JP2015136738A - Processing method and processing device - Google Patents

Processing method and processing device Download PDF

Info

Publication number
JP2015136738A
JP2015136738A JP2014008368A JP2014008368A JP2015136738A JP 2015136738 A JP2015136738 A JP 2015136738A JP 2014008368 A JP2014008368 A JP 2014008368A JP 2014008368 A JP2014008368 A JP 2014008368A JP 2015136738 A JP2015136738 A JP 2015136738A
Authority
JP
Japan
Prior art keywords
breakage
tool
detected
drill
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014008368A
Other languages
Japanese (ja)
Other versions
JP6301135B2 (en
Inventor
謙典 後藤
Kensuke Goto
謙典 後藤
山田 幸宏
Yukihiro Yamada
幸宏 山田
結城 徹
Toru Yuki
徹 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Mechanics Ltd filed Critical Via Mechanics Ltd
Priority to JP2014008368A priority Critical patent/JP6301135B2/en
Publication of JP2015136738A publication Critical patent/JP2015136738A/en
Application granted granted Critical
Publication of JP6301135B2 publication Critical patent/JP6301135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Drilling And Boring (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a processing defect such as a non-through hole and reduce confirmation operation of tool breakage which is time-consuming.SOLUTION: In each processing unit, a first step of directly detecting physical breakage of a tool at a time before the tool is brought into contact with a workpiece and a second step of detecting the physical breakage of the tool when the tool contacts with the workpiece are performed sequentially. Even when the breakage is detected in the second step, if the breakage is not detected in the first step performed in the next timing, the operation of the next processing unit is advanced. Even when the breakage is not detected in the first step, if the breakage is detected in the second step performed in the next timing, the processing operation is stopped, and a confirmation step of confirming the tool breakage is performed.

Description

本発明は、例えばドリルによってプリント基板に穴明けを行う場合に使用する加工方法及び加工装置に関する。   The present invention relates to a processing method and a processing apparatus used when, for example, drilling a printed board with a drill.

工具としてドリルを用いた加工装置における工具折損検知機能として、従来、以下のような二通りの方式がある。   Conventionally, there are the following two methods as a tool breakage detection function in a processing apparatus using a drill as a tool.

一つは、加工時に工具が加工物に接触した時点で工具の物理的折損を検出するものであり、TBDD(Touch Broken Drill Detection)と呼ばれるものである。これは、例えば、特許文献1に開示されるように、ドリルが加工対象のプリント基板に接触した時点で、その接触を例えばスピンドルのロータシャフトに発生する軸電圧の変化で検知し、その検知位置と基準位置との差を比較することでドリルの折損長が判り、それが所定値以上の場合、ドリルの折損として検知するものである。   One is to detect a physical breakage of the tool when the tool comes into contact with the workpiece during machining, and is called TBDD (Touch Broken Drill Detection). For example, as disclosed in Patent Document 1, when a drill contacts a printed circuit board to be processed, the contact is detected by, for example, a change in axial voltage generated on the rotor shaft of the spindle, and the detection position is detected. And the reference position are compared to determine the breakage length of the drill, and when it is greater than or equal to a predetermined value, the breakage of the drill is detected.

本方式の欠点としては、ドリル折損の検知は実際にドリルがプリント基板に接触しないと検知できない点である。つまり、接触しないと検知できないということは、一連の穴明け動作の進行中は途中で止めることができないので、必ず一度は折損状態で穴明け動作が進行してしまうことになり、未貫通穴が発生する点である。   The disadvantage of this method is that the breakage of the drill cannot be detected unless the drill actually contacts the printed circuit board. In other words, the fact that it cannot be detected without contact means that it cannot be stopped halfway during a series of drilling operations, so the drilling operation will always proceed once in a broken state, and there will be no unthrough holes. It is a point that occurs.

また、ドリルがプリント基板に接触した際の軸電圧を検出する方式においては、極稀に折損状態でないのに折損状態と誤検知する可能性がある。その場合、確認ステーションにおいて折損状態の確認を行う動作が発生する。確認ステーションでの確認動作は、加工動作を一旦停止させ、確認ステーションが存在する位置までドリルを移動させ、ドリル径、ドリル長を正確に検知する動作であるが、加工エリアからの移動が入るため確認終了までに時間がかかる。誤検知であった場合、確認ステーションでの確認時間の分だけ加工タクトが低下することになり、生産性の低下に繋がる欠点がある。   Further, in the method of detecting the shaft voltage when the drill comes into contact with the printed circuit board, there is a possibility that it is erroneously detected as a broken state although it is rarely a broken state. In that case, an operation for confirming the broken state occurs in the confirmation station. The confirmation operation at the confirmation station is an operation that temporarily stops the machining operation, moves the drill to the position where the confirmation station exists, and accurately detects the drill diameter and drill length, but moves from the machining area. It takes time to complete the verification. In the case of erroneous detection, the machining tact time is reduced by the amount of confirmation time at the confirmation station, leading to a drawback that leads to a reduction in productivity.

もう一つは、加工時に工具が加工物に接触する直前の時点で工具の物理的折損を直接的に検出するDBDD(Direct Broken Drill Detection)と呼ばれるものである。これは、例えば、特許文献2に開示されるように、プリント基板を押さえるための構造体内に、光を投射する発光部とここからの光を受光する光センサとを取付け、両者を結ぶ光軸上に位置するドリルによる光センサへの遮光の度合いによりドリル折損を検知するものである。   The other is called DBDD (Direct Broken Drill Detection), which directly detects physical breakage of the tool immediately before the tool contacts the workpiece during machining. For example, as disclosed in Patent Document 2, a light emitting unit that projects light and an optical sensor that receives light from the light emitting unit are mounted in a structure for holding a printed circuit board, and the optical axis connects the two. Drill breakage is detected by the degree of light shielding to the optical sensor by the drill positioned above.

本方式の欠点としては、その構造上、ドリルの先端から一定量だけ上の位置に発光部と光センサ間の光軸が形成されるため、ドリル折損が先端に生じる小さなチッピングであった場合は検知できず、折損状態で穴明け動作を継続的に実施することになり、複数の未貫通穴が発生する点である。   The disadvantage of this method is that, due to its structure, the optical axis between the light emitting part and the optical sensor is formed at a position above the tip of the drill by a certain amount. It is not possible to detect, and the drilling operation is continuously performed in a broken state, and a plurality of non-through holes are generated.

特開2001-341052号公報Japanese Patent Laid-Open No. 2001-341052 USP3,912,925号公報USP 3,912,925 Publication

そこで本発明は、未貫通穴の如き加工不良を防ぐとともに、時間のかかる工具折損の確認動作を少なくすることを目的とするものである。   SUMMARY OF THE INVENTION Accordingly, the present invention has an object to prevent a processing failure such as a non-through hole and to reduce time-consuming tool breakage checking operation.

上記課題を解決するため、請求項1に記載の加工方法においては、加工単位毎に、工具が加工物に接触する前の時点で工具の物理的折損を直接的に検知する第一のステップと工具が加工物に接触した時点で工具の物理的折損を検知する第二のステップとをそれぞれ前後して行い、前記第二のステップで折損を検知しても次のタイミングで行う前記第一ステップで折損を検知しない場合には次の加工単位の動作を進め、前記第一ステップで折損を検知しなくても次のタイミングで行う前記第二ステップで折損を検知した場合には加工動作を中止し工具の折損確認を行うための確認ステップを行うことを特徴とする。   In order to solve the above-described problem, in the machining method according to claim 1, for each machining unit, a first step of directly detecting a physical breakage of the tool at a time point before the tool contacts the workpiece; The second step of detecting the physical breakage of the tool when the tool comes into contact with the workpiece is performed before and after, and the first step is performed at the next timing even if the breakage is detected in the second step. If breakage is not detected at the next step, the operation of the next machining unit is advanced. If breakage is detected at the second step, which is performed at the next timing without detecting breakage at the first step, the machining operation is stopped. And a confirmation step for confirming the breakage of the tool.

また請求項2に記載の加工方法においては、請求項1に記載の加工方法において、前記第二ステップにおいて次の前記第一ステップで検知できない折損を検知した場合には当該第一ステップを経ることなく前期確認ステップを行うようにしたことを特徴とする。   Further, in the processing method according to claim 2, in the processing method according to claim 1, when a breakage that cannot be detected in the next first step is detected in the second step, the first step is performed. It is characterized by the fact that the previous confirmation step is performed instead.

また請求項3に記載の加工装置においては、工具が加工物に接触する前の時点で工具の物理的折損を直接的に検知する第一の検知手段と、工具が加工物に接触した時点で工具の物理的折損を検知する第二の検知手段と、加工単位毎に前記第一検知手段と第二検知手段をそれぞれ前後して動作させる第一の制御手段と、前記第二検知手段で折損を検知しても次のタイミングで動作する前記第一検知手段で折損を検知しない場合には次の加工単位の動作を進め、前記第一検知手段で折損を検知しなくても次のタイミングで動作する前記第二検知手段で折損を検知した場合には加工動作を中止し工具の折損確認を行う第三の制御手段とを備えることを特徴とする。   Moreover, in the processing apparatus according to claim 3, when the tool contacts the workpiece, the first detection means for directly detecting the physical breakage of the tool before the tool contacts the workpiece. A second detection means for detecting a physical breakage of the tool, a first control means for operating the first detection means and the second detection means for each processing unit, and a breakage by the second detection means. If the first detection means that operates at the next timing does not detect breakage even if it is detected, the operation of the next processing unit is advanced, and the first detection means does not detect breakage at the next timing. And a third control unit for stopping the machining operation and confirming the breakage of the tool when the second detection unit that operates operates to detect a breakage.

また請求項4に記載の加工装置においては、請求項3に記載の加工装置において、前記第三制御手段は、前記第二検知手段にて前記第一検知手段が検知できない折損を検知した場合には当該第一検知手段の動作を待つことなく加工動作を中止し折損確認を行うことを特徴とする。   Further, in the processing apparatus according to claim 4, in the processing apparatus according to claim 3, when the third control unit detects breakage that the first detection unit cannot detect by the second detection unit. Is characterized in that the machining operation is stopped and the breakage is confirmed without waiting for the operation of the first detection means.

本発明によれば、未貫通穴の如き加工不良を防ぐとともに、時間のかかる工具折損の確認動作を少なくすることができる。   According to the present invention, it is possible to prevent a machining defect such as a non-through hole and to reduce time-consuming tool breakage checking operation.

本発明の一実施例におけるフローチャートである。It is a flowchart in one Example of this invention. 本実施例のドリル加工装置の構成を示す図である。It is a figure which shows the structure of the drill processing apparatus of a present Example. 図2におけるブッシュの構造を説明するための図である。It is a figure for demonstrating the structure of the bush in FIG. 本実施例のドリル加工装置において、穴明け動作を繰り返す場合のドリル先端の高さの変位状況を示す図である。In the drill processing apparatus of a present Example, it is a figure which shows the displacement condition of the height of a drill tip at the time of repeating drilling operation | movement. 図4と同様の図である。It is a figure similar to FIG. 図4と同様の図である。It is a figure similar to FIG. 図4と同様の図である。It is a figure similar to FIG.

図2は本発明の一実施例となるドリル加工装置の構成を示す図である。図2において、1は被加工物となるプリント基板、2はプリント基板1が載置されるテーブル、3はプリント基板1に穴明けを行うためのドリル、4はドリル3を回転させるスピンドルである。テーブル2とスピンドル4は、ドリル3がプリント基板1の穴明け位置に来るよう、相対移動するようになっている。5はスピンドル12の先端側に図示を省略するシリンダを介して契合しているプレッシャフット、6はプリント基板1の上面を押し付けるためにプレッシャフット5の下端に取り付けられたブッシュである。プレッシャフット5は、ブッシュ6がプリント基板1の上面位置に到達するまで、スピンドル12と共に降下できるようになっている。7はブッシュ6側でTBDDによる軸電圧を検出する軸電圧検出器、8はブッシュ6に取付けられたDBDDのための光センサ、9は装置全体の制御を行う全体制御部で、プログラム制御の処理装置によって実現されても良い。全体制御部9は、軸電圧検出器7と光センサ8からの出力を、それぞれTBDD、DBDDによるドリル折損検出を行うために使用する。   FIG. 2 is a diagram showing a configuration of a drilling apparatus according to an embodiment of the present invention. In FIG. 2, reference numeral 1 denotes a printed circuit board to be processed, 2 a table on which the printed circuit board 1 is placed, 3 a drill for making a hole in the printed circuit board 1, and 4 a spindle for rotating the drill 3. . The table 2 and the spindle 4 are moved relative to each other so that the drill 3 comes to the drilling position of the printed circuit board 1. Reference numeral 5 denotes a pressure foot engaged with a tip end side of the spindle 12 via a cylinder (not shown), and reference numeral 6 denotes a bush attached to the lower end of the pressure foot 5 to press the upper surface of the printed circuit board 1. The pressure foot 5 can be lowered together with the spindle 12 until the bush 6 reaches the upper surface position of the printed circuit board 1. 7 is an axial voltage detector for detecting the axial voltage due to TBDD on the bush 6 side, 8 is an optical sensor for DBDD attached to the bush 6, and 9 is an overall control unit for controlling the entire apparatus. Program control processing It may be realized by an apparatus. The overall control unit 9 uses the outputs from the shaft voltage detector 7 and the optical sensor 8 in order to detect drill breakage by TBDD and DBDD, respectively.

図3は図2におけるブッシュの構造を説明するための図である。図3において、8は前述の光センサ、10は発光部であり、これらはDBDDによるドリル折損検出を行うためのものである。   FIG. 3 is a view for explaining the structure of the bush in FIG. In FIG. 3, 8 is the above-mentioned optical sensor, and 10 is a light emitting unit, which are used for detecting drill breakage by DBDD.

図4〜7は、本実施例のドリル加工装置において、穴明け動作を繰り返す場合のドリル先端の高さの変位状況を示す図である。図において、DB1〜3はそれぞれDBDD、TB1〜3はそれぞれTBDDの動作時点である。加工単位である一つの穴明け動作を行う毎に、DBDDとTBDDを繰り返すが、DBDDはドリル先端が最上位になって次の穴明け動作を開始するために降下を始める前のタイミングで行い、TBDDはその後の降下途中のタイミングで行う。   FIGS. 4-7 is a figure which shows the displacement condition of the height of a drill front end in the case of repeating drilling operation | movement in the drill processing apparatus of a present Example. In the figure, DB1 to DB3 are DBDD, and TB1 to TB3 are operation times of TBDD, respectively. DBDD and TBDD are repeated every time one drilling operation, which is a processing unit, is performed, but DBDD is performed at the timing before the descent starts to start the next drilling operation with the drill tip at the top, TBDD is performed during the subsequent descent.

図1は図4〜7のドリル折損検知動作を行うためのフローチャートである。先に説明した図2における全体制御部9は、一つの穴明けの加工動作を行う毎に図1のフローチャートの動作を行うよう、全体を制御する。先ず、テーブル2とスピンドル4を相対移動させ、ドリル3を次の穴明け位置まで移動させる。次にその穴明け位置でDBDDによるドリルの折損検知を行う。折損がなかった場合は加工動作を進めるが、折損があった場合は加工動作を中止し、確認ステーションの位置まで移動する。その後、確認ステーションで折損確認を行い、実際に折損が確認された場合はドリル3を交換し、その後、確認ステーションの位置から前の穴明け位置まで戻り、加工を開始する。折損が確認されなかった場合は、DBDDでの誤検知であるため、確認ステーションの位置から前の穴明け位置まで戻り、加工を開始する。   FIG. 1 is a flowchart for performing the drill breakage detection operation of FIGS. The above-described overall control unit 9 in FIG. 2 controls the whole so as to perform the operation of the flowchart of FIG. 1 every time one drilling operation is performed. First, the table 2 and the spindle 4 are relatively moved, and the drill 3 is moved to the next drilling position. Next, the breakage of the drill is detected by DBDD at the drilling position. If there is no breakage, the machining operation proceeds. If there is a breakage, the machining operation is stopped and the operation moves to the position of the confirmation station. After that, the breakage is confirmed at the confirmation station. If breakage is actually confirmed, the drill 3 is replaced, and then the position returns from the position of the confirmation station to the previous drilling position, and machining is started. If the breakage is not confirmed, it is a false detection by DBDD, so it returns from the position of the confirmation station to the previous drilling position and starts machining.

加工開始後の基板接触時において、TBDDによる折損検知を行い、折損がなかった場合は、次の穴明け位置に移動して同様の流れで加工を行う。TBDDで折損があった場合は、その折損がDBDDで検知できるものであるか否か判定する。これは、具体的には、ドリルの折損長が所定値以上か否かを判定すれば良い。これは、ドリルの折損長が所定値以上でないと、次のタイミングで行うDBDDで折損判定ができないからである。   When contacting the substrate after the start of processing, breakage detection by TBDD is performed, and if there is no breakage, it moves to the next drilling position and performs processing in the same flow. If there is a breakage in TBDD, it is determined whether the breakage can be detected by DBDD. Specifically, it may be determined whether the breakage length of the drill is greater than or equal to a predetermined value. This is because breakage determination cannot be performed by DBDD performed at the next timing unless the breakage length of the drill is equal to or greater than a predetermined value.

TBDDでの判定が、DBDDで折損検知できるものであった場合は、次の穴明けを行うタイミングでDBDDによる折損検知を行い、折損がなかった場合はTBDDの誤検知であり、次の穴明け位置に移動して、これまでと同様の流れで加工を続行する。DBDDで折損があった場合は、加工動作を中止し、確認ステーションで折損の有無を確認する。ここで、折損が確認されなかった場合は、TBDDとDBDDの誤検知であり、次の穴明け位置まで移動して加工を再開する。一方、確認ステーションでも折損が確認された場合は、ドリル3を交換し、その後、再度、同じ穴明け位置から加工を再開する。   If the determination by TBDD is such that breakage can be detected by DBDD, breakage is detected by DBDD at the timing of the next drilling, and if there is no breakage, it is a TBDD false detection and the next Move to the position and continue machining in the same flow as before. If there is breakage in DBDD, stop the machining operation and check for breakage at the confirmation station. Here, when breakage is not confirmed, it is a detection error of TBDD and DBDD, and it moves to the next drilling position and resumes processing. On the other hand, if breakage is also confirmed at the confirmation station, the drill 3 is replaced, and then machining is resumed from the same drilling position.

TBDDの判定が、次のタイミングで行うDBDDで折損判定できないものであった場合は、加工動作を中止し、確認ステーションで折損の有無を確認する。ここで折損がなかった場合は、TBDDでの誤検知となるため、次の穴明け位置まで移動して加工を続行する。一方、確認ステーションでも折損が確認できた場合は、ドリル3を交換し、再度、同じ穴明け位置から加工を再開する。同じ加工位置で再度実施する理由としては、DBDDで検知できないレベルのチッピングがあった場合、未貫通穴が発生する可能性があるためである。   If the determination of TBDD cannot be determined by DBDD performed at the next timing, the machining operation is stopped and the presence or absence of breakage is confirmed at the confirmation station. If there is no breakage here, it will be erroneously detected by TBDD, so move to the next drilling position and continue processing. On the other hand, if breakage can be confirmed at the confirmation station, the drill 3 is replaced and the machining is resumed from the same drilling position. The reason for re-execution at the same processing position is that, if there is a level of chipping that cannot be detected by DBDD, a non-through hole may occur.

本実施例においては、図4に示すように、TB2の後においてドリル折損が発生した場合は、次の穴明け動作が始まる前にDBDDで折損検知ができ、折損状態で穴明け動作が進行してしまうことを防止できる。また、図5に示すように、TB2の後においてドリルにDBDDで検知できないレベルのチッピングが発生した場合は、次の穴明け動作の途中のタイミングで行うTBDDで折損検知を行うことができるので、その後、未貫通穴が発生することを防止できる。また、図6に示すように、TB2において誤検知が発生しても、次のタイミングで行うDBDDで折損検知をしなければ、時間のかかる確認ステーションでの折損確認動作は行わずに、そのまま次の加工動作に進む。これにより、無駄な時間を少なくすることができ、生産性が向上する。また、図7に示すように、TB3において次のタイミングで行うDBDDで検知できない折損を検知した場合には、DBDDを行うことなく確認ステーションでの折損確認動作に移行する。   In this embodiment, as shown in FIG. 4, when a drill breakage occurs after TB2, breakage can be detected by DBDD before the next drilling operation starts, and the drilling operation proceeds in the broken state. Can be prevented. In addition, as shown in FIG. 5, when the chipping at a level that cannot be detected by DBDD after TB2 occurs, breakage can be detected by TBDD performed at the timing during the next drilling operation. Then, it can prevent that a non-through hole is generated. Further, as shown in FIG. 6, even if an erroneous detection occurs in TB2, if break detection is not performed by DBDD performed at the next timing, the break confirmation operation at the confirmation station which takes time is not performed, and the next operation is continued. Proceed to the machining operation. Thereby, useless time can be reduced and productivity is improved. As shown in FIG. 7, when a breakage that cannot be detected by DBDD performed at the next timing is detected in TB3, the process proceeds to a breakage confirmation operation at the confirmation station without performing DBDD.

本実施例では、TBDDについては軸電圧検出方式、DBDDについては光学的検出方式の場合で説明したが、それぞれ他の方式でも良い。
また工具としては、ドリルの場合を説明したが、本発明は他の工具でも適用できることは明らかである。
In the present embodiment, the description has been given of the axial voltage detection method for TBDD and the optical detection method for DBDD, but other methods may be used.
Moreover, although the case of the drill was demonstrated as a tool, it is clear that this invention is applicable also to another tool.

1:プリント基板
2:テーブル
3:ドリル
4:スピンドル
5:プレッシャフット
6:ブッシュ
7:軸電圧検出器
8:光センサ
9:全体制御部
10:発光部
1: Printed circuit board 2: Table 3: Drill 4: Spindle 5: Pressure foot 6: Bush 7: Shaft voltage detector 8: Optical sensor 9: Overall control unit 10: Light emitting unit

Claims (4)

加工単位毎に、工具が加工物に接触する前の時点で工具の物理的折損を直接的に検知する第一のステップと工具が加工物に接触した時点で工具の物理的折損を検知する第二のステップとをそれぞれ前後して行い、前記第二のステップで折損を検知しても次のタイミングで行う前記第一ステップで折損を検知しない場合には次の加工単位の動作を進め、前記第一ステップで折損を検知しなくても次のタイミングで行う前記第二ステップで折損を検知した場合には加工動作を中止し工具の折損確認を行うための確認ステップを行うことを特徴とする加工方法。   For each processing unit, the first step of directly detecting the physical breakage of the tool before the tool contacts the workpiece and the first step of detecting the physical breakage of the tool when the tool contacts the workpiece. The second step is performed before and after, and even if breakage is detected in the second step, if breakage is not detected in the first step performed at the next timing, the operation of the next machining unit is advanced, Even if no breakage is detected in the first step, if a breakage is detected in the second step, which is performed at the next timing, the machining operation is stopped and a confirmation step for confirming the breakage of the tool is performed. Processing method. 請求項1に記載の加工方法において、前記第二ステップにおいて次の前記第一ステップで検知できない折損を検知した場合には当該第一ステップを経ることなく前記確認ステップを行うようにしたことを特徴とする加工方法。   The processing method according to claim 1, wherein in the second step, when a breakage that cannot be detected in the next first step is detected, the confirmation step is performed without passing through the first step. Processing method. 工具が加工物に接触する前の時点で工具の物理的折損を直接的に検知する第一の検知手段と、工具が加工物に接触した時点で工具の物理的折損を検知する第二の検知手段と、加工単位毎に前記第一検知手段と第二検知手段をそれぞれ前後して動作させる第一の制御手段と、前記第二検知手段で折損を検知しても次のタイミングで動作する前記第一検知手段で折損を検知しない場合には次の加工単位の動作を進め、前記第一検知手段で折損を検知しなくても次のタイミングで動作する前記第二検知手段で折損を検知した場合には加工動作を中止し工具の折損確認を行う第三の制御手段とを備えることを特徴とする加工装置。   First detection means for directly detecting the physical breakage of the tool before the tool contacts the work piece, and second detection for detecting the physical breakage of the tool when the tool comes into contact with the work piece Means, a first control means for operating the first detection means and the second detection means for each processing unit, and the second detection means to operate at the next timing even if the second detection means detects breakage. When breakage is not detected by the first detection means, the operation of the next machining unit is advanced, and the breakage is detected by the second detection means that operates at the next timing without detecting breakage by the first detection means. In some cases, the machining apparatus comprises third control means for stopping the machining operation and confirming the breakage of the tool. 請求項3に記載の加工装置において、前記第三制御手段は、前記第二検知手段にて前記第一検知手段が検知できない折損を検知した場合には当該第一検知手段の動作を待つことなく加工動作を中止し折損確認を行うことを特徴とする加工装置。



The processing apparatus according to claim 3, wherein the third control unit does not wait for the operation of the first detection unit when the second detection unit detects a break that cannot be detected by the first detection unit. A processing apparatus characterized in that processing operation is stopped and breakage is confirmed.



JP2014008368A 2014-01-21 2014-01-21 Processing method and processing apparatus Active JP6301135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008368A JP6301135B2 (en) 2014-01-21 2014-01-21 Processing method and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008368A JP6301135B2 (en) 2014-01-21 2014-01-21 Processing method and processing apparatus

Publications (2)

Publication Number Publication Date
JP2015136738A true JP2015136738A (en) 2015-07-30
JP6301135B2 JP6301135B2 (en) 2018-03-28

Family

ID=53768114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008368A Active JP6301135B2 (en) 2014-01-21 2014-01-21 Processing method and processing apparatus

Country Status (1)

Country Link
JP (1) JP6301135B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066886A (en) * 1973-10-20 1975-06-05
JPS6017937U (en) * 1983-07-15 1985-02-06 末次 輝治 Cutting tool failure detection device for automatic machine tools
JPS61164764A (en) * 1985-01-14 1986-07-25 Hitachi Seiki Co Ltd Detecting device of cutting tool damage
JPS61169513U (en) * 1986-03-19 1986-10-21
JPS63300809A (en) * 1987-05-30 1988-12-08 Toshiba Corp Detecting device for break of tool
JP2007222997A (en) * 2006-02-24 2007-09-06 Mitsubishi Electric Corp Tool abnormal condition detecting device and tool abnormal condition detecting system
JP2008119795A (en) * 2006-11-14 2008-05-29 Ntn Corp Machining device
JP2010052053A (en) * 2008-08-26 2010-03-11 Niigata Machine Techno Co Ltd Method and device for measuring cutting edge of tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066886A (en) * 1973-10-20 1975-06-05
JPS6017937U (en) * 1983-07-15 1985-02-06 末次 輝治 Cutting tool failure detection device for automatic machine tools
JPS61164764A (en) * 1985-01-14 1986-07-25 Hitachi Seiki Co Ltd Detecting device of cutting tool damage
JPS61169513U (en) * 1986-03-19 1986-10-21
JPS63300809A (en) * 1987-05-30 1988-12-08 Toshiba Corp Detecting device for break of tool
JP2007222997A (en) * 2006-02-24 2007-09-06 Mitsubishi Electric Corp Tool abnormal condition detecting device and tool abnormal condition detecting system
JP2008119795A (en) * 2006-11-14 2008-05-29 Ntn Corp Machining device
JP2010052053A (en) * 2008-08-26 2010-03-11 Niigata Machine Techno Co Ltd Method and device for measuring cutting edge of tool

Also Published As

Publication number Publication date
JP6301135B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5136091B2 (en) Numerical controller
JP5916417B2 (en) Drilling machine
JP2015131357A (en) Tool breakage detector for machine tool
JP6726439B2 (en) Substrate drilling device and control method thereof
CN104785811A (en) Micro-hole machining method
JP6367111B2 (en) Substrate drilling device and control method thereof
US9696152B2 (en) Position measuring apparatus
JP6301135B2 (en) Processing method and processing apparatus
JP2015223686A (en) Substrate drilling device and substrate drilling method
KR20180024093A (en) Tool breakage and wear monitoring method
KR100943997B1 (en) Device for Setting Working Start Point in machine tools
CN205914805U (en) Lathe breaking detection device suitable for need to reform transform
JP7180960B2 (en) Board drilling device and board drilling method
KR102697640B1 (en) Apparatus and method for drilling a board
KR102384395B1 (en) Method of detecting an abnormal insert of a cutting tolol and apparatus for performing the same
KR100527984B1 (en) Rotating type gauge device
TWI776606B (en) A method for parameter optimization and through-hole detection of an edm hole drilling
JP6788687B2 (en) Board detector
JP7251904B2 (en) LASER PROCESSING METHOD AND LASER PROCESSING APPARATUS
KR101418595B1 (en) Workpiece transporting unit for machine tool having workpiece sorting ability and method thereof
JP6336322B2 (en) Machine Tools
KR20160002180A (en) Position identifying device for material of gantry gripper
CN107717559B (en) CNC machine tool and online detection fool-proof method and system for cylinder clamp of CNC machine tool
JP2018099737A (en) Drill processing device and drill processing method
US9946246B2 (en) Control method of a machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180228

R150 Certificate of patent or registration of utility model

Ref document number: 6301135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350