JP2015134322A - 水処理システム - Google Patents

水処理システム Download PDF

Info

Publication number
JP2015134322A
JP2015134322A JP2014006895A JP2014006895A JP2015134322A JP 2015134322 A JP2015134322 A JP 2015134322A JP 2014006895 A JP2014006895 A JP 2014006895A JP 2014006895 A JP2014006895 A JP 2014006895A JP 2015134322 A JP2015134322 A JP 2015134322A
Authority
JP
Japan
Prior art keywords
membrane
water
sensor
adsorption amount
fouling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014006895A
Other languages
English (en)
Inventor
幸夫 崎川
Yukio Sakikawa
幸夫 崎川
敬子 中野
Keiko Nakano
敬子 中野
佐伯 智則
Tomonori Saeki
智則 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014006895A priority Critical patent/JP2015134322A/ja
Priority to CN201510019398.8A priority patent/CN104787846A/zh
Publication of JP2015134322A publication Critical patent/JP2015134322A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】水処理システムの造水性能を向上させる技術を提供する。
【解決手段】被分離物質を含む供給水をろ過するRO膜を有するRO膜モジュール32の下流に、RO膜の表面の材料と同じ材料からなる薄膜を測定面に有する吸着量測定センサ35aを設置し、この吸着量測定センサ35aによって、RO膜モジュール32から排出される濃縮水に含まれるファウリング原因物質の質量を測定する。吸着量測定センサ35aによって測定されたファウリング原因物質の質量から、RO膜モジュール32へ送られる供給水の水質を評価して、前処理部20における前処理の運転条件を決定することにより、RO膜のファウリングを低減する。
【選択図】図1

Description

本発明は、水処理システムに関する。
本技術分野の背景技術として、特許第5093192号公報(特許文献1)がある。この公報には、分離膜の表面材質と同一材料の薄膜を表面に持ち、その薄膜への吸着量を測定する水晶振動子などの測定手段を備えたセンサを用い、センサ表面への吸着量変化により、供給水の水質が分離膜に与える影響を評価する技術が記載されている。
特許第5093192号公報
水処理システムには、原水から被分離物質を除去する分離膜を有するモジュールが備わっている。しかし、分離膜にファウリング(目詰まり)が発生すると被分離物質を原水から除去する分離性能が低下して、水処理システムの造水性能が低下するため、分離膜にファウリング(目詰まり)が発生した状態ではファウリングが(目詰まり)が発生していない状態と同じ量の水を造水するには、水処理システムの運転能力(動力)を増加する必要がある。
また、分離膜にファウリングが発生すると、分離膜の膜面を洗浄する必要がある。さらに、分離膜の膜面を洗浄しても、ファウリングが発生した分離膜のろ過能力が回復しない場合は、エレメントの交換が必要になる。エレメントの交換時には、水処理システムを長時間停止する必要があり、また、部品代および交換の作業費用がランニングコストに加算される。このため、分離膜にファウリングが発生することで、水処理システムの水処理コストも増加する。
そこで、本発明は、分離膜のファウリングを低減することにより、水処理システムの造水性能を向上させ、水処理システムの水処理コストを低減することのできる技術を提供する。
上記課題を解決するために、本発明の水処理システムは、分離膜を有するモジュールの下流に、分離膜の表面の材料と同じ材料からなる薄膜を測定面に有するセンサを備える。
このセンサによって、モジュールから排出される濃縮水に含まれるファウリング原因物質の質量を測定し、このファウリング原因物質の質量から、モジュールへ送られる供給水の水質を評価して、モジュールへ送られる供給水の前処理の運転条件を決定することにより、分離膜のファウリングを低減する。
本発明によれば、水処理システムの造水性能を向上させることができる。
上記した以外の課題、構成および効果は、以下の実施の形態の説明により明らかにされる。
実施例1による海水淡水化システムの構成の一例を示す概略図である。 実施例1による吸着量測定センサの構成の一例を示す断面図である。 実施例1によるセンサチップの測定面に芳香族ポリアミド膜を形成する工程の一例を説明する工程図である。 (a)および(b)は、実施例1によるセンサチップの測定面に形成される芳香族ポリアミド膜の化学構造式である。 実施例1による吸着量測定部に備わる吸着量測定センサの取り付け構造の一例を示す断面図である。 実施例2による海水淡水化システムの構成の一例を示す概略図である。 主吸着量測定センサのファウリング原因物質の吸着量Wbおよび副吸着量測定センサのファウリング原因物質の吸着量Wcの通水時間依存性を示すグラフ図である。 RO膜に付着したファウリング原因物質の付着量ΔWの通水時間依存性を示すグラフ図である。
以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本実施の形態を図面に基づいて詳細に説明する。
まず、本実施の形態による水処理システムがより明確になると思われるため、本発明者らが比較検討を行った水処理システムにおける課題について詳細に説明する。
例えば前記特許文献1に記載されているように、水処理システムには、原水から被分離物質を除去するために分離膜が使われる場合が多い。この分離膜には、精密ろ過膜(Microfiltration Membrane)、限外ろ過膜(Ultrafiltration Membrane)、逆浸透膜(Reverse Osmosis Membrane:以下、RO膜と記す)、ナノフィルタ膜(Nanofiltration Membrane:以下、NF膜と記す)、およびイオン交換膜(Ion Exchange Membrane)などがある。精密ろ過膜および限外ろ過膜は、ミクロの孔(以下、微孔と言う)を有し、その微孔より大きな被分離物質の粒子を物理的に排除する。RO膜、NF膜、およびイオン交換膜は、分離膜における分子の拡散速度と透過速度との差、または分離膜と分子との親和性を利用して被分離物質を除去する。
いずれのタイプの分離膜でも、ファウリングが発生すると被分離物質を原水から除去する分離性能が低下する。精密ろ過膜および限外ろ過膜では、微孔の中に微小物質が入り込んで微孔が閉塞し、ファウリングが発生する。また、RO膜、NF膜、およびイオン交換膜では、分離膜の表面に分子が付着し、ファウリングが発生する。
ファウリングの発生は、水処理システムの造水性能の低下を引き起こす。そのため、水処理システムには、分離膜のファウリングを防止するための前処理が必要であり、原水を分離膜へ供給する前に、ファウリング原因物質を可能な限り除去する前処理が行われている。
前処理の運転条件を決定する方法として、例えば前記特許文献1に、センサに吸着するファウリング原因物質の質量を、分離膜へ供給される原水の水質評価に用いる方法が開示されている。この方法では、センサにおいて分離膜のファウリングと同じ現象を再現することが可能である。すなわち、分離膜の上流にセンサを設置し、このセンサによって測定されたファウリング原因物質の質量を、分離膜へ供給される原水の水質評価の基準としている。
しかし、前記特許文献1に記載された方法では、前処理によりファウリング原因物質が除去されて、分離膜へ供給される原水に含まれるファウリング原因物質の濃度が低くなると、センサに吸着するファウリング原因物質の質量が少なくなり、測定精度が低くなる。そのため、センサにおいて測定したファウリング原因物質の質量を、前処理の運転条件を決定する際の判断基準に用いることが難しくなるという問題がある。
また、ファウリングの発生は、分離膜のろ過能力の低下を引き起こす。ろ過能力が低下した場合は分離膜の膜面を洗浄する。しかし、分離膜の膜面を洗浄しても、ろ過能力が回復しない場合は、エレメントの交換が必要になる。エレメントの交換時には、水処理システムを長時間停止するため、水処理システムの稼動率が低下する。また、エレメントの部品代および交換の作業費用がランニングコストに加算されるため、水処理システムのランニングコストが上昇する。その結果、水処理システムの水処理コストが増加するという問題がある。
前処理において凝集剤および殺菌剤を過剰に添加して、分離膜へ供給される原水からファウリング原因物質をできるだけ除去することにより、分離膜のファウリングを防止することは可能である。しかし、凝集剤および殺菌剤の過剰な添加によってランニングコストが増大する。
実施例1では、水処理システムの一例として、RO膜を用いて海水を淡水化する海水淡水化システムについて説明する。実施例1による水処理システムは、RO膜を用いた海水淡水化システムに限定されるものではなく、例えばNF膜またはイオン交換膜を用いた海水淡水化システム、排水を浄化して再利用水を生成する再利用水製造システム、並びに純水または超純水を生成する純水・超純水製造システムなどにも適用できることは言うまでもない。
海水淡水化システム1の構成、海水淡水化システム1における水処理方法、RO膜モジュール32のろ過方式、およびRO膜のファウリングの低減方法について、図1を用いて説明する。図1は、実施例1による海水淡水化システム1の構成の一例を示す概略図である。
<海水淡水化システム1の構成>
図1に示すように、海水淡水化システム1は、海水に含まれる塩分、有機物、微生物(菌類を含む)、ホウ素、および固形浮遊物などを被分離物質として除去して淡水化する水処理システムであり、上流から海水取水部10、前処理部20、および脱塩部30の順に、主に3つの部分で構成される。
海水取水部10は、取水管11、取水ポンプ12、および原水タンク13で構成される。取水管11は、海中に設置されて海水を吸上げる構成のほか、沖まで伸ばして深層水を吸上げる構成であってもよく、または海底に埋設して海底砂でろ過した後に海水を吸上げる構成であってもよい。取水ポンプ12は、陸上に設置される構成のほか、海中に設置される構成であってもよい。
また、取水管11内で微生物、藻類、および貝類などの生物が増殖して取水管11が閉塞することを防止するため、これら生物の増殖を防止する薬品(例えば殺菌剤など)が取水管11内に注入される構成としてもよい。
前処理部20は、砂ろ過槽21、限外ろ過膜モジュール22、送水ポンプ22a、およびRO膜供給水タンク23で構成され、微生物の殺菌およびその他の懸濁成分を除去する前処理を行う。さらに、前処理部20には、複数種類の薬品を海水に注入する薬注システム24が備わっている。薬注システム24は、海水に注入する薬品の種類に応じて構成される。なお、懸濁成分は有機物である場合が多い。また、無機物を有している場合もある。
図1には、殺菌剤注入部24a、pH調整剤注入部24b、凝集剤注入部24c、および中和還元剤注入部24dを示している。殺菌剤注入部24aは、微生物を殺菌する殺菌剤を注入する。pH調整剤注入部24bは、多価イオンによるスケール防止および凝集の効率向上のためのpH調整剤を注入する。凝集剤注入部24cは、砂ろ過槽21で効率よく懸濁成分を取り除くための凝集剤を注入する。中和還元剤注入部24dは、中和剤および還元剤を注入する。
殺菌剤注入部24aからは微生物を殺菌する殺菌剤として、次亜塩素酸または塩素などが海水に注入される。殺菌剤注入部24aから注入される殺菌剤の間歇注入の間隔および濃度によって海水における微生物の死滅率または生存率が変化する。
なお、殺菌剤として注入される次亜塩素酸または塩素は、脱塩部30のRO膜モジュール32が有するRO膜の機能を低下させるため、RO膜モジュール32へ送水される前に、海水を還元する構成が好ましい。そのため、殺菌剤の過剰な注入は回避されることが好ましく、殺菌剤注入部24aには殺菌剤の注入量を調節する調節バルブVL1が備わっている。
また、殺菌剤注入部24aから取水管11に殺菌剤を注入してもよい。この場合、取水管11に殺菌剤を注入する管路にも注入量を調節する調節バルブVL1を備えることが好ましい。
また、多価イオンによるスケールの発生を防止し、かつ凝集効率を向上させるため、海水淡水化システム1で処理される海水は酸性(pH3〜5)に調整されることが好ましい。そこで、pH調整剤注入部24bから硫酸などのpH調整剤が海水に注入されて好適にpHが調整される。符号VL2は、pH調整剤の注入量を調節する調節バルブである。
また、凝集剤注入部24cからポリ塩化アルミニウムまたは塩化第2鉄などの凝集剤が海水に注入される。海水に含まれる懸濁成分のフロックは凝集剤によって成長が促進されるため、凝集剤の注入によって懸濁成分の微粒子を1μm以上の大きさのフロックに成長させることで、砂ろ過槽21における懸濁成分の除去効率が向上する。
凝集剤の注入量が過少の場合は、フロックが好適に成長せず、懸濁成分が砂ろ過槽21を通り抜ける場合がある。また、凝集剤の注入量が過剰の場合は、フロックの成長に使用されない余剰分が、脱塩部30のRO膜モジュール32に備わるRO膜に負荷を与える。従って、凝集剤注入部24cには凝集剤の注入量を調節する調節バルブVL3が備わっている。
中和還元剤注入部24dからは、pH3〜5の酸性に調節された海水を中和するための中和剤、および主に殺菌剤を還元するための還元剤が海水に注入される。符号VL4は、中和剤および還元剤の注入量を調節する調節バルブである。
以上のように、前処理部20における前処理工程では、殺菌剤の注入によって微生物を殺菌する工程と、凝集剤を注入して懸濁成分のフロックを成長させ、砂ろ過槽21で懸濁成分を除去する工程と、が行われる。
脱塩部30は、下記3つのラインから構成される。1つ目のラインは、高圧ポンプ31、RO膜モジュール32、および淡水タンク33で構成される主ラインLMである。2つ目のラインは、RO膜モジュール32、エネルギ回収装置34、濃縮水タンク36、および濃縮水タンク36から濃縮水を排水するためのポンプ37で構成される副ラインLS1である。3つ目のラインは、RO膜モジュール32、吸着量測定部35、および濃縮水タンク36で構成される副ラインLS2である。また、吸着量測定部35へ送る濃縮水の量を調整するために、バルブVL5が副ラインLS2に備わっている。
RO膜モジュール32に備わるRO膜の表面には半透膜が用いられている。半透膜は、半透膜と水分子との相互作用と、半透膜と被分離物質との相互作用との違いによって水分子のみを透過させる膜であり、酢酸セルロース系のものと芳香族ポリアミド系のものとがある。このうち、芳香族ポリアミド系の半透膜は、水分子の透過性および電解質除去性能が高いため、工業用として用いられている。実施例1では、芳香族ポリアミド系の半透膜を有するRO膜を使用するが、酢酸セルロース系の半透膜を有するRO膜を使用してもよい。
RO膜モジュール32の構成は限定されない。例えば厚さ数100μmの微孔多孔質支持体の表面に厚さ0.1μm以下のポリアミド膜(例えば芳香族ポリアミド系の半透膜)を形成した複合膜からなるRO膜をスパイラルと呼ばれる形状に折り畳んだエレメント、または中空糸状膜を束ねたエレメントによってRO膜モジュール32を構成することができる。この場合のエレメントは、直径が4インチ(約10cm)、8インチ(約20cm)、または16インチ(約40cm)で、長さが1m程度の円筒形のものが多く、このようなエレメントをベッセルという耐圧容器内に直列に並べたRO膜モジュール32が用いられる。
RO膜をスパイラル状に折り畳んだ形状のエレメントでは、RO膜同士の密着を防止するために、例えば膜間にポリエチレン製のスペーサが挟み込まれる。しかし、スペーサとRO膜との間隙は0.5μm程度と狭くなる。そこで、RO膜モジュール32の上流には厚さ数μmの保安フィルタを取り付けてもよい。
1μm以上の大きな懸濁成分は前処理部20で取り除かれる。しかし、海水がRO膜モジュール32に到達するまでに、前処理部20で取り除かれなかった微小な懸濁成分が再凝集して、または配管から懸濁成分などが剥離して、数μmの懸濁成分が発生する場合がある。RO膜モジュール32の保安フィルタは、このような懸濁成分がRO膜モジュール32へ流れ込んで、エレメントにおける海水の流路を閉塞することを防止するために取り付けられている。
<海水淡水化システム1における水処理方法>
実施例1による海水淡水化システム1においては、海水取水部10の取水ポンプ12によって取水管11を介して海から取水された海水は、原水タンク13に一時貯水され、海水に含まれる被分離物質の一部が沈殿除去された後に、前処理部20へ送られる。
前処理部20では、殺菌剤注入部24aからの殺菌剤注入と、pH調整剤注入部24bからのpH調整剤注入と、凝集剤注入部24cからの凝集剤注入と、がなされた海水が、砂ろ過槽21に流れ込む。砂ろ過槽21では、被分離物質、主に凝集剤によって1μm以上に成長した懸濁成分のフロックがろ過されて除去され、砂ろ過槽21を透過した海水は送水ポンプ22aによって限外ろ過膜モジュール22へ送られる。限外ろ過膜モジュール22では、さらに細かい0.1μm以上の粒子状の被分離物質、分子量が数千の高分子、および細菌などが海水から分離除去される。海水に含まれる細菌などの微生物は限外ろ過膜モジュール22によってほぼ100%除去される。
海水は、例えば送水ポンプ22aなどの加圧手段によって0.1〜0.5MPa程度まで加圧されて限外ろ過膜モジュール22へ送られる(圧送)。限外ろ過膜モジュール22へ送られる海水は、高圧であるほど限外ろ過膜モジュール22を透過する速度が速くなるが、被分離物質を海水から分離する性能(分離性能)は低下する。
限外ろ過膜モジュール22を透過した海水には、中和還元剤注入部24dから中和剤および還元剤が注入され、pH調整剤で酸性に調整されている海水が中和されるとともに、注入されている殺菌剤が還元される。そして、海水はRO膜供給水タンク23に貯水される。
RO膜供給水タンク23に貯水された海水は、脱塩部30の高圧ポンプ31で加圧されてRO膜モジュール32へ送られ(圧送)、RO膜モジュール32でろ過される。そして、RO膜モジュール32が有するRO膜を透過して被分離物質が除去された海水は、淡水として淡水タンク33に貯水される。一方、RO膜モジュール32が有するRO膜を透過しない海水は、高圧ポンプ31で加圧された状態で被分離物質を含む濃縮水となって副ラインLS1から排出される。
なお、濃縮水タンク36に貯水された濃縮水を、例えば海に戻す排水系では、塩分濃度を低下させる処理、並びに塩分および化学薬品の原料となりうる物質を取り出す処理が行われる。
また、脱塩部30に備わるエネルギ回収装置34は、例えば高圧の濃縮水の圧力を、RO膜モジュール32へ送られる海水の圧力に変換するシステムであり、海水の加圧を補助する。
<RO膜モジュール32のろ過方式>
原水を分離膜でろ過するろ過方式には下記の2つの方式がある。
ろ過方式の1つは全量ろ過方式であり、原水の全量を分離膜に通す方式である。この方式では、分離膜を透過しない被分離物質は分離膜の膜面に堆積する。そして、被分離物質の堆積によって分離膜の微孔が閉塞するため、透過水量が運転時間とともに低下する現象、すなわちファウリングが発生する。
ろ過方式の他の1つはクロスフローろ過方式であり、分離膜の膜面に沿うように原水を流し、その一部が分離膜を透過する方式である。この方式では、分離膜を透過しない被分離物質は原水とともに排出されて分離膜の膜面に堆積しない。従って、理想的なクロスフローろ過方式では、分離膜を透過する水量は原水の流速によって決定される一定値となり、運転時間に依存しない。
そこで、実施例1の海水淡水システム1では、クロスフローろ過方式を採用した。しかし、クロスフローろ過方式でも長時間の運転によって海水に含まれる被分離物質がRO膜に少しずつ吸着して微孔が閉塞し、RO膜の透過水量が次第に低下する現象、すなわちファウリングが発生する。
クロスフローろ過方式のRO膜に吸着する被分離物質には、RO膜の膜面付近で電解質濃度が高くなって析出する無機物スケール、海水に含まれる微生物がRO膜の膜面で増殖することによるバイオファウリング、および海水に含まれる有機物が吸着する有機物スケールなどがある。
例えば電解質濃度が高くなって析出する無機物スケールについては、スケール防止剤またはpH調整剤の注入により電解質濃度が高くなってもスケールが析出しにくい条件に調整すること、または定期的にRO膜の膜面に清浄水を流してせん断力で除去することによって対応することができる。
しかしながら、有機物スケールはせん断力で除去することができず、長時間の運転によって次第に蓄積する。例えば海水淡水化システム1の場合、前処理部20の構成および性能、海水の水質、並びに薬注システム24で注入される薬品の種類などによる変動はあるが、TOC(Total Organic Carbon:全有機炭素量)換算で、0.1〜10mg/L程度の有機物が、脱塩部30へ送られる海水に含まれる。
RO膜に有機物によるファウリングが発生すると、RO膜のろ過能力が低下する。ろ過能力が低下した場合は、RO膜の膜面に沿って洗浄液を流すことにより、RO膜の膜面を洗浄する。しかし、RO膜の膜面を洗浄しても、ろ過能力が回復しない場合は、エレメントの交換が必要になる。海水淡水化システム1においてはRO膜モジュール32のエレメントの交換となる。
このようなエレメントの交換時には、海水淡水化システム1を長時間停止するため、海水淡水化システム1の稼動率が低下する。また、エレメントの部品代および交換の作業費用がランニングコストに加算されるため、海水淡水化システム1のランニングコストが上昇する。従って、水処理コストを低く運用するためには、有機物をRO膜モジュール32へ送られる海水からできるだけ排除する必要がある。
しかし、過剰に前処理を行うと凝集剤および殺菌剤の過剰な添加によってランニングコストが増大する。加えて、過剰な凝集剤の添加によって、海水に含まれる有機物のフロックの成長に使用されない余剰分が、限外ろ過膜モジュール22を通過してRO膜に付着し、RO膜に負荷を与える。
<RO膜のファウリングの低減方法>
そこで、実施例1では、RO膜モジュール32へ送られる供給水の水質を評価して、その水質に対して最適な前処理を行うように、前処理部20のパラメータ(例えば凝集剤などの薬品注入量、限外ろ過膜モジュール22への送水ポンプ22aの運転圧力など)を制御する。これにより、過剰な前処理を行うことなく、RO膜モジュール32へ送られる供給水からファウリング原因物質を排除することができるので、RO膜のファウリングの発生を低減することができる。その結果、RO膜の膜面の洗浄およびRO膜モジュール32のエレメントの交換の回数を減らすことができ、また、凝集剤などの添加量を低減することができるので、海水淡水化システム1のランニングコストを低減することができる。
ここで、海水淡水化システム1で淡水化する海水には多種類の懸濁成分が含まれるが、懸濁成分とRO膜との親和性の違いなどによって、ファウリングの発生に対する懸濁成分の影響の度合いが異なる。従って、海水の全有機炭素量と、RO膜で発生するファウリングとの相関が必ずしも高いとはいえない。
そこで、RO膜モジュール32へ送られる供給水の水質を評価する方法として、ファウリングが実際に起こりやすい水質であるか否かを評価するために、RO膜と類似の表面状態を有するセンサを用いて、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の質量を測定する。
実施例1では、図1に示すように、副ラインLS2(RO膜モジュール32より下流で、濃縮水タンク36より上流の位置)に吸着量測定部35を備える。吸着量測定部35には、RO膜と類似の表面状態を有するセンサ(例えば後述する吸着量測定センサ35a)が備わっており、吸着量測定部35では、センサに吸着する濃縮水に含まれるファウリング原因物質の吸着量を測定することができる。なお、RO膜モジュール32から濃縮水タンク36までの副ラインLS2では、ファウリング原因物質が濃縮されている。そのため、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の濃度が低い場合においても、センサに吸着するファウリング原因物質の吸着量を高精度に測定することができる。なお、吸着量測定部35は分析室を備え、バルブVL5から配管を通して分析室まで濃縮水を送り、測定するという構成であってもよい。
前述したように、吸着量測定部35では、センサに吸着する濃縮水に含まれるファウリング原因物質の吸着量を測定することができる。しかし、ファウリング原因物質の一部はRO膜モジュール32へ付着するため、吸着量測定部35で測定されるファウリング原因物質の吸着量の測定結果が、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の質量と単純に対応していないことが考えられる。
しかし、濃縮水を用いて測定したファウリング原因物質の質量は、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の質量に対して、濃縮水の濃縮率にほぼ比例して増加する。このため、吸着量測定部35で測定されるファウリング原因物質の吸着量の測定結果を用いて、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の質量を算出することができる。この算出された値から、RO膜モジュール32へ送られる供給水の水質がわかる。
以下に、具体的な水質測定方法を説明する。
まず、RO膜モジュール32へ送られる供給水の水量、およびRO膜モジュール32から排出される透過水(図1の主ラインLMを流れる水)の水量から、RO膜モジュール32から排出される濃縮水(図1の副ラインLS1,LS2を流れる水)の濃縮率を算出する。次に、吸着量測定部35でセンサに吸着するファウリング原因物質の吸着量を測定する。次に、吸着量測定部35で測定したセンサに吸着するファウリング原因物質の吸着量と濃縮水の濃縮率とから、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の質量を算出する。
このように、吸着量測定部35で測定したセンサに吸着するファウリング原因物質の吸着量から、RO膜モジュール32へ送られる供給水の水質(ファウリング原因物質の質量)を評価することができる。
前述の水質測定方法によって得られた、RO膜モジュール32へ送られる供給水の水質を判断基準として、RO膜モジュール32へ送られる供給水の水質に対して最適な前処理が行えるように、前処理部20のパラメータを制御する。例えばRO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の質量が多い場合は、凝集剤の添加量を多くすればよい。このように、RO膜モジュール32へ送られる供給水の水質に対して最適な前処理を行うことにより、過剰な前処理を行うことなく、RO膜モジュール32へ送られるの供給水からファウリング原因物質を排除することができるので、RO膜のファウリングの発生を低減することができる。
その結果、海水淡水化システム1の造水性能を向上させることができる。さらに、RO膜の膜面の洗浄およびRO膜モジュール32のエレメントの交換の回数を減らすことができ、また、凝集剤などの添加量を低減することができるので、海水淡水化システム1のランニングコストを低減することができる。
実施例1においては、吸着量測定部35に備えるセンサとして、水晶振動子マイクロバランス法によってセンサの測定面に吸着する吸着物の質量を測定できる吸着量測定センサ35aを適用した。
次に、吸着量測定センサ35aの具体的な構成を、図2を用いて説明する。図2は、実施例1による吸着量測定センサ35aの構成の一例を示す断面図である。
図2に示すように、吸着量測定センサ35aは、センサチップ350(例えば、Q−Sense社製の市販品)と、センサチップ350の測定面F1に形成された芳香族ポリアミド膜351とから構成される。
センサチップ350は、例えば厚さ約0.3mm、直径約14mmの薄い円板形状を呈するATカット水晶板(水晶振動子)350aと、ATカット水晶板350aの両面に形成された金電極350bと、センサチップ350の片面に金電極350bを介してスパッタリング法により形成された酸化シリコン(SiO2)膜350cと、から構成される。金電極350bの厚さは約300nmであり、酸化シリコン膜350cの厚さは約100nmである。
水晶振動子マイクロバランス法は、例えば吸着量測定センサ35aのATカット水晶板350aに発生するずり振動の共振周波数が、ATカット水晶板350aの質量に比例する原理を用いた測定方法である。測定面F1(酸化シリコン膜350cが成膜されている面)に吸着物が付着したときの質量変化を共振周波数の変化として検出する。つまり、共振周波数の変化が吸着物の質量となる。
次に、センサチップ350の測定面F1に芳香族ポリアミド膜351を成膜する方法の第1例を、前述の図2、図3、および図4(a)を用いて説明する。図3は、実施例1によるセンサチップ350の測定面F1に芳香族ポリアミド膜351を形成する工程の一例を説明する工程図である。図4(a)は、実施例1によるセンサチップ350の測定面F1に形成される芳香族ポリアミド膜の化学構造式である。なお、センサチップ350の測定面F1と反対側の面を裏面F2と言う。
ステップS1(裏面保護):センサチップ350の裏面F2にマスキングフィルムなどを貼り付けて、裏面F2を被覆保護する。
ステップS2(ドライ洗浄):センサチップ350の測定面F1にエキシマUV(波長192nm)を照射して、測定面F1を親水化するとともに油脂分などを除去する。
ステップS3(シランカップリング処理):シランカップリング剤(3−アミノプロピルトリメトキシシラン)の1%水溶液にセンサチップ350を2分間浸した後、取り出したセンサチップ350を流水ですすぎ、窒素ブローで液切りする。
ステップS4(加熱):センサチップ350を80℃で10分間加熱して、カップリング反応させる。
ステップS5(ジアミン水溶液中に浸漬):センサチップ350を、測定面F1を上方に向けてシャーレなどの容器に入れた後、0.04wt%のm−フェニレンジアミン水溶液を、センサチップ350の全体が浸漬するように注ぎ入れる。
ステップS6(ジカルボン酸ヘキサン溶液滴下):m−フェニレンジアミン水溶液の表面に、約1mmの厚さで積層するように0.04wt%のテレフタル酸クロリドのヘキサン溶液を注入する。
ステップS7(界面に膜形成):20〜30秒間静置して、界面にポリアミド薄膜を形成させる。
ステップS8(転写):センサチップ350を斜めに引き上げて、界面に形成されたポリアミド薄膜をセンサチップ350の測定面F1に転写する。
ステップS9(加熱):センサチップ350を80℃のホットプレートで5分間加熱して、センサチップ350に残存している水溶液を蒸発させる。
ステップS10(洗浄):センサチップ350を純水で洗浄して、余剰のm−フェニレンジアミン水溶液を除去し、窒素ブローで液切りする。
ステップS11(保護材除去):裏面F2に貼り付けたマスキングフィルムを剥がす。
以上、ステップS1〜S11の工程によって、センサチップ350の測定面F1に均一の厚さ(例えば約70nm)を有する芳香族ポリアミド膜351が形成される。
上記ステップS1〜S11の工程によって、センサチップ350の測定面F1に形成された芳香族ポリアミド膜351の化学構造式を図4(a)に示す。この化学構造式を有する芳香族ポリアミド膜351がセンサチップ350の測定面F1に形成されたことは、例えば赤外吸収スペクトルによって確認することができる。
実施例1においては、芳香族ポリアミドのモノマを界面重合して高分子の膜を界面に形成した後に、この高分子の膜をセンサチップ350の測定面F1に転写した。このときモノマは前述した組み合わせに限らず、芳香族ジカルボン酸クロリドまたは芳香族トリカルボン酸クロリドと、芳香族ジアミンまたは芳香族トリアミンとの組み合わせを用いることも可能である。
また、実施例1においては、芳香族ポリアミド膜351とセンサチップ350の測定面F1との密着性向上のためにシランカップリング剤を用いたが、これに限定されるものではない。密着性向上の方法として、例えばモノマにシリコーン構造を持つものを加えること、または他の密着性向上剤を用いることも可能である。
次に、センサチップ350の測定面F1に芳香族ポリアミド膜351を成膜する方法の第2例を、前述の図2および図4(b)を用いて説明する。図4(b)は、実施例1によるセンサチップ350の測定面F1に形成される芳香族ポリアミド膜の化学構造式である。芳香族ポリアミド膜351は、例えばスピン塗布法を用いて形成することができる。
まず、可溶性の芳香族ポリアミド、例えば4、4’−オキシジアニリンと、イソフタル酸クロリドとを重合させて、図4(b)に示す化学構造式を有するポリアミドを合成した後、合成したポリアミドを沈殿させて固形物とする。次に、その固形物を良溶媒(例えばN−メチルピロリドン)に溶解し、スピン塗布法により、センサチップ350の測定面F1に塗布する。その後、溶媒を乾燥することにより、センサチップ350の測定面F1に芳香族ポリアミド膜351を形成する。
また、可溶性の芳香族ポリアミドを成膜する場合は、多孔質のポリアミドをセンサチップ350の測定面F1に形成することも可能である。このような多孔質のポリアミドは相分離法などで形成することができる。
まず、良溶媒で、かつ水とも相溶性のあるN−メチルピロリドンでポリアミド溶液を調製する。次に、その溶液をスピン塗布法により、センサチップ350の測定面F1に塗布して、液膜を生成する。その後、センサチップ350を高湿度の水蒸気内に入れることによって、N−メチルピロリドンの一部と水蒸気中の水とを置換させて、液膜中で相分離を生じさせる。この際、水に溶解しないポリアミドは水の部分に存在しない。この状態で150℃以上に加熱すると溶媒(N−メチルピロリドンおよび水)が除去されて、水の存在していた部分が空孔となって多孔質のポリアミドが形成される。
このように、多孔質のポリアミドを用いることにより、センサチップ350の測定面F1に形成される芳香族ポリアミド膜351の表面積が大きくなって、測定の感度が向上する。
次に、吸着量測定部35に備わる吸着量測定センサ35aの取り付け構造の一例を、図5を用いて説明する。図5は、実施例1による吸着量測定部35に備わる吸着量測定センサ35aの取り付け構造の一例を示す断面図である。
前述の図1に示す副ラインLS2を流れる濃縮水に含まれるファウリング原因物質を測定面F1に吸着させて、吸着したファウリング原因物質の吸着量を吸着量測定センサ35aで測定するためには、測定面F1が副ラインLS2を流れる濃縮水に接し、裏面F2が濃縮水に接触しない構成が必要となる。また、センサチップの共振周波数は周囲温度の変化によっても大きく変化するため、吸着量測定センサ35aの周囲の温度変化が0.1℃以下に抑え込まれることが好ましい。
有底筒状の外部リング380は、配管壁面PMfを貫通するねじ孔にねじ込まれて、配管壁面PMfを貫通した状態で固定されており、その外部リング380の内側に略円柱状のインサート381が嵌合して取り付けられている。外部リング380は底部380aが配管内部側、すなわち、濃縮水側となるように配管に取り付けられ、底部380aの中央には貫通孔380bが開口している。
また、外部リング380の底部380aの下側と対向し、外部リング380の内側に嵌合したインサート381の上面381aには、例えば弾性部材からなるOリング382aが円環状に形成されている。また、外部リング380の底部380aにおいてインサート381の上面381aと対面する側には、インサート381のOリング382aと対向するように、例えば弾性部材からなるOリング382bが円環状に形成されている。
そして、外部リング380のOリング382bと、インサート381のOリング382aとで吸着量測定センサ35aは挟持される。従って、円環状のOリング382a,382bの直径は、吸着量測定センサ35aを構成するセンサチップの直径(例えば約14mm)と等しいことが好ましい。
また、吸着量測定センサ35aは、測定面F1が外部リング380の底部380a側となるように挟持される。この構成によると、吸着量測定センサ35aの測定面F1は底部380aに開口する貫通孔380bを介して、配管を流通する濃縮水と接触する。また、Oリング382a,382bと吸着量測定センサ35aとが液密の状態を維持できる好適な押圧力で、吸着量測定センサ35aは挟持される。この構成によって、吸着量測定センサ35aの裏面F2が配管を流れる濃縮水と接触することを回避することができる。
インサート381は、例えば樹脂や金属などで形成される中実の円柱形であって、上面381a側の表面近くに、温度調節素子としてのペルチェ素子384と、ペルチェ素子384の近傍の温度を測定する温度センサ384aとが埋設されている。ペルチェ素子384は、温度センサ384aが測定する温度が予め設定される温度を維持するように(例えば予め設定される温度を0.1℃の誤差範囲で維持するように)、制御装置によって制御される。この構成によって、吸着量測定センサ35aの周囲温度を一定に維持することができて、センサチップの共振周波数の温度変化を抑制することができる。
なお、温度センサ384aは、インサート381に埋設される構成に限定されない。例えば温度センサ384aは、吸着量測定センサ35aの近傍に配置されて吸着量測定センサ35aの近傍の温度を計測してもよい。
また、インサート381の上面381aに形成されるOリング382aには、吸着量測定センサ35aのセンサチップに形成される金電極との接点382a1が円環状のOリング382aの一部を覆うように備わっている。接点382a1は、例えばインサート381内に配線される導線383と電気的に接続され、センサチップに所定の電圧が印加される。また、吸着量測定センサ35aの共振周波数が接点382a1および導線383を介して測定される。
なお、インサート381は、外部リング380の内側に嵌合し、さらに、ねじ部材385bを用いて配管の外側から外部リング380に固定された抜け止め板385aによって、抜け止めされる。または、インサート381が所定の押圧力で外部リング380の内側に圧入してもよい。
このように、実施例1によれば、RO膜モジュール32へ送られる供給水の水質を評価して、その水質に最適な前処理の運転条件となるように、前処理部20のパラメータを制御することができるので、RO膜のファウリングの発生を低減することができる。これにより、海水淡水化システム1の造水性能を向上させることができる。さらに、RO膜の膜面の洗浄およびRO膜モジュール32のエレメントの交換の回数を低減することができ、また、凝集剤などの添加量を低減することができるので、海水淡水化システム1のランニングコストを低減することができる。つまり、水処理システムの水処理コストを低減することができる。
海水淡水化システム1のランニングコストを低減させるためには、RO膜モジュール32を適切な時期に洗浄して、RO膜のろ過性能を回復させる必要がある。洗浄頻度が少ない場合は、ろ過性能が洗浄で十分に回復しないことがあり、RO膜モジュール32のエレメントの交換につながる。しかし、逆に洗浄頻度が多い場合は、洗浄に伴う薬液費、洗浄中にRO膜モジュール32が使用できないことに伴う造水量の低下、および洗浄に伴うRO膜の劣化によるRO膜の寿命低下によって、ランニングコストが増大する。
従来、洗浄時期を決定するために、RO膜モジュール32の膜間差圧をモニタしており、膜メーカの推奨値まで膜間差圧が上昇したときにRO膜モジュール32を洗浄している。しかし、膜間差圧に顕著な上昇が現れた場合には、RO膜モジュール32を洗浄しても、ろ過性能が回復しないことがある。
従って、ファウリングが進行して膜間差圧に顕著な上昇が現れる前に、ファウリングの初期形成段階でRO膜の劣化を検知して、RO膜モジュール32を洗浄する必要がある。従って、RO膜に付着するファウリング原因物質の付着量を測定し、RO膜モジュール32の洗浄時期を決定することは、海水淡水化システム1のランニングコストを低減するために有効である。
RO膜モジュール32では、クロスフローろ過方式を用いてファウリング原因物質が分離されるので、RO膜モジュール32からファウリング原因物質が含まれる濃縮水が排水される。このように、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質はRO膜に付着するものと、濃縮水に含まれてRO膜モジュール32から排水されるものとに分かれる。
そこで、実施例2では、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の質量と、RO膜モジュール32から排水される濃縮水に含まれるファウリング原因物質の質量とを測定し、両者の差分を算出することによって、RO膜に付着するファウリング原因物質の付着量を測定する。ここで、濃縮水に含まれるファウリング原因物質の質量は、RO膜モジュール32における濃縮水の濃縮率を考慮するため、濃縮水の水量を濃縮される前の、RO膜モジュール32へ送られる供給水の水量に換算した値が用いられる。
海水淡水化システム2の一例を、図6を用いて説明する。図6は、実施例2による海水淡水化システム2の構成の一例を示す概略図である。
図6に示すように、海水淡水化システム2には、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の質量を測定する主吸着量測定センサ35b、および濃縮水に含まれるファウリング原因物質の質量を測定する副吸着量測定センサ35cが備わっている。主吸着量測定センサ35bは、RO膜供給水タンク23の後段に設置するバルブVL6から配管を通して、RO膜モジュール32へ送られる供給水がポンプ39によって送られる吸着量測定部40に設置されている。
次に、RO膜モジュール32の洗浄時期を決定する方法について、図7および図8を用いて説明する。
図7は、主吸着量測定センサ35bのファウリング原因物質の吸着量Wb(破線)および副吸着量測定センサ35cのファウリング原因物質の吸着量Wc(実線)の通水時間依存性を示すグラフ図である。
濃縮水を通水する副吸着量測定センサ35cでは、単位時間当たりに副吸着量測定センサ35cの測定面を流れる水量を、濃縮水が濃縮される前の水量に換算して、単位時間当たりに主吸着量測定センサ35bの測定面を流れる供給水の水量と、単位時間当たりに副吸着量測定センサ35cの測定面を流れる濃縮水の水量とを等しくしている。つまり、濃縮水は濃縮されているので、副吸着量測定センサ35cのファウリング原因物質の吸着量Wcが、主吸着量測定センサ35bのファウリング原因物質の吸着量Wbよりも高くなるため、これを補正する。
RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質の質量から、RO膜に付着したファウリング原因物質の質量を差し引いた質量が濃縮水に含まれるファウリング原因物質の質量である。このため、図7に示すように、副吸着量測定センサ35cのファウリング原因物質の吸着量Wcは主吸着量測定センサ35bのファウリング原因物質の吸着量Wbより小さい。つまり、主吸着量測定センサ35bのファウリング原因物質の吸着量Wbと副吸着量測定センサ35cのファウリング原因物質の吸着量Wcとの差ΔW(Wb−Wc)がRO膜に付着したのファウリング原因物質の付着量である。
図8は、RO膜に付着したファウリング原因物質の付着量ΔWの通水時間依存性を示すグラフ図である。
RO膜モジュール32の運転データ(膜間差圧および透過水量など)と、RO膜に付着したファウリング原因物質の付着量ΔWとの相関を評価することによって、RO膜モジュール32の洗浄時期を決める、ファウリング原因物質の付着量ΔWの閾値を設定することができる。図8では、一例としてファウリング原因物質の付着量ΔWの閾値を300ng/cm2としている。このように、RO膜モジュール32の洗浄時期を決定することによって、適切な時期にRO膜モジュール32を洗浄できるようになり、海水淡水化システム2のランニングコストを低減させることができる。
なお、前記特許文献1の実施例4では、モジュールの上流にセンサを設置して、モジュールへ送られる供給水に含まれるファウリング原因物質の質量を測定し、この測定値を基準として、モジュールへ送られる供給水の水質を評価し、モジュールの洗浄時期を決定する方法が記載されている。
しかし、前述したように、RO膜モジュール32へ送られる供給水に含まれるファウリング原因物質は、RO膜へ付着するものと、濃縮水に含まれてRO膜モジュール32から排水されるものとに分かれるため、前記特許文献1よりも実施例2の方が精度よく洗浄時期を決定することができる。
このように、実施例2によれば、RO膜に付着するファウリング原因物質の付着量ΔWを精度よく測定することにより、RO膜モジュール32を適切な時期に洗浄できるので、海水淡水システム2のランニングコストを低減することができる。つまり、水処理システムの水処理コストを低減することができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
1,2 海水淡水化システム
10 海水取水部
11 取水管
12 取水ポンプ
13 原水タンク
20 前処理部
21 砂ろ過槽
22 限外ろ過膜モジュール
22a 送水ポンプ
23 RO膜供給水タンク
24 薬注システム
24a 殺菌剤注入部
24b pH調整剤注入部
24c 凝集剤注入部
24d 中和還元剤注入部
30 脱塩部
31 高圧ポンプ
32 RO膜モジュール
33 淡水タンク
34 エネルギ回収装置
35 吸着量測定部
35a 吸着量測定センサ
35b 主吸着量測定センサ
35c 副吸着量測定センサ
36 濃縮水タンク
37 ポンプ
39 ポンプ
40 吸着量測定部
350 センサチップ
350a ATカット水晶板
350b 金電極
350c 酸化シリコン膜
351 芳香族ポリアミド膜
380 外部リング
380a 底部
380b 貫通孔
381 インサート
381a 上面
382a Oリング
382a1 接点
382b Oリング
383 導線
384 ペルチェ素子
384a 温度センサ
385a 抜け止め板
385b ねじ部材
F1 測定面
F2 裏面
LM 主ライン
LS1,LS2 副ライン
PMf 配管壁面
VL1,VL2,VL3,VL4 調節バルブ
VL5,VL6 バルブ

Claims (7)

  1. 被分離物質を含む第1水をろ過する分離膜と、
    前記分離膜を有するモジュールと、
    前記分離膜の表面の材料と同じ材料からなる第1膜を測定面に有する第1センサと、
    を備え、
    前記モジュールへ送られる前記第1水は、前記分離膜を透過して前記モジュールから排出される第2水と、前記分離膜の膜面に沿っており前記分離膜を透過せずに前記モジュールから排出される第3水とに分かれ、
    前記第1センサに前記第3水を流すことにより、前記第1センサの前記第1膜の測定面に吸着される前記第3水に含まれる前記被分離物質の第1吸着量を測定することを特徴とする水処理システム。
  2. 請求項1記載の水処理システムにおいて、
    前記分離膜の表面の材料と同じ材料からなる第2膜を測定面に有する第2センサ、
    をさらに備え、
    前記第2センサに前記第1水を流すことにより、前記第2センサの前記第2膜の測定面に吸着される前記第1水に含まれる前記被分離物質の第2吸着量を測定し、
    前記第1センサで測定された前記第1吸着量と、前記第2センサで測定された前記第2吸着量とから前記分離膜に付着する前記被分離物質の質量を算出することを特徴とする水処理システム。
  3. 請求項1または2記載の水処理システムにおいて、
    前記分離膜は、逆浸透膜であることを特徴とする水処理システム。
  4. 請求項1または2記載の水処理システムにおいて、
    前記第1センサは、水晶振動子であり、
    前記第1センサに吸着する前記被分離物質の前記第1吸着量は、水晶振動子マイクロバランス法によって測定されることを特徴とする水処理システム。
  5. 請求項2記載の水処理システムにおいて、
    前記第2センサは、水晶振動子であり、
    前記第2センサに吸着する前記被分離物質の前記第2吸着量は、水晶振動子マイクロバランス法によって測定されることを特徴とする水処理システム。
  6. 請求項1記載の水処理システムにおいて、
    前記第1センサで測定された前記第1吸着量を基準として、前記第1水の前処理条件が決定されることを特徴とする水処理システム。
  7. 請求項2記載の水処理システムにおいて、
    前記分離膜に付着する前記被分離物質の前記質量を基準として、前記モジュールの洗浄時期が決定されることを特徴とする水処理システム。
JP2014006895A 2014-01-17 2014-01-17 水処理システム Ceased JP2015134322A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014006895A JP2015134322A (ja) 2014-01-17 2014-01-17 水処理システム
CN201510019398.8A CN104787846A (zh) 2014-01-17 2015-01-15 水处理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014006895A JP2015134322A (ja) 2014-01-17 2014-01-17 水処理システム

Publications (1)

Publication Number Publication Date
JP2015134322A true JP2015134322A (ja) 2015-07-27

Family

ID=53673373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014006895A Ceased JP2015134322A (ja) 2014-01-17 2014-01-17 水処理システム

Country Status (2)

Country Link
JP (1) JP2015134322A (ja)
CN (1) CN104787846A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445135A (zh) * 2015-11-14 2016-03-30 贵阳时代沃顿科技有限公司 一种检测湿式反渗透膜元件干燥的方法
JP2019027961A (ja) * 2017-07-31 2019-02-21 国立大学法人東北大学 スケール付着の定量評価方法
WO2019225308A1 (ja) * 2018-05-21 2019-11-28 栗田工業株式会社 逆浸透システムの診断装置
JP2019202305A (ja) * 2018-05-21 2019-11-28 栗田工業株式会社 逆浸透システムの診断装置
JP2019202243A (ja) * 2018-05-21 2019-11-28 栗田工業株式会社 逆浸透システムの診断装置
WO2019225306A1 (ja) * 2018-05-21 2019-11-28 栗田工業株式会社 逆浸透システムの診断装置
WO2019244718A1 (ja) * 2018-06-18 2019-12-26 三菱電機株式会社 運転支援装置および運転支援方法
CN112811721A (zh) * 2020-12-31 2021-05-18 新疆协鑫新能源材料科技有限公司 一种gcl法多晶硅生产全过程综合节水生产系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038575A1 (fr) * 2006-09-25 2008-04-03 Toray Industries, Inc. PROCÉDÉ DE FONCTIONNEMENT D'Une installation DE FILTRATION suR MEMBRANE D'OSMOSE INVERSE, ET installation DE FILTRATION sur MEMBRANE D'OSMOSE INVERSE
JP2011002397A (ja) * 2009-06-22 2011-01-06 Hitachi Ltd 水質評価用センサ,それを用いた供給水の水質評価方法,及び水処理設備の運転管理方法
JP2011255301A (ja) * 2010-06-08 2011-12-22 Japan Organo Co Ltd 分離膜の汚染評価方法、これを利用した分離膜運転管理方法及びろ過装置
JP2012196590A (ja) * 2011-03-18 2012-10-18 Asahi Kasei Chemicals Corp ろ過膜、ろ過膜の洗浄手段および前処理手段の選択方法
JP2013137279A (ja) * 2011-12-28 2013-07-11 Hitachi Plant Technologies Ltd 水質評価方法、水処理システムの制御方法、および、水処理システム
JP2013193075A (ja) * 2012-03-23 2013-09-30 Hitachi Ltd 淡水化システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038575A1 (fr) * 2006-09-25 2008-04-03 Toray Industries, Inc. PROCÉDÉ DE FONCTIONNEMENT D'Une installation DE FILTRATION suR MEMBRANE D'OSMOSE INVERSE, ET installation DE FILTRATION sur MEMBRANE D'OSMOSE INVERSE
JP2011002397A (ja) * 2009-06-22 2011-01-06 Hitachi Ltd 水質評価用センサ,それを用いた供給水の水質評価方法,及び水処理設備の運転管理方法
JP2011255301A (ja) * 2010-06-08 2011-12-22 Japan Organo Co Ltd 分離膜の汚染評価方法、これを利用した分離膜運転管理方法及びろ過装置
JP2012196590A (ja) * 2011-03-18 2012-10-18 Asahi Kasei Chemicals Corp ろ過膜、ろ過膜の洗浄手段および前処理手段の選択方法
JP2013137279A (ja) * 2011-12-28 2013-07-11 Hitachi Plant Technologies Ltd 水質評価方法、水処理システムの制御方法、および、水処理システム
JP2013193075A (ja) * 2012-03-23 2013-09-30 Hitachi Ltd 淡水化システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445135A (zh) * 2015-11-14 2016-03-30 贵阳时代沃顿科技有限公司 一种检测湿式反渗透膜元件干燥的方法
JP2019027961A (ja) * 2017-07-31 2019-02-21 国立大学法人東北大学 スケール付着の定量評価方法
JPWO2019225306A1 (ja) * 2018-05-21 2021-02-25 栗田工業株式会社 逆浸透システムの診断装置
JP2019202305A (ja) * 2018-05-21 2019-11-28 栗田工業株式会社 逆浸透システムの診断装置
JP2019202243A (ja) * 2018-05-21 2019-11-28 栗田工業株式会社 逆浸透システムの診断装置
WO2019225306A1 (ja) * 2018-05-21 2019-11-28 栗田工業株式会社 逆浸透システムの診断装置
WO2019225308A1 (ja) * 2018-05-21 2019-11-28 栗田工業株式会社 逆浸透システムの診断装置
JP7103410B2 (ja) 2018-05-21 2022-07-20 栗田工業株式会社 逆浸透システムの診断装置
WO2019244718A1 (ja) * 2018-06-18 2019-12-26 三菱電機株式会社 運転支援装置および運転支援方法
JPWO2019244718A1 (ja) * 2018-06-18 2020-12-17 三菱電機株式会社 運転支援装置および運転支援方法
CN112334215A (zh) * 2018-06-18 2021-02-05 三菱电机株式会社 运转支援装置以及运转支援方法
CN112334215B (zh) * 2018-06-18 2022-08-23 三菱电机株式会社 运转支援装置以及运转支援方法
CN112811721A (zh) * 2020-12-31 2021-05-18 新疆协鑫新能源材料科技有限公司 一种gcl法多晶硅生产全过程综合节水生产系统及方法

Also Published As

Publication number Publication date
CN104787846A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
JP2015134322A (ja) 水処理システム
JP2013137279A (ja) 水質評価方法、水処理システムの制御方法、および、水処理システム
Song et al. The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system
JP5804228B1 (ja) 水処理方法
WO2011010500A1 (ja) 造水システム
JP6441808B2 (ja) 淡水化装置及び淡水化方法
Wang et al. Effects of operational conditions on ultrafiltration membrane fouling
JP2009240902A (ja) 水処理方法および水処理装置
NZ588246A (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
JP2015188786A (ja) 正浸透処理システム
KR20100016080A (ko) 유체 여과 방법
JP2015134327A (ja) 分離膜面評価方法、水処理システムの制御方法、および水処理システム
WO2012098969A1 (ja) 膜モジュールの洗浄方法、造水方法および造水装置
Zhaoliang et al. Effect of cross-flow velocity on the critical flux of ceramic membrane filtration as a pre-treatment for seawater desalination
JP6087667B2 (ja) 淡水化方法及び淡水化装置
KR101550702B1 (ko) 높은 회수율로 정수 생산을 위한 막여과 정수 처리 시스템 및 방법
JP6183213B2 (ja) 造水方法および造水装置
KR101197022B1 (ko) 역세척이 가능한 역삼투 수처리 설비
Oh et al. Effect of ozone on microfiltration as a pretreatment of seawater reverse osmosis
JP6251148B2 (ja) 水処理システム
JP5377553B2 (ja) 膜ろ過システムとその運転方法
Mousa et al. Treatability of wastewater and membrane fouling
Jeong et al. Pre-treatment of SWRO pilot plant for desalination using submerged MF membrane process: Trouble shooting and optimization
WO2012138900A1 (en) Use of rhamnolipids in the water treatment industry
Abeynayaka et al. Long-term studies on hybrid ceramic microfiltration for treatment of surface water containing high dissolved organic matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20180327