JP2015139337A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2015139337A
JP2015139337A JP2014011152A JP2014011152A JP2015139337A JP 2015139337 A JP2015139337 A JP 2015139337A JP 2014011152 A JP2014011152 A JP 2014011152A JP 2014011152 A JP2014011152 A JP 2014011152A JP 2015139337 A JP2015139337 A JP 2015139337A
Authority
JP
Japan
Prior art keywords
converter
voltage
current
power
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014011152A
Other languages
English (en)
Other versions
JP6121919B2 (ja
JP6121919B6 (ja
Inventor
誠二 居安
Seiji Iyasu
誠二 居安
真司 安藤
Shinji Ando
真司 安藤
覚 吉川
Satoru Yoshikawa
覚 吉川
公計 中村
Kimikazu Nakamura
公計 中村
祐一 半田
Yuichi Handa
祐一 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2014011152A priority Critical patent/JP6121919B6/ja
Priority claimed from JP2014011152A external-priority patent/JP6121919B6/ja
Publication of JP2015139337A publication Critical patent/JP2015139337A/ja
Publication of JP6121919B2 publication Critical patent/JP6121919B2/ja
Application granted granted Critical
Publication of JP6121919B6 publication Critical patent/JP6121919B6/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】平滑コンデンサの容量を低減するとともに、交流電源の異常時にも安定動作させることが可能な電力変換装置を提供する。
【解決手段】二次電池500に対して交流電源400により充電を行うための電力変換装置であって、スイッチング素子Q1,Q2を有するAC−DC変換器100と、スイッチング素子Q3〜Q6とを有するDC−DC変換器200と、AC−DC変換器100とDC−DC変換器200の間に接続される平滑コンデンサ24とを備え、DC−DC変換器へ入力される電流またはDC−DC変換器から出力される電流と、平滑コンデンサ24に印加される電圧と、電圧指令値とに基づいて、DC−DC変換器のスイッチング素子Q3〜Q6のON/OFF信号のduty比を変化させることにより、平滑コンデンサ24の電圧を制御する。
【選択図】 図1

Description

本発明は、交流電源から二次電池への充電を行う電力変換装置に関する。
従来、平滑コンデンサの容量の低減を目的とした電力変換装置として、特許文献1に記載されたものがある。
特許文献1に記載された電力変換装置では、交流入力電力を整流して整流電圧を生成し、生成された整流電圧をスイッチングしてパルス電圧を生成する。そして、生成されたパルス電圧を平滑化して二次電池へ供給している。また、交流入力電流の波形が正弦波からなる基本波成分と高調波成分を含むものとなるように、スイッチングのduty比を変化させ、脈動電圧を低減している。
特開2010−88150号公報
特許文献1記載の電力変換装置では、瞬時電圧低下等の交流電源の異常時については考慮されていない。一般的に、平滑コンデンサの電圧制御の応答周波数は低いため、交流電源の異常時には平滑コンデンサに印加される電圧を安定させることができない。したがって、脈動電圧を低減することができたとしても、平滑コンデンサの容量は交流電源の異常時の電圧を考慮したものとせざるをえず、依然としてコンデンサの容量を大きくする必要が残っている。
本発明は、上記課題を解決するためになされたものであり、その目的は、平滑コンデンサの容量を低減するとともに、交流電源の異常時にも安定動作させることが可能な電力変換装置を提供することにある。
本発明は、上記課題を解決するためになされたものであり、二次電池に対して交流電源により充電を行うための電力変換装置であって、交流電源が接続される入力端子と、複数のスイッチング素子とを有するAC−DC変換器と、二次電池に接続される出力端子と、複数のスイッチング素子とを有し、AC−DC変換器に接続されるDC−DC変換器と、AC−DC変換器とDC−DC変換器の間に接続される平滑コンデンサと、平滑コンデンサとDC−DC変換器との間に流れる電流を検出する入力電流検出手段と、DC−DC変換器のから出力される電流を検出する出力電流検出手段との少なくとも一方と、平滑コンデンサの電圧を検出するコンデンサ電圧検出手段と、AC−DC変換器のスイッチング素子及びDC−DC変換器のスイッチング素子のON/OFF制御を行う制御回路とを備え、制御回路は、入力電流検出手段が検出した電流または出力電流検出手段が検出した電流と、コンデンサ電圧検出手段が検出した電圧と、入力された電圧指令値とに基づいて、DC−DC変換器のスイッチング素子のON/OFF信号のduty比を変化させることにより、平滑コンデンサの電圧を制御することを特徴とする。
AC−DC変換器はPFC動作により入力電流の高調波を抑制するため、制御の応答周波数は入力された電力の周波数より十分に小さくする必要があり、例えば交流電源の電力の周波数が50〜60Hzの場合は数Hz〜10Hz程度に設計される。したがって、仮にAC−DC変換器がコンデンサ電圧を制御するものとした場合、交流電源の異常時において、AC−DC制御器の制御が入力される交流電力に追従できない。
この点、上記構成とすることで、応答周波数に制約のあるAC−DC変換器ではなく、応答周波数に制約がないDC−DC変換器により平滑コンデンサの電圧の制御を行うため、交流電源の異常時においても平滑コンデンサの電圧を一定に保つことができる。したがって、平滑コンデンサの容量は交流電源の異常を考慮した容量とする必要がなく、その結果として、平滑コンデンサの容量を低減することができる。
各実施形態の回路図である。 第1実施形態の制御ブロック図である。 第1実施形態における制御を行った場合の電流と電圧を示す図である。 第1実施形態において入力電圧が変動した場合の電流と電圧を示す図である。 第2実施形態の制御ブロック図である。 第3実施形態の制御ブロック図である。 第3実施形態における制御を行った場合の電流と電圧を示す図である。 第4実施形態の制御ブロック図である。 第4実施形態のフローチャートである。 第4実施形態において電力指令値が所定値より大きい場合の電力フローである。 第4実施形態において電力指令値が所定値以下の場合電力フローである。 コンデンサ容量と脈動電圧の許容量との関連性を示す図である。 コンデンサ容量と脈動電圧の許容量との関連性を示す図である。 コンデンサ容量の低減効果を示す図である。
以下、各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
<第1実施形態>
本実施形態に係る電力変換装置は、家庭用電源や商用電源等の交流電源から、車載バッテリ等の二次電池への電力の供給に用いられる電力変換装置である。
図1は、本実施形態の回路図である。本実施形態に係る電力変換装置は、AC−DC変換回路100と、DC−DC変換回路200と、制御回路300とにより構成される。AC−DC変換回路100の入力端には交流電源400が接続され、AC−DC変換回路100の出力端には、DC−DC変換回路200の入力端が接続される。一方、DC−DC変換回路200の出力端は、二次電池500に接続される。
AC−DC変換回路100は、第1ブリッジ回路10と、第1リアクトル11aと第2リアクトル11bとにより構成される第1平滑リアクトル11を備える。交流電源400は、AC−DC変換回路200の入力端子を経て、第1平滑リアクトル11の第1リアクトル11a及び第2リアクトル11bに接続される。
第1ブリッジ回路10は、ダイオードD1、ダイオードD2、MOSFETであるスイッチング素子Q1及びスイッチング素子Q2を備えるブリッジ回路である。ダイオードD1及びダイオードD2は、高圧側である上アームに設けられ、スイッチング素子Q1及びスイッチング素子Q2は、低圧側である下アームに設けられる。ダイオードD1のカソードは高圧側配線に接続され、アノードはスイッチング素子Q1のドレイン端子及び第1リアクトル11aに接続される。ダイオードD2のカソードは高圧側配線に接続され、アノードはスイッチング素子Q2のドレイン端子及び第2リアクトル11bに接続される。スイッチング素子Q1のソース端子及びスイッチング素子Q2のソース端子は、共に低圧側配線に接続される。
DC−DC変換回路200は、第2ブリッジ回路20と、第1コイル21aと第2コイル21bとにより構成されるトランス21と、ダイオードブリッジ回路22と、第2平滑リアクトル23と、平滑コンデンサ24とを備える。
第2ブリッジ回路20は、MOSFETであるスイッチング素子Q3〜Q6を備えるブリッジ回路である。スイッチング素子Q3及びスイッチング素子Q5は、高圧側である上アームに設けられ、スイッチング素子Q4及びスイッチング素子Q6は、低圧側である下アームに設けられる。スイッチング素子Q3のドレイン端子は高圧側配線に接続され、ソース端子はスイッチング素子Q4のドレイン端子及び第1コイル21aの一端に接続される。スイッチング素子Q5のドレイン端子は高圧側配線に接続され、ソース端子はスイッチング素子Q6のドレイン端子及び第1コイル21aの他端に接続される。スイッチング素子Q4のソース端子及びスイッチング素子Q6のソース端子は、共に低圧側配線に接続される。
ダイオードブリッジ回路22は、ダイオードD3〜D6を備えるブリッジ回路である。ダイオードD3及びダイオードD5は、高圧側である上アームに設けられ、ダイオードD4及びダイオードD6は、低圧側である下アームに設けられる。ダイオードD3のカソードは高圧側配線に接続され、アノードはダイオードD4のカソード及び第2コイル21bの一端に接続される。ダイオードD5のカソードは高圧側配線に接続され、アノードはダイオードD6のカソード及び第2コイル21bの他端に接続される。ダイオードD4のアノード及びダイオードD6のアノードは、共に低圧側配線に接続される。高圧側配線は、第2平滑リアクトル23を介し、出力端を経て二次電池500の正極に接続され、低圧側配線は、出力端を経て二次電池500の負極に接続される。
平滑コンデンサ24は、DC−DC変換回路200の入力端に設けられ、一端が高圧側配線に接続され、他端が低圧側配線に接続されることにより、第2ブリッジ回路20と並列接続される。
本実施形態にかかる電力変換装置は、交流入力電流検出手段として機能する第1電流検出器12と、交流電圧検出手段として機能する第1電圧検出器13と、入力電流検出手段として機能する第2電流検出器25と、コンデンサ電圧検出手段として機能する第2電圧検出器26と、出力電流検出手段として機能する第3電流検出器27と、第3電圧検出器28とを備えている。
第1電流検出器12は、第1ブリッジ回路10のスイッチング素子Q2のドレイン端子とダイオードD2のアノードとの間と、第1平滑リアクトル11の第2リアクトル11bと間に設けられ、リアクトル電流ILを検出する。第1電圧検出器13は、AC−DC変換回路100の入力端に設けられ、交流電源400から入力される入力電圧Vacを検出する。第2電流検出器25は、第2ブリッジ回路20と平滑コンデンサ24との間に設けられ、平滑コンデンサ24を経て第2ブリッジ回路20に入力される入力電流Iinを検出する。第2電圧検出器26は、平滑コンデンサ24に並列接続され、平滑コンデンサ24に印加されるコンデンサ電圧Vcを検出する。第3電流検出器27は、ダイオードブリッジ回路22と二次電池500との間の低圧配線側に設けられ、DC−DC変換回路200から二次電池500へと出力される出力電流Ioutを検出する。第3電圧検出器28は、二次電池500に並列接続され、二次電池の電圧V0を検出する。
制御回路300は、第1制御部31と、第2制御部32とを備える。制御回路300には、計測された各電流値及び各電圧値と、二次電池500の残容量に基づいて決定された電力指令値Pin*、コンデンサ電圧Vcを所定の電圧値に維持するための電圧指令値Vc*が入力される。第1制御部31及び第2制御部32は、入力された各電流値、各電圧値、各指令値を用いて演算を行う。そして、第1制御部31はスイッチング素子Q1及びスイッチング素子Q2にduty比を変更する制御信号を送信し、第2制御部32はスイッチング素子Q3〜Q6にduty比を変更する制御信号を送信する。
図2は、本実施形態の制御ブロック図である。第1制御部31には、電力指令値Pin*、入力電圧Vac、リアクトル電流IL、コンデンサ電圧Vcが入力される。そして、AC−DC変換回路100からDC−DC変換回路200に入力される電力が電力指令値Pin*に追従するように、第1ブリッジ回路10のスイッチング素子Q1及びQ2のduty比を制御する。
まず、入力電圧Vacの実効値を演算し、電力指令値Pin*に対して除算することで電流指令値|Iac*|を得る。一方、Vacの位相を検出して絶対値処理を行うことにより、|sinθ|を得る。そして、電流指令値|Iac*|と|sinθ|とを乗算することで、リアクトル電流指令値|IL*|を得る。次に得られたリアクトル電流指令値|IL*|と入力されたリアクトル電流絶対値|IL|との偏差をとり、リアクトル電流偏差dILを得る。得られたリアクトル電流偏差dILをPI制御器に入力し、その出力と電源電圧絶対値|Vac|との偏差をコンデンサ電圧Vcで除算することにより、必要なduty比を得る。そして、得られたduty比に基づいてPWM信号を生成することにより、スイッチング素子Q1,Q2へON/OFF信号を出力する。
一方、第1制御部31によるスイッチング素子Q1,Q2のON/OFF制御は、AC−DC変換回路100がPFC回路としても機能するよう行われる。ここで、交流周波数を60Hzとすると、入力電流の高調波を抑制するために、ON/OFF制御の応答周波数は数Hz〜10Hz程度とする必要が生ずる。したがって、AC−DC変換回路100からDC−DC変換回路200へ入力される電力を電力指令値Pin*に追従させる制御についても、応答周波数は数Hz〜10Hz程度となる。
第2制御部32には、電圧指令値Vc*、コンデンサ電圧Vc、出力電流Ioutが入力される。そして、コンデンサ電圧Vcが電圧指令値Vc*に追従するように、第2ブリッジ回路20のスイッチング素子Q3〜Q6を制御する。
まず、電圧指令値Vc*とコンデンサ電圧Vcとの偏差をとり、PI制御器に入力することで、電流値I_refを得る。得られた電流値I_refと出力電流Ioutとの偏差をとり、PI制御器に再度入力することにより、コンデンサ電圧Vcのフィードバック制御を、出力電流Ioutのフィードバック制御をマイナーループに持つものとする。その後、PI制御器の出力値をコンデンサ電圧Vcで除算することにより、必要なduty比を得る。そして、得られたduty比に基づいてPWM信号を生成することにより、スイッチング素子Q3〜Q6へON/OFF信号を出力する。
ここで、第2制御部32によるスイッチング素子Q3〜Q6の制御は、第1制御部31によるスイッチング素子Q1,Q2の制御と異なり、応答周波数の制約が生じない。したがって、第2制御部32によるスイッチング素子Q3〜Q6の制御は1kHz〜10kHz程度の応答周波数とすることができる。
図3は、本実施形態における制御を行った場合の、交流電源400から入力される入力電流と、第2電圧検出器26により計測されたコンデンサ電圧Vcと、DC−DC変換回路200から出力され、二次電池500に入力されるDC−DC変換器出力電流とを示す図である。図3において、交流電源400から入力される電力Pinは3400W、周波数は50Hz、入力電圧Vacの最大値の平均値VH_aveは380Vである。
本実施形態では、DC−DC変換回路200において、コンデンサ電圧Vcを制御しているため、コンデンサ電圧Vcの振幅は20V以内に抑制されている。一方、二次電池500に入力される電力は、AC−DC変換回路100により制御される。したがって、DC−DC変換回路200から出力され、二次電池500に入力される電流には、脈動電流が生じる。
図4は、交流電源400から入力される入力電圧Vacが50%の電圧降下をした場合のグラフである。図4において、交流電源400から入力される電力Pinは3400W、周波数は50Hz、入力される入力電圧Vacの最大値の平均値VH_aveは380Vである。
コンデンサ電圧Vcは第2制御部32により制御されるため、図3の場合と同様に、コンデンサ電圧Vcの振幅は20V以内に抑制されている。一方、入力電圧Vacの電圧降下により交流電源400から入力される電力Pinが一時的に低下することに伴い、二次電池500に入力されるDC−DC変換回路200から出力される電流のピーク値は、50%程度に低下する。
本実施形態は、上記構成により、以下の効果を奏する。
応答周波数に制約のあるAC−DC変換回路100ではなく、応答周波数に制約がないDC−DC変換回路200により平滑コンデンサ24に印加されるコンデンサ電圧Vcの制御を行うため、交流電源400の異常時においてもコンデンサ電圧Vcを一定に保つことができる。したがって、平滑コンデンサ24の容量は交流電源400の異常を考慮した容量とする必要がなく、その結果として、平滑コンデンサ24の容量を低減することができる。
<第2実施形態>
図5は本実施形態の制御ブロック図である。本実施形態における制御は、第1実施形態と同様の回路で行われる。本実施形態において、第1制御部31は第1実施形態と同様の制御を行い、スイッチング素子Q1、Q2へ制御信号を送信する。一方、本実施形態では、第2制御部32で行われる制御が第1実施形態と異なっている。
第2制御部32には、電圧指令値Vc*、コンデンサ電圧Vc、入力電流Iinが入力される。そして、コンデンサ電圧Vcが電圧指令値Vc*に追従するように、第2ブリッジ回路20のスイッチング素子Q3〜Q6を制御する。
まず、電圧指令値Vc*とコンデンサ電圧Vcとの偏差をとり、PI制御器に入力することで、電流値I_refを得る。得られた電流値I_refと入力電流Iinとの偏差をとり、ピーク電流制御器に入力することにより必要なduty比を得る。そして、得られたduty比に基づいてPWM信号を生成することにより、スイッチング素子Q3〜Q6へON/OFF信号を出力する。
本実施形態は、上記構成により、DC−DC変換回路200の電流制御の応答性をより高くすることができる。その結果として、コンデンサ電圧Vcの電圧制御の応答性についてもより高くすることができる。
<第3実施形態>
図6は本実施形態の制御ブロック図である。本実施形態における制御は、第1実施形態と同様の回路で行われる。本実施形態において、第1制御部31は第1実施形態及び第2実施形態と同様の制御を行い、スイッチング素子Q1、Q2へ制御信号を送信する。一方、本実施形態では、第2制御部32で行われる制御が第1実施形態及び第2実施形態と異なっている。
第2制御部32には、電圧指令値Vc*、コンデンサ電圧Vc、入力電流Iinが入力される。そして、コンデンサ電圧Vcが電圧指令値Vc*に追従するように、第2ブリッジ回路20のスイッチング素子Q3〜Q6を制御する。
まず、電圧指令値Vc*とコンデンサ電圧Vcとの偏差をとり、PI制御器に入力することで、電流値I_refを得る。得られた電流値I_refはリミッタに入力され、上限値と下限値とが所定の値以内に制限される。その後、リミッタを経た電流値I_refと入力電流Iinとの偏差をとり、ピーク電流制御器に入力することにより必要なduty比を得る。そして、得られたduty比に基づいてPWM信号を生成することにより、スイッチング素子Q3〜Q6へON/OFF信号を出力する。
図7は、本実施形態における制御を行った場合の、交流電源400から入力される入力電流と、第2電圧検出器26により計測されたコンデンサ電圧Vcと、DC−DC変換回路200から出力され、二次電池500に入力されるDC−DC変換器出力電流とを示す図である。図7において、交流電源400から入力される電力Pinは3400W、周波数は50Hz、入力電圧Vacの最大値の平均値VH_aveは380Vである。
本実施形態では、二次電池500に入力される電流値に、リミッタにより上限値と下限値を設けている。したがって、DC−DC変換回路200から出力され、二次電池500に入力される電流の脈動を所定の範囲内に収めることができる。
本実施形態は、上記構成により、DC−DC変換回路200を構成するダイオードブリッジ回路22及び第2平滑リアクトル23に流れる電流を、所定の範囲内に収めることができる。したがって、ダイオードブリッジ回路22を構成する各ダイオードD3〜D6、及び、第2平滑リアクトル23について、定格電流がより小さいものを採用することができる。
<第4実施形態>
図8は、本実施形態の制御ブロック図である。本実施形態における制御は、第1実施形態と同様の回路で行われる。本実施形態では、電力指令値Pin*が閾値Prefより大きいか否かに応じて制御を切り替える。
まず、電力指令値Pinが閾値Prefより大きい場合の制御について説明する。この場合には、第1制御部31により行われる制御及び第2制御部32により行われる制御は、第3実施形態と同様の制御である。そして、第1制御部31からスイッチング素子Q1,Q2へON/OFF信号が送信され、第2制御部32からスイッチング素子Q3〜Q6へON/OFF信号が送信される。
次に、電力指令値Pin*が閾値Pref以下である場合の制御について説明する。第1制御部31には、電圧指令値Vc*、入力電圧Vac、リアクトル電流IL、コンデンサ電圧Vcが入力される。そして、コンデンサ電圧Vcが電圧指令値Vc*に追従するように、第1ブリッジ回路10のスイッチング素子Q1及びQ2のduty比を制御する。
まず、電圧指令値Vc*とコンデンサ電圧Vcとの差分をとり、PI制御器に入力することで、電流指令値|Iac*|を得る。一方、Vacの位相を検出して絶対値処理を行うことにより、|sinθ|を得る。そして、電流指令値|Iac*|と|sinθ|とを乗算することで、リアクトル電流指令値|IL*|を得る。次に得られたリアクトル電流指令値|IL*|と入力されたリアクトル電流絶対値|IL|との偏差をとり、リアクトル電流偏差dILを得る。得られたリアクトル電流偏差dILをPI制御器に入力し、その出力と電源電圧絶対値|Vac|との偏差をコンデンサ電圧Vcで除算することにより、必要なduty比を得る。そして、得られたduty比に基づいてPWM信号を生成することにより、スイッチング素子Q1,Q2へON/OFF信号を出力する。
第2制御部32には、電力指令値Pin*、コンデンサ電圧Vc、入力電流Iinが入力される。そして、DC−DC変換回路200から出力される電力が電力指令値Pin*に追従するように、第2ブリッジ回路20のスイッチング素子Q3〜Q6を制御する。
まず、電力指令値Pin*とコンデンサ電圧Vcとの偏差をとり、電流値I_refを得る。得られた電流値I_refと入力電流Iinとの偏差をとり、ピーク電流制御器に入力することにより必要なduty比を得る。そして、得られたduty比に基づいてPWM信号を生成することにより、スイッチング素子Q3〜Q6へON/OFF信号を出力する。
図9は本実施形態のフローチャートである。本フローチャートに係る制御は、所定の周期で実行される。まず、S101において、充電要求がなされたか否かを判定する。S101において、充電要求がなされたと判定されない場合には、一連の処理を終了する。一方、S101において、充電要求がなされたと判定された場合には、S102において、電力指令値Pin*が閾値Prefより大きい値であるか否かを判定する。S102において電力指令値Pin*が閾値Prefより大きい値であると判定された場合、S103において、DC−DC変換回路200によりコンデンサ電圧Vcを電圧指令値Vc*とする制御を行い、AC−DC変換回路100により、出力電力を電力指令値Pin*とする制御を行う。一方、S102において電力指令値Pin*が閾値Pref以下であると判定された場合、S104において、AC−DC変換回路100によりコンデンサ電圧Vcを電圧指令値Vc*とする制御を行い、DC−DC変換回路200により、出力電力を電力指令値Pin*とする制御を行う。
S103の制御又はS104の制御の後、S105において、充電が終了したか否かを判定する。すなわち、二次電池500の容量が所定値以上となったか否かを判定する。S105において、二次電池500の容量が所定値以上となっていないと判定した場合、充電の制御を継続する。一方、S105において、二次電池500の容量が所定値以上となったと判定した場合、一連の処理を終了する。
図10は、電力指令値Pin*が閾値Prefより大きい値である場合、すなわち、DC−DC変換回路200によりコンデンサ電圧Vcを電圧指令値Vc*とする制御を行い、AC−DC変換回路100により出力電力を電力指令値Pin*とする制御を行った場合の、電力フローを示す図である。
電力指令値Pin*が閾値Prefより大きい値である場合には、コンデンサ電圧Vcの電圧制御は応答周波数の制限のないDC−DC変換回路200により行われる。したがって、脈動電圧が生じないようにコンデンサ電圧Vcを制御することができる。一方、DC−DC変換回路200において電流制御を行わないため、二次電池500は脈動する電力により充電されることとなる。
図11は、電力指令値Pin*が閾値Pref以下である場合、すなわち、AC−DC変換回路100によりコンデンサ電圧Vcを電圧指令値Vc*とする制御を行い、DC−DC変換回路200により出力電力を電力指令値Pin*とする制御を行った場合の、電力フローを示す図である。
電力指令値Pin*が閾値Pref以下である場合には、AC−DC変換回路100がPFC動作とコンデンサ電圧Vcの電圧制御とを行う。ここで、第1実施形態において上述したとおり、AC−DC変換回路100の応答周波数は数Hz〜10Hz程度であるため、コンデンサ電圧Vcの周波数と比較して応答性は低い。結果として、コンデンサ電圧Vcは交流電源400の周波数の2倍の成分で脈動する。なお、平滑コンデンサ24により脈動を吸収しているため、平滑コンデンサ24の容量が小さいほど脈動は大きくなる。
一方、DC−DC変換回路200は、電力指令値Pin*に基づいた電流を流すように制御する。したがって、二次電池500に流入する電流は一定となるため、二次電池500は直流電力で充電されることとなる。
図12は、仮に、電力指令値Pin*の値に係わらず、AC−DC変換回路100によりコンデンサ電圧Vcを電圧指令値Vc*とする制御を行うものとした場合の、平滑コンデンサ24の容量と、許容される脈動電圧ΔVとの関係を示すグラフである。図12では、入力電力Pinを3400Wとし、周波数を50Hz、入力される交流電力の最大値の平均値VH_aveを380Vとしている。この場合、脈動電圧ΔVの最大値が80Vとなるように平滑コンデンサ24の容量を選択すると、その容量は370μFが必要となる。
一方、図13は、本実施形態に係る制御を行う場合の、平滑コンデンサ24の容量と、許容される脈動電圧ΔVとの関係を示すグラフである。本実施形態では、上述のとおり、電力指令値Pin*が閾値Pref以下の場合にのみ、AC−DC変換回路100によりコンデンサ電圧Vcを電圧指令値Vc*とする制御を行っている。したがって、本実施形態に係る電力変換装置では、電力指令値Pin*が閾値Pref以下の場合において、脈動電圧ΔVが80Vとなるように平滑コンデンサ24の容量を選択すればよい。図13では、入力電力Pinを600Wとし、周波数を50Hz、入力される交流電力の最大値の平均値VH_aveを380Vとしている。この場合、脈動電圧ΔVが80Vとなるように平滑コンデンサ24の容量を選択すると、その容量は65μFとなる。
図14は、本実施形態における平滑コンデンサ24の容量の低減効果を表す図である。図12及び図13において示したとおり、本実施形態に係る制御を行う場合には、脈動電圧ΔVが80Vとなるように平滑コンデンサ24の容量を選択すると、65μFである。一方、本実施形態にかかる制御を行わない場合には、脈動電圧ΔVが80Vとなるように平滑コンデンサ24の容量を選択すると、370μFが必要となる。
上記構成とすることで、出力端子から出力される電力を小さくした押し込み充電時には、DC−DCコンバータから出力される電力を脈動のない直流電力とすることができる。したがって、バッテリを満充電とする際の精度を向上させるとともに、平滑コンデンサ24の容量の低減も可能となる。
<変形例>
・第3実施形態において、リミッタにより入力電流Iinの上限値と下限値を設けるものとしたが、入力電流Iinの上限値のみを設けるものとしてもよい。また、下限値のみを設けるものとしてよい。
・第4実施形態において、電力指令値Pin*が閾値Prefより大きい場合には第3実施形態と同様の制御を行うものとしたが、第1実施形態と同様の制御を行ってもよく、第2実施形態と同様の制御を行ってもよい。
・第1実施形態において、第2制御部32が出力電流Ioutを用いて演算するものとしたが、出力電流Ioutではなく入力電流Iinを用いて演算してもよい。また、第2〜4実施形態において、第2制御部32が入力電流Iinを用いて演算するものとしたが、入力電流Iinではなく出力電流Ioutを用いて演算してもよい。
・各実施形態において、第1ブリッジ回路10を2つのダイオードD1、D2と、2つのスイッチング素子Q1、Q2により構成するものとしたが、4つのスイッチング素子で構成してもよい。
・各実施形態において、第2ブリッジ回路20を4つのスイッチング素子Q3〜Q6により構成するものとしたが、2つのスイッチング素子により構成されるハーフブリッジ回路としてもよい。
・各実施形態において、スイッチング素子をMOSFETとしたが、MOSFET以外の電界効果トランジスタを用いることもできる。また、各スイッチング素子をバイポーラトランジスタ等のトランジスタとしてもよい。この場合には、上記各実施形態において、ドレインをコレクタと読み替え、ソースをエミッタと読み替えればよい。
24…平滑コンデンサ、25…第2電流検出器、26…第2電圧検出器、27…第3電流検出器、100…AC−DC変換回路、200…DC−DC変換回路、300…制御回路、400…交流電源、500…二次電池、Q1〜Q6…スイッチング素子。

Claims (6)

  1. 二次電池(500)に対して交流電源(400)により充電を行うための電力変換装置であって、
    前記交流電源が接続される入力端子と、複数のスイッチング素子(Q1、Q2)とを有するAC−DC変換器(100)と、
    前記二次電池に接続される出力端子と、複数のスイッチング素子(Q3〜Q6)とを有し、前記AC−DC変換器に接続されるDC−DC変換器(200)と、
    前記AC−DC変換器と前記DC−DC変換器の間に接続される平滑コンデンサ(24)と、
    前記平滑コンデンサと前記DC−DC変換器との間に流れる電流を検出する入力電流検出手段(25)と、前記DC−DC変換器のから出力される電流を検出する出力電流検出手段(27)との少なくとも一方と、
    前記平滑コンデンサの電圧を検出するコンデンサ電圧検出手段(26)と、
    前記AC−DC変換器の前記スイッチング素子及び前記DC−DC変換器の前記スイッチング素子のON/OFF制御を行う制御回路(300)とを備え、
    前記制御回路は、前記入力電流検出手段が検出した電流または前記出力電流検出手段が検出した電流と、前記コンデンサ電圧検出手段が検出した電圧と、入力された電圧指令値とに基づいて、前記DC−DC変換器の前記スイッチング素子のON/OFF信号のduty比を変化させることにより、前記平滑コンデンサの電圧を制御することを特徴とする電力変換装置。
  2. 前記AC−DC変換器は、前記交流電源からの入力される電流を検出する交流入力電流検出手段(12)と、前記交流電源から入力される電圧を検出する交流電圧検出手段(13)と有し、
    前記制御回路は、前記交流入力電流検出手段が検出した電流及び前記交流電圧検出手段が検出した電圧と、入力された電力指令値とに基づいて、前記AC−DC変換器の前記スイッチング素子に対して、ON/OFF信号のduty比を変化させることにより、電力指令値に基づいた電流制御を行うことを特徴とする請求項1に記載の電力変換装置。
  3. 前記制御回路は、前記電力指令値が所定値以下の場合、前記DC−DC変換器のスイッチング素子に対して、ON/OFF信号のduty比の制御により前記電力指令値に基づいた電流制御を行い、前記AC−DC変換器のスイッチング素子のON/OFF信号のduty比の制御により、前記コンデンサ電圧を制御することを特徴とする請求項2に記載の電力変換装置。
  4. 前記制御回路は、前記入力電流検出手段が検出した電流または前記出力電流検出手段が検出した電流のフィードバック制御をマイナーループに持つ電圧フィードバック制御により、前記コンデンサ電圧を制御することを特徴とする請求項1〜3のいずれか1項に記載の電力変換装置。
  5. 前記制御回路は、前記DC−DC変換器から出力される電流の上限値を所定の値に制限することを特徴とする請求項1〜4のいずれか1項に記載の電力変換装置。
  6. 前記制御回路は、前記DC−DC変換器から出力される電流の下限値を所定の値に制限することを特徴とする請求項1〜5のいずれか1項に記載の電力変換装置。
JP2014011152A 2014-01-24 電力変換装置 Active JP6121919B6 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011152A JP6121919B6 (ja) 2014-01-24 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011152A JP6121919B6 (ja) 2014-01-24 電力変換装置

Publications (3)

Publication Number Publication Date
JP2015139337A true JP2015139337A (ja) 2015-07-30
JP6121919B2 JP6121919B2 (ja) 2017-04-26
JP6121919B6 JP6121919B6 (ja) 2017-07-26

Family

ID=

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186407A (ja) * 2014-03-26 2015-10-22 株式会社日本自動車部品総合研究所 電力変換装置
WO2017051814A1 (ja) * 2015-09-25 2017-03-30 住友電気工業株式会社 電源装置
KR101752797B1 (ko) 2016-01-14 2017-06-30 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 홈 어플라이언스
JP2017195736A (ja) * 2016-04-22 2017-10-26 三菱電機株式会社 電力変換装置
JP2018207627A (ja) * 2017-06-01 2018-12-27 三菱電機株式会社 電力変換装置の制御装置および制御方法
JP2019054649A (ja) * 2017-09-15 2019-04-04 株式会社豊田自動織機 Acインバータ
US10491136B2 (en) 2017-10-23 2019-11-26 Denso Corporation Bridge-less type electric power conversion device having current detection circuit of current transformer type
US10910958B2 (en) 2018-11-28 2021-02-02 Denso Corporation Control apparatus for power conversion system
US11258351B2 (en) 2019-06-24 2022-02-22 Denso Corporation Power converter
JP2022034820A (ja) * 2020-08-19 2022-03-04 矢崎総業株式会社 充電器
JPWO2022224300A1 (ja) * 2021-04-19 2022-10-27

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142458A (ja) * 2000-10-31 2002-05-17 Fuji Electric Co Ltd 整流回路及びその制御方法
JP2011035957A (ja) * 2009-07-29 2011-02-17 Panasonic Electric Works Co Ltd 電力変換装置
JP2012065534A (ja) * 2010-08-19 2012-03-29 Ihi Corp 電源装置、電源システム及び電源システム制御方法
JP2014007904A (ja) * 2012-06-26 2014-01-16 Sumitomo Electric Ind Ltd 双方向電力変換装置、及び、充放電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142458A (ja) * 2000-10-31 2002-05-17 Fuji Electric Co Ltd 整流回路及びその制御方法
JP2011035957A (ja) * 2009-07-29 2011-02-17 Panasonic Electric Works Co Ltd 電力変換装置
JP2012065534A (ja) * 2010-08-19 2012-03-29 Ihi Corp 電源装置、電源システム及び電源システム制御方法
JP2014007904A (ja) * 2012-06-26 2014-01-16 Sumitomo Electric Ind Ltd 双方向電力変換装置、及び、充放電システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186407A (ja) * 2014-03-26 2015-10-22 株式会社日本自動車部品総合研究所 電力変換装置
US10811953B2 (en) 2015-09-25 2020-10-20 Sumitomo Electric Industries, Ltd. Power supply device
WO2017051814A1 (ja) * 2015-09-25 2017-03-30 住友電気工業株式会社 電源装置
KR101752797B1 (ko) 2016-01-14 2017-06-30 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 홈 어플라이언스
JP2017195736A (ja) * 2016-04-22 2017-10-26 三菱電機株式会社 電力変換装置
JP2018207627A (ja) * 2017-06-01 2018-12-27 三菱電機株式会社 電力変換装置の制御装置および制御方法
JP2019054649A (ja) * 2017-09-15 2019-04-04 株式会社豊田自動織機 Acインバータ
US10491136B2 (en) 2017-10-23 2019-11-26 Denso Corporation Bridge-less type electric power conversion device having current detection circuit of current transformer type
US10910958B2 (en) 2018-11-28 2021-02-02 Denso Corporation Control apparatus for power conversion system
US11258351B2 (en) 2019-06-24 2022-02-22 Denso Corporation Power converter
JP2022034820A (ja) * 2020-08-19 2022-03-04 矢崎総業株式会社 充電器
JP7212904B2 (ja) 2020-08-19 2023-01-26 矢崎総業株式会社 充電器
JPWO2022224300A1 (ja) * 2021-04-19 2022-10-27
WO2022224300A1 (ja) * 2021-04-19 2022-10-27 三菱電機株式会社 電力変換装置、ヒートポンプ装置および空気調和機
JP7395059B2 (ja) 2021-04-19 2023-12-08 三菱電機株式会社 電力変換装置、ヒートポンプ装置および空気調和機

Also Published As

Publication number Publication date
JP6121919B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
TWI501533B (zh) 一種離線電壓調節器、離線調節器積體電路及其電壓轉換方法
US9148072B2 (en) Inverter apparatus
JP5701283B2 (ja) 充電装置
JP6001587B2 (ja) 電力変換装置
US10044278B2 (en) Power conversion device
US8503204B2 (en) Power converter circuit
EP3404820B1 (en) Power conversion system and power conversion device
CN102882388A (zh) 电源装置及其控制方法
JP5377603B2 (ja) 電力変換装置
US10530238B2 (en) Power conversion device and method for controlling same
JP5377604B2 (ja) 電力変換装置
JP5437334B2 (ja) 電力変換装置
JP2015198460A (ja) 電力変換装置
JP2019104040A (ja) 被覆アーク溶接システム、および、被覆アーク溶接用の溶接電源装置
JP2013055866A5 (ja)
US10348190B2 (en) Conversion device for converting voltage in a non-insulated manner and method for controlling the same
JP6142926B2 (ja) 電力変換装置
KR20220020955A (ko) 멀티레벨 변환기를 위한 전압 밸런스 시스템 및 방법
US11296608B2 (en) Electric-power conversion apparatus
JP2020124050A (ja) 共振インバータ装置
TWI551024B (zh) 交流-直流電力轉換裝置及其控制方法
JP2017163680A (ja) 溶接電源装置
WO2018193843A1 (ja) 溶接電源装置
JP6121919B2 (ja) 電力変換装置
JP6121919B6 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170330

R150 Certificate of patent or registration of utility model

Ref document number: 6121919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250