2002-09-27 2009-03-18 住友ベークライト株式会社 Curing accelerator, method for producing curing accelerator, epoxy resin composition, and semiconductor device
JP4341254B2 (en) 2003-02-06 2009-10-07 住友ベークライト株式会社 Curing accelerator for epoxy resin composition, epoxy resin composition and semiconductor device
JP2009062447A (en) * 2007-09-06 2009-03-26 Hokko Chem Ind Co Ltd Liquid epoxy resin composition
JP2009298960A (en) * 2008-06-16 2009-12-24 Hokko Chem Ind Co Ltd Novel phosphonium thiocyanate compound and curing promoter for epoxy resin

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381187A (en) * 1986-09-25 1988-04-12 Ibiden Co Ltd Thermosetting adhesive sheet
JPH07304933A (en) * 1994-05-13 1995-11-21 Taiyo Ink Mfg Ltd Curable resin composition, multilayered printed wiring board using the same, and manufacture thereof
JPH0832243A (en) * 1994-07-18 1996-02-02 Sumitomo Bakelite Co Ltd Production of multilayer printed wiring board
JPH10275983A (en) * 1997-03-31 1998-10-13 Ibiden Co Ltd Mutilayer printed-wiring board
JP2001098049A (en) * 1999-09-29 2001-04-10 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for sealing semiconductor
JP2001181375A (en) * 1999-10-13 2001-07-03 Ajinomoto Co Inc Epoxy resin composition, adhesive film and pre-preg thereby, multilayer printed circuit board using same and its producing method
JP2002161150A (en) * 2000-11-28 2002-06-04 Japan Gore Tex Inc Prepreg and laminated board using it and substrate for printed wiring board
JP2006213797A (en) * 2005-02-02 2006-08-17 Nippon Paint Co Ltd Thermosetting dielectric resin composition and thermosetting dielectric resin film
JP2007254709A (en) * 2005-11-29 2007-10-04 Ajinomoto Co Inc Resin composition for insulation layer of multi-layer printed circuit board
JP2007254710A (en) * 2005-11-29 2007-10-04 Ajinomoto Co Inc Resin composition for interlayer insulation layer of multi-layer printed circuit board
JP2009227962A (en) * 2008-02-26 2009-10-08 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing and semiconductor device
JP2010129816A (en) * 2008-11-28 2010-06-10 Lintec Corp Semiconductor chip laminated body and adhesive agent composition for laminating semiconductor chip
JP2010168470A (en) * 2009-01-22 2010-08-05 Ajinomoto Co Inc Resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190059873A (en) 2016-09-29 2019-05-31 세키스이가가쿠 고교가부시키가이샤 Cured body and multi-layer substrate
KR20190059872A (en) 2016-09-29 2019-05-31 세키스이가가쿠 고교가부시키가이샤 Interlayer insulating material and multilayer printed wiring board
US10767051B2 (en) 2016-09-29 2020-09-08 Sekisui Chemical Co., Ltd. Cured body and multilayered substrate
KR20220091608A (en) 2016-09-29 2022-06-30 세키스이가가쿠 고교가부시키가이샤 Interlayer insulating material and multilayer printed wiring board
US11873398B2 (en) 2016-09-29 2024-01-16 Sekisui Chemical Co., Ltd. Interlayer insulating material and multilayer printed wiring board
JP2018065908A (en) * 2016-10-18 2018-04-26 日立化成株式会社 Sealing resin composition, and rearrangement wafer, semiconductor package and method for producing semiconductor package using the same
CN110168015A (en) * 2017-03-14 2019-08-23 三井金属矿业株式会社 Resin combination, resin copper foil, dielectric layer, copper clad laminate, capacitor element and built-in capacitor printed circuit board

Also Published As

Publication number Publication date
CN102300901A (en) 2011-12-28
JP6027304B2 (en) 2016-11-16
CN102300901B (en) 2014-07-30
TWI494364B (en) 2015-08-01
JPWO2010087526A1 (en) 2012-08-09
TW201031707A (en) 2010-09-01
KR20110124198A (en) 2011-11-16
KR101690095B1 (en) 2016-12-27
WO2010087526A1 (en) 2010-08-05
JP6267140B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6267140B2 (en) Resin composition
JP6024783B2 (en) Resin composition
JP4983228B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP4992396B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP5505435B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP6304265B2 (en) Epoxy resin composition
JP5573869B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP5195454B2 (en) Resin composition
JP5651941B2 (en) Epoxy resin composition
JP5249903B2 (en) Resin composition
JP6123169B2 (en) Resin composition
JP5446866B2 (en) Epoxy resin composition
JP2013234328A (en) Epoxy resin composition
JP5904256B2 (en) Resin composition
JP2014036172A (en) Resin composition
JP6269401B2 (en) Surface-treated inorganic filler, method for producing the inorganic filler, and resin composition containing the inorganic filler
JP2011246406A (en) Organosilicon compound
JP5644823B2 (en) Resin composition
JP2016136645A (en) Resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6267140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250