JP2015130457A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2015130457A
JP2015130457A JP2014002131A JP2014002131A JP2015130457A JP 2015130457 A JP2015130457 A JP 2015130457A JP 2014002131 A JP2014002131 A JP 2014002131A JP 2014002131 A JP2014002131 A JP 2014002131A JP 2015130457 A JP2015130457 A JP 2015130457A
Authority
JP
Japan
Prior art keywords
sealing resin
semiconductor element
case
semiconductor
surface electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014002131A
Other languages
Japanese (ja)
Other versions
JP6057927B2 (en
Inventor
和弘 多田
Kazuhiro Tada
和弘 多田
万里子 ▲高▼原
万里子 ▲高▼原
Mariko Takahara
範之 別芝
Noriyuki Betsushiba
範之 別芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014002131A priority Critical patent/JP6057927B2/en
Publication of JP2015130457A publication Critical patent/JP2015130457A/en
Application granted granted Critical
Publication of JP6057927B2 publication Critical patent/JP6057927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • H01L2224/376Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8484Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8485Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which inhibits peeling and cracks in a simple structure to achieve high reliability.SOLUTION: A semiconductor device 100 comprises: a heat sink 10 on which a plurality of internal modules each including a semiconductor element substrate in which a semiconductor electrode is fastened on a surface electrode, a plurality of main terminals 5a, 5b bonded to a top face of the semiconductor element and the surface electrode, respectively, and a first encapsulation resin 9 for encapsulating the inside of a first case 4 provided on a peripheral part of the surface electrode so as to cover the semiconductor element and the semiconductor element substrate; and a second encapsulation resin 13 for encapsulating the inside of a second case 12 provided on a peripheral part of the heat sink so as to cover the first encapsulation resin, the first case and the semiconductor element substrate. At least the surface electrode inside the first case covers a whole area of an insulation substrate and the surface electrode and a rear face electrode are formed symmetry with respect to the insulation substrate. The plurality of main terminals are exposed to the outside of the second encapsulation resin and an elastic modulus of the second encapsulation resin is smaller than an elastic modulus of the first encapsulation resin.

Description

この発明は、電力用半導体素子を実装した半導体装置、特に大容量で高温で動作する半導体装置の実装構造に関するものである。   The present invention relates to a semiconductor device mounted with a power semiconductor element, and more particularly to a mounting structure of a semiconductor device that operates at a high temperature with a large capacity.

従来のケース型の半導体装置は、一般にシリコーンゲルにてケース内の半導体素子周辺が封止されている。一方、エポキシ封止はチップ周辺を硬い樹脂で拘束することからヒートサイクルやパワーサイクル信頼性が高い。しかし、エポキシ樹脂は硬いことから接する部材との線膨張係数差大きいと界面に発生する応力が高く、剥離やクラックという問題が発生するため、構成部材との線膨張係数を合わせるなど制約が多い。   In a conventional case type semiconductor device, the periphery of a semiconductor element in a case is generally sealed with silicone gel. On the other hand, epoxy sealing has high heat cycle and power cycle reliability because the periphery of the chip is constrained by a hard resin. However, since the epoxy resin is hard, if the difference in linear expansion coefficient from the member in contact with the epoxy resin is large, the stress generated at the interface is high, causing problems such as peeling and cracking.

特許文献1に記載されている半導体装置は、金属ベースにカーボンナノチューブ膜を介して半導体素子基板を接合している。半導体素子と外部端子との接続に関し、主端子および信号端子ともケース材と一体成型したインサートケースを用いている。そのインサートケース内部をエポキシ樹脂で封止する構造を採用している。   In the semiconductor device described in Patent Document 1, a semiconductor element substrate is bonded to a metal base via a carbon nanotube film. Regarding the connection between the semiconductor element and the external terminal, an insert case integrally molded with the case material is used for both the main terminal and the signal terminal. A structure is employed in which the inside of the insert case is sealed with an epoxy resin.

また、特許文献2に記載されているケース型の半導体装置は、半導体素子基板の絶縁基板が露出している部分を、ケース内部を封止する封止樹脂よりも小さい弾性率の樹脂により覆って、剥離やクラックが発生し難くしている。   Further, in the case type semiconductor device described in Patent Document 2, the portion of the semiconductor element substrate where the insulating substrate is exposed is covered with a resin having a smaller elastic modulus than the sealing resin for sealing the inside of the case. , Peeling and cracking are less likely to occur.

特開2008−258547号公報JP 2008-258547 A 国際公開WO2012/070261号International Publication WO2012 / 070261

高熱伝導性が要求される金属ベースとしては、銅やアルミニウムが用いられる場合が多い。また、半導体素子基板はセラミックス基板の両面に回路パターンが設けられ、回路パターンの上面には半導体素子が搭載されている。特許文献1に記載されている半導体装置のように、インサートケース内に半導体素子基板が設置され、インサートケース内をエポキシ樹脂で封止した場合、金属ベース、半導体素子基板、半導体素子の熱膨張係数が大きく異なることにより、ヒートサイクル時にエポキシ樹脂の割れや剥離などが発生する。このエポキシ樹脂の割れや剥離は、モジュール寿命の低下をまねく課題がある。   In many cases, copper or aluminum is used as a metal base that requires high thermal conductivity. The semiconductor element substrate is provided with circuit patterns on both sides of the ceramic substrate, and the semiconductor elements are mounted on the upper surface of the circuit pattern. As in the semiconductor device described in Patent Document 1, when a semiconductor element substrate is installed in an insert case and the inside of the insert case is sealed with an epoxy resin, the coefficient of thermal expansion of the metal base, the semiconductor element substrate, and the semiconductor element Due to the large difference, cracking or peeling of the epoxy resin occurs during the heat cycle. This cracking or peeling of the epoxy resin has a problem of reducing the module life.

特許文献2に記載されている半導体装置においては、半導体素子基板の絶縁基板が露出している部分を封止樹脂よりも小さい弾性率の封止樹脂で覆っているため、剥離やクラックの発生が抑制されるが、半導体装置の製造工程が増加するという問題がある。   In the semiconductor device described in Patent Document 2, the portion where the insulating substrate of the semiconductor element substrate is exposed is covered with a sealing resin having an elastic modulus smaller than that of the sealing resin. Although suppressed, there is a problem that the manufacturing process of the semiconductor device increases.

この発明は、上記のような問題点を解決するためになされたものであり、ケース型の半導体装置において、単純な構造で剥離やクラックが抑制され、高い信頼性を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain high reliability in a case-type semiconductor device in which peeling and cracks are suppressed with a simple structure.

この発明は、絶縁基板の片面に表面電極が、および前記絶縁基板の他の面に裏面電極が、それぞれ形成された半導体素子基板と、表面電極の、絶縁基板とは反対側の面に接合材を介して固着された半導体素子と、表面電極に接合された第1の主端子および半導体素子の表面電極とは反対側の面に接合された第2の主端子と、半導体素子基板の周辺部の表面電極上に設置され信号端子が一体成型された第1のケースと、第1のケースの内部を、半導体素子と半導体素子基板とを覆うように封止する第1の封止樹脂とを備えた内部モジュールが、一面に複数、それぞれの内部モジュールの裏面電極を接合して配置された放熱板と、放熱板の周辺部であって、内部モジュール側に設けられた第2のケースと、第2のケースの内部を、第1の封止樹脂と第1のケースと半導体素子基板とを覆うように封止する第2の封止樹脂と、を備えた半導体装置において、少なくとも第1のケース内部の表面電極は、絶縁基板全体を被覆し、かつ表面電極と裏面電極は、絶縁基板に対して対称に形成されており、第1の主端子および第2の主端子は第1の封止樹脂および第2の封止樹脂を貫通して第2の封止樹脂の外部に露出するとともに、第2の封止樹脂の弾性率が第1の封止樹脂の弾性率よりも小さくしたものである。   The present invention relates to a semiconductor element substrate in which a surface electrode is formed on one surface of an insulating substrate and a back electrode is formed on the other surface of the insulating substrate, and a bonding material on a surface of the surface electrode opposite to the insulating substrate. A semiconductor element fixed via the surface electrode, a first main terminal bonded to the surface electrode, a second main terminal bonded to the surface opposite to the surface electrode of the semiconductor element, and a peripheral portion of the semiconductor element substrate A first case in which a signal terminal is integrally molded and a first sealing resin that seals the inside of the first case so as to cover the semiconductor element and the semiconductor element substrate. A plurality of internal modules provided on one side, a heat sink arranged by joining the back electrodes of the respective internal modules, and a second case provided on the side of the internal module at the periphery of the heat sink; The inside of the second case is replaced with the first sealing resin And a second sealing resin for sealing so as to cover the first case and the semiconductor element substrate. At least the surface electrode inside the first case covers the entire insulating substrate; and The front electrode and the back electrode are formed symmetrically with respect to the insulating substrate, and the first main terminal and the second main terminal pass through the first sealing resin and the second sealing resin and pass through the second sealing resin. And the elastic modulus of the second sealing resin is smaller than the elastic modulus of the first sealing resin.

この発明によれば、第1のケース内部の表面電極は絶縁基板全体を被覆しているため、表面電極の上面に配置された第1のケース内を熱硬化性のエポキシ樹脂で封止することにより、絶縁基板とエポキシ樹脂が触れることがなく、また半導体素子周囲を硬いエポキシ樹脂で覆うことから、エポキシ樹脂の割れや剥離を防止することが可能となり、耐ヒートサイクル性や耐パワーサイクル性が高く、信頼性の高い半導体装置を得ることができる。   According to the present invention, since the surface electrode inside the first case covers the entire insulating substrate, the inside of the first case disposed on the upper surface of the surface electrode is sealed with the thermosetting epoxy resin. This prevents the insulating substrate and the epoxy resin from touching each other and covers the periphery of the semiconductor element with a hard epoxy resin, so that it is possible to prevent cracking and peeling of the epoxy resin, resulting in heat cycle resistance and power cycle resistance. A highly reliable semiconductor device can be obtained.

この発明の実施の形態1による半導体装置の構成の一部である内部モジュールを示す側面断面図である。It is side surface sectional drawing which shows the internal module which is a part of structure of the semiconductor device by Embodiment 1 of this invention. この発明の実施の形態1による半導体装置の構成の一部である半導体素子基板の上面図である。1 is a top view of a semiconductor element substrate which is a part of a configuration of a semiconductor device according to a first embodiment of the present invention. この発明の実施の形態1による半導体装置の構成の一部である内部モジュールの第1の封止樹脂を取り除いた状態の上面図である。It is a top view of the state which removed the 1st sealing resin of the internal module which is a part of structure of the semiconductor device by Embodiment 1 of this invention. この発明の実施の形態1による半導体装置の全体構成を示す側面断面図である。1 is a side sectional view showing an overall configuration of a semiconductor device according to a first embodiment of the present invention. この発明の実施の形態2による半導体装置の製造工程のうち前半の工程を示す工程図である。It is process drawing which shows the process of the first half among the manufacturing processes of the semiconductor device by Embodiment 2 of this invention. この発明の実施の形態2による半導体装置の製造工程のうち図5に示した工程に続く工程を示す工程図である。FIG. 6 is a process diagram illustrating a process following the process illustrated in FIG. 5 among the processes for manufacturing a semiconductor device according to the second embodiment of the present invention; この発明の実施の形態3による半導体装置の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the semiconductor device by Embodiment 3 of this invention. この発明の半導体装置の実施例によるヒートサイクル試験結果の表を示す図である。It is a figure which shows the table | surface of the heat cycle test result by the Example of the semiconductor device of this invention.

実施の形態1.
図1は、本発明の実施の形態1による半導体装置の構成の一部である内部モジュール20を示す側面断面図である。図1において、セラミックスなどの絶縁基板3aの片面には、パターンを有さない単一の表面電極3bが形成され、他の面には、やはりパターンを有さない単一の裏面電極3cが形成されている。表面電極3bおよび裏面電極3cは銅などの導電性材料の薄板である。表面電極3bおよび裏面電極3cが形成された絶縁基板3aを、ここでは半導体素子基板3と称する。半導体素子基板3の表面電極3bのうちの所定の位置に、半導体素子1a、1bが導電性の接合材2を用いて固定され、半導体素子1aの一方の主電極と半導体素子1bの一方の主電極が電気的に接続される。ここで、半導体素子1aは例えばIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field-Effect-Transistor)のようなスイッチング素子である。半導体素子1bは例えばスイッチング素子と並列に接続される還流ダイオードである。
Embodiment 1 FIG.
FIG. 1 is a side sectional view showing an internal module 20 which is a part of the configuration of the semiconductor device according to the first embodiment of the present invention. In FIG. 1, a single surface electrode 3b having no pattern is formed on one surface of an insulating substrate 3a such as ceramic, and a single back electrode 3c also having no pattern is formed on the other surface. Has been. The front electrode 3b and the back electrode 3c are thin plates made of a conductive material such as copper. The insulating substrate 3a on which the front electrode 3b and the back electrode 3c are formed is referred to as a semiconductor element substrate 3 here. The semiconductor elements 1a and 1b are fixed at predetermined positions on the surface electrode 3b of the semiconductor element substrate 3 by using the conductive bonding material 2, and one main electrode of the semiconductor element 1a and one main electrode of the semiconductor element 1b are fixed. The electrodes are electrically connected. Here, the semiconductor element 1a is a switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field-Effect-Transistor). The semiconductor element 1b is, for example, a free wheel diode connected in parallel with the switching element.

スイッチング素子である半導体素子1aのゲート電極や、電流センサあるいは温度センサといったセンサ類などの信号の入出力を行う信号端子6が第1のケース4と一体成型されて設けられている。信号端子6と半導体素子1aのゲート電極やセンサ類との信号伝送のための電気的な接続はボンディングワイヤ7により行われる。また、半導体素子1a、1bの表面電極3bとの接合面との反対側の面に形成された主電極(他方の主電極)は、第2の主端子5bとなる金属板で導電性の接合材8を用いて固定されるとともに電気的に接続される。一方、表面電極3bには第1の主端子5aが電気的に接合材を用いて接続される。第1の主端子5aと第2の主端子5bをまとめて主端子5と称することもある。第1の主端子5aと第2の主端子5bは、これらの端子を通じて半導体装置の半導体素子1aや1bが制御する電力用の電流を、半導体素子1aや1bに流すための端子である。   A signal terminal 6 for inputting / outputting signals such as a gate electrode of the semiconductor element 1a which is a switching element and sensors such as a current sensor or a temperature sensor is integrally formed with the first case 4. Electrical connection for signal transmission between the signal terminal 6 and the gate electrode and sensors of the semiconductor element 1 a is performed by a bonding wire 7. The main electrode (the other main electrode) formed on the surface opposite to the bonding surface with the surface electrode 3b of the semiconductor elements 1a and 1b is a metal plate serving as the second main terminal 5b and is conductively bonded. The material 8 is fixed and electrically connected. On the other hand, the first main terminal 5a is electrically connected to the surface electrode 3b using a bonding material. The first main terminal 5a and the second main terminal 5b may be collectively referred to as the main terminal 5. The first main terminal 5a and the second main terminal 5b are terminals for allowing a current for power controlled by the semiconductor elements 1a and 1b of the semiconductor device to flow through the semiconductor elements 1a and 1b through these terminals.

第1のケース4は、接着剤を介して表面電極3bの周辺部上に固定されている。半導体素子1a、1bや配線部材であるボンディングワイヤ7や主端子5を含めて、第1のケース4の内部が第1の封止樹脂9で封止されている。ただし、配線部材のうち第1の主端子5aおよび第2の主端子5bは、外部との電気的接続を行うために上部が第1の封止樹脂9から露出している。   The first case 4 is fixed on the periphery of the surface electrode 3b via an adhesive. The inside of the first case 4 is sealed with a first sealing resin 9 including the semiconductor elements 1 a and 1 b, the bonding wires 7 that are wiring members, and the main terminals 5. However, the upper part of the first main terminal 5a and the second main terminal 5b of the wiring member is exposed from the first sealing resin 9 in order to make an electrical connection with the outside.

つぎに、各部材の詳細について説明する。半導体素子1a、1bは、シリコーン(Si)を基材とした一般的な素子でも良いが、本発明は、より高温で動作する半導体素子に適用したときに好適な構造を目指している。半導体素子1a、1bが、例えば炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料、またはダイヤモンドといったシリコーンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料の半導体素子、特に炭化ケイ素を用いた半導体素子に本発明は好適である。デバイス種類としては、特に限定しないが、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field-Effect-Transistor)のようなスイッチング素子、またはダイオードのような整流素子が考えられる。   Next, details of each member will be described. The semiconductor elements 1a and 1b may be general elements based on silicone (Si), but the present invention aims at a suitable structure when applied to a semiconductor element operating at a higher temperature. The semiconductor elements 1a and 1b use semiconductor elements of a so-called wide band gap semiconductor material, particularly silicon carbide, which has a wider band gap than silicon carbide (SiC), gallium nitride (GaN) based materials, or silicone such as diamond. The present invention is suitable for semiconductor elements. Although it does not specifically limit as a device kind, Switching elements, such as IGBT (Insulated Gate Bipolar Transistor) and MOSFET (Metal Oxide Semiconductor Field-Effect-Transistor), or a rectifier element like a diode can be considered.

例えば半導体素子1aがMOSFETの場合、半導体素子1aの表面電極3b側の面にはドレイン電極が形成されている。ドレイン電極と反対側(図1では上側)の面には、ゲート電極やソース電極が、領域を分けて形成されている。なお、ドレイン電極の表面には接合材との接合を良好とするための複合金属膜が形成されている。ソース電極の表面にも、厚さ数μmの薄いアルミニウムなどの電極膜やチタン、モリブデン、ニッケル、金などの薄膜層が形成されている。   For example, when the semiconductor element 1a is a MOSFET, a drain electrode is formed on the surface of the semiconductor element 1a on the surface electrode 3b side. On the surface opposite to the drain electrode (upper side in FIG. 1), a gate electrode and a source electrode are formed in divided regions. Note that a composite metal film is formed on the surface of the drain electrode to improve the bonding with the bonding material. On the surface of the source electrode, a thin electrode film such as aluminum having a thickness of several μm and a thin film layer such as titanium, molybdenum, nickel, and gold are formed.

接合材2や接合材8としては、はんだや、例えば銀を主成分とする焼結性フィラーやろう材、錫中に銅を分散した材料といった、熱伝導性が良く導電性の接合材料が適用できる。配線部材としてのボンディングワイヤ7の材質として、アルミニウム、銅、金、銀などがあげられる。配線部材としての主端子5は、大電流が流れることから導電性のよい金属が用いられる。中でも、銅材が電気抵抗、加工性やコストの点から最適である。   As the bonding material 2 and the bonding material 8, a conductive bonding material having good thermal conductivity, such as solder, a sinter filler or brazing material mainly composed of silver, or a material in which copper is dispersed in tin, is applied. it can. Examples of the material of the bonding wire 7 as the wiring member include aluminum, copper, gold, and silver. The main terminal 5 as the wiring member is made of a highly conductive metal because a large current flows. Of these, copper is the most suitable from the viewpoint of electrical resistance, workability and cost.

また、配線部材としての信号端子6は、主端子5のように大電流が流れることはない。したがって、導電性の金属材料であればよいが、主端子5と同様に銅材を使用することが可能である。銅材を使用する場合、第1のケース4と一体成型するため、第1のケース4成型時の300℃前後の高温下で表面状態が変化しないことが必要である。そのため、銅材等を使用する場合は、300℃の高温下では表面の酸化が激しく、酸化するとボンディングワイヤ7との接合が困難となる問題があり、酸化防止として表面にニッケルメッキを施す必要がある。   Further, the signal terminal 6 as a wiring member does not flow a large current unlike the main terminal 5. Accordingly, a conductive metal material may be used, but a copper material can be used similarly to the main terminal 5. When using a copper material, since it is integrally molded with the first case 4, it is necessary that the surface state does not change at a high temperature of about 300 ° C. when the first case 4 is molded. Therefore, when using a copper material or the like, there is a problem that the oxidation of the surface is severe at a high temperature of 300 ° C., and if it is oxidized, it becomes difficult to join the bonding wire 7. is there.

半導体素子基板3の表面電極3bおよび裏面電極3cとも、パターンが形成されていないべた状の導電性材料である。図2に、半導体素子基板3の上面図、すなわち表面電極3b側から見た図を示す。図2に示すように、表面電極3bにはパターンが形成されておらず、周辺部以外は絶縁基板3aが露出していない。半導体素子基板3のコア材となる絶縁基板3aとしては、伝熱性に優れた窒化アルミニウム、窒化ケイ素、窒化ホウ素、酸化アルミニウム(アルミナ)などのセラミックス材料を用いることができる。表面電極3bおよび裏面電極3cは、銅、アルミニウムなどの導電性材料またはそれらを主成分とする合金材料からなり、ろう材などで絶縁基板3aに対して接合されている。そして表面電極3bおよび裏面電極3cの表面には、酸化防止や接合材料の濡れ性を考慮して、ニッケルなどのめっき被膜が形成されている場合がある。表面電極3bと裏面電極3cとを絶縁基板3aに対して対称に形成することで、半導体素子基板3の反りを抑制することができ、半導体素子1aおよび1bの接合材2を用いての実装が容易となる。   Both the front surface electrode 3b and the back surface electrode 3c of the semiconductor element substrate 3 are solid conductive materials on which no pattern is formed. FIG. 2 shows a top view of the semiconductor element substrate 3, that is, a view seen from the surface electrode 3b side. As shown in FIG. 2, no pattern is formed on the surface electrode 3b, and the insulating substrate 3a is not exposed except in the periphery. As the insulating substrate 3a serving as the core material of the semiconductor element substrate 3, a ceramic material such as aluminum nitride, silicon nitride, boron nitride, and aluminum oxide (alumina) having excellent heat conductivity can be used. The front electrode 3b and the back electrode 3c are made of a conductive material such as copper or aluminum or an alloy material containing them as a main component, and are joined to the insulating substrate 3a with a brazing material or the like. A plating film such as nickel may be formed on the surfaces of the front electrode 3b and the back electrode 3c in consideration of oxidation prevention and wettability of the bonding material. By forming the front surface electrode 3b and the back surface electrode 3c symmetrically with respect to the insulating substrate 3a, the warp of the semiconductor element substrate 3 can be suppressed, and mounting of the semiconductor elements 1a and 1b using the bonding material 2 can be performed. It becomes easy.

第1のケース4は信号端子6と一体成型され、第1の封止樹脂9を注入する際に樹脂漏れを防止するために設ける。第1のケース4の材料としては、少なくとも第1の封止樹脂9の硬化温度や、半導体素子1a、1bが動作する際の半導体装置の温度以上の融点を有する樹脂材であれば良い。この条件を満足する材料として、通常ケースとして良く用いられるポリp−フェニレンサルファイド樹脂(PPS)やポリブチレンテレフタレート樹脂(PBT)、ナイロン樹脂、液晶ポリマー(LCP)などがある。   The first case 4 is formed integrally with the signal terminal 6 and is provided to prevent resin leakage when the first sealing resin 9 is injected. The material of the first case 4 may be a resin material having a melting point equal to or higher than at least the curing temperature of the first sealing resin 9 and the temperature of the semiconductor device when the semiconductor elements 1a and 1b operate. Examples of materials that satisfy this condition include poly p-phenylene sulfide resin (PPS), polybutylene terephthalate resin (PBT), nylon resin, and liquid crystal polymer (LCP) that are often used as a case.

第1の封止樹脂9は、室温で液体の性状を示すエポキシ系などの熱硬化性樹脂に、溶融シリカなどのセラミックス粒子・繊維等のフィラーを混入し、硬化後の熱膨張係数や弾性率を調整した材料である。注入の際は、硬化反応が起こらない温度範囲で、加温して流動性を良くして注入することができる。第1の封止樹脂9の熱膨張係数を、半導体素子基板の熱膨張係数に近い熱膨張係数とすることで、界面に発生する応力を低減でき界面剥離や樹脂破断を防止でき、モジュールの信頼性を向上させることができる。絶縁基板3aの熱膨張係数は、窒化アルミニウムが4.5ppm/K、窒化ケイ素が3ppm/K、酸化アルミニウムが7.3ppm/Kであり、表面電極3bや裏面電極3cの熱膨張係数は、銅が17ppm/K、アルミニウムが24ppm/Kである。したがって、絶縁基板3aと表面電極3bおよび裏面電極3cの厚み構成によるが、絶縁基板3aに表面電極3bおよび裏面電極3cが接合された半導体素子基板3全体としての熱膨張係数は、7〜15ppm/Kとなる。したがって、第1の封止樹脂9のガラス転移温度以下の熱膨張係数も7〜15ppm/Kであることが望ましい。   The first sealing resin 9 is an epoxy-based thermosetting resin that exhibits liquid properties at room temperature, mixed with fillers such as ceramic particles and fibers such as fused silica, and has a thermal expansion coefficient and elastic modulus after curing. It is a material adjusted. At the time of injection, it can be injected in a temperature range in which a curing reaction does not occur with heating to improve fluidity. By making the thermal expansion coefficient of the first sealing resin 9 close to the thermal expansion coefficient of the semiconductor element substrate, it is possible to reduce the stress generated at the interface and prevent interface peeling and resin breakage, and the reliability of the module Can be improved. The thermal expansion coefficients of the insulating substrate 3a are 4.5 ppm / K for aluminum nitride, 3 ppm / K for silicon nitride, and 7.3 ppm / K for aluminum oxide. The thermal expansion coefficients of the front electrode 3b and the back electrode 3c are copper. Is 17 ppm / K, and aluminum is 24 ppm / K. Therefore, depending on the thickness configuration of the insulating substrate 3a, the front electrode 3b, and the back electrode 3c, the thermal expansion coefficient of the entire semiconductor element substrate 3 in which the front electrode 3b and the back electrode 3c are joined to the insulating substrate 3a is 7 to 15 ppm / K. Therefore, it is desirable that the thermal expansion coefficient of the first sealing resin 9 not higher than the glass transition temperature is also 7 to 15 ppm / K.

図3に、内部モジュール20のうち、第1の封止樹脂9を取り除いた上面図を示す。第1のケース4が表面電極3b上に形成されているため、第1のケース4内の半導体素子基板3には、絶縁基板3aが露出している部分が無い。従って、第1のケース4内を第1の封止樹脂9で封止したとき、第1の封止樹脂9が絶縁基板3aと接触する部分が無い。このため、第1の封止樹脂9を、半導体素子基板3全体としての熱膨張係数に近い熱膨張係数としておくことで、ヒートサイクルによる剥離が生じ難くなる。本発明の半導体装置に対し、例えば特許文献1の半導体装置では、表面電極にパターンが形成されており、封止樹脂とセラミックスが直接接する部分が存在するため、ヒートサイクルによりこの部分に剥離が生じる恐れがあった。   FIG. 3 shows a top view of the internal module 20 with the first sealing resin 9 removed. Since the first case 4 is formed on the surface electrode 3b, the semiconductor element substrate 3 in the first case 4 has no portion where the insulating substrate 3a is exposed. Therefore, when the inside of the first case 4 is sealed with the first sealing resin 9, there is no portion where the first sealing resin 9 contacts the insulating substrate 3a. For this reason, the 1st sealing resin 9 is made into the thermal expansion coefficient close | similar to the thermal expansion coefficient as the whole semiconductor element substrate 3, and it becomes difficult to produce peeling by a heat cycle. In contrast to the semiconductor device of the present invention, for example, in the semiconductor device of Patent Document 1, a pattern is formed on the surface electrode, and there is a portion where the sealing resin and the ceramic are in direct contact, and therefore this portion is peeled off by heat cycle. There was a fear.

また、例えば、特許文献1など従来の半導体装置では、半導体素子の大電流が流れる主電極と半導体装置外部との接続のための端子を、ケースに設け、この端子と主電極との間を表面電極のパターンを介してボンディングワイヤなどにより接続していた。一方、本発明の半導体装置の内部モジュール20では、表面電極3bにパターンを形成していないため、半導体素子1aや1bの大電流が流れる主電極と半導体装置外部との接続のための端子を、パターンを設けた表面電極を介さず、また第1のケース4に設けた端子とせず、表面電極3bから第1の封止樹脂9を貫通して直接引き出す第1の主端子5aとして設けた。また、半導体素子1aや1bのもう一方の主電極から外部に引き出すための端子も、表面電極を介さず、また第1のケース4に設けた端子とせず、第1の封止樹脂9を貫通して直接引き出す第2の主端子5bとして設けた。   Further, for example, in a conventional semiconductor device such as Patent Document 1, a terminal for connecting a main electrode through which a large current of a semiconductor element flows and the outside of the semiconductor device is provided in a case, and the surface between the terminal and the main electrode It was connected by a bonding wire or the like through an electrode pattern. On the other hand, in the internal module 20 of the semiconductor device of the present invention, since no pattern is formed on the surface electrode 3b, a terminal for connecting the main electrode through which a large current of the semiconductor elements 1a and 1b flows and the outside of the semiconductor device is provided. The first main terminal 5a was not drawn through the surface electrode provided with the pattern and was not used as the terminal provided in the first case 4 but directly pulled out from the surface electrode 3b through the first sealing resin 9. Further, a terminal for leading out from the other main electrode of the semiconductor element 1a or 1b is not provided with a surface electrode or a terminal provided in the first case 4, and penetrates the first sealing resin 9. And provided as the second main terminal 5b directly drawn out.

図4は、本発明の実施の形態1による半導体装置の全体構成を示す側面断面図である。図1に示した内部モジュール20を複数、放熱板10の上に配置し、放熱板10の周辺部に設けた第2のケース12の内部を第2の封止樹脂13で封止する構造になっている。また、第1の封止樹脂9を貫通して第1の封止樹脂9の外部に取り出された第1の主端子5aおよび第2の主端子5bは、第2の封止樹脂13も貫通して第2の封止樹脂13の外部に露出させる構成となっている。   FIG. 4 is a side sectional view showing the overall configuration of the semiconductor device according to the first embodiment of the present invention. A plurality of internal modules 20 shown in FIG. 1 are arranged on the heat sink 10 and the inside of the second case 12 provided in the periphery of the heat sink 10 is sealed with the second sealing resin 13. It has become. In addition, the first main terminal 5a and the second main terminal 5b that have been taken out of the first sealing resin 9 through the first sealing resin 9 also penetrated the second sealing resin 13. Thus, the second sealing resin 13 is exposed to the outside.

金属製の放熱板10は、熱伝導性の良い金属材料、例えば銅の板材で構成されている。銅が主成分であれば良く、銅以外の金属を含有していても構わない。また、軽量で熱伝導性の高いアルミニウムまたはその合金でもよい。放熱板10は接合材11を介して半導体素子基板3の裏面電極3cと接合している。放熱板10と裏面電極3cとの接合材は半導体素子1と表面電極3bとの接合材と同様に熱伝導性の良いはんだや、例えば銀を主成分とする焼結性フィラーやろう材を用いることもできる。さらに、熱伝導性の良い絶縁性の接着剤でも構わない。   The metal heat sink 10 is made of a metal material having good thermal conductivity, for example, a copper plate. It suffices if copper is a main component, and a metal other than copper may be contained. Also, aluminum or an alloy thereof having light weight and high thermal conductivity may be used. The heat sink 10 is bonded to the back electrode 3 c of the semiconductor element substrate 3 through the bonding material 11. As the bonding material between the heat radiating plate 10 and the back surface electrode 3c, a solder having a good thermal conductivity, for example, a sinterable filler or brazing material containing silver as a main component, is used similarly to the bonding material between the semiconductor element 1 and the front surface electrode 3b. You can also. Furthermore, an insulating adhesive having good thermal conductivity may be used.

第2のケース12は、放熱板10と接着剤等で固定されている。第2のケース12は硬化前の第2の封止樹脂13を注入する際に樹脂漏れを防止するために設けている。第2のケース12の材料としては第1のケース4で説明した材料と同じものを用いることができる。第2の封止樹脂13は、硬化後、第1の封止樹脂9よりも軟らかい、すなわち弾性率が小さい樹脂を用いる。したがって、第2の封止樹脂13は、硬化前に室温で流動性を示す樹脂であれば良いが、大型のモジュール全体を封止するとともに、硬化後、発生応力が大きくならないよう、シリコーン系やウレタン系の軟らかい樹脂が良い。   The second case 12 is fixed to the heat sink 10 with an adhesive or the like. The second case 12 is provided to prevent resin leakage when the second sealing resin 13 before curing is injected. As the material of the second case 12, the same material as that described in the first case 4 can be used. The second sealing resin 13 uses a resin that is softer than the first sealing resin 9 after curing, that is, a resin having a low elastic modulus. Therefore, the second sealing resin 13 may be any resin that exhibits fluidity at room temperature before curing, but seals the entire large module and, after curing, does not increase the generated stress. Urethane soft resin is good.

以上説明したように、本発明の実施の形態1による半導体装置は、表面電極3bにパターンを形成せず、第1の封止樹脂9と半導体素子基板3の絶縁基板3aが直接接する部分が無ため、第1の封止樹脂9が半導体素子基板3から剥離し難い。また、表面電極3bにパターンを形成していないため、表面電極3bに電気的に接続された第1の主端子5aを第1の封止樹脂9および第2の封止樹脂13を貫通して第2の封止樹脂13の外部に露出させる構成にした。また、半導体素子1aや1bの、表面電極3bに接合された側と反対側に形成された主電流を流すための主電極に電気的に接続された第2の主端子5bも第1の封止樹脂9および第2の封止樹脂13を貫通して第2の封止樹脂13の外部に露出させる構成にした。すなわち半導体素子1aや1bに半導体装置外部から主電流を流すための主端子5を第1の封止樹脂9および第2の封止樹脂13を貫通させて第2の封止樹脂13の外部に露出させる構成とした。このように、主端子を従来のようにケースに設けず第2の封止樹脂13から直接露出する構成としたので端子配置の自由度が増すというメリットがある。また、半導体素子基板3のうち、絶縁基板3aと封止樹脂が接する部分は封止樹脂としては弾性率が小さい第2の封止樹脂13となっているため、応力が低減され、この部分での剥離が抑制される。   As described above, the semiconductor device according to the first embodiment of the present invention does not form a pattern on the surface electrode 3b, and there is no portion where the first sealing resin 9 and the insulating substrate 3a of the semiconductor element substrate 3 are in direct contact. Therefore, the first sealing resin 9 is difficult to peel from the semiconductor element substrate 3. Further, since no pattern is formed on the surface electrode 3b, the first main terminal 5a electrically connected to the surface electrode 3b passes through the first sealing resin 9 and the second sealing resin 13. The second sealing resin 13 is exposed outside. The second main terminal 5b electrically connected to the main electrode for flowing the main current formed on the side opposite to the side joined to the surface electrode 3b of the semiconductor elements 1a and 1b is also the first seal. The structure is such that it passes through the stop resin 9 and the second sealing resin 13 and is exposed to the outside of the second sealing resin 13. That is, the main terminal 5 for allowing a main current to flow to the semiconductor elements 1a and 1b from the outside of the semiconductor device passes through the first sealing resin 9 and the second sealing resin 13 to the outside of the second sealing resin 13. It was set as the structure exposed. As described above, since the main terminal is not directly provided in the case as in the conventional case and is directly exposed from the second sealing resin 13, there is an advantage that the degree of freedom of terminal arrangement is increased. Further, in the semiconductor element substrate 3, the portion where the insulating substrate 3 a contacts the sealing resin is the second sealing resin 13 having a low elastic modulus as the sealing resin, so that the stress is reduced. Is prevented from peeling.

実施の形態2.
実施の形態2では、本実施の形態1による半導体装置100の製造方法について、製造方法の工程を図示する図5および図6を参照して説明する。図5のST1に示すように、半導体素子基板3は半導体素子が配置される上面に表面電極3bを、下面にも裏面電極3cをパターン無で形成している。この半導体素子基板3の表面電極3bに半導体素子1aおよび半導体素子1bを導電性の接合材2を用いて固定する。同時もしくはその後、スイッチング素子である半導体素子1aと還流ダイオードである半導体素子1bの表面に形成された主電極と接続し外部電極となる第2の主端子5bと、表面電極3bから直接外部電
極を取り出す第1の主端子5aを形成する。
Embodiment 2. FIG.
In the second embodiment, a method for manufacturing the semiconductor device 100 according to the first embodiment will be described with reference to FIGS. 5 and 6 illustrating the steps of the manufacturing method. As shown in ST1 of FIG. 5, the semiconductor element substrate 3 has a surface electrode 3b formed on the upper surface on which the semiconductor element is disposed and a back electrode 3c formed on the lower surface without a pattern. The semiconductor element 1 a and the semiconductor element 1 b are fixed to the surface electrode 3 b of the semiconductor element substrate 3 using the conductive bonding material 2. At the same time or thereafter, a second main terminal 5b that is connected to the main electrode formed on the surface of the semiconductor element 1a that is a switching element and a semiconductor element 1b that is a free-wheeling diode and serves as an external electrode, and an external electrode directly from the surface electrode 3b A first main terminal 5a to be taken out is formed.

次に、ST2に示すように、信号端子6が一体成型された第1のケース4を表面電極3b上に接合する。接合には接着剤等を用いる。次に、ST3に示すように、半導体素子1aと第1のケース4内にある信号端子6との間をボンディングワイヤ7で接続する。次に、ST4に示すように、エポキシ系からなる第1の封止樹脂9を形成するための硬化前の樹脂を第1のケース4の内部に注入する。この際、室温で流動性を示す硬化前の樹脂の注入作業を良くするために、樹脂の硬化反応が進行しない範囲で加温してもよい。樹脂の注入量は、第1のケース4を超えない範囲であればよい。第1の封止樹脂9を形成するための硬化前の樹脂を注入後に、加温することで樹脂の硬化を行う。ST4で内部モジュール20が形成された。   Next, as shown in ST2, the first case 4 in which the signal terminal 6 is integrally molded is joined onto the surface electrode 3b. An adhesive or the like is used for bonding. Next, as shown in ST 3, the semiconductor element 1 a and the signal terminal 6 in the first case 4 are connected by the bonding wire 7. Next, as shown in ST4, a resin before curing for forming the first sealing resin 9 made of epoxy is injected into the first case 4. At this time, in order to improve the injection operation of the resin before curing that exhibits fluidity at room temperature, the resin may be heated in a range in which the resin curing reaction does not proceed. The injection amount of the resin may be in a range not exceeding the first case 4. The resin is cured by heating after injecting the uncured resin for forming the first sealing resin 9. In ST4, the internal module 20 was formed.

次に、図6に示すST5のように、ST4で形成した内部モジュール20を複数個、放熱板10の所定位置に、裏面電極3cの面と接合材11を介して接合する。さらに、ST6に示すように、放熱板10の外周部に第2のケース12を接合する。接合には接着剤等を用いる。最後に、ST7に示すように、第2のケース12の内部にシリコーン系やウレタン系からなる第1の封止樹脂9よりも軟らかい第2の各封止樹脂13を形成する硬化前の樹脂を注入し、樹脂の硬化を行う。   Next, as in ST5 shown in FIG. 6, a plurality of internal modules 20 formed in ST4 are bonded to predetermined positions of the heat radiating plate 10 via the bonding material 11 and the surface of the back electrode 3c. Furthermore, as shown in ST6, the second case 12 is joined to the outer peripheral portion of the heat radiating plate 10. An adhesive or the like is used for bonding. Finally, as shown in ST7, a resin before curing that forms the second sealing resin 13 that is softer than the first sealing resin 9 made of silicone or urethane inside the second case 12 is used. Inject and cure the resin.

以上のようにして製造した半導体装置100の動作について説明する。半導体装置100を駆動させると、半導体素子1a、1bをはじめとする半導体装置100内の様々な素子に電流が流れ、その際に電気抵抗成分やスイッチングによる電力ロスが熱に変換され発熱する。半導体素子1a、1bで発生した熱は半導体素子基板3を経由して、放熱板10を介して外部に放熱されることになるが、半導体装置100全体の温度も上昇する。このとき半導体素子1a、1bとして、SiCのような高温動作が可能な半導体材料の半導体素子を用いると、電流が大きく、動作時の温度は300℃にまで達する。しかし、本発明による半導体装置100では、半導体素子1や配線部材であるボンディングワイヤ7や主端子5等の回路部材を含む半導体素子基板の回路面側をエポキシ系からなる封止樹脂9により拘束し、しかも、第1の封止樹脂9の熱膨張係数を半導体素子基板の熱膨張係数に近くなるように調整しているので、半導体素子基板や回路部材に対する熱応力の発生を抑えることができる。   The operation of the semiconductor device 100 manufactured as described above will be described. When the semiconductor device 100 is driven, current flows through various elements in the semiconductor device 100 including the semiconductor elements 1a and 1b, and at that time, electric resistance components and power loss due to switching are converted into heat to generate heat. The heat generated in the semiconductor elements 1a and 1b is radiated to the outside via the semiconductor element substrate 3 and the heat radiating plate 10, but the temperature of the entire semiconductor device 100 also rises. At this time, when a semiconductor element made of a semiconductor material capable of high-temperature operation such as SiC is used as the semiconductor elements 1a and 1b, the current is large and the temperature during operation reaches 300 ° C. However, in the semiconductor device 100 according to the present invention, the circuit surface side of the semiconductor element substrate including circuit elements such as the semiconductor elements 1 and the wiring members 7 such as the bonding wires 7 and the main terminals 5 is restrained by the sealing resin 9 made of epoxy. In addition, since the thermal expansion coefficient of the first sealing resin 9 is adjusted to be close to the thermal expansion coefficient of the semiconductor element substrate, the generation of thermal stress on the semiconductor element substrate and circuit members can be suppressed.

半導体素子基板3の沿面の絶縁性の確保は、軟らかい第2の封止樹脂13で行う。もし、エポキシ系の封止樹脂で覆った場合、半導体素子基板と銅やアルミニウムからなる放熱板10とは熱膨張係数が異なることから、発生応力をエポキシ系の封止樹脂吸収できなく、剥離や樹脂クラックなどの問題を引き起こす。そこで、軟らかい第2の封止樹脂13で応力低減を図る。   The insulation of the creeping surface of the semiconductor element substrate 3 is ensured by the soft second sealing resin 13. If it is covered with an epoxy-based sealing resin, the semiconductor element substrate and the heat sink 10 made of copper or aluminum have different coefficients of thermal expansion. Causes problems such as resin cracks. Therefore, the stress is reduced by the soft second sealing resin 13.

したがって、放熱特性に優れ、ヒートサイクル信頼性の高い半導体装置を得ることが可能となる。   Therefore, it is possible to obtain a semiconductor device having excellent heat dissipation characteristics and high heat cycle reliability.

実施の形態3.
本実施の形態3では、実施の形態2とは別の半導体装置の製造方法について、製造方法の工程を図示する図7を参照して説明する。ST1からST3までの工程は図5に示す実施の形態2と同様である。ST3の後、図7に示すST11のように、第1の封止樹脂9による封止をしていない内部モジュール21を複数個、放熱板10に配置し、接合材11により接合した後、ST12に示すように、各内部モジュール21の第1のケース4の内部を第1の封止樹脂9により封止する。ST12の工程の後は、図6に示したST6およびST7の工程を実施する。このように、本実施の形態3は、実施の形態2におけるエポキシ系の第1の封止樹脂9の封止工程を、半導体素子基板を放熱板10に接合した後に実
施するものである。接合材11にて放熱板10に半導体素子基板を接合する工程で、接合材2または接合材8として、半田材のように加熱すると再溶融する可能性がある。半田が再溶融すると体積膨張が大きく、高温下でエポキシ系の第1の封止樹脂9の強度低下もあって、樹脂割れが発生する。
Embodiment 3 FIG.
In the third embodiment, a method of manufacturing a semiconductor device different from that of the second embodiment will be described with reference to FIG. 7 illustrating the steps of the manufacturing method. The steps from ST1 to ST3 are the same as in the second embodiment shown in FIG. After ST3, as in ST11 shown in FIG. 7, a plurality of internal modules 21 not sealed with the first sealing resin 9 are arranged on the heat sink 10 and joined with the joining material 11, and then ST12. As shown in FIG. 2, the inside of the first case 4 of each internal module 21 is sealed with the first sealing resin 9. After the step ST12, the steps ST6 and ST7 shown in FIG. 6 are performed. As described above, in the third embodiment, the sealing step of the epoxy-based first sealing resin 9 in the second embodiment is performed after the semiconductor element substrate is joined to the heat sink 10. In the step of bonding the semiconductor element substrate to the heat radiating plate 10 with the bonding material 11, there is a possibility that the bonding material 2 or the bonding material 8 may be remelted when heated like a solder material. When the solder is re-melted, the volume expansion is large, and the strength of the epoxy-based first sealing resin 9 is reduced at a high temperature, causing a resin crack.

本実施の形態3によれば、接合材11にて放熱板10に半導体素子基板を接合する工程で、接合材2または接合材8が再溶融しても周囲が第1の封止樹脂9で覆われていないために樹脂割れの問題が解決される。   According to the third embodiment, in the step of bonding the semiconductor element substrate to the heat radiating plate 10 with the bonding material 11, even if the bonding material 2 or the bonding material 8 is remelted, the periphery is the first sealing resin 9. The problem of resin cracking is solved because it is not covered.

実施例.
図4の構造の半導体装置を実施の形態3で説明した製造工程により作製し、ヒートサイクル信頼性試験に投入した。まず、半導体装置100の具体的な構成について説明する。
Example.
A semiconductor device having the structure shown in FIG. 4 was manufactured by the manufacturing process described in the third embodiment and put into a heat cycle reliability test. First, a specific configuration of the semiconductor device 100 will be described.

窒化ケイ素からなる絶縁基板3a(40mm×20mm、厚み0.32mm)表面に0.5mm厚の銅製の表面電極3bおよび裏面電極3cを形成して半導体素子基板3とする。半導体素子1aとして、15mm×15mm、厚み0.25mmのIGBTチップと、半導体素子1bとして、15mm×10mm、厚み0.25mmのダイオードチップ各1個を、半田接合材2を用いて、半導体素子基板3に接合する。銅製(ニッケルメッキなし)の主端子5aおよび5bも半田接合材を用いて接合する。   A surface element 3b and a back electrode 3c made of copper having a thickness of 0.5 mm are formed on the surface of an insulating substrate 3a (40 mm × 20 mm, thickness 0.32 mm) made of silicon nitride to obtain a semiconductor element substrate 3. The semiconductor element 1a is a 15 mm × 15 mm IGBT chip having a thickness of 0.25 mm, and the semiconductor element 1b is a diode chip having a size of 15 mm × 10 mm and a thickness of 0.25 mm. 3 is joined. The main terminals 5a and 5b made of copper (without nickel plating) are also bonded using a solder bonding material.

銅にニッケルメッキを施した信号端子6を一体成型したPPS製の第1のケース4をシリコーン系の接着剤を用いて半導体素子基板3の表面電極3b上に接合する。0.15mm径のアルミニウムからなるボンディングワイヤ7で電気配線を行い、内部モジュール21を作製する。   A first case 4 made of PPS, in which a signal terminal 6 in which nickel is plated on copper, is integrally formed, is bonded onto the surface electrode 3b of the semiconductor element substrate 3 using a silicone-based adhesive. Electrical wiring is performed with a bonding wire 7 made of aluminum having a diameter of 0.15 mm to produce an internal module 21.

その後、2個の上記内部モジュール21を放熱板10の所定位置に半田接合材11を用いて接合する。室温で液状である硬化前のエポキシ系の第1の封止樹脂9を第1のケース4内に注入した後、第1の封止樹脂9の硬化を行う。   Thereafter, the two internal modules 21 are joined to predetermined positions of the heat sink 10 using the solder joint material 11. After injecting the epoxy-based first sealing resin 9 that is liquid at room temperature into the first case 4, the first sealing resin 9 is cured.

PPSからなる第2のケース12を放熱板10の周囲にシリコーン系接着剤を用いて固定し、シリコーン系の硬化前の第2の封止樹脂13を注入する。シリコーン系の第2の封止樹脂13は硬化後にゲル状の性状を示す。   A second case 12 made of PPS is fixed around the heat sink 10 using a silicone adhesive, and a second sealing resin 13 before silicone curing is injected. The silicone-based second sealing resin 13 exhibits a gel-like property after being cured.

さらに、実施の形態2および実施の形態3には記載していないが、第2のケース12にPPS製の蓋を固定し、蓋から外部に露出している主端子5を曲げ加工して半導体装置100を完成させる。   Further, although not described in the second embodiment and the third embodiment, a PPS lid is fixed to the second case 12, and the main terminal 5 exposed to the outside from the lid is bent and processed. The apparatus 100 is completed.

この半導体装置100を−40℃から125℃(各30分間保持)のヒートサイクル信頼性試験に投入し、500サイクル毎に取り出し、外観上の損傷、半導体素子の動作、半導体素子基板の絶縁試験(2.5kV、1分間印加)を実施して問題ないかを確認した。   This semiconductor device 100 is put into a heat cycle reliability test at -40 ° C. to 125 ° C. (held for 30 minutes each), taken out every 500 cycles, damaged in appearance, operation of the semiconductor element, insulation test of the semiconductor element substrate ( 2.5 kV, 1 minute application) was carried out to confirm whether there was any problem.

第1の封止樹脂は、ヒートサイクル信頼性を確保する上で、半導体素子や半導体素子基板に近い熱膨張係数にする必要があるために、接着性の優れたエポキシ系樹脂にフィラーを充填した材料とした。また、第2の封止樹脂は、絶縁を確保することと大容積を封止することから低応力性が要求されるため、第1の封止樹脂よりも弾性率が小さい、軟らかいシリコーン系の樹脂とした。図8に、充填するフィラーを調整することにより熱膨張係数および粘度(弾性率)が異なる6種類の第1の封止樹脂9を準備し、半導体装置100を試作して信頼性試験を行った結果を示す。信頼性試験の目標として1000サイクルとした場合、樹脂Aから樹脂Dは目標を満足することになる。ここで、半導体素子基板の熱膨張係数は10ppm/Kであるので、半導体素子基板の熱膨張係数と第1の封止樹脂の熱
膨張係数の差が5ppm/Kであれば目標を満足する。
In order to ensure heat cycle reliability, the first sealing resin needs to have a coefficient of thermal expansion close to that of a semiconductor element or a semiconductor element substrate. Therefore, an epoxy resin having excellent adhesion is filled with a filler. Material was used. In addition, since the second sealing resin is required to have low stress because it ensures insulation and seals a large volume, it is a soft silicone-based resin having a smaller elastic modulus than the first sealing resin. Resin was used. In FIG. 8, six kinds of first sealing resins 9 having different thermal expansion coefficients and viscosities (elastic moduli) are prepared by adjusting fillers to be filled, and a semiconductor device 100 is prototyped and subjected to a reliability test. Results are shown. When the reliability test target is 1000 cycles, the resin A to the resin D satisfy the target. Here, since the thermal expansion coefficient of the semiconductor element substrate is 10 ppm / K, the target is satisfied if the difference between the thermal expansion coefficient of the semiconductor element substrate and the thermal expansion coefficient of the first sealing resin is 5 ppm / K.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、あるいはその構成要件を省略したりすることが可能である。   In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, to appropriately modify the respective embodiments, or to omit the constituent elements thereof.

1a、1b 半導体素子、2、接合材、3 半導体素子基板、3a 絶縁基板、3b 表面電極、3c 裏面電極、4 第1のケース、5 主端子、5a 第1の主端子、5b 第2の主端子、6 信号端子、8 接合材、9 第1の封止樹脂、10 放熱板、11 接合材、12 第2のケース、13 第2の封止樹脂 DESCRIPTION OF SYMBOLS 1a, 1b Semiconductor element 2, 2. Bonding material, 3 Semiconductor element substrate, 3a Insulating substrate, 3b Front surface electrode, 3c Back electrode, 4 1st case, 5 Main terminal, 5a 1st main terminal, 5b 2nd main Terminal, 6 Signal terminal, 8 Bonding material, 9 First sealing resin, 10 Heat sink, 11 Bonding material, 12 Second case, 13 Second sealing resin

Claims (5)

絶縁基板の片面に表面電極が、および前記絶縁基板の他の面に裏面電極が、それぞれ形成された半導体素子基板と、前記表面電極の、前記絶縁基板とは反対側の面に接合材を介して固着された半導体素子と、前記表面電極に接合された第1の主端子および前記半導体素子の前記表面電極とは反対側の面に接合された第2の主端子と、前記半導体素子基板の周辺部の前記表面電極上に設けられ、電気信号の入出力を行うための信号端子が一体成型された第1のケースと、前記第1のケースの内部を前記半導体素子と前記半導体素子基板とを覆うように封止する第1の封止樹脂とを備えた内部モジュールが、一面に複数、それぞれの前記内部モジュールの前記裏面電極を接合して配置された放熱板と、
前記放熱板の周辺部であって、前記内部モジュールを内側に含むように設けられた第2のケースと、
前記第2のケースの内部を、前記第1の封止樹脂と前記第1のケースと前記半導体素子基板とを覆うように封止する第2の封止樹脂と、を備えた半導体装置において、
少なくとも前記第1のケース内部の前記表面電極は、前記絶縁基板全体を被覆し、かつ前記表面電極と前記裏面電極とは、前記絶縁基板に対して対称に形成されており、
前記第1の主端子および前記第2の主端子は前記第1の封止樹脂および前記第2の封止樹脂を貫通して前記第2の封止樹脂の外部に露出するとともに、
前記第2の封止樹脂の弾性率が前記第1の封止樹脂の弾性率よりも小さいことを特徴とする半導体装置。
A semiconductor element substrate having a surface electrode on one side of the insulating substrate and a back electrode on the other side of the insulating substrate, and a surface of the surface electrode opposite to the insulating substrate via a bonding material The first main terminal bonded to the surface electrode, the second main terminal bonded to the surface of the semiconductor element opposite to the surface electrode, and the semiconductor element substrate. A first case provided on the surface electrode in the peripheral portion and integrally formed with signal terminals for inputting and outputting electrical signals, and the interior of the first case with the semiconductor element and the semiconductor element substrate A plurality of internal modules each including a first sealing resin that seals so as to cover the heat sink, the heat sink disposed by joining the back surface electrodes of the internal modules,
A second case provided at a peripheral portion of the heat dissipation plate so as to include the internal module inside;
In a semiconductor device comprising: a second sealing resin that seals the inside of the second case so as to cover the first sealing resin, the first case, and the semiconductor element substrate;
At least the surface electrode inside the first case covers the entire insulating substrate, and the surface electrode and the back electrode are formed symmetrically with respect to the insulating substrate,
The first main terminal and the second main terminal are exposed to the outside of the second sealing resin through the first sealing resin and the second sealing resin,
A semiconductor device, wherein an elastic modulus of the second sealing resin is smaller than an elastic modulus of the first sealing resin.
前記第1の封止樹脂はフィラーを混入したエポキシ系樹脂であり、前記第2の封止樹脂はシリコーン系樹脂であることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the first sealing resin is an epoxy resin mixed with a filler, and the second sealing resin is a silicone resin. 前記第1の封止樹脂の熱膨張係数と、前記半導体素子基板の熱膨張係数との差が、5ppm/K以下であることを特徴とする請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein a difference between a thermal expansion coefficient of the first sealing resin and a thermal expansion coefficient of the semiconductor element substrate is 5 ppm / K or less. 前記半導体素子がワイドバンドギャップ半導体により形成されていることを特徴とする請求項1から3のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor element is formed of a wide band gap semiconductor. 前記ワイドバンドギャップ半導体は、炭化ケイ素、窒化ガリウム系材料またはダイヤモンドの半導体であることを特徴とする請求項4に記載の半導体装置。   The semiconductor device according to claim 4, wherein the wide band gap semiconductor is a silicon carbide, a gallium nitride-based material, or a diamond semiconductor.
JP2014002131A 2014-01-09 2014-01-09 Semiconductor device Active JP6057927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014002131A JP6057927B2 (en) 2014-01-09 2014-01-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014002131A JP6057927B2 (en) 2014-01-09 2014-01-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2015130457A true JP2015130457A (en) 2015-07-16
JP6057927B2 JP6057927B2 (en) 2017-01-11

Family

ID=53760974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014002131A Active JP6057927B2 (en) 2014-01-09 2014-01-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6057927B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028159A (en) * 2015-07-24 2017-02-02 富士電機株式会社 Semiconductor device and method of manufacturing the same
WO2018011853A1 (en) * 2016-07-11 2018-01-18 三菱電機株式会社 Semiconductor device
JP2019201113A (en) * 2018-05-16 2019-11-21 富士電機株式会社 Semiconductor device and method of manufacturing semiconductor device
DE112021004954T5 (en) 2021-02-03 2023-07-13 Hitachi Power Semiconductor Device, Ltd. POWER SEMICONDUCTOR DEVICE
JP7439653B2 (en) 2020-06-04 2024-02-28 三菱電機株式会社 Semiconductor devices and power conversion devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280789B2 (en) 2019-09-24 2023-05-24 株式会社東芝 power module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062714U (en) * 1992-06-03 1994-01-14 株式会社三社電機製作所 Power semiconductor module
JP2004349300A (en) * 2003-05-20 2004-12-09 Toshiba Corp Semiconductor device and its manufacturing method
JP2012209470A (en) * 2011-03-30 2012-10-25 Mitsubishi Electric Corp Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
WO2012144070A1 (en) * 2011-04-22 2012-10-26 三菱電機株式会社 Semiconductor device
WO2013111276A1 (en) * 2012-01-25 2013-08-01 三菱電機株式会社 Power semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062714U (en) * 1992-06-03 1994-01-14 株式会社三社電機製作所 Power semiconductor module
JP2004349300A (en) * 2003-05-20 2004-12-09 Toshiba Corp Semiconductor device and its manufacturing method
JP2012209470A (en) * 2011-03-30 2012-10-25 Mitsubishi Electric Corp Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
WO2012144070A1 (en) * 2011-04-22 2012-10-26 三菱電機株式会社 Semiconductor device
WO2013111276A1 (en) * 2012-01-25 2013-08-01 三菱電機株式会社 Power semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028159A (en) * 2015-07-24 2017-02-02 富士電機株式会社 Semiconductor device and method of manufacturing the same
WO2018011853A1 (en) * 2016-07-11 2018-01-18 三菱電機株式会社 Semiconductor device
JPWO2018011853A1 (en) * 2016-07-11 2018-09-20 三菱電機株式会社 Semiconductor device
JP2019201113A (en) * 2018-05-16 2019-11-21 富士電機株式会社 Semiconductor device and method of manufacturing semiconductor device
JP7067255B2 (en) 2018-05-16 2022-05-16 富士電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices
JP7439653B2 (en) 2020-06-04 2024-02-28 三菱電機株式会社 Semiconductor devices and power conversion devices
DE112021004954T5 (en) 2021-02-03 2023-07-13 Hitachi Power Semiconductor Device, Ltd. POWER SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
JP6057927B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5602077B2 (en) Semiconductor device
US10559538B2 (en) Power module
JP6057927B2 (en) Semiconductor device
JP6057926B2 (en) Semiconductor device
US20140264383A1 (en) Semiconductor device and manufacturing method of the same
JP5656907B2 (en) Power module
JP2013016629A (en) Semiconductor module
JP2008270455A (en) Power semiconductor module
JP5071719B2 (en) Power semiconductor device
JP2015015270A (en) Semiconductor device
JP2016018866A (en) Power module
JP2011228336A (en) Semiconductor device and method for manufacturing the same
JP6041795B2 (en) Semiconductor device
JP5665572B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2014150203A (en) Power module and manufacturing method of the same
JP2006179538A (en) Semiconductor power module
JP2012015222A (en) Semiconductor device
JP6124810B2 (en) Power module
JP2017034152A (en) Power semiconductor device
JP2015170785A (en) Insulation substrate and electric power semiconductor device
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
JP2015220295A (en) Power module and manufacturing method of the same
JP6868455B2 (en) Electronic component package and its manufacturing method
JP6157320B2 (en) Power semiconductor device, power semiconductor module, and method of manufacturing power semiconductor device
JP2006179732A (en) Semiconductor power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R151 Written notification of patent or utility model registration

Ref document number: 6057927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250