JP2015143669A - 磁場計測装置 - Google Patents

磁場計測装置 Download PDF

Info

Publication number
JP2015143669A
JP2015143669A JP2014017493A JP2014017493A JP2015143669A JP 2015143669 A JP2015143669 A JP 2015143669A JP 2014017493 A JP2014017493 A JP 2014017493A JP 2014017493 A JP2014017493 A JP 2014017493A JP 2015143669 A JP2015143669 A JP 2015143669A
Authority
JP
Japan
Prior art keywords
detection
magnetic field
light
detection unit
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014017493A
Other languages
English (en)
Inventor
高橋 智
Satoshi Takahashi
智 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014017493A priority Critical patent/JP2015143669A/ja
Priority to US14/606,668 priority patent/US9500722B2/en
Priority to CN201510040941.2A priority patent/CN104820195A/zh
Publication of JP2015143669A publication Critical patent/JP2015143669A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

【課題】光学ノイズの影響を除去する。【解決手段】ガスセル1、2は、第1検出光、第2検出光を透過させて、これらに含まれる直線偏光の偏光面を磁場の強度に応じて回転させる。第1検出部41は、ガスセル1を透過した第1検出光に含まれる直線偏光の偏光面を検出する。第2検出部42は、ガスセル2を透過した第2検出光に含まれる直線偏光の偏光面を検出する。第3検出部43および第4検出部44は、ガスセル1、2を透過していない第1検出光および第2検出光にそれぞれ含まれる直線偏光の偏光面を検出する。計測部6は、第3検出部43の検出結果を用いて、第1検出部41の検出結果から第1検出光に付与された光学ノイズによる影響を除去するとともに、第4検出部44の検出結果を用いて、第2検出部42の検出結果から第2検出光に付与された光学ノイズによる影響を除去し、ガスセル1、2における磁場の差を計測する。【選択図】図1

Description

本発明は、光を利用した磁場計測装置に関する。
光を利用した磁場計測装置には、例えば、心臓からの磁場(心磁)や脳からの磁場(脳磁)など微小な磁場を計測するものがあり、医療画像診断装置などへの応用が期待されている。微小な磁場を計測するためには、地磁気など磁気ノイズの影響を除去する必要がある。特許文献1には、測定位置の違いに基づく微小な磁場強度の差を、直線偏光プローブ用レーザー光の偏光回転角の差に置き換えて測定することにより、高感度な磁場勾配の計測をする原子磁気センサーが記載されている。
特開2009−162554号公報
しかし、特許文献1に記載された原子磁気センサーは、音や熱などにより光が受ける光学ノイズを除去することはできなかった。
本発明は、光学ノイズの影響を除去する磁場計測装置を提供する。
上述した課題を解決するため、本発明に係る磁場計測装置は、第1光源からの光を透過させて、直線偏光の第1偏光面を磁場の強度に応じて回転させる第1媒体と、第2光源からの光を透過させて、直線偏光の第2偏光面を磁場の強度に応じて回転させる第2媒体と、前記第1媒体を透過した前記直線偏光の前記第1偏光面を検出する第1検出部と、前記第2媒体を透過した前記直線偏光の前記第2偏光面を検出する第2検出部と、前記第1媒体を透過していない前記第1光源からの前記直線偏光の偏光面を検出する第3検出部と、前記第2媒体を透過していない前記第2光源からの前記直線偏光の偏光面を検出する第4検出部と、前記第3検出部の検出結果を用いて、前記第1検出部の検出結果から光学ノイズを除去するとともに、前記第4検出部の検出結果を用いて、前記第2検出部の検出結果から光学ノイズを除去し、前記光学ノイズがそれぞれ除去された前記第1検出部および前記第2検出部の検出結果を用いて、前記第1媒体における磁場と前記第2媒体における磁場との差を計測する計測部とを有することを特徴とする。
この構成によれば、光学ノイズの影響を除去することができる。
好ましくは、上述の態様において、前記第1媒体の数は、複数であり、前記第3検出部の数は、前記第1媒体の数よりも少ないとよい。
この構成によれば、第1媒体における磁場の計測精度を向上させることができる。
好ましくは、上述の態様において、前記第1光源からの光は、分岐して複数の前記第1媒体をそれぞれ透過し、前記第3検出部は、分岐する前の前記光の光路に対応して設けられるとよい。
この構成によれば、第3検出部の数を抑えることができる。
好ましくは、上述の態様において、前記計測部は、前記差を計測対象から生じる磁場として計測し、前記第1媒体は、前記第2媒体よりも前記計測対象の近くに配置され、前記第2媒体の数は、前記第1媒体の数よりも少ないとよい。
この構成によれば、第2媒体よりも計測対象から発生する磁場の影響を受け易い第1媒体における磁場の計測精度を向上させることができる。
好ましくは、上述の態様において、前記第2媒体の数は、複数であり、
前記第4検出部の数は、前記第2媒体の数よりも少ないとよい。
この構成によれば、第4検出部の数を抑えることができる。
好ましくは、上述の態様において、前記第2光源からの光は、分岐して複数の前記第2媒体をそれぞれ透過し、前記第4検出部は、分岐する前の前記光の光路に対応して設けられるとよい。
この構成によれば、第2媒体における磁場の計測精度を向上させることができる。
実施形態に係る磁場計測装置の全体構成を示す図。 変形例に係る磁場計測装置の全体構成を示す図。
1.実施形態
図1は、本発明の実施形態に係る磁場計測装置9の全体構成を示す図である。磁場計測装置9は、計測対象3との距離がL1であるガスセル1と、計測対象3との距離がL2であるガスセル2とを有する。2つの距離はL1<L2の関係にある。すなわち、ガスセル2は、ガスセル1よりも計測対象3から遠い場所に配置されている。
また、磁場計測装置9は、光源51、光源52、第1検出部41、第2検出部42、第3検出部43、第4検出部44、および計測部6を有する。光源51および光源52は、ガスセル1またはガスセル2に対していわゆるプローブ光を照射する装置であり、例えばレーザー光を出力するレーザー光出力装置である。
第1検出部41、第2検出部42、第3検出部43、および第4検出部44は、偏光ビームスプリッターやウォラストンプリズムとフォトディテクタとの組み合わせなどにより、光をα軸に沿った成分とβ軸に沿った成分とに分離してそれぞれの光強度を計測し、これらの和と差に応じた信号を出力することで、その光に含まれる直線偏光の偏光面を検出する。
計測部6は、CPU(Central Processing Unit)などの演算処理装置や、ROM(Read Only Memory)、RAM(Random Access Memory)などの記憶装置を備え、これら記憶装置に記憶されたプログラムを実行する。計測部6は、各検出部によりそれぞれ出力された信号に対して予め決められた演算を行う。
ガスセル1およびガスセル2は、いずれも光により励起される複数の気体原子からなる原子群が封入されたガラス製のセル(素子)である。ここで気体原子とは、例えばカリウム(K)や、ルビジウム(Rb)、セシウム(Cs)などのアルカリ金属原子である。これら気体原子は、透過する光の偏光面を磁場の強さに応じて回転させる媒体としての性質を有する。なお、ガスセルの材質はガラスに限られず、光を透過する材質であれば、樹脂などであってもよい。また、図1に示すガスセル1およびガスセル2にそれぞれ封入され
た気体原子は、いずれも図示しないポンプ光により励起されており、偏極している。
光源51(第1光源)は、直線偏光を含む検出光(以下、第1検出光という)を照射する。この第1検出光は、少なくとも2つに分岐させられ、一部はガスセル1を介して第1検出部41に照射され、一部は直接、第3検出部43に照射される。ガスセル1は、第1検出光を透過させて、この第1検出光に含まれる直線偏光の偏光面を磁場の強度に応じて回転させる。以下、ガスセル1を透過した第1検出光に含まれる直線偏光の偏光面を第1偏光面といい、ガスセル1を透過していない第1検出光に含まれる直線偏光の偏光面を第3偏光面という。
なお、第1検出光は、ガスセル1において上述したポンプ光に交差するように照射される。
光源52(第2光源)は、直線偏光を含む検出光(以下、第2検出光という)を照射する。この第2検出光は、少なくとも2つに分岐させられ、一部はガスセル2を介して第2検出部42に照射され、一部は直接、第4検出部44に照射される。ガスセル2は、第2検出光を透過させて、この第2検出光に含まれる直線偏光の偏光面を磁場の強度に応じて回転させる。以下、ガスセル2を透過した第2検出光に含まれる直線偏光の偏光面を第2偏光面といい、ガスセル2を透過していない第2検出光に含まれる直線偏光の偏光面を第4偏光面という。
なお、第2検出光は、ガスセル2において上述したポンプ光に交差するように照射される。また、光源51と光源52とは共通の光源から分岐したものであってもよい。
第1検出部41は第1偏光面を検出する。第2検出部42は第2偏光面を検出する。第3検出部43は第3偏光面を検出する。第4検出部44は第4偏光面を検出する。
計測対象3は、計測の対象となる磁気を発生させるものであり、例えば人間の心臓である。計測対象3の発生させる磁気は比較的微小であるため、ガスセル1とガスセル2の計測対象3に対する距離の差が検出光の偏光面の回転に影響する。具体的には、ガスセル2よりも計測対象3の近くに配置されたガスセル1における磁場の強度は、ガスセル2における磁場の強度よりも強く計測される。つまり、ガスセル1における計測対象3からの磁気を「磁気M1」とし、ガスセル2における計測対象3からの磁気を「磁気M2」とすると、M2<M1である。なお、計測される磁場の強度は距離の二乗に反比例する。例えば、計測対象3からガスセル2までの距離が、計測対象3からガスセル1までの距離の2倍である場合、計測対象3の磁場のガスセル2における強度は、ガスセル1におけるその強度の4分の1になる。
ガスセル1およびガスセル2は、外部環境からの磁気ノイズNmに曝されている。外部環境からの磁気ノイズNmは、例えば地磁気であり、ガスセル1およびガスセル2の配置に影響されず、ほぼ同じと考えられる。
第1検出光や第2検出光、および図示しないポンプ光は、それらの光路が例えば音によって振動を受けたり、それらを伝える媒体が熱により膨張したりすることにより、光学ノイズが付与されることがある。光学ノイズは、それぞれ光路ごとに異なる場合がある。また、磁気ノイズNmは、ガスセルを透過していない光には影響しないが、光学ノイズは、ガスセルを透過していない光に対しても影響する。以下、第1検出光および第2検出光にそれぞれ付与された光学ノイズを、光学ノイズN1および光学ノイズN2とする。
したがって、各検出部が検出する直線偏光の偏光面は、次に示すものの影響下に置かれる。
すなわち、第1検出部41は、計測対象3からの強い磁気M1と、磁気ノイズNmと、第1検出光に付与された光学ノイズN1とから、それぞれ影響を受けた第1偏光面を検出する。
第2検出部42は、計測対象3からの弱い磁気M2と、磁気ノイズNmと、第2検出光に付与された光学ノイズN2とから、それぞれ影響を受けた第2偏光面を検出する。
第3検出部43は、第1検出光に付与された光学ノイズN1から影響を受けた第3偏光面を検出する。
第4検出部44は、第2検出光に付与された光学ノイズN2から影響を受けた第4偏光面を検出する。
計測部6は、第3検出部43の検出結果を用いて、第1検出部41の検出結果から第1検出光に付与された光学ノイズN1による影響を除去する。また、計測部6は、第4検出部44の検出結果を用いて、第2検出部42の検出結果から第2検出光に付与された光学ノイズN2による影響を除去する。そして、計測部6は、光学ノイズN1および光学ノイズN2の影響がそれぞれ除去された第1検出部41の検出結果および第2検出部42の検出結果を用いて、ガスセル1およびガスセル2に付与された磁気ノイズNmによる影響を除去する。すなわち、計測部6は、光学ノイズN1による影響が除去されたガスセル1における磁場と、光学ノイズN2による影響が除去されたガスセル2における磁場との差を、計測対象3からの磁場として計測する。
以上の構成により、本発明の実施形態に係る磁場計測装置9は、磁気ノイズNmだけではなく、光学ノイズN1,N2による影響を除去して、計測対象3からの磁場を計測する。これにより、計測対象3の磁場の計測精度は従来に比べて向上する。
2.変形例
以上が実施形態の説明であるが、この実施形態の内容は以下のように変形し得る。また、以下の変形例を組み合わせてもよい。
2−1.変形例1
上述した実施形態において、磁場計測装置9は、気体原子が封入されたガラス製のセル(素子)であるガスセルを備えていたが、透過する光の偏光面を磁場の強さに応じて回転させる媒体として、気体原子以外の媒体を用いてもよい。例えば、磁場計測装置9は、窒素による格子欠陥を設けたダイヤモンドといった固体素子を、上記の媒体として用いてもよい。
2−2.変形例2
上述した実施形態において、ガスセル1は1つであったが、複数であってもよい。図2は、この変形例に係る磁場計測装置9の全体構成を示す図である。図2に示すガスセル11、ガスセル12、およびガスセル13は、いずれも計測対象3からの距離がガスセル2よりも短いガスセル1である。ガスセル11、ガスセル12、およびガスセル13(以下、特に区別の必要がない場合は、これらを総称して「ガスセル1」と記す)をそれぞれ透過した第1検出光は、3つの第1検出部411、412、413(以下、特に区別の必要がない場合は、これらを総称して「第1検出部41」と記す)にそれぞれ照射される。計測部6は、3つの第1検出部41によって検出される偏光面の角度から、第3検出部43によって検出される偏光面の角度をそれぞれ差し引くことで、3つのガスセル1における光学ノイズN1の影響を除去する。そして、計測部6は、この光学ノイズN1による影響が除去された3つのガスセル1における磁場と、光学ノイズN2による影響が除去されたガスセル2における磁場との差を、それぞれ計測対象3からの磁場として計測する。
このように複数のガスセル1を用いることで、1つのガスセル1を用いた場合に比べて、計測対象3からの磁場についてより多くの情報を得ることができるので、計測精度が向上する。また、例えばガスセル1を、計測対象3からガスセル2に向かう方向に垂直な平面上に並べることにより、計測対象3からの磁場の状態を2次元的に捉えることができる。
なお、この場合、第3検出部43の数は、ガスセル1の数より少なくてもよく、例えば、図2に示すように、第3検出部43の数は、複数のガスセル1を透過するために分岐する前の第1検出光の光路に対応して設けられていればよい。これにより、磁場計測装置9は、少なくとも第1検出光が分岐する前までに付与された光学ノイズN1による影響を除去することができる。また、磁場計測装置9は、複数のガスセル1からそれぞれ光学ノイズN1による影響を除去するために、それぞれに第3検出部43を用意する必要がない。すなわち、第3検出部43の数を抑えることができる。
また、この場合、ガスセル2の数は、ガスセル1の数より少なくてもよく、例えば1つでもよい。計測対象3から発生する磁気に対するガスセル2での感度は、ガスセル1での感度に比べて弱いからである。
2−3.変形例3
上述した実施形態において、ガスセル2は1つであったが、複数であってもよい。この場合、第4検出部44の数は、ガスセル2の数より少なくてもよい。要するに、第4検出部44の数は、複数のガスセル2を透過するために分岐する前の第2検出光の光路に対応して設けられていればよい。これにより、磁場計測装置9は、少なくとも第2検出光が分岐する前までに付与された光学ノイズN2による影響を除去することができる。また、磁場計測装置9は、複数のガスセル2からそれぞれ光学ノイズN2による影響を除去するために、それぞれに第4検出部44を用意する必要がない。すなわち、第4検出部44の数を抑えることができる。
2−4.変形例4
上述した実施形態において、磁場測定装置9は、ポンプ光と検出光とを用いて磁場を測定していたが、光ポンピングが可能な検出光のみを用いて磁場を測定してもよい。
1…ガスセル、2…ガスセル、3…計測対象、41…第1検出部、42…第2検出部、43…第3検出部、44…第4検出部、51…光源、52…光源、6…計測部、9…磁場計測装置。

Claims (6)

  1. 第1光源からの光を透過させて、直線偏光の第1偏光面を磁場の強度に応じて回転させる第1媒体と、
    第2光源からの光を透過させて、直線偏光の第2偏光面を磁場の強度に応じて回転させる第2媒体と、
    前記第1媒体を透過した前記直線偏光の前記第1偏光面を検出する第1検出部と、
    前記第2媒体を透過した前記直線偏光の前記第2偏光面を検出する第2検出部と、
    前記第1媒体を透過していない前記第1光源からの前記直線偏光の第3偏光面を検出する第3検出部と、
    前記第2媒体を透過していない前記第2光源からの前記直線偏光の第4偏光面を検出する第4検出部と、
    前記第3検出部の検出結果を用いて、前記第1検出部の検出結果から光学ノイズを除去するとともに、
    前記第4検出部の検出結果を用いて、前記第2検出部の検出結果から光学ノイズを除去し、
    前記光学ノイズがそれぞれ除去された前記第1検出部および前記第2検出部の検出結果を用いて、前記第1媒体における磁場と前記第2媒体における磁場との差を計測する計測部と
    を有することを特徴とする磁場計測装置。
  2. 前記第1媒体の数は、複数であり、
    前記第3検出部の数は、前記第1媒体の数よりも少ない
    ことを特徴とする請求項1に記載の磁場計測装置。
  3. 前記第1光源からの光は、分岐して複数の前記第1媒体をそれぞれ透過し、
    前記第3検出部は、分岐する前の前記光の光路に対応して設けられる
    ことを特徴とする請求項2に記載の磁場計測装置。
  4. 前記計測部は、前記差を計測対象から生じる磁場として計測し、
    前記第1媒体は、前記第2媒体よりも前記計測対象の近くに配置され、
    前記第2媒体の数は、前記第1媒体の数よりも少ない
    ことを特徴とする請求項2または3に記載の磁場計測装置。
  5. 前記第2媒体の数は、複数であり、
    前記第4検出部の数は、前記第2媒体の数よりも少ない
    ことを特徴とする請求項2から4のいずれか1項に記載の磁場計測装置。
  6. 前記第2光源からの光は、分岐して複数の前記第2媒体をそれぞれ透過し、
    前記第4検出部は、分岐する前の前記光の光路に対応して設けられる
    ことを特徴とする請求項5に記載の磁場計測装置。
JP2014017493A 2014-01-31 2014-01-31 磁場計測装置 Withdrawn JP2015143669A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014017493A JP2015143669A (ja) 2014-01-31 2014-01-31 磁場計測装置
US14/606,668 US9500722B2 (en) 2014-01-31 2015-01-27 Magnetic field measurement apparatus
CN201510040941.2A CN104820195A (zh) 2014-01-31 2015-01-27 磁场测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014017493A JP2015143669A (ja) 2014-01-31 2014-01-31 磁場計測装置

Publications (1)

Publication Number Publication Date
JP2015143669A true JP2015143669A (ja) 2015-08-06

Family

ID=53730540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014017493A Withdrawn JP2015143669A (ja) 2014-01-31 2014-01-31 磁場計測装置

Country Status (3)

Country Link
US (1) US9500722B2 (ja)
JP (1) JP2015143669A (ja)
CN (1) CN104820195A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003270A (ja) * 2018-06-26 2020-01-09 株式会社リコー 原子磁気センサ、グラジオメータ、生体磁気計測装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233383A (ja) * 1985-04-09 1986-10-17 Mitsubishi Electric Corp 光磁気共鳴磁力計
JPH05119129A (ja) * 1991-09-27 1993-05-18 Ngk Insulators Ltd 磁界測定装置
US8212556B1 (en) * 2010-01-12 2012-07-03 Sandia Corporation Atomic magnetometer
WO2012120732A1 (ja) * 2011-03-08 2012-09-13 住友重機械工業株式会社 光ポンピング磁力計、脳磁計及びmri装置
JP2012215499A (ja) * 2011-04-01 2012-11-08 Seiko Epson Corp 磁場測定装置、磁場測定システムおよび磁場測定方法
JP2013164388A (ja) * 2012-02-13 2013-08-22 Seiko Epson Corp 磁場測定装置およびプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629694A (en) * 1970-11-23 1971-12-21 Atlantic Richfield Co Method and apparatus providing a difference signal indicative of radiation absorption in a magnetometer
US4694243A (en) * 1986-05-28 1987-09-15 Westinghouse Electric Corp. Optical measurement using polarized and unpolarized light
JP4832005B2 (ja) 2005-06-10 2011-12-07 株式会社日立ハイテクノロジーズ 磁場遮蔽装置及び磁場計測装置
JP5178187B2 (ja) 2007-12-28 2013-04-10 キヤノン株式会社 原子磁気センサ、及び磁気センシング方法
JP2009236599A (ja) 2008-03-26 2009-10-15 Canon Inc 光ポンピング磁力計
JP2011237362A (ja) 2010-05-13 2011-11-24 Seiko Epson Corp 磁気計測装置
JP2012168078A (ja) 2011-02-16 2012-09-06 Seiko Epson Corp 磁場計測装置
JP2012237698A (ja) 2011-05-13 2012-12-06 Seiko Epson Corp セルおよび磁場測定装置
JP5866940B2 (ja) 2011-10-05 2016-02-24 セイコーエプソン株式会社 磁気センサー装置及び磁気計測装置
JP6024114B2 (ja) 2012-02-10 2016-11-09 セイコーエプソン株式会社 磁場測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233383A (ja) * 1985-04-09 1986-10-17 Mitsubishi Electric Corp 光磁気共鳴磁力計
JPH05119129A (ja) * 1991-09-27 1993-05-18 Ngk Insulators Ltd 磁界測定装置
US8212556B1 (en) * 2010-01-12 2012-07-03 Sandia Corporation Atomic magnetometer
WO2012120732A1 (ja) * 2011-03-08 2012-09-13 住友重機械工業株式会社 光ポンピング磁力計、脳磁計及びmri装置
JP2012215499A (ja) * 2011-04-01 2012-11-08 Seiko Epson Corp 磁場測定装置、磁場測定システムおよび磁場測定方法
JP2013164388A (ja) * 2012-02-13 2013-08-22 Seiko Epson Corp 磁場測定装置およびプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003270A (ja) * 2018-06-26 2020-01-09 株式会社リコー 原子磁気センサ、グラジオメータ、生体磁気計測装置

Also Published As

Publication number Publication date
US20150219729A1 (en) 2015-08-06
US9500722B2 (en) 2016-11-22
CN104820195A (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
JP2015143669A (ja) 磁場計測装置
JP6171355B2 (ja) 磁場計測装置
US9970999B2 (en) Nuclear magnetic resonance probe system
JP5264242B2 (ja) 原子磁力計及び磁力計測方法
JP2016050837A5 (ja)
JP2016050837A (ja) 光ポンピング磁力計及び磁気センシング方法
CN105068025A (zh) 基于电磁感应透明效应测量微弱磁场场强的方法及装置
US9024634B2 (en) Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method
JP2015227871A (ja) 原子センサシステム
US20200408855A1 (en) Device for Measuring an Electric and/or Magnetic Field in Particular in a Conductor for Transporting Electrical Power
JP6459167B2 (ja) 磁場測定装置および磁場測定方法
JP6521248B2 (ja) 磁場計測方法及び磁場計測装置
JP2017215225A (ja) 磁場計測装置
JP2015143650A (ja) 旋光計測方法及び旋光計測装置
JP2011137687A (ja) 磁気計測装置
JP2020003270A (ja) 原子磁気センサ、グラジオメータ、生体磁気計測装置
JP5866940B2 (ja) 磁気センサー装置及び磁気計測装置
JP2015099152A (ja) 磁場測定装置
JP6880834B2 (ja) 磁気センサ、生体磁気測定装置
JP2015064280A5 (ja)
JP6024114B2 (ja) 磁場測定装置
JP2009174974A (ja) 3dセンサ
JP2011237362A (ja) 磁気計測装置
JP2013164388A (ja) 磁場測定装置およびプログラム
JP5621240B2 (ja) 磁気計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20171204