JP2015170785A - Insulation substrate and electric power semiconductor device - Google Patents

Insulation substrate and electric power semiconductor device Download PDF

Info

Publication number
JP2015170785A
JP2015170785A JP2014045893A JP2014045893A JP2015170785A JP 2015170785 A JP2015170785 A JP 2015170785A JP 2014045893 A JP2014045893 A JP 2014045893A JP 2014045893 A JP2014045893 A JP 2014045893A JP 2015170785 A JP2015170785 A JP 2015170785A
Authority
JP
Japan
Prior art keywords
power semiconductor
thickness
insulating substrate
base material
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014045893A
Other languages
Japanese (ja)
Inventor
畑中 康道
Yasumichi Hatanaka
康道 畑中
和弘 多田
Kazuhiro Tada
和弘 多田
山口 義弘
Yoshihiro Yamaguchi
義弘 山口
真之介 曽田
Shinnosuke Soda
真之介 曽田
昌樹 田屋
Masaki Taya
昌樹 田屋
浩次 山▲崎▼
Koji Yamazaki
浩次 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014045893A priority Critical patent/JP2015170785A/en
Publication of JP2015170785A publication Critical patent/JP2015170785A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of reliably handling a high temperature.SOLUTION: An insulation substrate 2 is formed of a ceramic base material 5 which has conductor layers 6 formed over both sides thereof, and one side of the conductor layers 6 (conductor layer 6a) is joined with an electric power semiconductor element 1. The base material 5 is a silicon nitride plate having a first thickness (thickness 5t). The conductor layers 6 on both sides are formed of a copper material having a second thickness (thickness 6t); a value (6t/5t) obtained by dividing the second thickness by the first thickness is 2.19-3.44.

Description

本発明は、電力用半導体素子を実装するための絶縁基板、およびそれを用いた電力用半導体装置に関する。   The present invention relates to an insulating substrate for mounting a power semiconductor element and a power semiconductor device using the same.

電力用半導体装置は、電力用半導体素子(チップ)を用いて電力回路を形成したものであるが、小型化・大容量化にともない、発熱量が増大し、効率よく放熱することが求められている。そこで、熱伝導性に優れたセラミック材の両面に銅または銅合金の導体層が形成された絶縁基板が用いられるようになってきた。また、電力回路を保護するために、エポキシ樹脂などの熱硬化性樹脂やゲル状樹脂により、回路面が封止されている。   A power semiconductor device is a power circuit formed by using power semiconductor elements (chips), but as the size and capacity increase, the amount of heat generation increases and efficient heat dissipation is required. Yes. Therefore, an insulating substrate in which a copper or copper alloy conductor layer is formed on both surfaces of a ceramic material excellent in thermal conductivity has been used. In order to protect the power circuit, the circuit surface is sealed with a thermosetting resin such as an epoxy resin or a gel resin.

例えば、シリコーンゲルなどのゲル状樹脂は、非常に柔らかく扱いが容易である。しかし、酸素や水分の透過性が高いため、高温環境下では耐熱性が不足してゲル内部での気泡発生、導体層の酸化の影響によるゲルと導体層界面での剥離発生により、絶縁信頼性が低下することが懸念される。一方、例えば、モールド樹脂として用いられる熱硬化樹脂は、高温環境下での気泡発生、導体層の酸化に対しては防止効果が高いが、ゲル状樹脂と比べて弾性率が高い。そのため、熱応力によりモールド樹脂とチップ、モールド樹脂と絶縁基板界面での剥離が発生しやすくなるという課題がある。   For example, a gel-like resin such as silicone gel is very soft and easy to handle. However, because of the high permeability of oxygen and moisture, insulation reliability is improved due to insufficient heat resistance under high temperature environment, and bubbles are generated inside the gel and peeling occurs at the interface between the gel and the conductor layer due to the effect of oxidation of the conductor layer. There is a concern about the decline. On the other hand, for example, a thermosetting resin used as a mold resin has a high effect of preventing bubble generation and oxidation of the conductor layer in a high temperature environment, but has a higher elastic modulus than a gel resin. Therefore, there is a problem that peeling at the interface between the mold resin and the chip and the mold resin and the insulating substrate is likely to occur due to thermal stress.

そこで、絶縁基板の見かけの熱膨張係数を金属ベース板に近づけるため、絶縁基板の両面に形成された回路配線パターン(導体層)の厚みを大きくすることが提案されている(例えば、特許文献1参照。)。   Therefore, in order to bring the apparent thermal expansion coefficient of the insulating substrate closer to the metal base plate, it has been proposed to increase the thickness of the circuit wiring pattern (conductor layer) formed on both surfaces of the insulating substrate (for example, Patent Document 1). reference.).

特開2010-10505号公報(段落0124〜0144、図15〜図19)JP 2010-10505 A (paragraphs 0124 to 0144, FIGS. 15 to 19)

しかしながら、特許文献1では、セラミック材の厚み範囲および導体層の厚み範囲が個別に規定されているだけであり、絶縁基板の熱膨張係数についての具体的な指標については何ら示されていない。そのため、様々な部材を用いる電力用半導体装置において、有効に熱応力を低減することは困難であった。とくに、高効率が期待されるワイドバンドギャップ半導体と称される炭化ケイ素(SiC)を用いたチップは、従来のシリコン(Si)に比較して弾性率が高いため、発生する熱応力が大きくなる。さらに、Si表面にある水酸基等の極性基が、SiC表面にはないため、モールド樹脂との接着強度も低くなり、剥離対策がますます重要となってくる。   However, in patent document 1, the thickness range of a ceramic material and the thickness range of a conductor layer are only prescribed | regulated separately, and the concrete parameter | index about the thermal expansion coefficient of an insulated substrate is not shown at all. Therefore, it has been difficult to effectively reduce thermal stress in power semiconductor devices using various members. In particular, a chip using silicon carbide (SiC), which is called a wide band gap semiconductor, which is expected to have high efficiency, has a higher elastic modulus than that of conventional silicon (Si), so that the generated thermal stress is increased. . Furthermore, since there is no polar group such as a hydroxyl group on the Si surface on the SiC surface, the adhesive strength with the mold resin is lowered, and the countermeasure against peeling becomes increasingly important.

この発明は、上記のような問題点を解決するためになされたものであり、高温に対応する信頼性の高い電力用半導体装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a highly reliable power semiconductor device corresponding to a high temperature.

本発明にかかる絶縁基板は、セラミックの基材の両面に導体層が形成され、前記両面の導体層のうちの一方に電力用半導体素子が接合される絶縁基板であって、平面方向の見かけの線膨張係数が8ppm/K以上、11ppm/K以下に調整されていることを特徴とする。   An insulating substrate according to the present invention is an insulating substrate in which a conductor layer is formed on both surfaces of a ceramic base material, and a power semiconductor element is bonded to one of the two conductor layers. The linear expansion coefficient is adjusted to 8 ppm / K or more and 11 ppm / K or less.

あるいは、本発明にかかる絶縁基板は、セラミックの基材の両面に導体層が形成され、前記両面の導体層のうちの一方に電力用半導体素子が接合される絶縁基板であって、前記基材は第一厚みを有する窒化ケイ素板であり、前記両面の導体層はそれぞれ第二厚みを有する銅材であり、前記第二厚みを前記第一厚みで除した値が2.19以上、3.44以下であることを特徴とする。   Alternatively, the insulating substrate according to the present invention is an insulating substrate in which a conductor layer is formed on both surfaces of a ceramic base material, and a power semiconductor element is joined to one of the two conductor layers. Is a silicon nitride plate having a first thickness, the conductor layers on both sides are each a copper material having a second thickness, and a value obtained by dividing the second thickness by the first thickness is 2.19 or more. 44 or less.

この発明によれば、封止体と電力用半導体素子間、および封止体と絶縁基板間にかかる応力をともに低減できるので、封止体と電力用半導体素子界面、絶縁基板界面での剥離をともに防止でき、高温に対応する信頼性の高い電力用半導体装置を得ることができる。   According to the present invention, since the stress applied between the sealing body and the power semiconductor element and between the sealing body and the insulating substrate can be reduced, peeling at the interface between the sealing body and the power semiconductor element and the insulating substrate interface is prevented. Both can be prevented, and a highly reliable power semiconductor device corresponding to high temperatures can be obtained.

本発明の実施の形態1にかかる電力用半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the power semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる絶縁基板の構成を説明するための平面図である。It is a top view for demonstrating the structure of the insulated substrate concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる絶縁基板の線膨張係数の測定方法を説明するための側面図である。It is a side view for demonstrating the measuring method of the linear expansion coefficient of the insulated substrate concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる絶縁基板の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the insulated substrate concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる電力用半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the power semiconductor device concerning Embodiment 3 of this invention.

実施の形態1.
図1〜図3は、本発明の実施の形態1にかかる絶縁基板およびその絶縁基板を用いた電力用半導体装置について説明するためのもので、図1は電力用半導体装置の断面模式図であり、図2は絶縁基板部分の平面図である。また、図3は複合材である絶縁基板としての線膨張係数の測定方法を説明するためのもので、絶縁基板を測定機器に設置した際の様子を示す側面模式図である。以下、詳細について説明する。
Embodiment 1 FIG.
1 to 3 are diagrams for explaining an insulating substrate and a power semiconductor device using the insulating substrate according to the first embodiment of the present invention, and FIG. 1 is a schematic cross-sectional view of the power semiconductor device. FIG. 2 is a plan view of the insulating substrate portion. FIG. 3 is a schematic side view illustrating a method of measuring a linear expansion coefficient as an insulating substrate that is a composite material, and shows a state when the insulating substrate is installed in a measuring device. Details will be described below.

本発明の実施の形態1にかかる絶縁基板2は、図1に示すように、熱伝導性に優れたセラミックの基材5の両面に導体層6a、6b(まとめて導体層6)が形成されたものである。そして、本実施の形態1にかかる電力用半導体装置10は、上述した絶縁基板2の一方の面(回路面)の導体層6aに、接合層3によって電力用半導体素子1(の裏面電極)が接合され、電力用半導体素子1の表側の主電極に、接合層3によってリードフレーム4Bの一端部が接合されている。また、導体層6aの別の部分には、接合層3によってリードフレーム4Aの一端部が接合されている。また、電力用半導体素子1の表面側の図示しない制御用電極は、図示しないアルミワイヤボンドによって、外部と電気接続されている。   As shown in FIG. 1, the insulating substrate 2 according to the first embodiment of the present invention has conductor layers 6 a and 6 b (collectively conductor layers 6) formed on both surfaces of a ceramic base material 5 having excellent thermal conductivity. It is a thing. In the power semiconductor device 10 according to the first embodiment, the power semiconductor element 1 (the back electrode thereof) is formed on the conductor layer 6 a on one surface (circuit surface) of the insulating substrate 2 by the bonding layer 3. One end of the lead frame 4B is bonded to the main electrode on the front side of the power semiconductor element 1 by the bonding layer 3. In addition, one end portion of the lead frame 4A is joined to another portion of the conductor layer 6a by the joining layer 3. A control electrode (not shown) on the surface side of the power semiconductor element 1 is electrically connected to the outside by an aluminum wire bond (not shown).

そして、絶縁基板2の他方の面の導体層6bの面が露出した状態で、電力用半導体素子1を含む回路面全体を包むように、封止樹脂(封止体9)で封止されている。このとき、リードフレーム4Aと4B(まとめてリードフレーム4)の他端部は、封止体9から露出しており、電力用半導体素子1と外部回路との電気接続が可能となる。なお、以降、単に機械的な性質を述べる場合、あるいは複数の仕様のものをまとめて述べる場合、電力用半導体装置10を「モジュール」、電力用半導体素子1を「チップ」、絶縁基板2を「基板」と称することがある。   And it seals with sealing resin (sealing body 9) so that the whole circuit surface including power semiconductor element 1 may be wrapped in the state where the surface of conductor layer 6b on the other side of insulating substrate 2 is exposed. . At this time, the other end portions of the lead frames 4A and 4B (collectively, the lead frame 4) are exposed from the sealing body 9, and electrical connection between the power semiconductor element 1 and the external circuit becomes possible. In the following description, when simply describing mechanical properties, or when describing a plurality of specifications collectively, the power semiconductor device 10 is referred to as a “module”, the power semiconductor element 1 as a “chip”, and the insulating substrate 2 as “ Sometimes referred to as “substrate”.

絶縁基板2は、図2に示すように、基材5には、外形25mm×15mm、厚さ0.32mmの窒化ケイ素(SN)板を使用し、両面の導体層6として、それぞれ22mm×12mm、厚さ1.0mmの無酸素銅(C1020)によるパターンが形成されている。基材5となるセラミック材としては、SN、窒化アルミ(AlN)、アルミナ、Zr含有アルミナを用いることができる。特に、熱伝導性の点からAlN、SNが好ましく、材料強度の点からSNがより好ましい。   As shown in FIG. 2, the insulating substrate 2 uses a silicon nitride (SN) plate having an outer shape of 25 mm × 15 mm and a thickness of 0.32 mm as the base material 5, and the conductor layer 6 on both sides is 22 mm × 12 mm. A pattern of oxygen-free copper (C1020) having a thickness of 1.0 mm is formed. As the ceramic material to be the base material 5, SN, aluminum nitride (AlN), alumina, Zr-containing alumina can be used. In particular, AlN and SN are preferable from the viewpoint of thermal conductivity, and SN is more preferable from the viewpoint of material strength.

なお、導体層6aと6bは同じ厚みを有する必要はあるが、面積については必ずしも同一である必要はない。例えば、一方の導体層と他方の導体層の面積の比が1〜0.85の範囲に入るようであれば、厚み方向の仕様の違いによる反り等の発生を抑制することができる。なお、一般的には、チップが実装される側の導体層6aの面積を他方の導体層6bの面積よりも狭くすることが多く、例えば、導体層6aの面積を導体層6bの面積の85%以上、100%以下にするように調整される。導体層6の構成材としては、電気伝導、熱伝導性に優れた金属、例えば、アルミニウムおよびアルミニウム合金、銅および銅合金を用いることができる。特に、熱伝導、電気伝導の観点から銅を用いるのが好ましい。   The conductor layers 6a and 6b need to have the same thickness, but the areas are not necessarily the same. For example, if the ratio of the area of one conductor layer to the other conductor layer is in the range of 1 to 0.85, it is possible to suppress the occurrence of warpage or the like due to the difference in specifications in the thickness direction. In general, the area of the conductor layer 6a on the side where the chip is mounted is often narrower than the area of the other conductor layer 6b. For example, the area of the conductor layer 6a is 85% of the area of the conductor layer 6b. % To 100% or less. As a constituent material of the conductor layer 6, a metal excellent in electrical conduction and thermal conductivity, for example, aluminum and aluminum alloy, copper and copper alloy can be used. In particular, it is preferable to use copper from the viewpoints of heat conduction and electric conduction.

電力用半導体素子1は、電力(パワー)を制御するための素子であり、パワー半導体素子とも称される。具体的には、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子、あるいは還流ダイオードのような整流素子が用いられる。電力用半導体素子1には、本実施の形態1および以降の実施の形態においては、背景技術で説明したように、耐剥離性の克服が従来のシリコンと比べて重要となるワイドバンドギャップ半導体であるSiCを用いた例について示す。   The power semiconductor element 1 is an element for controlling electric power, and is also referred to as a power semiconductor element. Specifically, for example, a switching element such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor) or a rectifying element such as a freewheeling diode is used. As described in the background art, the power semiconductor element 1 is a wide bandgap semiconductor in which overcoming peel resistance is more important than conventional silicon in the first embodiment and the following embodiments. An example using some SiC will be described.

なお、ワイドバンドギャップ半導体を構成する材料(半導体材料)としては、例えば、SiCの他、窒化ガリウム系材料またはダイヤモンドなどがある。ワイドバンドギャップ半導体を用いた場合、許容電流密度が高く、電力損失も低いため、装置の小型化が可能となる。なお、本実施の形態では条件が過酷になるワイドバンドギャップ半導体を例に示しているが、従来のシリコン半導体に対しても適用できることは言うまでもない。   In addition, as a material (semiconductor material) which comprises a wide band gap semiconductor, there exist a gallium nitride type material or diamond other than SiC, for example. When a wide band gap semiconductor is used, the allowable current density is high and the power loss is low, so that the device can be miniaturized. In this embodiment, a wide band gap semiconductor whose conditions are severe is shown as an example, but it goes without saying that the present invention can also be applied to a conventional silicon semiconductor.

電力用半導体素子1には、チップ厚が0.3mmのものを使用したが、とくに制約はない。しかし、0.1〜0.4mmの範囲に調整することが好ましい。チップ厚を0.1mmより薄くするためには、非常に硬いSiCウエハを研削するため、時間と費用が余分にかかる。一方、0.4mmより厚い場合は、チップの放熱性の低下やモジュールの縦方向が厚くなるという弊害がある。つまり、チップ厚は、製造上、あるいは製品としての放熱性等への影響を考慮して選定したが、耐温度サイクル性を考慮したものではなく、後述するように絶縁基板2の構成を最適化することで信頼性を向上させることができる。   A power semiconductor element 1 having a chip thickness of 0.3 mm was used, but there is no particular limitation. However, it is preferable to adjust to the range of 0.1 to 0.4 mm. In order to reduce the chip thickness to less than 0.1 mm, a very hard SiC wafer is ground, which requires extra time and money. On the other hand, when it is thicker than 0.4 mm, there is a problem that the heat dissipation of the chip is lowered and the vertical direction of the module becomes thick. In other words, the chip thickness is selected in consideration of the influence on manufacturing or heat dissipation as a product, but it does not consider the temperature cycle resistance, and the configuration of the insulating substrate 2 is optimized as will be described later. By doing so, the reliability can be improved.

チップと絶縁基板2(厳密には導体層6)とを接合する接合層3には、はんだを用いる例を示すが、はんだに限ることなく、焼結銀なども適用可能である。焼結銀は熱伝導性がはんだより良好なため、チップの放熱性が向上して信頼性が向上する。また、すべての接合層3を同じ接合材で形成する必要はなく、適宜変更可能であるのは言うまでもない。   Although an example in which solder is used is shown for the bonding layer 3 for bonding the chip and the insulating substrate 2 (strictly, the conductor layer 6), sintered silver or the like is applicable without being limited to solder. Since sintered silver has better thermal conductivity than solder, the heat dissipation of the chip is improved and the reliability is improved. Needless to say, all the bonding layers 3 need not be formed of the same bonding material and can be appropriately changed.

リードフレーム4は、例えば、厚み0.5mmの銅リードフレームで、エッチング、金型打ち抜きで所定の形状に加工する。   The lead frame 4 is a copper lead frame having a thickness of 0.5 mm, for example, and is processed into a predetermined shape by etching and die punching.

つぎに、本実施の形態1にかかる絶縁基板2の線膨張係数を最適化するため、基材5と導体層6の外形は、上述した値で一定とし、基材5の厚みt5と導体層6の厚みt6(片面分)構成をパラメータとして、様々なサンプル(例)を試作した。そして、絶縁基板2単体の線膨張係数を測定するとともに、モジュールに組み込んで温度サイクル試験を実施し、耐温度サイクル性として、剥離の有無の評価を行った。   Next, in order to optimize the linear expansion coefficient of the insulating substrate 2 according to the first embodiment, the outer shapes of the base material 5 and the conductor layer 6 are constant with the above-described values, and the thickness t5 of the base material 5 and the conductor layer are determined. Various samples (examples) were prototyped using a thickness t6 (for one side) configuration of 6 as a parameter. And while measuring the linear expansion coefficient of the insulated substrate 2 single-piece | unit, it integrated in the module and implemented the temperature cycle test, and evaluated the presence or absence of peeling as temperature cycling resistance.

絶縁基板2の線膨張係数は、熱機械分析装置TMA7100(日立ハイテクサイエス社製)を用いて測定した。なお、基板の平面方向における線膨張係数を測定するため、線膨張係数測定用のサンプルでは、両端に導体層6が存在するように、基板の両端を切断し、外形を20mm×10mmにしている。そして、図3に示すように、切断した両端の一方を分析装置の基準面Fbに、他方を端子の端面Fpに接触させ、温度が30℃〜175℃における基準面Fbと端面Fp間の距離L2の変化から、線膨張係数を算出した。   The linear expansion coefficient of the insulating substrate 2 was measured using a thermomechanical analyzer TMA7100 (manufactured by Hitachi High-Tech SAIS). In order to measure the linear expansion coefficient in the plane direction of the substrate, in the sample for measuring the linear expansion coefficient, both ends of the substrate are cut so that the conductor layer 6 exists at both ends, and the outer shape is 20 mm × 10 mm. . Then, as shown in FIG. 3, one of the cut ends is brought into contact with the reference surface Fb of the analyzer and the other is brought into contact with the end surface Fp of the terminal, and the distance between the reference surface Fb and the end surface Fp at a temperature of 30 ° C. to 175 ° C. The linear expansion coefficient was calculated from the change in L2.

一方、耐温度サイクル性評価用の基板は、図2で説明した外形のものを使用し、図1で説明したように、チップおよびリードフレーム4を所定の位置にはんだ接合する。このようにして形成された回路部材に対し、チップおよび基板に接合されたリードフレーム4を用いてモールド金型に位置決めしてセットする。そして、トランスファモールド装置により、シリカ粒子が充填されたエポキシ樹脂/フェノール樹脂硬化剤系の封止樹脂(線膨張係数:12ppm/K)で、180℃−3分間の条件でモールド成形した。その後、封止樹脂を175℃―6時間硬化させて評価用モジュールを作製した。   On the other hand, the substrate for temperature cycle resistance evaluation is the one having the outer shape described in FIG. 2, and the chip and the lead frame 4 are soldered at predetermined positions as described in FIG. The circuit member thus formed is positioned and set in a mold using the lead frame 4 bonded to the chip and the substrate. And it mold-molded on condition of 180 degreeC-3 minutes with the sealing resin (linear expansion coefficient: 12 ppm / K) of the epoxy resin / phenol resin hardening | curing agent type | system | group filled with the silica particle with the transfer mold apparatus. Thereafter, the sealing resin was cured at 175 ° C. for 6 hours to produce an evaluation module.

評価用モジュールの封止樹脂(封止体9)と基板(絶縁基板2)との界面、封止樹脂とチップ(電力用半導体素子1)との界面での剥離の有無は、超音波映像装置FineSAT(日立エンジニアリングアンドサービス社製)で行った。剥離観察は、初期と温度サイクル試験(−40〜175℃:各30分)500サイクル後に行った。   The presence or absence of peeling at the interface between the sealing resin (sealing body 9) and the substrate (insulating substrate 2) of the evaluation module and the interface between the sealing resin and the chip (power semiconductor element 1) is determined by an ultrasonic imaging device. Performed with FineSAT (manufactured by Hitachi Engineering & Service). The peeling observation was performed after 500 cycles of the initial stage and the temperature cycle test (-40 to 175 ° C .: 30 minutes each).

上述した厚み構成をパラメータとした各試験サンプル(例)の仕様と測定結果、および評価結果を表1に示す。表中、例5が、実施の形態1にかかる電力用半導体装置10として用いた絶縁基板2の仕様である。例1〜例12は、基板の仕様が異なるだけで、他の部分については、同様の仕様(部材構成、製造方法)でモジュール化したものである。線膨張係数は、30℃から175℃の間の平均値を示し、温度サイクル剥離判定の結果では、温度サイクル後に剥離が観察されない場合を「○」、剥離が観察された場合を「×」で示している。   Table 1 shows the specifications, measurement results, and evaluation results of each test sample (example) using the above-described thickness configuration as a parameter. In the table, Example 5 is the specification of the insulating substrate 2 used as the power semiconductor device 10 according to the first embodiment. Examples 1 to 12 differ only in the board specifications, and the other parts are modularized according to the same specifications (member configuration, manufacturing method). The linear expansion coefficient indicates an average value between 30 ° C. and 175 ° C., and in the result of the temperature cycle peeling determination, “○” indicates that no peeling is observed after the temperature cycle, and “×” indicates that peeling is observed. Show.

Figure 2015170785
Figure 2015170785

表1に示すように、導体層の厚みt6が厚くなると封止樹脂とチップとの界面で剥離が生じやすくなり、厚みt6が薄くなると封止樹脂と基板との界面で剥離が生じやすくなり、導体層6の厚みt6には最適領域があることがわかる。これは、基材5を構成するSN板の線膨張係数が3ppm/K、導体層6を構成する銅の線膨張係数が16ppm/Kと異なるため、線膨張係数の測定結果が示すように、その厚さの比率により、基板の見かけの線膨張係数が変動する。そのため、導体層6の厚みt6と基材5の厚みt5の比率を適正化して、基板の線膨張係数を最適化すると、封止樹脂と基板との界面、および封止樹脂とチップとの界面の双方で、剥離を防止することが可能となる。   As shown in Table 1, when the thickness t6 of the conductor layer is increased, peeling tends to occur at the interface between the sealing resin and the chip, and when the thickness t6 is decreased, peeling is likely to occur at the interface between the sealing resin and the substrate. It can be seen that there is an optimum region for the thickness t6 of the conductor layer 6. This is because the linear expansion coefficient of the SN plate constituting the substrate 5 is 3 ppm / K, and the linear expansion coefficient of copper constituting the conductor layer 6 is different from 16 ppm / K. Depending on the thickness ratio, the apparent linear expansion coefficient of the substrate varies. Therefore, when the ratio of the thickness t6 of the conductor layer 6 and the thickness t5 of the base material 5 is optimized and the linear expansion coefficient of the substrate is optimized, the interface between the sealing resin and the substrate, and the interface between the sealing resin and the chip In both cases, peeling can be prevented.

表1の結果から、基材5の厚みt5が0.32mm、0.25mmと異なっていても、基板の線膨張係数が8ppm/K以上、11ppm/K以下の範囲であれば、剥離を防止できることがわかる。なお、表1に示す以外の厚みt5を有する基材5を用いて同様の評価を行ったところ、同様の結果が得られた。つまり、基材5にどのような厚みt5のSN板を用いても、基板の線膨張係数が8ppm/K以上、11ppm/K以下の範囲に入るように調整すれば、剥離を防止できることがわかった。   From the results of Table 1, even if the thickness t5 of the base material 5 is different from 0.32 mm and 0.25 mm, peeling is prevented if the linear expansion coefficient of the substrate is in the range of 8 ppm / K or more and 11 ppm / K or less. I understand that I can do it. In addition, when the same evaluation was performed using the base material 5 which has thickness t5 other than shown in Table 1, the same result was obtained. In other words, it can be seen that no matter what thickness t5 SN plate is used for the base material 5, if the linear expansion coefficient of the substrate is adjusted to fall within the range of 8 ppm / K or more and 11 ppm / K or less, peeling can be prevented. It was.

さらには、両面に同じ厚みと材質の導体層6が形成されていれば、導体層6および基材5に、表1の評価に用いた材料と異なる材質(線膨張係数、弾性率)を有する材料を使用しても、同様の結果を得ることができた。つまり、どのような材料の組合せでも、基板の線膨張係数が8〜11ppm/Kの範囲に入るように、厚み構成を調整すれば、封止樹脂と基板との界面、および封止樹脂とチップとの界面の双方で、剥離を防止できることがわかった。   Furthermore, if the conductor layer 6 having the same thickness and material is formed on both surfaces, the conductor layer 6 and the base material 5 have different materials (linear expansion coefficient, elastic modulus) from the materials used in the evaluation of Table 1. Similar results could be obtained using the material. In other words, if the thickness configuration is adjusted so that the linear expansion coefficient of the substrate falls within the range of 8 to 11 ppm / K in any combination of materials, the interface between the sealing resin and the substrate, and the sealing resin and the chip It was found that peeling can be prevented at both of the interfaces.

一方、SN板を用いた基材5の厚みt5と銅を用いた導体層6の厚みt6の関係について検討したところ、t6とt5の比を式(1)に示すように、2.19〜3.44の範囲に入るように調整すれば、上述した線膨張係数を得られることがわかった。
2.19 ≦ t6/t5 ≦ 3.44 ・・・(1)
また、式(1)の関係は、本実施の形態で示した無酸素銅(C1020)に限らず、一般的な配線部材として用いられる銅材であれば、成立することがわかった。
On the other hand, when the relationship between the thickness t5 of the base material 5 using the SN plate and the thickness t6 of the conductor layer 6 using copper was examined, the ratio of t6 to t5 is expressed as 2.19 to It has been found that the linear expansion coefficient described above can be obtained by adjusting so as to fall within the range of 3.44.
2.19 ≤ t6 / t5 ≤ 3.44 (1)
Moreover, it turned out that the relationship of Formula (1) will be materialized if it is not only oxygen-free copper (C1020) shown in this Embodiment but the copper material used as a general wiring member.

つまり、式(1)に示す関係が、基材5にSN板を、導体層6に銅材を用いたときの、上述した線膨張係数を得るための実効的な指標となる。ただし、上述した関係を維持するためには、基材5の厚みt5が厚くなると、導体層6の厚みt6も厚くなる。その結果、基板トータルの厚さが厚くなるので、熱抵抗が増大し、加工性も低下する。一方、基材5の厚みt5を薄くすると、絶縁耐圧が低下し、また基板の強度が低下して、基板を製造する際、あるいはモジュール組立時に基板が割れ、製造歩留まりが低下する。これらの観点から、基材5の厚みt5は、0.2mm以上、0.4mm以下の範囲に調整することが望ましい。   That is, the relationship shown in Formula (1) is an effective index for obtaining the above-described linear expansion coefficient when an SN plate is used for the substrate 5 and a copper material is used for the conductor layer 6. However, in order to maintain the above-described relationship, when the thickness t5 of the base material 5 is increased, the thickness t6 of the conductor layer 6 is also increased. As a result, since the total thickness of the substrate is increased, the thermal resistance increases and the workability also decreases. On the other hand, when the thickness t5 of the base material 5 is reduced, the withstand voltage is reduced and the strength of the substrate is lowered, and the substrate is cracked when the substrate is manufactured or when the module is assembled, and the manufacturing yield is reduced. From these viewpoints, it is desirable to adjust the thickness t5 of the base material 5 to a range of 0.2 mm or more and 0.4 mm or less.

次に、基板中の導体層6の基材5に対する被覆率の影響について評価を行った。評価用サンプルとしては、基材5の寸法(厚さ0.32mm、外形25×15)、および導体層6の厚みを一定とし、導体層6の外形(被覆率)が異なるものを作成した。被覆率は、導体層6の面積(片側)を基材5の面積で割った値で定義している。例えば、基材5の外形が25×15に対し、導体層6の外形が22×12の場合、70%(0.704:(22×12=264mm)/(25×15=375mm))となる。なお、基材5はSN板、導体層6は上述した無酸素銅で形成している。 Next, the influence of the coverage on the base material 5 of the conductor layer 6 in the substrate was evaluated. As samples for evaluation, samples with different dimensions (thickness 0.32 mm, outer shape 25 × 15) of the substrate 5 and conductor layer 6 and different outer shapes (coverage) of the conductor layer 6 were prepared. The coverage is defined as a value obtained by dividing the area (one side) of the conductor layer 6 by the area of the substrate 5. For example, with respect to outer shape 25 × 15 of the base member 5, when the outer shape of the conductive layer 6 is 22 × 12, 70% (0.704 : (22 × 12 = 264mm 2) / (25 × 15 = 375mm 2) ) The base material 5 is an SN plate, and the conductor layer 6 is formed of the oxygen-free copper described above.

作成した被覆率の異なる基板に対し、厚み構成をパラメータとした試験と同様にモジュールを作成し、温度サイクル試験を行って剥離の有無を評価した。なお、被覆率をパラメータとする試験では、被覆率の影響を最も受けると考えられる基材5の端部での封止樹脂の剥離の有無を判断基準とした。上述した被覆率をパラメータとした各試験サンプル(例)の仕様、および評価結果を表2に示す。表中、例15が、実施の形態1にかかる電力用半導体装置10として用いた絶縁基板2の仕様である。   For the prepared substrates with different coverage ratios, modules were prepared in the same manner as the test using the thickness configuration as a parameter, and a temperature cycle test was performed to evaluate the presence or absence of peeling. In the test using the coverage as a parameter, whether or not the sealing resin was peeled off at the end portion of the base material 5 considered to be most affected by the coverage was used as a criterion. Table 2 shows the specifications and evaluation results of each test sample (example) using the above-described coverage as a parameter. In the table, Example 15 is the specification of the insulating substrate 2 used as the power semiconductor device 10 according to the first embodiment.

Figure 2015170785
Figure 2015170785

表2に示すように、導体層6の被覆率が低下すると、基材5の端部で、封止樹脂と基板との界面で剥離が生じやすくなることがわかる。基材5の端部において封止樹脂との界面で剥離が発生すると、基材5の表裏の導体層6a−6b間で、放電や短絡が発生し、絶縁特性が低下して信頼性が低下するため、この評価項目も重要である。   As shown in Table 2, it can be seen that when the coverage of the conductor layer 6 is lowered, peeling is likely to occur at the interface between the sealing resin and the substrate at the end of the base material 5. When peeling occurs at the interface with the sealing resin at the end of the base material 5, a discharge or a short circuit occurs between the conductor layers 6 a-6 b on the front and back surfaces of the base material 5, and the insulation characteristics deteriorate and the reliability decreases. Therefore, this evaluation item is also important.

導体層6と基材5とが接合した基板部分は、見かけの線膨張係数が大きくなり、封止樹脂との線膨張係数との差が小さくなり、温度サイクルでの熱応力が低下して剥離が防止可能となる。しかし、導体層6の被覆率が低くなると、基材5の端部は、導体層6による熱膨張への影響が減少して、SN板単体とほぼ同様の熱膨張挙動を示す。更に、基材5の端部は基板の最外周部であるため、熱応力が集中する場所であり、剥離が発生しやすい。そのため、導体層6の被覆率が低くなると、基材5の端部で封止樹脂との線膨張係数との差が大きくなり、温度サイクルでの熱応力が増加して剥離が発生する。   The substrate portion where the conductor layer 6 and the base material 5 are bonded has an increased apparent linear expansion coefficient, a difference from the linear expansion coefficient with the sealing resin is decreased, and the thermal stress in the temperature cycle is decreased to cause peeling. Can be prevented. However, when the coverage of the conductor layer 6 is lowered, the end portion of the base material 5 is less affected by the conductor layer 6 on the thermal expansion, and exhibits a thermal expansion behavior almost similar to that of the SN plate alone. Furthermore, since the edge part of the base material 5 is the outermost periphery part of a board | substrate, it is a place where a thermal stress concentrates and peeling is easy to generate | occur | produce. Therefore, when the coverage of the conductor layer 6 is lowered, the difference between the linear expansion coefficient and the sealing resin at the end of the base material 5 is increased, and the thermal stress in the temperature cycle is increased to cause peeling.

しかしながら、本試験で明らかなように、導体層の被覆率を62%以上に設定すれば、基材5の端部と封止樹脂との界面での剥離を防止できることがわかった。なお、本試験においては、基材5の両側の導体層6a、6bが同じ外形(被覆率)を有するものを使用したが、上述したように、一般的には回路面側(導体層6a)の方が、放熱面側(導体層6b)よりも被覆率が低くなるように設定されることがある。このように、導体層6aと6bの被覆率が異なる場合、両導体層6a、6bの平均の被覆率が62%以上になるように構成すれば、基材5の端部と封止樹脂との界面での剥離を防止することができる。   However, as is clear from this test, it has been found that if the coverage of the conductor layer is set to 62% or more, peeling at the interface between the end of the substrate 5 and the sealing resin can be prevented. In this test, the conductor layers 6a and 6b on both sides of the base material 5 have the same outer shape (coverage). However, as described above, the circuit surface side (conductor layer 6a) is generally used. This may be set so that the coverage is lower than the heat radiation surface side (conductor layer 6b). Thus, when the coverage of the conductor layers 6a and 6b is different, if the average coverage of both the conductor layers 6a and 6b is 62% or more, the end portion of the substrate 5 and the sealing resin Peeling at the interface can be prevented.

なお、本実施の形態1において、封止体9を構成する封止樹脂には、マトリクス樹脂であるエポキシ樹脂/フェノール樹脂硬化剤系の樹脂に、フィラーとしてシリカ粒子が充填されたものを用いた例を示した。封止樹脂において、充填されるシリカ粒子の含有率は、モジュールに用いられる部材の線膨張係数などを考慮して最適な量が選定される。例えば、線膨張係数が上述した8〜11pp/Kの絶縁基板2を用いた場合、封止樹脂の線膨張係数が8〜13ppm/Kになるように、マトリクス樹脂へのフィラーの充填量が設定される。このようにすることにより、熱応力が小さく、反りのない電力用半導体装置10を得ることができる。なお、封止樹脂の線膨張係数が10〜13ppm/Kの範囲内であれば、さらに耐剥離性が向上する。   In the first embodiment, as the sealing resin constituting the sealing body 9, an epoxy resin / phenolic resin curing agent resin, which is a matrix resin, filled with silica particles as a filler is used. An example is shown. In the sealing resin, an optimal amount of the silica particles to be filled is selected in consideration of a linear expansion coefficient of a member used for the module. For example, when the insulating substrate 2 having the linear expansion coefficient of 8 to 11 pp / K described above is used, the filling amount of the filler into the matrix resin is set so that the linear expansion coefficient of the sealing resin is 8 to 13 ppm / K. Is done. By doing in this way, the power semiconductor device 10 with a small thermal stress and without a curvature can be obtained. In addition, if the linear expansion coefficient of the sealing resin is within a range of 10 to 13 ppm / K, the peel resistance is further improved.

以上のように、本発明の実施の形態1にかかる絶縁基板2によれば、セラミックの基材5の両面に導体層6が形成され、両面の導体層6のうちの一方(例えば、導体層6a)に電力用半導体素子1が接合される絶縁基板2であって、平面方向の見かけの線膨張係数が8ppm/K以上、11ppm/K以下に調整されているように構成したので、チップと封止樹脂、および基板と封止樹脂との界面に発生する熱応力が低減され、チップと封止樹脂との界面、および基板と封止樹脂との界面での剥離やクラックが防止でき、高温に対応する信頼性の高い電力用半導体装置10を得ることができる。   As described above, according to the insulating substrate 2 according to the first embodiment of the present invention, the conductor layer 6 is formed on both surfaces of the ceramic base material 5, and one of the conductor layers 6 on both surfaces (for example, the conductor layer). 6a) is an insulating substrate 2 to which the power semiconductor element 1 is bonded, and the apparent linear expansion coefficient in the plane direction is adjusted to 8 ppm / K or more and 11 ppm / K or less. Thermal stress generated at the sealing resin and the interface between the substrate and the sealing resin is reduced, and peeling and cracking at the interface between the chip and the sealing resin and between the substrate and the sealing resin can be prevented. A highly reliable power semiconductor device 10 corresponding to the above can be obtained.

あるいは、本発明の実施の形態1にかかる絶縁基板2によれば、セラミックの基材5の両面に導体層6が形成され、両面の導体層6のうちの一方(例えば、導体層6a)に電力用半導体素子1が接合される絶縁基板2であって、基材5は第一厚み(厚み5t)を有する窒化ケイ素板であり、両面の導体層6はそれぞれ第二厚み(厚み6t)を有する銅材であり、第二厚みを第一厚みで除した値(6t/5t)が2.19以上、3.44以下であるように構成したので、チップと封止樹脂、および基板と封止樹脂との界面に発生する熱応力が低減され、チップと封止樹脂との界面、および基板と封止樹脂との界面での剥離やクラックが防止でき、高温に対応する信頼性の高い電力用半導体装置10を得ることができる。   Or according to the insulated substrate 2 concerning Embodiment 1 of this invention, the conductor layer 6 is formed in both surfaces of the ceramic base material 5, and one side (for example, conductor layer 6a) of the conductor layers 6 of both surfaces is formed. Insulating substrate 2 to which power semiconductor element 1 is bonded, base material 5 is a silicon nitride plate having a first thickness (thickness 5 t), and conductor layers 6 on both sides have a second thickness (thickness 6 t). Since the value obtained by dividing the second thickness by the first thickness (6t / 5t) is 2.19 or more and 3.44 or less, the chip and the sealing resin, and the substrate and the sealing Thermal stress generated at the interface with the stop resin is reduced, and peeling and cracking at the interface between the chip and the sealing resin, and at the interface between the substrate and the sealing resin can be prevented. The semiconductor device 10 can be obtained.

両面の導体層6のそれぞれ(6a、6b)が基材5を覆う被覆率の平均値が、62%以上であるように構成すれば、基材5の端部と封止樹脂との界面での剥離を防止できる。   If each of the conductor layers 6 on both sides (6a, 6b) is configured such that the average coverage of covering the base material 5 is 62% or more, at the interface between the end of the base material 5 and the sealing resin. Can be prevented from peeling.

また、本実施の形態1にかかる電力用半導体装置10によれば、上述した絶縁基板2と、絶縁基板2の一方の面(導体層6a)に接合された電力用半導体素子1と、電力用半導体素子1を含む回路部材を封止する封止体9と、を備えたので、チップと封止樹脂との界面、および基板と封止樹脂との界面での剥離やクラックが防止でき、高温に対応する信頼性の高い電力用半導体装置10を得ることができる。   Further, according to the power semiconductor device 10 according to the first embodiment, the above-described insulating substrate 2, the power semiconductor element 1 bonded to one surface (conductor layer 6a) of the insulating substrate 2, and the power And a sealing body 9 that seals the circuit member including the semiconductor element 1. Therefore, peeling and cracking at the interface between the chip and the sealing resin and at the interface between the substrate and the sealing resin can be prevented. A highly reliable power semiconductor device 10 corresponding to the above can be obtained.

実施の形態2.
上記実施の形態1にかかる絶縁基板、およびそれを用いた電力用半導体装置では、基材の両面に単層の導体層が形成される例について説明した。本実施の形態2にかかる絶縁基板は、2層構成の導体層を用いるようにしたものである。図4は、本発明の実施の形態2にかかる絶縁基板の構成を説明するための断面模式図である。図中、実施の形態1と同様のものには同じ符号を付し、詳細な説明は省略する。なお、絶縁基板以外の部材については実施の形態1と同様であり、本実施の形態2にかかる電力用半導体装置、あるいは、線膨張係数の測定方法については、図1〜3を援用し、重複する説明は省略する。
Embodiment 2. FIG.
In the insulating substrate according to the first embodiment and the power semiconductor device using the same, an example in which a single conductor layer is formed on both surfaces of a base material has been described. The insulating substrate according to the second embodiment uses a two-layered conductor layer. FIG. 4 is a schematic cross-sectional view for explaining the configuration of the insulating substrate according to the second embodiment of the present invention. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted. The members other than the insulating substrate are the same as those in the first embodiment, and the power semiconductor device according to the second embodiment or the method for measuring the linear expansion coefficient is duplicated with the aid of FIGS. The description to be omitted is omitted.

本発明の実施の形態2にかかる絶縁基板2は、図4に示すように、基材5の両面に形成された導体層6a、6bのそれぞれが、銅製の銅パターン61a、61b(まとめて銅パターン61)と、基材5と銅パターン61との間に介在するアルミニウム製の緩衝層62a、62b(まとめて緩衝層62)によって構成された2層構造になっている。セラミック(SN板)の基材5と銅パターン61との間に介在する緩衝層62は、銅よりも弾性率が低い(柔らかい)ので、応力緩和効果を発揮する。そのため、緩衝層62を設けることで、温度サイクルにおける基材5と銅パターン61間の応力を緩和し、基材5からの銅パターン61の剥離を防止することができ、信頼性が向上する。   As shown in FIG. 4, in the insulating substrate 2 according to the second embodiment of the present invention, the conductor layers 6a and 6b formed on both surfaces of the base 5 are made of copper copper patterns 61a and 61b (collectively copper patterns 61a and 61b). The pattern 61) has a two-layer structure constituted by aluminum buffer layers 62a and 62b (collectively the buffer layer 62) interposed between the base material 5 and the copper pattern 61. Since the buffer layer 62 interposed between the ceramic (SN plate) base material 5 and the copper pattern 61 has a lower elastic modulus (softer) than copper, it exhibits a stress relaxation effect. Therefore, by providing the buffer layer 62, the stress between the base material 5 and the copper pattern 61 in the temperature cycle can be relieved, the peeling of the copper pattern 61 from the base material 5 can be prevented, and the reliability is improved.

次に、実施の形態1で示したように、銅パターン61の厚みの性能への影響について評価を行った。評価用サンプルとしては、基材5の寸法(厚さ0.32mm、外形25×15)、導体層6については、外形(銅パターン61と緩衝層62は同一:21×11)と緩衝層62の厚みt62(0.5mm)を一定とし、銅パターン61の厚みt61が異なるものを作成した。そして、実施の形態1における厚み構成をパラメータとした試験と同様に、線膨張係数測定用のサンプルと温度サイクルにおける耐剥離性試験用のモジュールを作製した。   Next, as shown in Embodiment 1, the influence of the thickness of the copper pattern 61 on the performance was evaluated. As the sample for evaluation, the dimensions of the base material 5 (thickness 0.32 mm, outer shape 25 × 15), and the conductor layer 6 are the outer shape (the copper pattern 61 and the buffer layer 62 are the same: 21 × 11) and the buffer layer 62. The thickness t62 (0.5 mm) of the copper pattern 61 was made constant and the thickness t61 of the copper pattern 61 was different. Then, similarly to the test using the thickness configuration in the first embodiment as a parameter, a sample for measuring a linear expansion coefficient and a module for a peel resistance test in a temperature cycle were manufactured.

上述した、緩衝層62が形成された基板における、銅パターン61の厚みt61をパラメータとした各試験サンプル(例)の仕様と測定結果、および評価結果を表3に示す。   Table 3 shows the specifications, measurement results, and evaluation results of each test sample (example) using the thickness t61 of the copper pattern 61 as a parameter on the substrate on which the buffer layer 62 is formed.

Figure 2015170785
Figure 2015170785

表3に示すように、銅パターン61と基材5との間に緩衝層62を介在させた場合でも、基板の線膨張係数が8〜11ppm/K以下の範囲であれば、剥離を防止できることがわかる。なお、表3では、基材5の厚みt5が0.32mm、緩衝層62の厚みt62が0.5mmの場合を示したが、それ以外の厚み構成でも、基材としての線膨張係数を上述した範囲内に調整できれば、同様の効果が得られる。   As shown in Table 3, even when the buffer layer 62 is interposed between the copper pattern 61 and the base material 5, peeling can be prevented if the linear expansion coefficient of the substrate is in the range of 8 to 11 ppm / K or less. I understand. In Table 3, the case where the thickness t5 of the base material 5 is 0.32 mm and the thickness t62 of the buffer layer 62 is 0.5 mm is shown, but the linear expansion coefficient as the base material is also described in the other thickness configurations. If it can be adjusted within the range, the same effect can be obtained.

なお、緩衝層62の厚みt62をパラメータとして試験したところ、緩衝層62の厚みt62を薄くすると、基材5と銅パターン62間の応力緩和効果が低下し、厚みt62を0.2mm以上にすることが好ましい。一方、緩衝層62の厚みt62を厚くした場合、上述した範囲の線膨張係数を得るために必要な銅パターン61の厚みt61が増大することが分かった。つまり、緩衝層62の厚みt62を厚くすると、銅パターン62も厚くする必要が生じて、熱抵抗が大きくなり、また、加工性も低下する。これらの観点から、緩衝層62の厚みt62は、0.2mm以上、0.8mm以下の範囲に収めることが好ましいことがわかった。   When the thickness t62 of the buffer layer 62 was tested as a parameter, when the thickness t62 of the buffer layer 62 was reduced, the stress relaxation effect between the base material 5 and the copper pattern 62 was reduced, and the thickness t62 was set to 0.2 mm or more. It is preferable. On the other hand, it was found that when the thickness t62 of the buffer layer 62 is increased, the thickness t61 of the copper pattern 61 required to obtain the linear expansion coefficient in the above-described range increases. That is, if the thickness t62 of the buffer layer 62 is increased, it is necessary to increase the thickness of the copper pattern 62, the thermal resistance is increased, and the workability is also decreased. From these viewpoints, it was found that the thickness t62 of the buffer layer 62 is preferably in the range of 0.2 mm or more and 0.8 mm or less.

なお、緩衝層62を設けた導体層6であっても、基材に対する被覆率を62%以上にすることで、基材5の端部と封止樹脂との界面での剥離を防止することができる。   In addition, even if it is the conductor layer 6 which provided the buffer layer 62, peeling at the interface of the edge part of the base material 5 and sealing resin is prevented by making the coverage with respect to a base material 62% or more. Can do.

以上のように、本実施の形態2にかかる絶縁基板2によれば、両面の導体層6のそれぞれは、第一部材(銅)で形成された第一層(銅パターン61)と、第一層(銅パターン61)と基材5との間に介在し、第一部材(銅)よりも弾性率が低い第二部材(Al)によって形成された第二層(緩衝層62)とで構成されているので、温度サイクルにおける基材5と銅パターン61間の応力を緩和し、基材5からの銅パターン61の剥離を防止することができ、信頼性が向上する。   As described above, according to the insulating substrate 2 according to the second embodiment, each of the conductor layers 6 on both sides includes the first layer (copper pattern 61) formed of the first member (copper) and the first layer. Consists of a second layer (buffer layer 62) formed by a second member (Al) having a lower elastic modulus than the first member (copper), interposed between the layer (copper pattern 61) and the substrate 5 Therefore, the stress between the base material 5 and the copper pattern 61 in the temperature cycle can be relieved, and the peeling of the copper pattern 61 from the base material 5 can be prevented, thereby improving the reliability.

また、本実施の形態2にかかる電力用半導体装置10によれば、緩衝層62を有する導体層6が形成された絶縁基板2と、絶縁基板2の一方の面(導体層6a)に接合された電力用半導体素子1と、電力用半導体素子1を含む回路部材を封止する封止体9と、を備えたので、チップと封止樹脂との界面、および基板と封止樹脂との界面での剥離やクラックが防止でき、高温に対応する信頼性の高い電力用半導体装置10を得ることができる。   Further, according to the power semiconductor device 10 according to the second embodiment, the insulating substrate 2 on which the conductor layer 6 having the buffer layer 62 is formed and bonded to one surface of the insulating substrate 2 (conductor layer 6a). Since the power semiconductor element 1 and the sealing body 9 for sealing the circuit member including the power semiconductor element 1 are provided, the interface between the chip and the sealing resin, and the interface between the substrate and the sealing resin Peeling and cracking can be prevented, and a highly reliable power semiconductor device 10 corresponding to high temperatures can be obtained.

実施の形態3.
上記実施の形態1あるいは2では、トランスファモールド成型のように成形金型による成形で封止体を形成し、封止体がモジュールの筐体を兼ねるように構成していた。しかし、本実施の形態3にかかる電力用半導体装置では、筐体となるケースを別途製造し、ケース内に硬化前の液状の樹脂材料を注入し、封止体を形成するようにしたものである。絶縁基板については、実施の形態1あるいは2で説明したものを用いている。図5は、本発明の実施の形態3にかかる電力用半導体装置の構成を説明するための断面模式図である。図中、実施の形態1または2と同様のものには同じ符号を付し、詳細な説明は省略する。
Embodiment 3 FIG.
In the first or second embodiment, the sealing body is formed by molding using a molding die, such as transfer molding, and the sealing body also serves as a module housing. However, in the power semiconductor device according to the third embodiment, a case serving as a housing is separately manufactured, and a liquid resin material before curing is injected into the case to form a sealing body. is there. As the insulating substrate, the one described in the first or second embodiment is used. FIG. 5 is a schematic cross-sectional view for explaining the configuration of the power semiconductor device according to the third embodiment of the present invention. In the figure, the same components as those in the first or second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本発明の実施の形態3にかかる電力用半導体装置10は、図5に示すように、絶縁基板2にケース8をシリコーンゴム系の接着剤(図示せず)で接合して、回路部材を内包する容器を形成し、その内部に液状の樹脂材料を注入して封止したものである。モールド金型を使用せずに樹脂封止するため、リードフレーム4を上出しにすることが可能となり、モジュール幅を狭くすることができるので、電力用半導体装置10の小型化が可能となる。   As shown in FIG. 5, the power semiconductor device 10 according to the third embodiment of the present invention joins the case 8 to the insulating substrate 2 with a silicone rubber adhesive (not shown) to enclose the circuit member. A container is formed, and a liquid resin material is injected into the container and sealed. Since the resin sealing is performed without using a mold, the lead frame 4 can be extended, and the module width can be narrowed. Therefore, the power semiconductor device 10 can be downsized.

液状の樹脂材料は、シリカ粒子が充填された2液タイプのエポキシ樹脂/酸無水物硬化剤系の液状封止樹脂(線膨張係数:13ppm/K)を用い、減圧注入装置を用いた。具体的には、減圧脱泡した2液をミキサーで混合し、減圧チャンバー内でケース8(と基板とで形成した空間)内に所定量の液状封止樹脂を注入して封止を行った(封止体9を形成した)。その後、100℃−1hr、さらに150℃−2hrの条件で封止樹脂を硬化させ、電力用半導体装置10を作製した。   As the liquid resin material, a two-pack type epoxy resin / acid anhydride curing agent type liquid sealing resin (linear expansion coefficient: 13 ppm / K) filled with silica particles was used, and a vacuum injection device was used. Specifically, the two liquids degassed under reduced pressure were mixed with a mixer, and sealing was performed by injecting a predetermined amount of liquid sealing resin into the case 8 (the space formed by the substrate) in the vacuum chamber. (The sealing body 9 was formed). Thereafter, the sealing resin was cured under conditions of 100 ° C.-1 hr, and further 150 ° C.-2 hr, and the power semiconductor device 10 was manufactured.

このような封止体9を用いてモジュールを形成した際の耐温度サイクル性を評価するため、実施の形態1における厚み構成をパラメータとした評価試験を行った。その際の仕様、および評価結果を表4に示す。   In order to evaluate the temperature cycle resistance when a module was formed using such a sealing body 9, an evaluation test was performed using the thickness configuration in the first embodiment as a parameter. Table 4 shows the specifications and evaluation results.

Figure 2015170785
Figure 2015170785

表4に示すように、導体層6の厚みt6と基材5の厚みt5の比(t6/t5)、および基板の線膨張係数に対する温度サイクル剥離判定結果は、実施の形態1と同様の結果が得られた。つまり、液状の封止樹脂を用いた封止体9でモジュールを形成しても、基板の線膨張係数を8〜11ppm/Kの範囲に調整することにより、封止樹脂とチップとの界面、および封止樹脂と基板との面の双方で、剥離を防止でき、耐熱性や信頼性の高い電力用半導体装置10を得ることができる。あるいは、基材5にSN板、導体層6に銅を用いた場合、基材5と導体層6(片面あたり)の厚み比(t6/t5)を2.19〜3.44の範囲に調整することにより、封止樹脂とチップとの界面、および封止樹脂と基板との面の双方で、剥離を防止でき、耐熱性や信頼性の高い電力用半導体装置10を得ることができる。   As shown in Table 4, the ratio of the thickness t6 of the conductor layer 6 to the thickness t5 of the base material 5 (t6 / t5), and the temperature cycle peeling determination result with respect to the linear expansion coefficient of the substrate are the same results as in the first embodiment. was gotten. That is, even if a module is formed with the sealing body 9 using a liquid sealing resin, by adjusting the linear expansion coefficient of the substrate to a range of 8 to 11 ppm / K, the interface between the sealing resin and the chip, Further, it is possible to prevent peeling on both the sealing resin and the substrate surface, and to obtain the power semiconductor device 10 having high heat resistance and high reliability. Alternatively, when an SN plate is used for the substrate 5 and copper is used for the conductor layer 6, the thickness ratio (t6 / t5) between the substrate 5 and the conductor layer 6 (per one side) is adjusted to a range of 2.19 to 3.44. By doing so, peeling can be prevented both at the interface between the sealing resin and the chip and at the surface between the sealing resin and the substrate, and the power semiconductor device 10 having high heat resistance and high reliability can be obtained.

なお、液状の封止樹脂を注入して封止体9を形成した場合でも、基材に対する被覆率を62%以上にすることで、基材5の端部と封止樹脂との界面での剥離を防止することができる。   Even when the sealing body 9 is formed by injecting a liquid sealing resin, by setting the coverage to the base material to 62% or more, at the interface between the end portion of the base material 5 and the sealing resin. Peeling can be prevented.

また、封止樹脂の線膨張係数を8〜13ppm/Kの範囲内にフィラーの充填量を調整すれば、熱応力が小さく、反りのない電力用半導体装置10を得ることができる。さらに、封止樹脂の線膨張係数が10〜13ppm/Kの範囲内であれば、耐剥離性がさらに向上する。   Moreover, if the filling amount of the filler is adjusted so that the linear expansion coefficient of the sealing resin is within the range of 8 to 13 ppm / K, the power semiconductor device 10 with small thermal stress and no warpage can be obtained. Furthermore, if the linear expansion coefficient of the sealing resin is within the range of 10 to 13 ppm / K, the peel resistance is further improved.

以上のように、本実施の形態3にかかる電力用半導体装置10によれば、モジュールの外枠となるケース8を備え、封止体9は、硬化前の液状の樹脂をケース8の中に注入することによって形成されたものであっても、絶縁基板2の仕様を調整していれば、上記実施の形態1あるいは2と同様に、封止樹脂とチップとの界面、および封止樹脂と基板との面の双方で、剥離を防止でき、耐熱性や信頼性の高い電力用半導体装置10を得ることができる。   As described above, according to the power semiconductor device 10 of the third embodiment, the case 8 serving as the outer frame of the module is provided, and the sealing body 9 includes the liquid resin before curing in the case 8. Even if it is formed by injection, as long as the specification of the insulating substrate 2 is adjusted, the interface between the sealing resin and the chip, and the sealing resin Separation can be prevented both on the surface with the substrate, and the power semiconductor device 10 having high heat resistance and high reliability can be obtained.

なお、上記実施の形態1〜3においては、電力用半導体素子1にワイドバンドギャップ半導体材料であるSiCを適用することを想定しているが、一般的に用いられているシリコンを使用してもよいことは言うまでもない。しかし、バンドギャップが大きい、いわゆるワイドギャップ半導体を形成できる炭化ケイ素や、窒化ガリウム系材料又はダイヤモンド又は酸化ガリウム系材料を用いた時の方が、高耐電圧、耐高温動作を要求されるため、本発明の効果が顕著に顕れる。とくに、SiCチップは封止樹脂との接着性が低いので、より一層、本発明の効果を発揮できる。つまり、本発明による効果を発揮することで、ワイドバンドギャップ半導体の特性を活かすことができるようになる。   In the first to third embodiments, it is assumed that SiC, which is a wide bandgap semiconductor material, is applied to the power semiconductor element 1, but generally used silicon may be used. Needless to say, it is good. However, when using silicon carbide that can form a so-called wide gap semiconductor with a large band gap, gallium nitride-based material or diamond or gallium oxide-based material, high withstand voltage and high temperature resistant operation are required. The effect of the present invention is noticeable. In particular, since the SiC chip has low adhesiveness with the sealing resin, the effect of the present invention can be further exhibited. That is, by exhibiting the effect of the present invention, the characteristics of the wide band gap semiconductor can be utilized.

1:電力用半導体素子、 2:絶縁基板、 3:接合層、 4:リードフレーム、 5:基材、 6:導体層、 8:ケース、 9:封止体、 10:電力用半導体装置、 61:銅パターン(第一層)、 62:緩衝層(第二層)、
t5:基材の厚み(第一厚み)、 t6:導体層(のそれぞれ)の厚み(第二厚み)。
1: power semiconductor element, 2: insulating substrate, 3: bonding layer, 4: lead frame, 5: base material, 6: conductor layer, 8: case, 9: sealing body, 10: power semiconductor device, 61 : Copper pattern (first layer), 62: Buffer layer (second layer),
t5: thickness of substrate (first thickness), t6: thickness of conductor layer (each) (second thickness).

Claims (9)

セラミックの基材の両面に導体層が形成され、前記両面の導体層のうちの一方に電力用半導体素子が接合される絶縁基板であって、
平面方向の見かけの線膨張係数が8ppm/K以上、11ppm/K以下に調整されていることを特徴とする絶縁基板。
A conductive layer is formed on both surfaces of a ceramic base material, and an insulating substrate to which a power semiconductor element is bonded to one of the conductive layers on both surfaces,
An insulating substrate, wherein an apparent linear expansion coefficient in a planar direction is adjusted to 8 ppm / K or more and 11 ppm / K or less.
前記両面の導体層のそれぞれは、第一部材で形成された第一層と、前記第一層と前記基材との間に介在し、前記第一部材よりも弾性率が低い第二部材によって形成された第二層とで構成されていることを特徴とする請求項1に記載の絶縁基板。   Each of the conductor layers on both sides is formed by a first layer formed of a first member, a second member interposed between the first layer and the base material, and having a lower elastic modulus than the first member. The insulating substrate according to claim 1, comprising the formed second layer. 前記第一部材は銅で、前記第二部材がアルミニウムであることを特徴とする請求項2に記載の絶縁基板。   The insulating substrate according to claim 2, wherein the first member is copper and the second member is aluminum. セラミックの基材の両面に導体層が形成され、前記両面の導体層のうちの一方に電力用半導体素子が接合される絶縁基板であって、
前記基材は第一厚みを有する窒化ケイ素板であり、
前記両面の導体層はそれぞれ第二厚みを有する銅材であり、
前記第二厚みを前記第一厚みで除した値が2.19以上、3.44以下であることを特徴とする絶縁基板。
A conductive layer is formed on both surfaces of a ceramic base material, and an insulating substrate to which a power semiconductor element is bonded to one of the conductive layers on both surfaces,
The substrate is a silicon nitride plate having a first thickness;
Each of the conductive layers on both sides is a copper material having a second thickness,
A value obtained by dividing the second thickness by the first thickness is 2.19 or more and 3.44 or less.
前記両面の導体層のそれぞれが前記基材を覆う被覆率の平均値が62%以上であることを特徴とする請求項1から4のいずれか1項に記載の絶縁基板。   5. The insulating substrate according to claim 1, wherein an average value of a covering ratio of each of the conductor layers on both surfaces covering the base material is 62% or more. 請求項1から5のいずれか1項に記載の絶縁基板と、
前記絶縁基板の一方の面に接合された電力用半導体素子と、
前記電力用半導体素子を含む回路部材を封止する封止体と、
を備えたことを特徴とする電力用半導体装置。
An insulating substrate according to any one of claims 1 to 5,
A power semiconductor element bonded to one surface of the insulating substrate;
A sealing body for sealing a circuit member including the power semiconductor element;
A power semiconductor device comprising:
前記封止体が8ppm/K以上、13ppm/K以下の線膨張係数を有することを特徴とする請求項6に記載の電力用半導体装置。   The power semiconductor device according to claim 6, wherein the sealing body has a linear expansion coefficient of 8 ppm / K or more and 13 ppm / K or less. 前記電力用半導体素子は、ワイドバンドギャップ半導体材料で形成されていることを特徴とする請求項6または7に記載の電力用半導体装置。   The power semiconductor device according to claim 6 or 7, wherein the power semiconductor element is formed of a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム系材料、およびダイヤモンドのうちのいずれかであることを特徴とする請求項8に記載の電力用半導体装置。   9. The power semiconductor device according to claim 8, wherein the wide band gap semiconductor material is any one of silicon carbide, a gallium nitride-based material, and diamond.
JP2014045893A 2014-03-10 2014-03-10 Insulation substrate and electric power semiconductor device Pending JP2015170785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045893A JP2015170785A (en) 2014-03-10 2014-03-10 Insulation substrate and electric power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045893A JP2015170785A (en) 2014-03-10 2014-03-10 Insulation substrate and electric power semiconductor device

Publications (1)

Publication Number Publication Date
JP2015170785A true JP2015170785A (en) 2015-09-28

Family

ID=54203236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045893A Pending JP2015170785A (en) 2014-03-10 2014-03-10 Insulation substrate and electric power semiconductor device

Country Status (1)

Country Link
JP (1) JP2015170785A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183222A1 (en) * 2016-04-21 2017-10-26 三菱電機株式会社 Semiconductor device and method for manufacturing same
JP2018133521A (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Power semiconductor device, power conversion device, and method of manufacturing power semiconductor device
CN108735692A (en) * 2017-04-14 2018-11-02 富士电机株式会社 Semiconductor device
JPWO2019026836A1 (en) * 2017-08-04 2020-07-16 デンカ株式会社 Power module
JP2020178076A (en) * 2019-04-19 2020-10-29 三菱電機株式会社 Semiconductor module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119071A (en) * 1998-10-14 2000-04-25 Fuji Electric Co Ltd Ceramic substrate for semiconductor device
JP2003078086A (en) * 2001-09-04 2003-03-14 Kubota Corp Lamination structure of semiconductor module substrate
JP2006228969A (en) * 2005-02-17 2006-08-31 Hitachi Metals Ltd Ceramics circuit board and semiconductor module using it
JP2008041851A (en) * 2006-08-04 2008-02-21 Hitachi Ltd Power semiconductor device
JP2008124416A (en) * 2006-03-31 2008-05-29 Hitachi Metals Ltd Ceramics circuit board and semiconductor module using this
JP2010283169A (en) * 2009-06-04 2010-12-16 Honda Motor Co Ltd Method of manufacturing semiconductor device
WO2011096542A1 (en) * 2010-02-05 2011-08-11 三菱マテリアル株式会社 Substrate for power module, and power module
JP2011253950A (en) * 2010-06-02 2011-12-15 Mitsubishi Electric Corp Power semiconductor device
JP2012138541A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Circuit board for semiconductor module
JP2012256746A (en) * 2011-06-09 2012-12-27 Mitsubishi Electric Corp Semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119071A (en) * 1998-10-14 2000-04-25 Fuji Electric Co Ltd Ceramic substrate for semiconductor device
JP2003078086A (en) * 2001-09-04 2003-03-14 Kubota Corp Lamination structure of semiconductor module substrate
JP2006228969A (en) * 2005-02-17 2006-08-31 Hitachi Metals Ltd Ceramics circuit board and semiconductor module using it
JP2008124416A (en) * 2006-03-31 2008-05-29 Hitachi Metals Ltd Ceramics circuit board and semiconductor module using this
JP2008041851A (en) * 2006-08-04 2008-02-21 Hitachi Ltd Power semiconductor device
JP2010283169A (en) * 2009-06-04 2010-12-16 Honda Motor Co Ltd Method of manufacturing semiconductor device
WO2011096542A1 (en) * 2010-02-05 2011-08-11 三菱マテリアル株式会社 Substrate for power module, and power module
JP2011253950A (en) * 2010-06-02 2011-12-15 Mitsubishi Electric Corp Power semiconductor device
JP2012138541A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Circuit board for semiconductor module
JP2012256746A (en) * 2011-06-09 2012-12-27 Mitsubishi Electric Corp Semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183222A1 (en) * 2016-04-21 2017-10-26 三菱電機株式会社 Semiconductor device and method for manufacturing same
JPWO2017183222A1 (en) * 2016-04-21 2018-08-09 三菱電機株式会社 Semiconductor device and manufacturing method thereof
CN109075159A (en) * 2016-04-21 2018-12-21 三菱电机株式会社 Semiconductor device and its manufacturing method
US10707146B2 (en) 2016-04-21 2020-07-07 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing same, for releaved stress and high heat conductivity
JP2018133521A (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Power semiconductor device, power conversion device, and method of manufacturing power semiconductor device
CN108735692A (en) * 2017-04-14 2018-11-02 富士电机株式会社 Semiconductor device
CN108735692B (en) * 2017-04-14 2023-08-29 富士电机株式会社 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JPWO2019026836A1 (en) * 2017-08-04 2020-07-16 デンカ株式会社 Power module
JP7144419B2 (en) 2017-08-04 2022-09-29 デンカ株式会社 power module
JP2020178076A (en) * 2019-04-19 2020-10-29 三菱電機株式会社 Semiconductor module
JP7156155B2 (en) 2019-04-19 2022-10-19 三菱電機株式会社 semiconductor module

Similar Documents

Publication Publication Date Title
US9171773B2 (en) Semiconductor device
JP5847165B2 (en) Semiconductor device
WO2013111276A1 (en) Power semiconductor device
JP6041795B2 (en) Semiconductor device
US10727145B2 (en) Semiconducter device with filler to suppress generation of air bubbles and electric power converter
US9754855B2 (en) Semiconductor module having an embedded metal heat dissipation plate
JP2018093244A (en) Semiconductor device for electric power
EP1009026A2 (en) Power semiconductor module
US10163752B2 (en) Semiconductor device
JP6057926B2 (en) Semiconductor device
JP2012204366A (en) Semiconductor device
JP2015170785A (en) Insulation substrate and electric power semiconductor device
US9466542B2 (en) Semiconductor device
JP6057927B2 (en) Semiconductor device
CN108604589B (en) Semiconductor device and method for manufacturing the same
JP2016018866A (en) Power module
JP2015198227A (en) semiconductor device
JP2009252838A (en) Semiconductor device
US9443784B2 (en) Semiconductor module including plate-shaped insulating members having different thickness
JP2012015222A (en) Semiconductor device
US20130112993A1 (en) Semiconductor device and wiring substrate
JP2012156450A (en) Semiconductor device and method of manufacturing semiconductor device
JPWO2014141346A1 (en) Semiconductor device
JP6303776B2 (en) Semiconductor device
EP3958305A1 (en) Power semiconductor module arrangement and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171128