JP2015133382A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2015133382A
JP2015133382A JP2014003383A JP2014003383A JP2015133382A JP 2015133382 A JP2015133382 A JP 2015133382A JP 2014003383 A JP2014003383 A JP 2014003383A JP 2014003383 A JP2014003383 A JP 2014003383A JP 2015133382 A JP2015133382 A JP 2015133382A
Authority
JP
Japan
Prior art keywords
seed layer
forming
barrier
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014003383A
Other languages
English (en)
Inventor
伊藤 励
Tsutomu Ito
励 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to JP2014003383A priority Critical patent/JP2015133382A/ja
Publication of JP2015133382A publication Critical patent/JP2015133382A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】層間膜中に銅が移動することを防止する半導体装置の製造技術を提供する。
【解決手段】本発明による半導体装置の製造方法は、半導体基板上に形成された層間膜をエッチングして溝を形成する工程と、前記溝表面にバリアメタル膜を形成する工程と、前記バリアメタル膜上に銅を含む窒化バリアシード層を形成する工程と、前記窒化バリアシード層上にメッキ法により銅を含む配線層を形成する工程とを含む。
【選択図】図1

Description

本発明は、半導体装置の製造方法に関する。
半導体装置の製造に際して、半導体ウエハ上に形成された絶縁膜に銅(Cu)を主成分とする金属配線を埋め込む場合がある。
特許文献1は、銅や銅合金からなる配線、配線接続プラグまたはパッド部等を含む半導体装置の製造方法を開示している。特許文献1の半導体装置では、バリア膜とシード膜上に銅配線を形成した後洗浄液により酸化銅を除去し、防腐処理を行った後銅配線をプラズマ処理により窒化させて、その上にシリコン窒化膜を形成する処理が開示されている。特許文献2は、Cu配線にシリコンが拡散されたシリコン含有銅配線が半導体基板上に成膜された下地絶縁膜上の二酸化ケイ素絶縁膜に形成された溝部に設けられた構成を備える半導体装置を開示している。このシリコン含有銅配線の側面と底面はTa/TaN膜に覆われている。
特許文献3は、半導体基板に形成された溝部において、Taからなるバリア層と、該バリア層の表面に設けられたCuシード層と、該Cuシード層の表面に設けられたCuシリサイド層と、該Cuシリサイド層の表面上に設けられたCu配線層とを有する半導体装置の構成を開示している。特許文献4は、銅または銅合金を含む配線構造と配線形成方法において、接着力を改善するために、下地構造物上に窒素を含む雰囲気下のスパッタリングで銅窒化物バリア膜を形成し、バリア膜上にスパッタで銅導電膜を形成することを開示している。特許文献5に記載の半導体装置では、コンタクトでのシームやボイドの発生を抑制するため、バリアメタル膜上にCu膜を形成し、プラズマ窒化処理で窒化銅層を形成し、CVD法によりCu膜を成膜することが開示されている。
特開2002−246391号公報 特開2007−227958号公報 特開2010−010337号公報 特開2008−066680号公報 特開2011−199021号公報
しかしながら、上記特許文献1から5には、Cuの移動を防止するため、Cuシード層を窒化し、窒化されたCuシード層の上にCu配線をメッキで形成することについて開示が無い。
Cu配線で微細化が進むと、配線のアスペクト比が大きくなり、側面でのバリア膜のカバレッジが悪くなり、バリア性が劣化しやすく、層間膜中にCuが移動しやすい状況となってきている。さらに、隣りとの配線間隔が微細化により狭くなり、層間膜中にCuが移動するとショートに至るおそれがある。
本発明は、層間膜中に銅が移動することを防止する半導体装置の製造方法を提供することを目的とする。
上述の課題に鑑み、本発明の一態様は、半導体基板上に形成された層間膜をエッチングして溝を形成する工程と、前記溝表面にバリアメタル膜を形成する工程と、前記バリアメタル膜上に銅を含む窒化バリアシード層を形成する工程と、前記窒化バリアシード層上にメッキ法により銅を含む配線層を形成する工程と、を含む半導体装置の製造方法に関する。
また、本発明の別の態様は、半導体基板上に第1の層間膜を形成する工程と、前記第1の層間膜を貫通し前記半導体基板と接する第1のコンタクトプラグを形成する工程と、前記第1の層間膜上に第2の層間膜を形成する工程と、前記第2の層間膜をエッチングして溝を形成するとともに、前記コンタクトプラグを露出させる工程と、前記溝の内壁と前記第2の層間膜上とに第1のバリアメタル膜を形成する工程と、前記第1のバリアメタル膜上に銅を含む第1のバリアシード層を形成する工程と、前記第1のバリアシード層を窒化して第1の窒化バリアシード層を形成する工程と、前記第1の窒化バリアシード層上に第1の銅シード層を形成する工程と、前記第1の銅シード層上にメッキ法により第1の銅配線層を形成する工程と、を含む半導体装置の製造方法に関する。
さらに、本発明の他の態様は、半導体基板上に第1の層間膜を形成する工程と、前記第1の層間膜上に第2の層間膜を形成する工程と、前記第2の第2の層間膜に第1の溝を形成する工程と、前記第1の溝内に第1の配線層を形成する工程と、前記第2の層間膜上と前記第1の配線層上とに第3の層間膜を形成する工程と、前記第3の層間膜に前記第1の配線層に達するコンタクトホールを形成する工程と、前記コンタクトホールの上部を含めた前記第3の層間膜の上部をエッチングして前記第3の層間膜に第2の溝を形成する工程と、前記コンタクトホール内壁と前記第2の溝内壁と前記第3の層間膜上とに第1のバリアメタル膜を形成する工程と、前記第1のバリアメタル膜上に銅を含む第1のバリアシード層を形成する工程と、前記第1のバリアシード層を窒化して第1の窒化バリアシード層を形成する工程と、前記第1の窒化バリアシード層上に第1の銅シード層を形成する工程と、前記第1の銅シード層上にメッキ法により第1の銅配線層を形成する工程と、を含む半導体装置の製造方法に関する。
本発明によると、層間膜中への銅の移動を防止することが可能となる。
本発明の更なる利点及び実施形態を、記述と図面を用いて下記に詳細に説明する。
本発明の第1の実施形態における銅配線を備えた半導体装置の構成を示す断面図である。 図1に示す半導体装置の製造工程を示すフローチャートである。 図1に示す半導体装置の製造工程を説明するための断面図である。 図3に続く半導体装置の製造工程を説明するための断面図である。 図4に続く半導体装置の製造工程を説明するための断面図である。 図5に続く半導体装置の製造工程を説明するための断面図である。 図6に続く半導体装置の製造工程を説明するための断面図である。 図7に続く半導体装置の製造工程を説明するための断面図である。 本発明の第2の実施形態のおける銅配線を備えた半導体装置の構成を示す断面図である。 図9に示す半導体装置の製造工程を示すフローチャートである。 図9に示す半導体装置の製造工程を説明するための断面図である。 図11に続く半導体装置の製造工程を説明するための断面図である。 図12に続く半導体装置の製造工程を説明するための断面図である。 図13に続く半導体装置の製造工程を説明するための断面図である。 図14に続く半導体装置の製造工程を説明するための断面図である。 図15に続く半導体装置の製造工程を説明するための断面図である。 図16に続く半導体装置の製造工程を説明するための断面図である。 図17に続く半導体装置の製造工程を説明するための断面図である。 図18に続く半導体装置の製造工程を説明するための断面図である。 図19に続く半導体装置の製造工程を説明するための断面図である。 図20に続く半導体装置の製造工程を示すフローチャートである。
以下、本発明の実施形態について図面を参照しつつ説明する。但し、以下に説明する実施形態によって本発明の技術的範囲は何ら限定解釈されることはない。
(第1の実施形態)
初めに、本発明の第1の実施形態について説明する。本発明の実施形態による半導体装置では、Cuシード層を窒化してCuNを形成することでバリア層を形成し、さらにメッキでCu層を形成することでCuの移動を防止する。具体的には、バリア膜(上層TaN/下層Ta、Ta単層でもよい)の上にCuシード層をたとえばスパッタで形成し、この方法に限定されないがたとえばプラズマイオン窒化法などでCuシード層の一部を窒化してバリア層を形成する。その上にメッキでCu層を追加形成する。例えば、スパッタで第2のCuシード層を形成し、その上にCuめっき層を形成する。
図1は、本実施形態における銅配線を備えた半導体装置(半導体デバイス)100の構成を示す断面図であり、図1を参照しながら、半導体デバイス100の構成について説明する。
半導体基板1(以降、シリコン基板1と称する。)の上面には、第1層間絶縁膜2が設けられている。シリコン基板1は、シリコン酸化膜(SiO)やシリコン窒化膜(Si)からなる絶縁膜で構成された素子分離領域(図示せず)と、活性化された不純物で構成された活性領域(図示せず)を備えており、素子分離領域によって活性領域が区画されている。さらに、シリコン基板1の主面(第1層間絶縁膜2を形成した面)には、シリコン酸化膜からなるゲート絶縁膜(図示せず)と、ポリシリコンやタングステンなどからなるゲート電極(図示せず)が配置されており、前記活性領域とともにMOS(Metal Oxide Semiconductor)トランジスタを構成している。またMOSトランジスタには、第1層間絶縁膜2の内部に配置された配線(図示せず)や第1コンタクトプラグ8が接続されている。ここで、第1コンタクトプラグ8の上面は、第1層間絶縁膜2の上面と面一になっている。第1層間絶縁膜2の上面には、第2層間絶縁膜3が設けられており、第2層間絶縁膜3をZ方向に貫通して溝形状となっている第1パターン9の内部に第1配線10が配置されている。
第1配線10は、図面に対して垂直となって奥行に向かう方向(以降、第1方向と称する)へ延在しながら第1パターン9の内壁を覆うように設けられたタンタル(Ta)からなる第1バリアメタル膜4と、第1バリアメタル膜4の表面を覆うように設けられた窒化銅(CuN)からなる第1バリア層5bと、第1バリア層5bの表面を覆うように設けられた第1銅(Cu)膜5で構成されている。第1配線10の底面を構成している第1バリアメタル膜4は、第1層間絶縁膜2に配置された第1コンタクトプラグ8と接続されている。第2層間絶縁膜3と第1配線10の上面を覆うように、第1キャップ膜6と第3層間絶縁膜7が順次設けられている。
なお、半導体デバイス100では、コンタクトプラグの上面に銅からなる第1配線を設けているが、コンタクトプラグと銅配線を一体化させて設けることもできるので、以下詳細に説明する。なお説明は、第1の実施形態と共通する内容は割愛して、相違点だけを記載するものとする。
次に、図2に示す工程フローを参照しながら、第1の実施形態における第1配線10の製造工程を説明する。
最初に、第2層間絶縁膜3(材料としてSiO、SiOCなどを用いることができる)へ第1配線材料を埋め込む溝状の第1パターン9を形成(工程S1)してから、第1パターン9の内壁に第1バリアメタル膜4と後述する第1バリアシード層5aを順次堆積する(工程S2)。次に、第1バリアシード層5aを窒化して、CuNからなる第1バリア層5bを形成(工程S3)してから、第1バリア層5bの表面に後述する第1Cuシード膜5cを形成(工程S4)する。次に、第1Cuシード膜5cを電極とした電界めっき法によって、第1Cuシード膜5cと一体となる第1Cu膜5を成膜する(工程S5)。次に、第1Cu膜5に対して第1のアニール(工程S6)を実施し、さらに第2層間絶縁膜3の上面における余分な第1配線材料をCMP(Chemical Mechanical Polishing)で除去(工程S7)してから、第2のアニール(工程S8)を行う。最後に、第1キャップ膜6と第3層間絶縁膜7を第1配線10の上面に積層させると、第1配線10が完成する(工程S9)。
次に、第1の実施形態における第1配線10の製造方法の詳細について、図3〜図8の断面図を参照しながら説明する。
図3は、図1に示す半導体装置の製造工程を説明するための断面図である。公知の製法によって、シリコン基板1にいずれも図示しない素子分離領域とMOSトランジスタの構成要素を形成する。次に、CVD(Chemical Vapor Deposition)法によって、シリコン基板1の上面にシリコン酸化膜からなる第1層間絶縁膜2と第2層間絶縁膜3を形成する。なお、第1層間絶縁膜2に配置する配線並びに第1コンタクトプラグ8は、第2層間絶縁膜3の形成前に、公知の製法によって形成しておく。第2層間絶縁膜3に対して、図示しないホトレジストマスクを用いた異方性ドライエッチング法によって、第1配線10を配置する領域に第1パターン9を形成する。ここでは、第1パターン9の幅Wを130nmとしている。なお、第1パターン9の底面には、少なくともMOSトランジスタと接続している第1コンタクトプラグ8の上面の一部が露出している。
図4は、図3に続く半導体装置の製造工程を説明するための断面図である。第1パターン9の内壁に、第1バリアメタル膜4と第1バリアシード層5aを順次堆積する。第1バリアメタル膜4としては、Ta膜を例示できる。なお第1バリアメタル膜4は、Ta膜だけでなく、窒化タンタル(TaN)膜、さらにTaN膜上にTa膜を堆積した積層膜としてもよい。第1バリアメタル膜4は、スパッタリング法によって形成することができる。なお、スパッタリング法による成膜では、第1パターン9における側面の膜厚t2が、底面の膜厚t1よりも薄くなる。さらに詳細に説明すると、膜厚を5nmとしてTa膜を成膜すると、底面の膜厚t1は5nmとなるが、側面の膜厚t2は薄膜化して3、3nmとなってしまい、このままでは、第1バリアメタル膜4の側面部におけるバリア機能が低下することになる。第1バリアシード層5aは、スパッタリング法で形成したCu膜である。スパッタリング法で成膜したCu膜も、Ta膜と同様になる。つまり、膜厚を10nmとしてCu膜を成膜すると、第1パターン9の底部における膜厚は10nmとなるが、側面の膜厚は薄膜化して6、7nmとなる。なお、第1パターン9は、第1バリアメタル膜4と第1バリアシード層5aで完全に埋設されておらず、第1バリアシード層5aの表面で構成された新たな第1パターン9aとなっている。
図5は、図4に続く半導体装置の製造工程を説明するための断面図である。プラズマ窒化法によって、第1パターン9aの内壁を含めた第1バリアシード層5aを第1バリア層5bに改質する。ここでは、第1バリアシード層5aを全て第1バリア層5bに改質しているが、少なくとも第1パターン9aの側面における第1バリアシード層5aを第1バリア層5bに改質すればよく、第1パターン9aの底面では、改質した第1バリア層5bと残留した第1バリアシード層5aが積層されていてもよい。第1バリア層5bとしては、窒化銅(CuN)を例示できる。第1バリアシード層5aは、第1バリア層5bの材料膜として機能している。また、第1バリア層5bを構成しているCuグレインの隙間は、Cuが窒素と結合することによって、第1バリアシード層5aを構成しているCuグレインの隙間よりも狭くなっている。このプラズマ窒化法では、アノードカップリング型プラズマ装置を用いて、プラズマ状態とした窒素を第1バリアシード層5aに到達させて、第1バリアシード層5aを第1バリア層5bへ改質している。
プラズマ窒化法における条件の一例を示すと、窒素(N2)をプロセスガスとして、ガス流量を90sccm(Standard cubic centimeter per minute)、圧力を12Pa(90mTorr)、高周波パワーを400W、プロセス温度を400℃、処理時間を50秒としている。プラズマ窒化法によって形成された第1バリア層5bにおける窒素の濃度は、第1バリア層5bの表面近傍が最も高く、露出表面から第1バリアメタル膜4へ近づくとともに減少している。なお第1バリア層5bは、第1バリアシード層5aを窒化して形成しているので、第1パターン9aは、第1バリア層5bで完全には埋設されておらず、第1バリア層5bの表面で構成された新たな第1パターン9bとなっている。
プラズマ窒化法によって形成したCuをCuNに改質した例を示したが、CuNターゲットを用いたスパッタリング法により、第1バリア層5bとしてCuNをプラズマ窒化をすること無しに成膜してもよい。
図6は、図5に続く半導体装置の製造工程を説明するための断面図である。第1パターン9bの内壁を含めた第1バリア層5bの表面に、第1Cuシード膜5cを堆積する。第1Cuシード膜5cは、スパッタリング法によって、膜厚を10nmとして成膜したCu膜である。なお、第1パターン9bは、第1Cuシード膜5cで完全に埋設されておらず、第1Cuシード膜5cの表面で構成された新たな第1パターン9cとなっている。
図7は、図6に続く半導体装置の製造工程を説明するための断面図である。電界めっき法によって、第1パターン9cの内部を充填するように、厚さを620nmとした第1Cu膜5を形成する。ここで、第1Cuシード膜5cは、第1Cu膜5のシード膜として機能している。なお第1Cuシード膜5cは、第1Cu膜5と一体化するので、これ以降の第1Cuシード膜5cは、第1Cu膜5に含まれるものとする。この後に、還元ガス雰囲気(例えばH2等)、不活性ガス雰囲気(例えば、Ar、N2等)または、還元ガスと不活性ガスの混合雰囲気中で、温度110℃〜180℃の範囲で第1のアニール処理を行う。第1アニール処理を110℃〜180℃の低温で実施することにより、ボイドの発生を抑制しながら、第1Cu膜5のグレイン成長と不純物脱離を行う。
図8は、図7に続く半導体装置の製造工程を説明するための断面図である。CMP法によって、第2層間絶縁膜3の上面における第1Cu膜5と第1バリア層5bと第1バリアメタル膜4を除去し、第1パターン9の内部だけに第1Cu膜5と第1バリア層5bと第1バリアメタル膜4を残留させる。この後に、還元ガス雰囲気(例えばH2等)、不活性ガス雰囲気(例えば、Ar、N2等)または、還元ガスと不活性ガスの混合雰囲気中で、温度200℃〜350℃の範囲で第2のアニール処理を行う。第2アニール処理を200℃〜350℃の高温で実施することにより、第1Cu膜5の表面に発生するヒロックを抑制しながら、第1Cu膜5のグレインを成長させることができる。
次に、図1に示したように、第1Cu膜5の表面を覆うように、第1キャップ膜6および第3層間絶縁膜7を形成すると、第1配線10が完成する。第1キャップ膜6は、第1Cu膜5の拡散を防止する機能を有し、CVD法による炭素含有シリコン窒化膜(SiCN膜)を例示できる。また第3層間絶縁膜7としては、CVD法による炭素含有シリコン酸化膜(SiOC)等の低誘電体膜またはシリコン酸化膜を例示できる。
以上のように、第1配線10の製法によれば、プラズマ窒化法によって第1バリアシード層5aを第1バリア層5bに改質しているので、少なくとも第1バリア層5bを構成しているCuグレインの隙間が、第1バリアシード層5aを構成していたCuグレインの隙間よりも狭くなる。このように第1バリア層5bにおけるCuグレインの隙間が狭くなると、第1Cu膜5を構成しているCu原子が、第1バリア層5b中を拡散して第2層間絶縁膜3へ移動することができなくなる。
さらに、第1バリア層5bを構成しているCuNのサイズが、第1バリアシード層5aを構成していたCuよりも大きくなるので、CuNが第1バリアメタル膜4中を拡散して、第2層間絶縁膜3へ移動することができなくなる。このように、第1配線10の構成では、第1バリアメタル膜4が薄膜化しても第2層間絶縁膜3へのCu拡散が抑制されるので、第2層間絶縁膜3の経時破壊(TDDB:Time Dependent Dielectric Breakdown)による不良発生率を低減させて、隣接している配線がショートする確率を低下させることができる。
(第2の実施形態)
続いて、本発明の第2の実施形態について説明する。本発明の第2の実施形態は、上述した第1の実施形態の変形例である。以下、本実施形態において、第1の実施形態においてすでに説明した部分と同様な機能を有する部分には同一符号を付し、説明は省略する。
図9は、第2実施形態におけるコンタクトプラグと一体化している第2配線20を備えた半導体デバイス200の構成を示す断面図であり、図9を参照しながら、半導体デバイス200の構成について説明する。
第1配線10の上面には、第1キャップ膜6と第3層間絶縁膜7に位置した第2パターン19が配置されており、第2パターン19の内部には、第2コンタクトプラグ18と第2配線20が一体となって設けられている。さらに詳細に説明すると、第2パターン19は、溝形状となった第2溝パターン19aと、ホール形状となった第2ホールパターン19bで構成されている。第2溝パターン19aには、第2配線20が設けられており、第2ホールパターン19bには、第2コンタクトプラグ18が設けられている。
第2コンタクトプラグ18は、第2ホールパターン19bの内壁を覆うように設けられたTaからなる第2バリアメタル膜14Bと、第2バリアメタル膜14Bの表面を覆うように設けられたCuNからなる第2バリア層15bBと、第2バリア層15bBの表面を覆うように設けられた第2Cu膜15Bで構成されている。第2コンタクトプラグ18の底面を構成している第2バリアメタル膜14Bは、第2層間絶縁膜3に配置された第1配線10の上面に接続されている。
第2配線20は、第1方向へ延在しながら第2溝パターン19aの内壁を覆うように設けられたTaからなる第2バリアメタル膜14Aと、第2バリアメタル膜14Aの表面を覆うように設けられたCuNからなる第2バリア層15bAと、第2バリア層15bAの表面を覆うように設けられた第2Cu膜15Aで構成されている。第2配線20の底面を構成している第2バリアメタル膜14Aは、第2バリアメタル膜14Bに接続して一体化している。同様に、第2配線20の底面を構成している第2バリア層15bAは、第2バリア層15bBと一体化しており、第2Cu膜15Aは、第2Cu膜15Bと一体化している。第3層間絶縁膜7と第2配線20の上面を覆うように、第2キャップ膜16と第4層間絶縁膜17が順次設けられている。
第2実施形態における第2配線20の製造方法は、まず図11に示すように、フォトリソグラフィ法とドライエッチング法によって、第3層間絶縁膜7に第2パターン19を形成する。このとき第2パターン19の底面には、少なくとも第1配線10を構成している第1Cu膜5の一部が露出している。
次に、図10から20を参照しながら、第2の実施形態における第3層間絶縁膜7への第2パターン19の形成工程を説明する。
初めに、図12に示すように、第1キャップ膜6上に第3層間絶縁膜7を形成する(工程S11)。そして図13に示すようにリソグラフィーにより第1レジスト30をパターニングし(工程S12)、第3層間絶縁膜7をエッチングしてホールパターン31を形成すると図14に示すような構成となる(工程S13)。続いて、図15に示すように、第3層間絶縁膜7上と形成されたホールパターン31内とを覆うように第2レジスト32を塗布する(工程S14)。塗布した第2レジスト32をエッチバックし、ホールパターン31内の底部に第2レジスト32を残すと図16の構成となる(工程S15)。図17に示すように、第2レジスト32上のホールパターン31内と第3層間絶縁膜7上にBARC33を塗布し、BARC33上に第3レジスト34をパターニングする(工程S16)。第3レジスト34をマスクとして、BARC33及び第3層間絶縁膜7の一部をエッチングし、溝19aを形成すると図18の構成となる(工程S17)。そして、図19のように、BARC33及び第3レジスト34を除去し(工程S18)、図20に示すように第3層間絶縁膜7をマスクにキャップ膜6をエッチングして第1Cu膜5を露出すると第2パターン19が完成して図11に示すような構成となる(工程S19)。
第2パターン19の形成以降は、第1配線10における第1パターン9の形成以降と同じ製法となるため詳細な説明は割愛する。図21は、本発明の第2の実施形態における第2配線20の製造フローを示すフローチャートである。
上述したように第2パターン19を形成した後(工程S21)、第2パターン19の内壁に第2バリアメタル膜14Bと第2バリアシード層を順次堆積する(工程S22)。プラズマ窒化法によって第2バリアシード層を窒化し、CuNからなる第2バリア層を形成(工程S23)してから、スパッタリングにより第2バリア層の表面に第2Cuシード膜15cを形成(工程S24)する。次に、第2Cuシード膜15cを電極とした電界めっき法によって、第2Cuシード膜15cと一体となる第2Cu膜15を成膜する(工程S25)。次に、第2Cu膜15に対して第3のアニール(工程S26)を実施し、さらに第3層間絶縁膜7の上面における余分な第2配線材料をCMPで除去(工程S27)してから、第4のアニール(工程S28)を行う。最後に、第2キャップ膜16と第4層間絶縁膜17を第2配線20の上面に積層させると、第2配線20が完成する。
以上のように、第2配線20の製法によれば、プラズマ窒化法によって第2バリアシード層を第2バリア層に改質しているので、少なくとも第2バリア層を構成しているCuグレインの隙間が、第2バリアシード層を構成していたCuグレインの隙間よりも狭くなる。このように第2バリア層におけるCuグレインの隙間が狭くなると、第2Cu膜15A、15Bを構成しているCu原子が、第2バリア層中を拡散して第3層間絶縁膜7へ移動することができなくなる。
さらに、第2バリア層を構成しているCuNのサイズが、第2バリアシード層を構成していたCuよりも大きくなるので、CuNが第2バリアメタル膜14A、14B中を拡散して、第3層間絶縁膜7へ移動することができなくなる。このように、第2配線20の構成では、第2バリアメタル膜14A、14Bが薄膜化しても第3層間絶縁膜7へのCu拡散が抑制されるので、第3層間絶縁膜7の経時破壊による不良発生率を低減させて、隣接している配線がショートする確率を低下させることができる。
以上、本発明者によってなされた発明を各実施形態に基づき説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
1 シリコン基板(半導体基板)
2 第1層間絶縁膜
3 第2層間絶縁膜
4 第1バリアメタル膜
5 第1Cu膜
5a 第1バリアシード層
5b 第1バリア層
5c 第1Cuシード膜
6 第1キャップ膜
7 第3層間絶縁膜
8 第1コンタクトプラグ
9、 9a、 9b、 9c 第1パターン
10 第1配線
14A、 14B 第2バリアメタル膜
15A、 15B 第2Cu膜
15bA、 15bB 第2バリア層
16 第2キャップ膜
17 第4層間絶縁膜
18 第2コンタクトプラグ
19 第2パターン
19a 第2溝パターン
19b 第2ホールパターン
20 第2配線
30 レジスト(第1レジスト)
31 ホールパターン
32 レジスト(第2レジスト)
33 BARC
34 レジスト(第3レジスト)
100 半導体装置(半導体デバイス)
200 半導体装置(半導体デバイス)

Claims (20)

  1. 半導体基板上に形成された層間膜をエッチングして溝を形成する工程と、
    前記溝表面にバリアメタル膜を形成する工程と、
    前記バリアメタル膜上に銅を含む窒化バリアシード層を形成する工程と、
    前記窒化バリアシード層上にメッキ法により銅を含む配線層を形成する工程と、
    を含むことを特徴とする半導体装置の製造方法。
  2. 前記銅を含む窒化バリアシード層を形成する工程は、スパッタリング法により銅を含むバリアシード層を形成し、前記バリアシード層をプラズマ窒化法により形成することを含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記窒化バリアシード層中の窒素濃度は前記配線層の界面から前記バリアメタル膜界面方向に向かって減少していることを特徴とする請求項1又は2に記載の半導体装置の製造方法。
  4. 前記銅を含む窒化バリアシード層を形成する工程は、窒化銅を含むターゲットをスパッタすることにより形成することを特徴とする請求項1から3の何れか一項に記載の半導体装置の製造方法。
  5. 前記窒化バリアシード層を形成する工程の後、前記メッキ法により銅を含む配線層を形成する工程の前に、前記窒化バリアシード層上にさらにスパッタリング法により銅シード層を形成することを特徴とする請求項1から4の何れか一項に記載の半導体装置の製造方法。
  6. 前記バリアメタル膜はタンタルを含むことを特徴とする請求項1から5の何れか一項に記載の半導体装置の製造方法。
  7. 前記バリアメタル膜は窒化タンタルを含むことを特徴とする請求項1から6の何れか一項に記載の半導体装置の製造方法。
  8. 前記バリアメタル膜はタンタルと窒化タンタルの積層膜を含むことを特徴とする請求項1から7の何れか一項に記載の半導体装置の製造方法。
  9. 半導体基板上に第1の層間膜を形成する工程と、
    前記第1の層間膜を貫通し前記半導体基板と接する第1のコンタクトプラグを形成する工程と、
    前記第1の層間膜上に第2の層間膜を形成する工程と、
    前記第2の層間膜をエッチングして溝を形成するとともに、前記コンタクトプラグを露出させる工程と、
    前記溝の内壁と前記第2の層間膜上とに第1のバリアメタル膜を形成する工程と、
    前記第1のバリアメタル膜上に銅を含む第1のバリアシード層を形成する工程と、
    前記第1のバリアシード層を窒化して第1の窒化バリアシード層を形成する工程と、
    前記第1の窒化バリアシード層上に第1の銅シード層を形成する工程と、
    前記第1の銅シード層上にメッキ法により第1の銅配線層を形成する工程と、
    を含むことを特徴とする半導体装置の製造方法。
  10. 前記第1の銅配線層を形成後、還元ガス雰囲気中、または不活性ガス雰囲気中で第1の熱処理を行う工程と、
    CMP法により前記第2の層間膜上の前記第1のバリアメタル膜と前記第1の窒化バリアシード層と前記第1の銅シード層と前記第1の銅配線層とを除去する工程と、
    還元ガス雰囲気中、または不活性ガス雰囲気中で第2の熱処理を行う工程と、
    をさらに含むことを特徴とする請求項9に記載の半導体装置の製造方法。
  11. 前記第1のバリアシード層を窒化して第1の窒化バリアシード層を形成する工程はスパッタリング法により前記第1のバリアシード層を形成し、前記第1のバリアシード層をプラズマ窒化法により形成することを含むことを特徴とする請求項9又は10に記載の半導体装置の製造方法。
  12. 前記第1の窒化バリアシード層中の窒素濃度は前記第1の銅シード層の界面から前記第1のバリアメタル膜界面方向に向かって減少していることを特徴とする請求項9から11の何れか一項に記載の半導体装置の製造方法。
  13. 前記第1の銅シード層を形成する工程はスパッタリング法により形成することを特徴とする請求項9から12の何れか一項に記載の半導体装置の製造方法。
  14. 前記第1のバリアメタル膜はタンタルと窒化タンタルのうち少なくとも1つを含むことを特徴とする請求項9から13の何れか一項に記載の半導体装置の製造方法。
  15. 半導体基板上に第1の層間膜を形成する工程と、
    前記第1の層間膜上に第2の層間膜を形成する工程と、
    前記第2の層間膜に第1の溝を形成する工程と、
    前記第1の溝内に第1の配線層を形成する工程と、
    前記第2の層間膜上と前記第1の配線層上とに第3の層間膜を形成する工程と、
    前記第3の層間膜に前記第1の配線層に達するコンタクトホールを形成する工程と、
    前記コンタクトホールの上部を含めた前記第3の層間膜の上部をエッチングして前記第3の層間膜に第2の溝を形成する工程と、
    前記コンタクトホール内壁と前記第2の溝内壁と前記第3の層間膜上とに第1のバリアメタル膜を形成する工程と、
    前記第1のバリアメタル膜上に銅を含む第1のバリアシード層を形成する工程と、
    前記第1のバリアシード層を窒化して第1の窒化バリアシード層を形成する工程と、
    前記第1の窒化バリアシード層上に第1の銅シード層を形成する工程と、
    前記第1の銅シード層上にメッキ法により第1の銅配線層を形成する工程と、
    を含むことを特徴とする半導体装置の製造方法。
  16. 前記第1の銅配線層を形成後、還元ガス雰囲気中、または不活性ガス雰囲気中で第1の熱処理を行う工程と、
    CMP法により前記第3の層間膜上の前記第1のバリアメタル膜と前記第1の窒化バリアシード層と前記第1の銅シード層と前記第1の銅配線層とを除去する工程と、
    還元ガス雰囲気中、または不活性ガス雰囲気中で第2の熱処理を行う工程と、
    をさらに含むことを特徴とする請求項15に記載の半導体装置の製造方法。
  17. 前記第1のバリアシード層を窒化して第1の窒化バリアシード層を形成する工程はスパッタリング法により前記第1のバリアシード層を形成し、前記第1のバリアシード層をプラズマ窒化法により形成することを含むことを特徴とする請求項15又は16に記載の半導体装置の製造方法。
  18. 前記第1の窒化バリアシード層中の窒素濃度は前記第1の銅シード層の界面から前記第1のバリアメタル膜界面方向に向かって減少していることを特徴とする請求項15から17の何れか一項に記載の半導体装置の製造方法。
  19. 前記第1の銅シード層を形成する工程はスパッタリング法により形成することを特徴とする請求項15から18の何れか一項に記載の半導体装置の製造方法。
  20. 前記第1のバリアメタル膜はタンタルと窒化タンタルのうち少なくとも1つを含むことを特徴とする請求項15から19の何れか一項に記載の半導体装置の製造方法。
JP2014003383A 2014-01-10 2014-01-10 半導体装置の製造方法 Pending JP2015133382A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014003383A JP2015133382A (ja) 2014-01-10 2014-01-10 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014003383A JP2015133382A (ja) 2014-01-10 2014-01-10 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2015133382A true JP2015133382A (ja) 2015-07-23

Family

ID=53900389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003383A Pending JP2015133382A (ja) 2014-01-10 2014-01-10 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2015133382A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472141B2 (ja) 2018-12-19 2024-04-22 ユニリーバー・アイピー・ホールディングス・ベスローテン・ヴェンノーツハップ 毛髪用堆積システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472141B2 (ja) 2018-12-19 2024-04-22 ユニリーバー・アイピー・ホールディングス・ベスローテン・ヴェンノーツハップ 毛髪用堆積システム

Similar Documents

Publication Publication Date Title
US10163786B2 (en) Method of forming metal interconnection
US8492271B2 (en) Semiconductor device and method of manufacturing the same
KR101677345B1 (ko) 반도체 구조체 및 그 제조 방법
KR101129919B1 (ko) 반도체 소자 및 그의 형성 방법
US10784160B2 (en) Semiconductor device having voids and method of forming same
US20090115061A1 (en) Solving Via-Misalignment Issues in Interconnect Structures Having Air-Gaps
US9177858B1 (en) Methods for fabricating integrated circuits including barrier layers for interconnect structures
US8912041B2 (en) Method for forming recess-free interconnect structure
TW201712803A (zh) 形成金屬互連件的方法
JP2005340808A (ja) 半導体装置のバリア構造
KR100914982B1 (ko) 반도체 소자의 금속배선 및 그 형성방법
US10923423B2 (en) Interconnect structure for semiconductor devices
JPWO2007043634A1 (ja) 多層配線の製造方法
TW201814867A (zh) 導電結構、包含導電結構之佈局結構以及導電結構之製作方法
JP2006135363A (ja) 半導体装置および半導体装置の製造方法
JP2008205177A (ja) 半導体装置及びその製造方法
JP2005033163A (ja) 半導体素子の金属配線形成方法
JP2015133382A (ja) 半導体装置の製造方法
JP5272221B2 (ja) 半導体装置
KR101103550B1 (ko) 반도체 소자의 금속배선 형성방법
US20230178379A1 (en) Film deposition for patterning process
JP2007243025A (ja) 半導体装置及びその製造方法
JP2012038898A (ja) 半導体装置の製造方法および半導体装置
JP2011254049A (ja) 半導体装置の製造方法
JP2016105520A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160118