JP2015120982A - Thin film deposition device, method for manufacturing organic light-emitting display device utilizing the device, and organic light-emitting display device manufactured by using the method - Google Patents

Thin film deposition device, method for manufacturing organic light-emitting display device utilizing the device, and organic light-emitting display device manufactured by using the method Download PDF

Info

Publication number
JP2015120982A
JP2015120982A JP2015018336A JP2015018336A JP2015120982A JP 2015120982 A JP2015120982 A JP 2015120982A JP 2015018336 A JP2015018336 A JP 2015018336A JP 2015018336 A JP2015018336 A JP 2015018336A JP 2015120982 A JP2015120982 A JP 2015120982A
Authority
JP
Japan
Prior art keywords
thin film
deposition
light emitting
film deposition
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015018336A
Other languages
Japanese (ja)
Other versions
JP6049774B2 (en
Inventor
正培 宋
Jeong Bae Song
正培 宋
凡洛 崔
Beohm Rock Choi
凡洛 崔
相泌 李
Sang Pil Lee
相泌 李
泳▲録▼ 宋
Young Rok Song
泳▲録▼ 宋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Publication of JP2015120982A publication Critical patent/JP2015120982A/en
Application granted granted Critical
Publication of JP6049774B2 publication Critical patent/JP6049774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film deposition device which is easy to manufacture, easily applicable to a mass production process of large substrates, and capable of improving manufacturing yield and deposition efficiency; a method for manufacturing an organic light-emitting display device by utilizing the thin film deposition device; and an organic light-emitting display device manufactured by utilizing the method.SOLUTION: The thin film deposition device includes a plurality of thin film deposition assemblies. Each of the thin film deposition assemblies includes a deposition source, a deposition source nozzle part in which a plurality of deposition source nozzles are formed, a patterning slit sheet in which a plurality of patterning slits are formed, and a partitioning plate assembly including a plurality of partitioning plates for dividing a space between the deposition source nozzle part and the patterning slit sheet into a plurality of deposition spaces. The thin film deposition device is separated from a substrate by a predetermined distance. The thin film deposition device and the substrate are formed so that either one of them can be moved relatively with respect to the other. Each evaporation source includes a red light-emitting layer material, a green light-emitting layer material, a blue light-emitting layer material, or an auxiliary layer material.

Description

本発明は、薄膜蒸着装置、これを利用した有機発光表示装置の製造方法及びこれを利用して製造された有機発光表示装置に係り、詳細には、大型基板量産工程に容易に適用でき、製造収率が向上した薄膜蒸着装置、これを利用した有機発光表示装置の製造方法及びこれを利用して製造された有機発光表示装置に関する。   The present invention relates to a thin film deposition apparatus, an organic light emitting display device manufacturing method using the same, and an organic light emitting display device manufactured using the same, and more particularly, can be easily applied to a large-scale substrate mass production process. The present invention relates to a thin film deposition apparatus with improved yield, a method for manufacturing an organic light emitting display device using the same, and an organic light emitting display device manufactured using the same.

ディスプレイ装置の中で、有機発光ディスプレイ装置は視野角が広くてコントラストが優れているだけでなく応答速度が速いという長所を持っており、次世代ディスプレイ装置として注目されている。   Among display devices, an organic light emitting display device has an advantage of not only a wide viewing angle and excellent contrast but also a high response speed, and is attracting attention as a next generation display device.

一般的に、有機発光ディスプレイ装置は、アノードとカソードとから注入される正孔と電子とが発光層で再結合して発光する原理で色相を具現できるように、アノードとカソードとの間に発光層を挿入した積層型構造を持っている。しかし、このような構造では高効率発光を得難いため、それぞれの電極と発光層との間に電子注入層、電子輸送層、正孔輸送層及び正孔注入層などの中間層を選択的に追加挿入して使用している。   In general, an organic light emitting display device emits light between an anode and a cathode so that a color can be realized on the principle that holes and electrons injected from the anode and the cathode recombine in the light emitting layer to emit light. It has a stacked structure with layers inserted. However, since it is difficult to obtain high-efficiency light emission in such a structure, intermediate layers such as an electron injection layer, an electron transport layer, a hole transport layer, and a hole injection layer are selectively added between each electrode and the light emitting layer. Inserted and used.

しかし、発光層及び中間層などの有機薄膜の微細パターンを形成することは、実質的に非常に困難であり、前記層によって赤色、緑色及び青色の発光効率が変わるため、従来の薄膜蒸着装置では大面積(5G以上のマザーガラス)に対するパターニングが不可能であって、満足すべきレベルの駆動電圧、電流密度、輝度、色純度、発光効率及び寿命などを持つ大型有機発光ディスプレイ装置を製造できないところ、その改善が急務となっている。   However, it is substantially very difficult to form a fine pattern of an organic thin film such as a light emitting layer and an intermediate layer, and the red, green, and blue light emission efficiency changes depending on the layer. Patterning of large area (5G or larger mother glass) is impossible, and large organic light emitting display devices with satisfactory levels of driving voltage, current density, brightness, color purity, luminous efficiency and lifetime cannot be manufactured. The improvement is an urgent need.

一方、有機発光ディスプレイ装置は、互いに対向する第1電極及び第2電極の間に発光層及びこれを含む中間層を備える。この時、前記電極及び中間層はいろいろな方法で形成できるが、そのうち一つの方法が蒸着である。蒸着方法を利用して有機発光ディスプレイ装置を製作するためには、薄膜などが形成される基板面に、形成される薄膜などのパターンと同じパターンを持つファインメタルマスク(Fine Metal Mask:FMM)を密着させ、かつ薄膜などの材料を蒸着して所定パターンの薄膜を形成する。   Meanwhile, the organic light emitting display device includes a light emitting layer and an intermediate layer including the light emitting layer between a first electrode and a second electrode facing each other. At this time, the electrode and the intermediate layer can be formed by various methods, one of which is vapor deposition. In order to fabricate an organic light emitting display device using a vapor deposition method, a fine metal mask (FMM) having the same pattern as the thin film to be formed is formed on the substrate surface on which the thin film is formed. A thin film having a predetermined pattern is formed by depositing and depositing a material such as a thin film.

本発明は、製造が容易であり、大型基板の量産工程に容易に適用でき、製造収率及び蒸着効率が向上した薄膜蒸着装置、これを利用した有機発光表示装置の製造方法及びこれを利用して製造された有機発光表示装置を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention is easy to manufacture and can be easily applied to a mass production process of a large substrate, and a thin film deposition apparatus with improved production yield and deposition efficiency, a method for manufacturing an organic light emitting display using the same, and a method using the same. An object of the present invention is to provide an organic light emitting display device manufactured in the above manner.

本発明は、基板上に薄膜を形成するための薄膜蒸着装置において、前記薄膜蒸着装置は複数の薄膜蒸着アセンブリーを備え、前記複数の薄膜蒸着アセンブリーのそれぞれは、蒸着物質を放射する蒸着源と、前記蒸着源の一側に配され、第1方向に沿って複数の蒸着源ノズルが形成される蒸着源ノズル部と、前記蒸着源ノズル部と対向して配され、前記第1方向に沿って複数のパターニングスリットが形成されるパターニングスリットシートと、前記蒸着源ノズル部と前記パターニングスリットシートとの間に前記第1方向に沿って配されて、前記蒸着源ノズル部と前記パターニングスリットシートとの間の空間を複数の蒸着空間に区切る複数の遮断板を備える遮断板アセンブリーと、を備え、前記薄膜蒸着装置は、前記基板と所定距離ほど離隔して形成され、前記薄膜蒸着装置と前記基板とは、いずれか一方が他方に対して相対的に移動自在に形成され、前記複数の薄膜蒸着アセンブリーの各蒸着源には、少なくとも赤色発光層材料、緑色発光層材料、青色発光層材料又は補助層材料が備えられることを特徴とする薄膜蒸着装置を提供する。   The present invention relates to a thin film deposition apparatus for forming a thin film on a substrate, wherein the thin film deposition apparatus includes a plurality of thin film deposition assemblies, each of the plurality of thin film deposition assemblies includes a deposition source that emits a deposition material; A vapor deposition source nozzle part disposed on one side of the vapor deposition source and formed with a plurality of vapor deposition source nozzles along the first direction, and disposed opposite the vapor deposition source nozzle part, along the first direction. A patterning slit sheet in which a plurality of patterning slits are formed, and disposed along the first direction between the deposition source nozzle part and the patterning slit sheet, and the deposition source nozzle part and the patterning slit sheet A barrier plate assembly including a plurality of barrier plates that divide the space between them into a plurality of vapor deposition spaces, and the thin film deposition apparatus is separated from the substrate by a predetermined distance. The thin film deposition apparatus and the substrate are formed such that one of the thin film deposition apparatus and the substrate is movable relative to the other, and each deposition source of the plurality of thin film deposition assemblies includes at least a red light emitting layer material. A thin film deposition apparatus comprising: a green light emitting layer material, a blue light emitting layer material, or an auxiliary layer material.

他の側面による本発明は、基板上に薄膜を形成するための薄膜蒸着装置において、前記薄膜蒸着装置は複数の薄膜蒸着アセンブリーを備え、前記複数の薄膜蒸着アセンブリーのそれぞれは、蒸着物質を放射する蒸着源と、前記蒸着源の一側に配され、第1方向に沿って複数の蒸着源ノズルが形成される蒸着源ノズル部と、前記蒸着源ノズル部と対向して配され、前記第1方向に対して垂直な第2方向に沿って複数のパターニングスリットが形成されるパターニングスリットシートとを備え、前記基板が、前記薄膜蒸着装置に対して前記第1方向に沿って移動しつつ蒸着が行われ、前記蒸着源、前記蒸着源ノズル部及び前記パターニングスリットシートは一体に形成され、前記複数の薄膜蒸着アセンブリーの各蒸着源には、少なくとも赤色発光層材料、緑色発光層材料、青色発光層材料又は補助層材料が備えられることを特徴とする薄膜蒸着装置を提供する。   The present invention according to another aspect provides a thin film deposition apparatus for forming a thin film on a substrate, wherein the thin film deposition apparatus includes a plurality of thin film deposition assemblies, and each of the plurality of thin film deposition assemblies emits a deposition material. A vapor deposition source, a vapor deposition source nozzle portion disposed on one side of the vapor deposition source and having a plurality of vapor deposition source nozzles formed along a first direction, and disposed opposite to the vapor deposition source nozzle portion; A patterning slit sheet in which a plurality of patterning slits are formed along a second direction perpendicular to the direction, and the substrate is deposited while moving along the first direction with respect to the thin film deposition apparatus. The deposition source, the deposition source nozzle unit, and the patterning slit sheet are integrally formed, and each deposition source of the plurality of thin film deposition assemblies has at least red light emission. Materials, green light emitting layer material, to provide a thin film deposition apparatus, wherein a blue light-emitting layer material or auxiliary layer material is provided.

本発明において、前記薄膜蒸着アセンブリーは少なくとも5つ備えられ、前記少なくとも5つの薄膜蒸着アセンブリーの各蒸着源にはそれぞれ、青色発光層材料、補助層材料、緑色発光層材料、補助層材料及び赤色発光層材料が順に備えられる。   In the present invention, at least five thin film deposition assemblies are provided, and each of the deposition sources of the at least five thin film deposition assemblies includes a blue light emitting layer material, an auxiliary layer material, a green light emitting layer material, an auxiliary layer material, and a red light emitting device. Layer materials are provided in order.

本発明において、前記薄膜蒸着アセンブリーは少なくとも5つ備えられ、前記少なくとも5つの薄膜蒸着アセンブリーの各蒸着源にはそれぞれ、青色発光層材料、補助層材料、赤色発光層材料、補助層材料及び緑色発光層材料が順に備えられる。   In the present invention, at least five thin film deposition assemblies are provided, and each of the at least five thin film deposition assemblies has a blue light emitting layer material, an auxiliary layer material, a red light emitting layer material, an auxiliary layer material, and a green light emitting source. Layer materials are provided in order.

本発明において、前記複数の薄膜蒸着アセンブリーの各蒸着源に備えられた各蒸着物質が順に前記基板上に蒸着される。   In the present invention, each deposition material provided in each deposition source of the plurality of thin film deposition assemblies is sequentially deposited on the substrate.

本発明において、前記薄膜蒸着装置と前記基板とは、前記基板で前記蒸着物質が蒸着される面と平行な面に沿って、いずれか一方が他方に対して相対的に移動する。   In the present invention, one of the thin film deposition apparatus and the substrate moves relative to the other along a plane parallel to a plane on which the deposition material is deposited on the substrate.

本発明において、前記各薄膜蒸着アセンブリーの前記パターニングスリットシートは、前記基板より小さく形成される。   In the present invention, the patterning slit sheet of each thin film deposition assembly is formed smaller than the substrate.

本発明において、前記複数の薄膜蒸着アセンブリーの各蒸着源は、各蒸着源毎に蒸着温度が制御可能に備えられる。   In the present invention, each deposition source of the plurality of thin film deposition assemblies is provided such that the deposition temperature can be controlled for each deposition source.

本発明において、前記各薄膜蒸着アセンブリーの前記遮断板アセンブリーは、前記蒸着源から放射される前記蒸着物質の放射経路をガイドする。   In the present invention, the barrier plate assembly of each thin film deposition assembly guides a radiation path of the deposition material emitted from the deposition source.

本発明において、前記複数の遮断板のそれぞれは、前記第1方向と実質的に垂直な第2方向に形成されて、前記蒸着源ノズル部と前記パターニングスリットシートとの間の空間を複数の蒸着空間に区切る。   In the present invention, each of the plurality of blocking plates is formed in a second direction substantially perpendicular to the first direction, and a plurality of vapor deposition spaces are formed between the vapor deposition source nozzle portion and the patterning slit sheet. Divide into spaces.

本発明において、前記遮断板アセンブリーは、複数の第1遮断板を備える第1遮断板アセンブリーと、複数の第2遮断板を備える第2遮断板アセンブリーと、を備える。   In the present invention, the shield plate assembly includes a first shield plate assembly including a plurality of first shield plates and a second shield plate assembly including a plurality of second shield plates.

本発明において、前記複数の第1遮断板及び前記複数の第2遮断板のそれぞれは、前記第1方向と実質的に垂直な第2方向に形成されて、前記蒸着源ノズル部と前記パターニングスリットシートとの間の空間を複数の蒸着空間に区切る。   In the present invention, each of the plurality of first blocking plates and the plurality of second blocking plates is formed in a second direction substantially perpendicular to the first direction, and the deposition source nozzle portion and the patterning slit A space between the sheet is divided into a plurality of vapor deposition spaces.

本発明において、前記蒸着源及び前記蒸着源ノズル部と前記パターニングスリットシートとは、連結部材により結合されて一体に形成される。   In the present invention, the vapor deposition source, the vapor deposition source nozzle part, and the patterning slit sheet are integrally formed by being coupled by a connecting member.

ここで、前記連結部材は、前記蒸着物質の移動経路をガイドする。   Here, the connecting member guides a movement path of the deposition material.

ここで、前記連結部材は、前記蒸着源及び前記蒸着源ノズル部と前記パターニングスリットシートとの間の空間を外部から密閉するように形成される。   Here, the connection member is formed so as to seal the space between the deposition source and the deposition source nozzle part and the patterning slit sheet from the outside.

本発明において、前記薄膜蒸着装置は、前記基板と所定距離ほど離隔して形成される。
本発明において、前記基板が前記薄膜蒸着装置に対して前記第1方向に沿って移動しつつ、前記基板上に前記蒸着物質が連続的に蒸着される。
In the present invention, the thin film deposition apparatus is formed at a predetermined distance from the substrate.
In the present invention, the deposition material is continuously deposited on the substrate while the substrate moves along the first direction with respect to the thin film deposition apparatus.

本発明において、前記複数の蒸着源ノズルは、所定角度チルトされるように形成される。   In the present invention, the plurality of vapor deposition source nozzles are formed to be tilted by a predetermined angle.

ここで、前記複数の蒸着源ノズルは、前記第1方向に沿って形成された2列の蒸着源ノズルを備え、前記2列の蒸着源ノズルは互いに対向する方向にチルトされている。   Here, the plurality of vapor deposition source nozzles include two rows of vapor deposition source nozzles formed along the first direction, and the two rows of vapor deposition source nozzles are tilted in directions facing each other.

ここで、前記複数の蒸着源ノズルは、前記第1方向に沿って形成された2列の蒸着源ノズルを備え、前記2列の蒸着源ノズルのうち第1側に配された蒸着源ノズルは、パターニングスリットシートの第2側端部に向かうように配され、前記2列の蒸着源ノズルのうち第2側に配された蒸着源ノズルは、パターニングスリットシートの第1側端部に向かうように配される。   Here, the plurality of vapor deposition source nozzles include two rows of vapor deposition source nozzles formed along the first direction, and the vapor deposition source nozzles disposed on the first side of the two rows of vapor deposition source nozzles are The vapor deposition source nozzle arranged on the second side of the two rows of vapor deposition source nozzles is directed toward the first side end of the patterning slit sheet. Arranged.

さらに他の側面による本発明は、基板上に薄膜を形成する薄膜蒸着装置を利用した有機発光ディスプレイ装置の製造方法において、前記基板を前記薄膜蒸着装置に対して所定距離ほど離隔して配する段階と、前記薄膜蒸着装置と前記基板のうちいずれか一方を他方に対して相対的に移動させつつ、前記薄膜蒸着装置から放射される蒸着物質を前記基板上に蒸着する段階と、を含み、前記薄膜蒸着装置は、蒸着物質を放射する蒸着源と、前記蒸着源の一側に配され、第1方向に沿って複数の蒸着源ノズルが形成される蒸着源ノズル部と、前記蒸着源ノズル部と対向して配され、前記第1方向に沿って複数のパターニングスリットが形成されるパターニングスリットシートと、前記蒸着源ノズル部と前記パターニングスリットシートとの間に前記第1方向に沿って配されて、前記蒸着源ノズル部と前記パターニングスリットシートとの間の空間を複数の蒸着空間に区切る複数の遮断板を備える遮断板アセンブリーと、を備える薄膜蒸着アセンブリーを複数備え、前記複数の薄膜蒸着アセンブリーの各蒸着源には、少なくとも赤色発光層材料、緑色発光層材料、青色発光層材料又は補助層材料が備えられることを特徴とする有機発光ディスプレイ装置の製造方法を提供する。   According to another aspect of the present invention, in a method of manufacturing an organic light emitting display device using a thin film deposition apparatus for forming a thin film on a substrate, the substrate is disposed at a predetermined distance from the thin film deposition apparatus. And depositing a deposition material radiated from the thin film deposition apparatus on the substrate while moving either one of the thin film deposition apparatus and the substrate relative to the other, and The thin film deposition apparatus includes: a deposition source that radiates a deposition material; a deposition source nozzle unit that is disposed on one side of the deposition source and has a plurality of deposition source nozzles formed along a first direction; and the deposition source nozzle unit. A patterning slit sheet that is arranged opposite to each other and has a plurality of patterning slits formed along the first direction, and between the vapor deposition source nozzle part and the patterning slit sheet, A plurality of thin film deposition assemblies including a plurality of shielding plates arranged along one direction and partitioning a space between the deposition source nozzle portion and the patterning slit sheet into a plurality of deposition spaces. A method of manufacturing an organic light emitting display device, wherein each deposition source of the plurality of thin film deposition assemblies includes at least a red light emitting layer material, a green light emitting layer material, a blue light emitting layer material, or an auxiliary layer material. To do.

さらに他の側面による本発明は、基板上に薄膜を形成する薄膜蒸着装置を利用した有機発光ディスプレイ装置の製造方法において、前記基板を前記薄膜蒸着装置に対して所定距離ほど離隔して配する段階と、前記薄膜蒸着装置と前記基板のうちいずれか一方を他方に対して相対的に移動させつつ、前記薄膜蒸着装置から放射される蒸着物質を前記基板上に蒸着する段階と、を含み、前記薄膜蒸着装置は、蒸着物質を放射する蒸着源と、前記蒸着源の一側に配され、第1方向に沿って複数の蒸着源ノズルが形成される蒸着源ノズル部と、前記蒸着源ノズル部と対向して配され、前記第1方向に対して垂直な第2方向に沿って複数のパターニングスリットが形成されるパターニングスリットシートと、を備える薄膜蒸着アセンブリーを複数備え、前記複数の薄膜蒸着アセンブリーの各蒸着源には、少なくとも赤色発光層材料、緑色発光層材料、青色発光層材料又は補助層材料が備えられることを特徴とする有機発光ディスプレイ装置の製造方法を提供する。   According to another aspect of the present invention, in a method of manufacturing an organic light emitting display device using a thin film deposition apparatus for forming a thin film on a substrate, the substrate is disposed at a predetermined distance from the thin film deposition apparatus. And depositing a deposition material radiated from the thin film deposition apparatus on the substrate while moving either one of the thin film deposition apparatus and the substrate relative to the other, and The thin film deposition apparatus includes: a deposition source that radiates a deposition material; a deposition source nozzle unit that is disposed on one side of the deposition source and has a plurality of deposition source nozzles formed along a first direction; and the deposition source nozzle unit. A plurality of thin film deposition assemblies comprising: a patterning slit sheet that is arranged opposite to and that forms a plurality of patterning slits along a second direction perpendicular to the first direction; Provided is a method of manufacturing an organic light emitting display device, wherein each deposition source of the plurality of thin film deposition assemblies includes at least a red light emitting layer material, a green light emitting layer material, a blue light emitting layer material, or an auxiliary layer material. .

本発明において、前記蒸着物質を前記基板上に蒸着する段階は、前記複数の薄膜蒸着アセンブリーに備えられた青色発光層材料、補助層材料、緑色発光層材料、補助層材料及び赤色発光層材料を順に前記基板上に蒸着する段階を含む。   In the present invention, the step of depositing the deposition material on the substrate includes a blue light emitting layer material, an auxiliary layer material, a green light emitting layer material, an auxiliary layer material, and a red light emitting layer material provided in the plurality of thin film deposition assemblies. Sequentially depositing on the substrate.

本発明において、前記蒸着物質を前記基板上に蒸着する段階は、前記複数の薄膜蒸着アセンブリーに備えられた青色発光層材料、補助層材料、赤色発光層材料、補助層材料及び緑色発光層材料を順に前記基板上に蒸着する段階を含む。   In the present invention, the step of depositing the deposition material on the substrate includes a blue light emitting layer material, an auxiliary layer material, a red light emitting layer material, an auxiliary layer material, and a green light emitting layer material provided in the plurality of thin film deposition assemblies. Sequentially depositing on the substrate.

本発明において、前記複数の薄膜蒸着アセンブリーの各蒸着源に備えられた各蒸着物質が順に前記基板上に蒸着される。   In the present invention, each deposition material provided in each deposition source of the plurality of thin film deposition assemblies is sequentially deposited on the substrate.

本発明において、前記蒸着物質を前記基板上に蒸着する段階は、前記複数の薄膜蒸着アセンブリー毎に蒸着温度を制御する段階をさらに含む。   In the present invention, the step of depositing the deposition material on the substrate further includes controlling a deposition temperature for each of the plurality of thin film deposition assemblies.

さらに他の側面による本発明は、前述したいずれか一つの方法によって製造された有機発光ディスプレイ装置を提供する。   According to another aspect of the present invention, an organic light emitting display device manufactured by any one of the methods described above is provided.

さらに他の側面による本発明は、複数の画素を備える有機発光ディスプレイ装置において、前記各画素は、それぞれ青色、緑色及び赤色の光を放出する発光層が形成される副画素を一方向に沿って順に備え、前記緑色副画素には緑色補助層がさらに形成され、前記赤色副画素には赤色補助層がさらに形成され、前記青色発光層と前記緑色発光層との間に前記緑色補助層が介在され、前記緑色発光層と前記赤色発光層との間に前記赤色補助層が介在されることを特徴とする有機発光ディスプレイ装置を提供する。   According to another aspect of the present invention, in the organic light emitting display device including a plurality of pixels, each of the pixels includes a subpixel in which a light emitting layer that emits blue, green, and red light is formed along one direction. A green auxiliary layer is further formed on the green subpixel, a red auxiliary layer is further formed on the red subpixel, and the green auxiliary layer is interposed between the blue light emitting layer and the green light emitting layer. An organic light emitting display device is provided in which the red auxiliary layer is interposed between the green light emitting layer and the red light emitting layer.

本発明において、前記青色発光層の一端部上に前記緑色補助層の一端部がオーバーラップされて形成され、前記緑色補助層上に前記緑色発光層が形成される。   In the present invention, one end of the green auxiliary layer is overlapped on one end of the blue light emitting layer, and the green light emitting layer is formed on the green auxiliary layer.

本発明において、前記緑色発光層の一端部上に前記赤色補助層の一端部がオーバーラップされて形成され、前記赤色補助層上に前記赤色発光層が形成される。   In the present invention, one end of the red auxiliary layer is formed to overlap on one end of the green light emitting layer, and the red light emitting layer is formed on the red auxiliary layer.

本発明において、前記青色発光層と前記緑色発光層及び前記緑色発光層と前記赤色発光層は、互いに接触しない。   In the present invention, the blue light emitting layer and the green light emitting layer, and the green light emitting layer and the red light emitting layer are not in contact with each other.

本発明において、前記有機発光ディスプレイ装置は、基板と、互いに対向する第1電極と第2電極と、をさらに備え、前記青色、緑色及び赤色発光層、前記緑色補助層及び前記赤色補助層は、前記第1電極と前記第2電極との間に形成される。   In the present invention, the organic light emitting display device further includes a substrate, a first electrode and a second electrode facing each other, and the blue, green and red light emitting layers, the green auxiliary layer and the red auxiliary layer are: It is formed between the first electrode and the second electrode.

本発明において、前記緑色補助層の厚さと前記赤色補助層の厚さとは、互いに異なる。   In the present invention, the thickness of the green auxiliary layer and the thickness of the red auxiliary layer are different from each other.

さらに他の側面による本発明は、複数の画素を備える有機発光ディスプレイ装置において、前記各画素は、それぞれ青色、赤色及び緑色の光を放出する発光層が形成される副画素を一方向に沿って順に備え、前記赤色副画素には赤色補助層がさらに形成され、前記緑色副画素には緑色補助層がさらに形成され、前記青色発光層と前記赤色発光層との間に前記赤色補助層が介在され、前記赤色発光層と前記緑色発光層との間に前記緑色補助層が介在されることを特徴とする有機発光ディスプレイ装置を提供する。   According to another aspect of the present invention, in the organic light emitting display device including a plurality of pixels, each of the pixels extends along one direction along a subpixel in which a light emitting layer that emits blue, red, and green light is formed. The red subpixel further includes a red auxiliary layer, the green subpixel further includes a green auxiliary layer, and the red auxiliary layer is interposed between the blue light emitting layer and the red light emitting layer. The organic light emitting display device is characterized in that the green auxiliary layer is interposed between the red light emitting layer and the green light emitting layer.

本発明において、前記青色発光層の一端部上に前記赤色補助層の一端部がオーバーラップされて形成され、前記赤色補助層上に前記赤色発光層が形成される。   In the present invention, one end of the red auxiliary layer is overlapped on one end of the blue light emitting layer, and the red light emitting layer is formed on the red auxiliary layer.

本発明において、前記赤色発光層の一端部上に前記緑色補助層の一端部がオーバーラップされて形成され、前記緑色補助層上に前記緑色発光層が形成される。   In the present invention, one end of the green auxiliary layer is overlapped on one end of the red light emitting layer, and the green light emitting layer is formed on the green auxiliary layer.

本発明において、前記青色発光層と前記赤色発光層、及び前記赤色発光層と前記緑色発光層は、互いに接触しない。   In the present invention, the blue light emitting layer and the red light emitting layer, and the red light emitting layer and the green light emitting layer are not in contact with each other.

本発明において、前記有機発光ディスプレイ装置は、基板と、互いに対向する第1電極と第2電極とをさらに備え、前記青色、赤色及び緑色発光層、前記赤色補助層及び前記緑色補助層は、前記第1電極と前記第2電極との間に形成される。   The organic light emitting display device may further include a substrate, a first electrode and a second electrode facing each other, wherein the blue, red and green light emitting layers, the red auxiliary layer, and the green auxiliary layer are It is formed between the first electrode and the second electrode.

本発明において、前記緑色補助層の厚さと前記赤色補助層の厚さとは、互いに異なる。   In the present invention, the thickness of the green auxiliary layer and the thickness of the red auxiliary layer are different from each other.

本発明の薄膜蒸着装置、これを利用した有機発光表示装置の製造方法及びこれを利用して製造された有機発光表示装置によれば、製造が容易であり、大型基板の量産工程に容易に適用でき、製造収率及び蒸着効率が向上する効果を得ることができる。   According to the thin film deposition apparatus of the present invention, the method of manufacturing an organic light emitting display device using the same, and the organic light emitting display device manufactured using the same, the manufacturing is easy, and it can be easily applied to a mass production process of a large substrate. The production yield and the effect of improving the deposition efficiency can be obtained.

本発明の第1実施形態に関する薄膜蒸着アセンブリーを概略的に図示した斜視図である。1 is a perspective view schematically illustrating a thin film deposition assembly according to a first embodiment of the present invention. 図1の薄膜蒸着アセンブリーの概略的な側面図である。FIG. 2 is a schematic side view of the thin film deposition assembly of FIG. 1. 図1の薄膜蒸着アセンブリーの概略的な平面図である。FIG. 2 is a schematic plan view of the thin film deposition assembly of FIG. 1. 本発明の第1実施形態に関する薄膜蒸着装置を概略的に図示した斜視図である。1 is a perspective view schematically illustrating a thin film deposition apparatus according to a first embodiment of the present invention. 図4の薄膜蒸着装置により製造された有機発光ディスプレイ装置のうち、一画素を図示した断面図である。FIG. 5 is a cross-sectional view illustrating one pixel of the organic light emitting display device manufactured by the thin film deposition apparatus of FIG. 4. 図4の薄膜蒸着装置により製造された有機発光ディスプレイ装置のうち、一画素を図示した断面図である。FIG. 5 is a cross-sectional view illustrating one pixel of the organic light emitting display device manufactured by the thin film deposition apparatus of FIG. 4. 本発明の第2実施形態に関する薄膜蒸着アセンブリーを概略的に図示した斜視図である。FIG. 5 is a perspective view schematically illustrating a thin film deposition assembly according to a second embodiment of the present invention. 本発明の第3実施形態に関する薄膜蒸着アセンブリーを概略的に図示した斜視図である。FIG. 5 is a perspective view schematically illustrating a thin film deposition assembly according to a third embodiment of the present invention. 図7の薄膜蒸着アセンブリーの概略的な側面図である。FIG. 8 is a schematic side view of the thin film deposition assembly of FIG. 7. 図7の薄膜蒸着アセンブリーの概略的な平面図である。FIG. 8 is a schematic plan view of the thin film deposition assembly of FIG. 7. 本発明の他の一実施形態による薄膜蒸着アセンブリーを示す図面である。3 is a view illustrating a thin film deposition assembly according to another embodiment of the present invention. 本発明による薄膜蒸着アセンブリーで蒸着源ノズルをチルトさせていない場合における、基板に蒸着された蒸着膜の分布形態を概略的に示す図面である。3 is a schematic view illustrating a distribution pattern of a deposited film deposited on a substrate when a deposition source nozzle is not tilted in the thin film deposition assembly according to the present invention. 本発明による薄膜蒸着アセンブリーで蒸着源ノズルをチルトさせた場合における、基板に蒸着された蒸着膜の分布形態を概略的に示す図面である。3 is a schematic view illustrating a distribution pattern of a deposited film deposited on a substrate when a deposition source nozzle is tilted in the thin film deposition assembly according to the present invention. 本発明の一実施形態に関する薄膜蒸着装置を概略的に図示したシステム構成図である。1 is a system configuration diagram schematically illustrating a thin film deposition apparatus according to an embodiment of the present invention. 図13の変更例を図示した図面である。It is drawing which illustrated the example of a change of FIG. 図13の静電チャックの一例を図示した概略図である。FIG. 14 is a schematic diagram illustrating an example of the electrostatic chuck of FIG. 13.

以下、本発明の第1実施形態に関する薄膜蒸着装置及びこれを利用した有機発光ディスプレイ装置の製造方法について詳細に説明する。   Hereinafter, a thin film deposition apparatus according to the first embodiment of the present invention and an organic light emitting display device manufacturing method using the same will be described in detail.

(第1実施形態)
図1は、本発明の第1実施形態に関する薄膜蒸着アセンブリーを概略的に図示した斜視図であり、図2は、図1の薄膜蒸着アセンブリーの概略的な側面図であり、図3は、図1の薄膜蒸着アセンブリーの概略的な平面図である。
(First embodiment)
FIG. 1 is a perspective view schematically illustrating a thin film deposition assembly according to a first embodiment of the present invention, FIG. 2 is a schematic side view of the thin film deposition assembly of FIG. 1, and FIG. 1 is a schematic plan view of one thin film deposition assembly. FIG.

図1ないし図3を参照すれば、本発明の第1実施形態に関する薄膜蒸着アセンブリー100は、蒸着源110、蒸着源ノズル部120、遮断板アセンブリー130及びパターニングスリットシート150を備える。   1 to 3, the thin film deposition assembly 100 according to the first embodiment of the present invention includes a deposition source 110, a deposition source nozzle unit 120, a blocking plate assembly 130, and a patterning slit sheet 150.

ここで、図1ないし図3には説明の便宜のためにチャンバを図示していないが、図1ないし図3のあらゆる構成は、適切な真空度が維持されるチャンバ内に配されることが望ましい。これは、蒸着物質の直進性を確保するためである。   Here, although the chamber is not illustrated in FIGS. 1 to 3 for convenience of explanation, all the configurations of FIGS. 1 to 3 may be disposed in a chamber in which an appropriate degree of vacuum is maintained. desirable. This is to ensure straightness of the vapor deposition material.

詳細には、蒸着源110から放出された蒸着物質115を、蒸着源ノズル部120及びパターニングスリットシート150を通過させて基板600に所望のパターンに蒸着させるためには、基本的にチャンバ(図示せず)の内部はFMM蒸着方法と同じ高真空状態を維持せねばならない。また、遮断板131及びパターニングスリットシート150の温度が蒸着源の110温度より十分に低くなければならない(約100゜以下)。なぜなら、遮断板131の温度を十分に低くすることで初めて、遮断板131に衝突した蒸着物質115が再び蒸発する現象を防止でき、パターニングスリットシート150の温度を十分に低くすることで初めて、温度によるパターニングスリットシート150の熱膨張問題を最小化できるためである。この時、遮断板アセンブリー130は高温の蒸着源110に向けられており、蒸着源110に近いところは最大167℃ほど温度が上昇するため、必要な場合に部分冷却装置がさらに備えられうる。このために、遮断板アセンブリー130には冷却部材が形成されうる。   In detail, in order to deposit the deposition material 115 emitted from the deposition source 110 through the deposition source nozzle unit 120 and the patterning slit sheet 150 in a desired pattern on the substrate 600, a chamber (not shown) is basically used. The inside of (1) must maintain the same high vacuum state as the FMM vapor deposition method. In addition, the temperature of the blocking plate 131 and the patterning slit sheet 150 must be sufficiently lower than the 110 temperature of the vapor deposition source (about 100 ° or less). This is because the phenomenon that the vapor deposition material 115 colliding with the blocking plate 131 evaporates again can be prevented only when the temperature of the blocking plate 131 is sufficiently low, and the temperature is not changed until the temperature of the patterning slit sheet 150 is sufficiently low. This is because the problem of thermal expansion of the patterning slit sheet 150 can be minimized. At this time, the barrier plate assembly 130 is directed to the high temperature vapor deposition source 110, and the temperature rises up to about 167 ° C. near the vapor deposition source 110. Therefore, a partial cooling device may be further provided if necessary. For this, a cooling member may be formed on the shield assembly 130.

かかるチャンバ(図示せず)内には被蒸着体である基板600が配される。前記基板600は、平板表示装置用基板になりうるが、複数の平板表示装置を形成できるマザーガラスのような大面積基板が適用されうる。   In such a chamber (not shown), a substrate 600 that is a deposition target is disposed. The substrate 600 may be a flat display device substrate, but may be a large area substrate such as mother glass that can form a plurality of flat display devices.

ここで、本発明の第1実施形態では、基板600が薄膜蒸着アセンブリー100に対して相対的に移動しつつ蒸着が進むことを一特徴とする。   Here, the first embodiment of the present invention is characterized in that deposition proceeds while the substrate 600 moves relative to the thin film deposition assembly 100.

詳細には、既存のFMM蒸着方法では、FMMサイズが基板サイズと同一に形成されねばならない。したがって、基板サイズが増大するほどFMMも大型化せねばならず、したがって、FMM製作が容易ではなく、FMMを引っ張って精密なパターンにアラインすることも容易ではないという問題点があった。   Specifically, in the existing FMM deposition method, the FMM size must be formed to be the same as the substrate size. Therefore, the FMM has to be enlarged as the substrate size increases, and therefore, it is not easy to manufacture the FMM, and it is not easy to pull the FMM to align it with a precise pattern.

かかる問題点を解決するために、本発明の第1実施形態に関する薄膜蒸着アセンブリー100は、薄膜蒸着アセンブリー100と基板600とが互いに相対的に移動しつつ蒸着が行われることを一特徴とする。言い換えれば、薄膜蒸着アセンブリー100と対向するように配された基板600がY軸方向に沿って移動しつつ、連続的に蒸着を行うようになる。すなわち、基板600が図1の矢印A方向に移動しつつスキャニング方式で蒸着が行われる。ここで、図面には、基板600がチャンバ(図示せず)内でY軸方向に移動しつつ蒸着が行われると図示されているが、本発明の思想はこれに制限されず、基板600は固定されており、薄膜蒸着アセンブリー100自体がY軸方向に移動しつつ蒸着を行うことも可能であるといえる。   In order to solve this problem, the thin film deposition assembly 100 according to the first embodiment of the present invention is characterized in that deposition is performed while the thin film deposition assembly 100 and the substrate 600 move relative to each other. In other words, the substrate 600 disposed so as to face the thin film deposition assembly 100 moves continuously along the Y-axis direction and performs deposition continuously. That is, deposition is performed by a scanning method while the substrate 600 moves in the direction of arrow A in FIG. Here, the drawing shows that the deposition is performed while the substrate 600 moves in the Y-axis direction in a chamber (not shown), but the idea of the present invention is not limited to this, and the substrate 600 is It can be said that the thin film deposition assembly 100 itself can be deposited while moving in the Y-axis direction.

したがって、本発明の薄膜蒸着アセンブリー100では、従来のFMMに比べてはるかに小さくパターニングスリットシート150を設けることができる。すなわち、本発明の薄膜蒸着アセンブリー100の場合、基板600がY軸方向に沿って移動しつつ連続的に、すなわち、スキャニング方式で蒸着を行うため、パターニングスリットシート150のX軸方向及びY軸方向の長さは、基板600の長さよりはるかに小さく形成されうる。このように、従来のFMMに比べてはるかに小さくパターニングスリットシート150を設けることができるため、本発明のパターニングスリットシート150はその製造が容易である。すなわち、パターニングスリットシート150のエッチング作業や、その後の精密引っ張り及び溶接作業、移動及び洗浄作業などのあらゆる工程で、小サイズのパターニングスリットシート150がFMM蒸着方法に比べて有利である。また、これはディスプレイ装置が大型化するほどさらに有利になる。   Therefore, in the thin film deposition assembly 100 of the present invention, the patterning slit sheet 150 can be provided much smaller than the conventional FMM. That is, in the case of the thin film deposition assembly 100 of the present invention, since the substrate 600 is continuously deposited while moving along the Y-axis direction, that is, by the scanning method, the X-axis direction and the Y-axis direction of the patterning slit sheet 150 are used. Can be formed much smaller than the length of the substrate 600. Thus, since the patterning slit sheet 150 can be provided much smaller than the conventional FMM, the patterning slit sheet 150 of the present invention is easy to manufacture. That is, the small-sized patterning slit sheet 150 is more advantageous than the FMM deposition method in all processes such as the etching operation of the patterning slit sheet 150, the subsequent precision pulling and welding operation, the moving operation and the cleaning operation. In addition, this becomes more advantageous as the display device becomes larger.

このように、薄膜蒸着アセンブリー100と基板600とが互いに相対的に移動しつつ蒸着が行われるためには、薄膜蒸着アセンブリー100と基板600とが所定間隔をおいて離隔することが望ましい。これについては、後述する。   As described above, in order to perform deposition while the thin film deposition assembly 100 and the substrate 600 are moved relative to each other, it is desirable that the thin film deposition assembly 100 and the substrate 600 are separated from each other with a predetermined interval. This will be described later.

一方、チャンバ内で前記基板600と対向する側には、蒸着物質115が収納及び加熱される蒸着源110が配される。前記蒸着源110内に収納されている蒸着物質115が気化することによって基板600に蒸着が行われる。   Meanwhile, a deposition source 110 that stores and heats the deposition material 115 is disposed on the side of the chamber facing the substrate 600. Vapor deposition is performed on the substrate 600 by vaporizing the vapor deposition material 115 stored in the vapor deposition source 110.

詳細には、蒸着源110は、その内部に蒸着物質115が満たされる坩堝111と、坩堝111を加熱させて坩堝111の内部に満たされた蒸着物質115を坩堝111の一側、詳細には、蒸着源ノズル部120側に蒸発させるためのヒータ112と、を備える。   Specifically, the vapor deposition source 110 includes a crucible 111 filled with a vapor deposition material 115 therein, and the vapor deposition material 115 filled inside the crucible 111 by heating the crucible 111. And a heater 112 for evaporating on the vapor deposition source nozzle part 120 side.

蒸着源110の一側、詳細には、蒸着源110から基板600に向かう側には蒸着源ノズル部120が配される。そして、蒸着源ノズル部120には、X軸方向に沿って複数の蒸着源ノズル121が形成される。ここで、前記複数の蒸着源ノズル121は等間隔で形成されうる。蒸着源110内で気化した蒸着物質115は、このような蒸着源ノズル部120を通過して被蒸着体である基板600側に向かう。   The vapor deposition source nozzle unit 120 is disposed on one side of the vapor deposition source 110, specifically, on the side facing the substrate 600 from the vapor deposition source 110. In the vapor deposition source nozzle unit 120, a plurality of vapor deposition source nozzles 121 are formed along the X-axis direction. Here, the plurality of vapor deposition source nozzles 121 may be formed at equal intervals. The vapor deposition material 115 vaporized in the vapor deposition source 110 passes through such a vapor deposition source nozzle portion 120 and travels toward the substrate 600 that is the deposition target.

蒸着源ノズル部120の一側には遮断板アセンブリー130が備えられる。前記遮断板アセンブリー130は、複数の遮断板131と、遮断板131の外側に備えられる遮断板フレーム132とを備える。前記複数の遮断板131は、X軸方向に沿って互いに平行に備えられうる。ここで、前記複数の遮断板131は等間隔で形成されうる。また、それぞれの遮断板131は、図面において、YZ平面と平行に、言い換えれば、X軸方向に垂直になるように形成される。このように配された複数の遮断板131は、蒸着源ノズル部120とパターニングスリットシート150との間の空間を複数の蒸着空間Sに区切る役割を行う。すなわち、本発明の第1実施形態に関する薄膜蒸着アセンブリー100は、前記遮断板131によって、蒸着物質が噴射されるそれぞれの蒸着源ノズル121毎に蒸着空間Sが分離されることを一特徴とする。   A barrier plate assembly 130 is provided on one side of the deposition source nozzle unit 120. The shield plate assembly 130 includes a plurality of shield plates 131 and a shield plate frame 132 provided outside the shield plate 131. The plurality of blocking plates 131 may be provided in parallel with each other along the X-axis direction. Here, the plurality of blocking plates 131 may be formed at equal intervals. In addition, each of the blocking plates 131 is formed to be parallel to the YZ plane in the drawing, in other words, to be perpendicular to the X-axis direction. The plurality of blocking plates 131 arranged in this manner serve to partition the space between the deposition source nozzle unit 120 and the patterning slit sheet 150 into a plurality of deposition spaces S. That is, the thin film deposition assembly 100 according to the first embodiment of the present invention is characterized in that the deposition space S is separated by the shielding plate 131 for each deposition source nozzle 121 to which a deposition material is injected.

ここで、それぞれの遮断板131は、互いに隣接している蒸着源ノズル121の間に配されうる。これは、言い換えれば、互いに隣接している遮断板131の間に一つの蒸着源ノズル121が配されるとみてもよい。望ましくは、蒸着源ノズル121は、互いに隣接している遮断板131の間の中央に位置できる。このように、遮断板131が蒸着源ノズル部120とパターニングスリットシート150との間の空間を複数の蒸着空間Sに区切ることによって、一つの蒸着源ノズル121から排出される蒸着物質は、他の蒸着源ノズル121から排出された蒸着物質と混合されず、パターニングスリット151を通過して基板600に蒸着される。言い換えれば、遮断板131は、蒸着源ノズル121を通じて排出される蒸着物質が分散されずに直進性を維持するように、蒸着物質のZ軸方向の移動経路をガイドする役割を行う。   Here, each of the blocking plates 131 may be disposed between the vapor deposition source nozzles 121 adjacent to each other. In other words, it may be considered that one vapor deposition source nozzle 121 is disposed between the shielding plates 131 adjacent to each other. Desirably, the deposition source nozzle 121 may be located at the center between the shielding plates 131 adjacent to each other. As described above, when the blocking plate 131 divides the space between the vapor deposition source nozzle unit 120 and the patterning slit sheet 150 into a plurality of vapor deposition spaces S, the vapor deposition material discharged from the single vapor deposition source nozzle 121 The vapor deposition material discharged from the vapor deposition source nozzle 121 is not mixed and passes through the patterning slit 151 and is deposited on the substrate 600. In other words, the blocking plate 131 serves to guide the movement path of the vapor deposition material in the Z-axis direction so that the vapor deposition material discharged through the vapor deposition source nozzle 121 is not dispersed and maintains straightness.

このように、遮断板131を備えて蒸着物質の直進性を確保することによって、基板に形成される陰影(shadow)のサイズを大幅に縮めることができ、したがって、薄膜蒸着アセンブリー100と基板600とを所定間隔をおいて離隔させることが可能になる。これについては、後述する。   In this manner, by providing the barrier plate 131 to ensure the straightness of the deposition material, the size of the shadow formed on the substrate can be greatly reduced, and thus the thin film deposition assembly 100 and the substrate 600 can be reduced. Can be separated at a predetermined interval. This will be described later.

一方、前記複数の遮断板131の外側には遮断板フレーム132がさらに備えられうる。遮断板フレーム132は、複数の遮断板131の上下面にそれぞれ備えられて、複数の遮断板131の位置を支持すると同時に、蒸着源ノズル121を通じて排出される蒸着物質が分散されないように蒸着物質のY軸方向の移動経路をガイドする役割を行う。   Meanwhile, a shielding plate frame 132 may be further provided outside the plurality of shielding plates 131. The shielding plate frames 132 are respectively provided on the upper and lower surfaces of the plurality of shielding plates 131 to support the positions of the plurality of shielding plates 131 and at the same time, the deposition material discharged through the deposition source nozzle 121 is not dispersed. It plays the role of guiding the movement path in the Y-axis direction.

一方、図面には、蒸着源ノズル部120と遮断板アセンブリー130とが所定間隔をおいて離隔しているように図示されているが、本発明の思想はこれに制限されるものではない。すなわち、蒸着源110から発散される熱が遮断板アセンブリー130に伝導されることを防止するために、蒸着源ノズル部120と遮断板アセンブリー130とを所定間隔をおいて離隔させて形成してもよく、蒸着源ノズル部120と遮断板アセンブリー130との間に適切な断熱手段が備えられる場合、蒸着源ノズル部120と遮断板アセンブリー130とが結合して接触してもよい。   On the other hand, in the drawing, the vapor deposition source nozzle part 120 and the shielding plate assembly 130 are illustrated as being spaced apart by a predetermined distance, but the idea of the present invention is not limited thereto. That is, in order to prevent the heat dissipated from the deposition source 110 from being transmitted to the shielding plate assembly 130, the deposition source nozzle unit 120 and the shielding plate assembly 130 may be formed at a predetermined interval. The deposition source nozzle unit 120 and the shielding plate assembly 130 may be combined and contacted if appropriate heat insulation means is provided between the deposition source nozzle unit 120 and the shielding plate assembly 130.

一方、前記遮断板アセンブリー130は、薄膜蒸着アセンブリー100から分離自在に形成されうる。詳細には、従来のFMM蒸着方法は蒸着効率が低いという問題点があった。ここで蒸着効率とは、蒸着源から気化した材料のうち実際に基板に蒸着された材料の比率を意味するものであって、従来のFMM蒸着方法での蒸着効率は約32%ほどである。しかも、従来のFMM蒸着方法では、蒸着に使われていない約68%ほどの有機物が蒸着器内部のあちこちに蒸着されるため、そのリサイクルが容易ではないという問題点があった。   Meanwhile, the barrier plate assembly 130 may be separable from the thin film deposition assembly 100. Specifically, the conventional FMM vapor deposition method has a problem that the vapor deposition efficiency is low. Here, the vapor deposition efficiency means the ratio of the material vaporized from the vapor deposition source to the material actually deposited on the substrate, and the vapor deposition efficiency in the conventional FMM vapor deposition method is about 32%. In addition, the conventional FMM vapor deposition method has a problem in that about 68% of organic substances that are not used for vapor deposition are deposited in various places inside the vapor deposition device, and thus recycling is not easy.

このような問題点を解決するために、本発明の第1実施形態に関する薄膜蒸着アセンブリー100では、遮断板アセンブリー130を利用して蒸着空間を外部空間から分離したので、基板600に蒸着されていない蒸着物質は、ほぼ遮断板アセンブリー130内に蒸着される。したがって、遮断板アセンブリー130を薄膜蒸着アセンブリー100から分離自在に形成して、長時間蒸着後に遮断板アセンブリー130に蒸着物質が多く溜まれば、遮断板アセンブリー130を分離して別途の蒸着物質リサイクル装置に入れて蒸着物質を回収できる。このような構成を通じて、蒸着物質リサイクル率を高めることによって蒸着効率が向上し、かつコストダウン効果を得ることができる。   In order to solve such a problem, in the thin film deposition assembly 100 according to the first embodiment of the present invention, the deposition space is separated from the external space using the blocking plate assembly 130, so that the deposition is not performed on the substrate 600. The vapor deposition material is substantially deposited in the barrier plate assembly 130. Accordingly, if the barrier plate assembly 130 is separable from the thin film deposition assembly 100 and a large amount of vapor deposition material is accumulated in the barrier plate assembly 130 after long-time deposition, the barrier plate assembly 130 is separated and a separate vapor deposition material recycling apparatus is provided. The deposited material can be recovered in Through such a configuration, it is possible to improve the vapor deposition efficiency and increase the cost reduction effect by increasing the vapor deposition material recycling rate.

一方、蒸着源110と基板600との間にはパターニングスリットシート150及びフレーム155がさらに備えられる。フレーム155は窓枠状に形成され、その内側にパターニングスリットシート150が結合される。そして、パターニングスリットシート150にはX軸方向に沿って複数のパターニングスリット151が形成される。蒸着源110内で気化した蒸着物質115は、蒸着源ノズル部120及びパターニングスリットシート150を通過して被蒸着体である基板600側に向かう。この時、前記パターニングスリットシート150は、従来のFMM、特に、ストライプタイプのマスクの製造方法と同じ方法であるエッチングを通じて製作されうる。   Meanwhile, a patterning slit sheet 150 and a frame 155 are further provided between the deposition source 110 and the substrate 600. The frame 155 is formed in a window frame shape, and the patterning slit sheet 150 is coupled to the inside thereof. A plurality of patterning slits 151 are formed in the patterning slit sheet 150 along the X-axis direction. The vapor deposition material 115 vaporized in the vapor deposition source 110 passes through the vapor deposition source nozzle portion 120 and the patterning slit sheet 150 and travels toward the substrate 600 that is the vapor deposition target. At this time, the patterning slit sheet 150 may be manufactured through etching, which is the same method as a manufacturing method of a conventional FMM, particularly a stripe type mask.

一方、本発明の第1実施形態に関する薄膜蒸着アセンブリー100は、蒸着源ノズル121の総数よりパターニングスリット151の総数がさらに多く形成される。また、互いに隣接している2つの遮断板131の間に配された蒸着源ノズル121の数よりパターニングスリット151の数がさらに多く形成される。   Meanwhile, in the thin film deposition assembly 100 according to the first embodiment of the present invention, the total number of patterning slits 151 is formed more than the total number of deposition source nozzles 121. Further, the number of the patterning slits 151 is formed more than the number of the vapor deposition source nozzles 121 disposed between the two blocking plates 131 adjacent to each other.

すなわち、互いに隣接している2つの遮断板131の間には一つの蒸着源ノズル121が配されうる。同時に、互いに隣接している2つの遮断板131の間には複数のパターニングスリット151が配されうる。そして、互いに隣接している2つの遮断板131によって蒸着源ノズル部120とパターニングスリットシート150との間の空間が区切られて、それぞれの蒸着源ノズル121毎に蒸着空間Sが分離される。したがって、一つの蒸着源ノズル121から放射された蒸着物質は、ほぼ同じ蒸着空間Sにあるパターニングスリット151を通過して基板600に蒸着される。   That is, one vapor deposition source nozzle 121 may be disposed between two shielding plates 131 adjacent to each other. At the same time, a plurality of patterning slits 151 may be disposed between the two blocking plates 131 adjacent to each other. And the space between the vapor deposition source nozzle part 120 and the patterning slit sheet 150 is divided by two blocking plates 131 adjacent to each other, and the vapor deposition space S is separated for each vapor deposition source nozzle 121. Accordingly, the vapor deposition material radiated from one vapor deposition source nozzle 121 passes through the patterning slit 151 in the substantially same vapor deposition space S and is deposited on the substrate 600.

一方、前述した遮断板アセンブリー130とパターニングスリットシート150とは、互いに所定間隔をおいて離隔して形成され、遮断板アセンブリー130とパターニングスリットシート150とは、連結部材135によって互いに連結されうる。詳細には、高温状態の蒸着源110により遮断板アセンブリー130の温度は最大100℃以上上昇するため、上昇した遮断板アセンブリー130の温度がパターニングスリットシート150に伝導されないように、遮断板アセンブリー130とパターニングスリットシート150とを所定間隔をおいて離隔させる。   Meanwhile, the blocking plate assembly 130 and the patterning slit sheet 150 are formed to be spaced apart from each other by a predetermined distance, and the blocking plate assembly 130 and the patterning slit sheet 150 may be connected to each other by a connecting member 135. In detail, since the temperature of the barrier plate assembly 130 is increased by a maximum of 100 ° C. due to the deposition source 110 in a high temperature state, the barrier plate assembly 130 and the barrier plate assembly 130 are prevented from being conducted to the patterning slit sheet 150. The patterning slit sheet 150 is separated at a predetermined interval.

前述したように、本発明の第1実施形態に関する薄膜蒸着アセンブリー100は、基板600に対して相対的に移動しつつ蒸着を行い、このように薄膜蒸着アセンブリー100が基板600に対して相対的に移動するために、パターニングスリットシート150は基板600から所定間隔をおいて離隔するように形成される。そして、パターニングスリットシート150と基板600とを離隔させる場合に発生する陰影問題を解決するために、蒸着源ノズル部120とパターニングスリットシート150との間に遮断板131を備えて蒸着物質の直進性を確保することによって、基板に形成される陰影のサイズを大幅に縮小させる。   As described above, the thin film deposition assembly 100 according to the first embodiment of the present invention performs deposition while moving relative to the substrate 600, and thus the thin film deposition assembly 100 is relative to the substrate 600. In order to move, the patterning slit sheet 150 is formed to be separated from the substrate 600 at a predetermined interval. Further, in order to solve the shadow problem that occurs when the patterning slit sheet 150 and the substrate 600 are separated from each other, a barrier plate 131 is provided between the deposition source nozzle unit 120 and the patterning slit sheet 150, and the straightness of the deposition material is achieved. By ensuring this, the size of the shadow formed on the substrate is greatly reduced.

詳細には、従来のFMM蒸着方法では、基板に陰影が生じないようにするために基板にマスクを密着させて蒸着工程を進めた。しかし、このように基板にマスクを密着させる場合、基板とマスクとの接触による不良問題が発生するという問題点があった。また、マスクを基板に対して移動させることができないため、マスクが基板と同じサイズに形成されねばならない。したがって、ディスプレイ装置が大型化するにつれてマスクのサイズも大きくならねばならないが、このような大型マスクを形成し難いという問題点があった。   Specifically, in the conventional FMM vapor deposition method, the vapor deposition process was performed with a mask attached to the substrate in order to prevent the substrate from being shaded. However, when the mask is brought into close contact with the substrate in this way, there is a problem that a defect problem occurs due to contact between the substrate and the mask. In addition, since the mask cannot be moved with respect to the substrate, the mask must be formed in the same size as the substrate. Therefore, the size of the mask has to be increased as the display device becomes larger, but there is a problem that it is difficult to form such a large mask.

このような問題点を解決するために、本発明の第1実施形態に関する薄膜蒸着アセンブリー100では、パターニングスリットシート150が被蒸着体である基板600と所定間隔をおいて離隔するように配させる。これは、遮断板131を備えて、基板600に生成される陰影が小さくなることによって実現可能になる。   In order to solve such a problem, in the thin film deposition assembly 100 according to the first embodiment of the present invention, the patterning slit sheet 150 is disposed so as to be separated from the substrate 600 that is the deposition target by a predetermined interval. This can be realized by providing the blocking plate 131 and reducing the shadow generated on the substrate 600.

このような本発明によってマスクを基板より小さく形成した後、マスクを基板に対して移動させつつ蒸着を行えることで、マスク製作が容易になる効果を得ることができる。また、基板とマスクとの接触による不良を防止する効果を得ることができる。また、基板とマスクとを密着させる工程に要する時間が不要になるため、製造速度が向上する効果を得ることができる。また、遮断板131を備えることによって、基板600に生成される陰影が小さくなり、したがって、パターニングスリットシート150を基板600から離隔させることができる。   After the mask is formed smaller than the substrate according to the present invention, the mask can be easily manufactured by moving the mask relative to the substrate and performing deposition. In addition, it is possible to obtain an effect of preventing defects due to contact between the substrate and the mask. Further, since the time required for the step of bringing the substrate and the mask into close contact with each other is unnecessary, an effect of improving the manufacturing speed can be obtained. Further, by providing the blocking plate 131, a shadow generated on the substrate 600 is reduced, and thus the patterning slit sheet 150 can be separated from the substrate 600.

図4は、本発明の第1実施形態に関する薄膜蒸着装置を概略的に図示した斜視図である。   FIG. 4 is a perspective view schematically illustrating a thin film deposition apparatus according to the first embodiment of the present invention.

図4を参照すれば、本発明の第1実施形態に関する薄膜蒸着装置は、図1ないし図3で説明した薄膜蒸着アセンブリーが複数備えられることを一特徴とする。言い換えれば、本発明の第1実施形態に関する薄膜蒸着装置は、青色発光層材料B、緑色補助層材料G’、緑色発光層材料G、赤色補助層材料R’、赤色発光層材料Rが順に蒸着されるマルチ蒸着源を備えることを一特徴とする。   Referring to FIG. 4, the thin film deposition apparatus according to the first embodiment of the present invention includes a plurality of thin film deposition assemblies described with reference to FIGS. In other words, in the thin film deposition apparatus according to the first embodiment of the present invention, the blue light emitting layer material B, the green auxiliary layer material G ′, the green light emitting layer material G, the red auxiliary layer material R ′, and the red light emitting layer material R are sequentially deposited. One feature is that a multi-deposition source is provided.

詳細には、本発明の第1実施形態に関する薄膜蒸着装置は、第1薄膜蒸着アセンブリー100、第2薄膜蒸着アセンブリー200、第3薄膜蒸着アセンブリー300、第4薄膜蒸着アセンブリー400及び第5薄膜蒸着アセンブリー500を備える。このような第1薄膜蒸着アセンブリー100、第2薄膜蒸着アセンブリー200、第3薄膜蒸着アセンブリー300、第4薄膜蒸着アセンブリー400及び第5薄膜蒸着アセンブリー500それぞれの構成は、図1ないし図3で説明した薄膜蒸着アセンブリーと同一であるので、ここではその詳細な説明は省略する。   Specifically, the thin film deposition apparatus according to the first embodiment of the present invention includes a first thin film deposition assembly 100, a second thin film deposition assembly 200, a third thin film deposition assembly 300, a fourth thin film deposition assembly 400, and a fifth thin film deposition assembly. 500. The configurations of the first thin film deposition assembly 100, the second thin film deposition assembly 200, the third thin film deposition assembly 300, the fourth thin film deposition assembly 400, and the fifth thin film deposition assembly 500 have been described with reference to FIGS. Since it is the same as the thin film deposition assembly, its detailed description is omitted here.

ここで、第1薄膜蒸着アセンブリー100、第2薄膜蒸着アセンブリー200、第3薄膜蒸着アセンブリー300、第4薄膜蒸着アセンブリー400及び第5薄膜蒸着アセンブリー500の蒸着源には、相異なる蒸着物質が備えられうる。   Here, the deposition sources of the first thin film deposition assembly 100, the second thin film deposition assembly 200, the third thin film deposition assembly 300, the fourth thin film deposition assembly 400, and the fifth thin film deposition assembly 500 are provided with different deposition materials. sell.

例えば、第1薄膜蒸着アセンブリー100には、青色発光層の材料になる蒸着物質Bが備えられ、第2薄膜蒸着アセンブリー200には緑色補助層の材料になる蒸着物質G’が備えられ、第3薄膜蒸着アセンブリー300には緑色発光層の材料になる蒸着物質Gが備えられ、第4薄膜蒸着アセンブリー400には赤色補助層の材料になる蒸着物質R’が備えられ、第5薄膜蒸着アセンブリー500には赤色発光層の材料になる蒸着物質Rが備えられうる。   For example, the first thin film deposition assembly 100 includes a deposition material B that is a material of a blue light emitting layer, and the second thin film deposition assembly 200 includes a deposition material G ′ that is a material of a green auxiliary layer. The thin film deposition assembly 300 includes a deposition material G that is a material of a green light emitting layer, the fourth thin film deposition assembly 400 includes a deposition material R ′ that is a material of a red auxiliary layer, and the fifth thin film deposition assembly 500 includes May be provided with a deposition material R which becomes a material of the red light emitting layer.

または、図面には図示されていないが、第1薄膜蒸着アセンブリー100には青色発光層の材料になる蒸着物質Bが備えられ、第2薄膜蒸着アセンブリー200には赤色補助層の材料になる蒸着物質R’が備えられ、第3薄膜蒸着アセンブリー300には赤色発光層の材料になる蒸着物質Rが備えられ、第4薄膜蒸着アセンブリー400には緑色補助層の材料になる蒸着物質G’が備えられ、第5薄膜蒸着アセンブリー500には緑色発光層の材料になる蒸着物質Gが備えられうる。   Alternatively, although not shown in the drawings, the first thin film deposition assembly 100 includes a deposition material B that is a material of a blue light emitting layer, and the second thin film deposition assembly 200 is a deposition material that is a material of a red auxiliary layer. R ′, the third thin film deposition assembly 300 includes a deposition material R that is a material of a red light emitting layer, and the fourth thin film deposition assembly 400 includes a deposition material G ′ that is a material of a green auxiliary layer. The fifth thin film deposition assembly 500 may include a deposition material G that is a material of the green light emitting layer.

このような構成によって、青色発光層(図5Aの62B参照)と緑色発光層(図5Aの62G参照)との間に緑色補助層(図5Aの62G’参照)が配され、緑色発光層(図5Aの62G参照)と赤色発光層(図5Aの62R参照)との間に赤色補助層(図5Aの62R’参照)が配されうる。または、図5Bに図示されたように、青色発光層と赤色発光層との間に赤色補助層が配され、緑色発光層と赤色発光層との間に緑色補助層が配されうる。すなわち、互いに隣接した発光層の間に中間層が介在されることで、互いに重畳している発光層が直接接触しなくなる。これについては、図5A及び図5Bで詳細に説明する。   With such a configuration, the green auxiliary layer (see 62G ′ in FIG. 5A) is arranged between the blue light emitting layer (see 62B in FIG. 5A) and the green light emitting layer (see 62G in FIG. 5A). A red auxiliary layer (see 62R ′ in FIG. 5A) may be disposed between the red light emitting layer (see 62R in FIG. 5A) and the red light emitting layer (see 62G in FIG. 5A). Alternatively, as illustrated in FIG. 5B, a red auxiliary layer may be disposed between the blue light emitting layer and the red light emitting layer, and a green auxiliary layer may be disposed between the green light emitting layer and the red light emitting layer. That is, since the intermediate layer is interposed between the light emitting layers adjacent to each other, the light emitting layers overlapping each other are not in direct contact with each other. This will be described in detail with reference to FIGS. 5A and 5B.

ここで、補助層の材料になる蒸着物質R’、G’と、赤色発光層の材料になる蒸着物質Rと、緑色発光層の材料になる蒸着物質Gと、青色発光層の材料になる蒸着物質Bは、互いに気化する温度が相異なりうるので、前記第1薄膜蒸着アセンブリー100の蒸着源110の温度と、前記第2薄膜蒸着アセンブリー200の蒸着源210の温度と、前記第3薄膜蒸着アセンブリー300の蒸着源310の温度と、前記第4薄膜蒸着アセンブリー400の蒸着源410の温度と、前記第5薄膜蒸着アセンブリー500の蒸着源510の温度とが互いに異なって設定されることもできるといえる。   Here, the vapor deposition materials R ′ and G ′ that are the materials of the auxiliary layer, the vapor deposition material R that is the material of the red light emitting layer, the vapor deposition material G that is the material of the green light emitting layer, and the vapor deposition that is the material of the blue light emitting layer. Since the materials B may be vaporized at different temperatures, the temperature of the deposition source 110 of the first thin film deposition assembly 100, the temperature of the deposition source 210 of the second thin film deposition assembly 200, and the third thin film deposition assembly. The temperature of the deposition source 310 of 300, the temperature of the deposition source 410 of the fourth thin film deposition assembly 400, and the temperature of the deposition source 510 of the fifth thin film deposition assembly 500 may be set differently. .

一方、図面には薄膜蒸着アセンブリーが5つ備えられると図示されているが、本発明の思想はこれに制限されるものではない。すなわち、本発明の第1実施形態に関する薄膜蒸着装置は薄膜蒸着アセンブリーを複数備えることができ、前記複数の薄膜蒸着アセンブリーそれぞれに相異なる物質を備えることができる。   Meanwhile, although the drawing shows that five thin film deposition assemblies are provided, the concept of the present invention is not limited thereto. That is, the thin film deposition apparatus according to the first embodiment of the present invention may include a plurality of thin film deposition assemblies, and each of the plurality of thin film deposition assemblies may include a different material.

このように、複数の薄膜蒸着アセンブリーを備えて、複数の薄膜層を一度に形成可能にすることで、製造収率及び蒸着効率が向上する効果を得ることができる。また、製造工程が簡単になってコストダウンの効果を得ることができる。   As described above, by providing a plurality of thin film deposition assemblies and enabling a plurality of thin film layers to be formed at once, it is possible to obtain an effect of improving manufacturing yield and deposition efficiency. Further, the manufacturing process is simplified, and the effect of cost reduction can be obtained.

かかる構成の薄膜蒸着装置を利用して、有機発光ディスプレイ装置の発光層を備える有機膜(図5A及び図5Bの62参照)を製造できる。ここで、有機発光ディスプレイ装置を製造する方法は、基板600が薄膜蒸着装置に対して所定距離ほど離隔して配する段階、及び薄膜蒸着装置と基板のうちいずれか一方を他方に対して相対的に移動させつつ前記薄膜蒸着装置から放射される蒸着物質を基板に蒸着する段階を含む。   An organic film (see 62 in FIGS. 5A and 5B) including the light emitting layer of the organic light emitting display device can be manufactured using the thin film deposition apparatus having such a configuration. Here, the method of manufacturing the organic light emitting display device includes a step in which the substrate 600 is spaced apart from the thin film deposition apparatus by a predetermined distance, and one of the thin film deposition apparatus and the substrate is relative to the other. And depositing a deposition material emitted from the thin film deposition apparatus on the substrate.

これをさらに詳細に説明すれば、次の通りである。   This will be described in more detail as follows.

まず、基板600が薄膜蒸着装置に対して所定距離ほど離隔して配される。前述したように、本発明の薄膜蒸着装置は、基板600より小さく形成されて製造の容易なパターニングスリットシート150を備えるために、薄膜蒸着装置と基板600とが互いに相対的に移動しつつ蒸着が行われることを一特徴とする。言い換えれば、薄膜蒸着装置と対向するように配された基板600がY軸方向に沿って移動しつつ、連続的に蒸着が行われる。すなわち、基板600が図4の矢印B方向に移動しつつ、スキャニング方式で蒸着が行われる。そして、薄膜蒸着装置と基板600とが互いに相対的に移動するためには、薄膜蒸着装置と基板600とが所定間隔をおいて離隔せねばならない。したがって、基板600は、チャンバ(図示せず)内で薄膜蒸着装置と所定距離ほど離隔して配される。   First, the substrate 600 is spaced apart from the thin film deposition apparatus by a predetermined distance. As described above, since the thin film deposition apparatus of the present invention includes the patterning slit sheet 150 that is smaller than the substrate 600 and easy to manufacture, the thin film deposition apparatus and the substrate 600 can be deposited while moving relative to each other. One feature is that it is performed. In other words, the deposition is continuously performed while the substrate 600 disposed so as to face the thin film deposition apparatus moves along the Y-axis direction. That is, vapor deposition is performed by a scanning method while the substrate 600 moves in the direction of arrow B in FIG. In order for the thin film deposition apparatus and the substrate 600 to move relative to each other, the thin film deposition apparatus and the substrate 600 must be separated from each other at a predetermined interval. Accordingly, the substrate 600 is disposed at a predetermined distance from the thin film deposition apparatus in a chamber (not shown).

次いで、薄膜蒸着装置と基板600のうちいずれか一方が他方に対して相対的に移動しつつ、薄膜蒸着装置から放射される蒸着物質が基板に蒸着される。前述したように、本発明の薄膜蒸着装置は、基板600より小さく形成されて製造の容易なパターニングスリットシート150を備えるために、薄膜蒸着装置と基板600とが互いに相対的に移動しつつ蒸着が行われる。図1などには、薄膜蒸着装置が固定されている状態で基板600が図面のY軸方向に移動すると図示されているが、本発明の思想はこれに制限されず、基板が固定されている状態で薄膜蒸着装置が全体的に移動することも可能であるといえる。   Next, while either one of the thin film deposition apparatus and the substrate 600 moves relative to the other, a deposition material emitted from the thin film deposition apparatus is deposited on the substrate. As described above, since the thin film deposition apparatus of the present invention includes the patterning slit sheet 150 that is smaller than the substrate 600 and easy to manufacture, the thin film deposition apparatus and the substrate 600 can be deposited while moving relative to each other. Done. 1 and the like show that the substrate 600 moves in the Y-axis direction of the drawing in a state where the thin film deposition apparatus is fixed, but the idea of the present invention is not limited to this, and the substrate is fixed. It can be said that the thin film deposition apparatus can move as a whole in the state.

ここで、本発明の第1実施形態に関する有機発光ディスプレイ装置の製造方法は、青色発光層材料B、緑色補助層材料G’、緑色発光層材料G、赤色補助層材料R’、赤色発光層材料Rが順に蒸着されるマルチ蒸着源で、複数の有機層が一度に蒸着されることを一特徴とする。すなわち、薄膜蒸着アセンブリーを複数備えることによって、一つのマルチソースで青色発光層(図5A及び図5Bの62B参照)、緑色補助層(図5A及び図5Bの62G’参照)、緑色発光層(図5A及び図5Bの62G参照)、赤色補助層(図5A及び図5Bの62R’参照)、赤色発光層(図5A及び図5Bの62R参照)を一度に蒸着できるようになり、したがって、有機発光ディスプレイ装置の生産時間が画期的に短縮すると同時に、備えられねばならないチャンバ数が減少することによって、設備コストも顕著に低減する効果を得ることができる。   Here, the manufacturing method of the organic light emitting display device according to the first embodiment of the present invention includes a blue light emitting layer material B, a green auxiliary layer material G ′, a green light emitting layer material G, a red auxiliary layer material R ′, and a red light emitting layer material. A multi-deposition source in which R is sequentially deposited, and a plurality of organic layers are deposited at one time. That is, by providing a plurality of thin film deposition assemblies, a single multi-source blue light emitting layer (see 62B in FIGS. 5A and 5B), a green auxiliary layer (see 62G ′ in FIGS. 5A and 5B), a green light emitting layer (see FIG. 5A and 62B in FIG. 5B), a red auxiliary layer (see 62R ′ in FIGS. 5A and 5B), and a red light emitting layer (see 62R in FIGS. 5A and 5B) can be deposited at one time, and thus organic light emission The production time of the display device is remarkably shortened, and at the same time, the number of chambers to be provided is reduced, so that the effect of significantly reducing the equipment cost can be obtained.

このような薄膜蒸着装置を利用して後述する有機発光ディスプレイ装置の有機膜62などが形成され、これ以外にも、前記薄膜蒸着装置は有機TFTの有機膜または無機膜などの蒸着にも使用でき、その他に多様な素材の成膜工程に適用できる。   An organic film 62 of an organic light emitting display device, which will be described later, is formed by using such a thin film deposition apparatus. In addition, the thin film deposition apparatus can be used for deposition of an organic film or an inorganic film of an organic TFT. In addition, it can be applied to a film forming process of various materials.

以下では、図4の薄膜蒸着装置により製造された有機発光ディスプレイ装置について詳細に説明する。   Hereinafter, the organic light emitting display device manufactured by the thin film deposition apparatus of FIG. 4 will be described in detail.

図5A及び図5Bは、図4の薄膜蒸着装置により製造された有機発光ディスプレイ装置のうち、一画素を図示した断面図である。   5A and 5B are cross-sectional views illustrating one pixel of the organic light emitting display device manufactured by the thin film deposition apparatus of FIG.

図5A及び図5Bに図示されたように、ガラス材またはプラスチック材の基板50上にバッファ層51が形成されており、この上に薄膜トランジスタTFTと、有機電界発光素子OLEDとが形成される。   As shown in FIGS. 5A and 5B, a buffer layer 51 is formed on a glass or plastic substrate 50, on which a thin film transistor TFT and an organic electroluminescent element OLED are formed.

基板50上のバッファ層51上に所定パターンの活性層52が備えられる。活性層52の上部にはゲート絶縁膜53が備えられ、ゲート絶縁膜53の上部の所定領域にはゲート電極54が形成される。ゲート電極54は、薄膜トランジスタのオン/オフ信号を印加するゲートライン(図示せず)と連結されている。ゲート電極54の上部には層間絶縁膜55が形成され、コンタクトホールを通じてソース/ドレイン電極56、57がそれぞれ活性層52のソース/ドレイン領域52b、52cに接するように形成される。ソース/ドレイン電極56、57の上部には、SiO、SiNxなどからなるパッシベーション膜58が形成され、パッシベーション膜58の上部にはアクリル、ポリイミド、BCB(Benzocyclobutene)などの有機物質で平坦化膜59が形成されている。平坦化膜59の上部に有機電界発光素子OLEDのアノード電極になる第1電極61が形成され、これを覆うように有機物で画素定義膜(Pixel Define Layer)60が形成される。画素定義膜60に所定の開口を形成した後、画素定義膜60の上部及び開口が形成されて、外部に露出された第1電極61の上部に有機層62を形成する。有機層62は、発光層を含むものになる。本発明は必ずしもこのような構造に限定されるものではなく、多様な有機発光ディスプレイ装置の構造がそのまま適用できるということはいうまでもない。 An active layer 52 having a predetermined pattern is provided on the buffer layer 51 on the substrate 50. A gate insulating film 53 is provided on the active layer 52, and a gate electrode 54 is formed in a predetermined region on the gate insulating film 53. The gate electrode 54 is connected to a gate line (not shown) for applying an on / off signal of the thin film transistor. An interlayer insulating film 55 is formed on the gate electrode 54, and source / drain electrodes 56 and 57 are formed in contact with the source / drain regions 52b and 52c of the active layer 52 through contact holes, respectively. A passivation film 58 made of SiO 2 , SiNx, or the like is formed on the source / drain electrodes 56, 57. A planarization film 59 is formed on the passivation film 58 with an organic material such as acrylic, polyimide, or BCB (Benzocyclobutylene). Is formed. A first electrode 61 serving as an anode electrode of the organic electroluminescent element OLED is formed on the planarizing film 59, and a pixel definition film 60 is formed of an organic material so as to cover the first electrode 61. After a predetermined opening is formed in the pixel definition film 60, an upper portion of the pixel definition film 60 and an opening are formed, and an organic layer 62 is formed on the first electrode 61 exposed to the outside. The organic layer 62 includes a light emitting layer. The present invention is not necessarily limited to such a structure, and it goes without saying that various organic light emitting display device structures can be applied as they are.

有機電界発光素子OLEDは、電流のフローによって赤、緑、青色の光を発光して所定の画像情報を表示するものであって、薄膜トランジスタのドレイン電極56に連結されて、これからプラス電源を供給される第1電極61と、全体画素を覆うように備えられてマイナス電源を供給する第2電極63、及びこれら第1電極61と第2電極63との間に配されて発光する有機層62とで構成される。   The organic electroluminescent element OLED emits red, green and blue light by current flow to display predetermined image information. The organic electroluminescent element OLED is connected to the drain electrode 56 of the thin film transistor and is supplied with positive power. A first electrode 61, a second electrode 63 provided so as to cover the entire pixel and supplying a negative power source, and an organic layer 62 disposed between the first electrode 61 and the second electrode 63 to emit light. Consists of.

第1電極61と第2電極63とは有機層62により互いに絶縁されており、有機層62に逆極性の電圧を加えて有機層62で発光を行わせる。   The first electrode 61 and the second electrode 63 are insulated from each other by the organic layer 62, and a reverse polarity voltage is applied to the organic layer 62 to cause the organic layer 62 to emit light.

有機層62は低分子または高分子有機膜が使われうるが、低分子有機膜を使用する場合、ホール注入層(HIL:Hole Injection Layer)、ホール輸送層(HTL:Hole Transport Layer)、発光層(EML:Emission Layer)、電子輸送層(ETL:Electron Transport Layer)、電子注入層(EIL:Electron Injection Layer)などが単一あるいは複合の構造で積層されて形成され、使用可能な有機材料も銅フタロシアニン(CuPc)、N,N−ジ(ナフタレン−1−イル)−N,N’−ジフェニル−ベンジジン(NPB)、トリス−8−ヒドロキシキノリノラト−アルミニウム(Alq3)などをはじめとして多様に適用できる。これら低分子有機膜は真空蒸着の方法で形成される。   The organic layer 62 may be a low molecular or high molecular organic film. When a low molecular organic film is used, a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer are used. (EML: Emission Layer), electron transport layer (ETL: Electron Transport Layer), electron injection layer (EIL: Electron Injection Layer), etc. are formed by laminating single or composite structures, and usable organic materials are also copper. Various applications including phthalocyanine (CuPc), N, N-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPB), tris-8-hydroxyquinolinolato-aluminum (Alq3) so That. These low molecular organic films are formed by a vacuum deposition method.

高分子有機膜の場合には、通常、ホール輸送層(HTL)及び発光層(EML)で構成された構造を持つことができ、この時、ホール輸送層としてPEDOTを使用し、発光層としてPPV(Poly−Phenylenevinylene)系及びポリフルオレン系などの高分子有機物質を使用し、これをスクリーン印刷やインクジェット印刷方法などで形成できる。   In the case of a polymer organic film, it can usually have a structure composed of a hole transport layer (HTL) and a light emitting layer (EML). At this time, PEDOT is used as the hole transport layer and PPV is used as the light emitting layer. High molecular organic materials such as (Poly-Phenylenevinylene) and polyfluorene can be used, and can be formed by screen printing or ink jet printing.

このような有機膜は必ずしもこれに限定されるものではなく、多様な実施形態が適用できるということはいうまでもない。   Such an organic film is not necessarily limited to this, and it is needless to say that various embodiments can be applied.

第1電極61はアノード電極の機能を行い、第2電極63はカソード電極の機能を行うが、もちろん、これら第1電極61と第2電極63との極性は逆になってもよい。   The first electrode 61 functions as an anode electrode, and the second electrode 63 functions as a cathode electrode. Of course, the polarities of the first electrode 61 and the second electrode 63 may be reversed.

第1電極61は、透明電極または反射型電極として備えられうるが、透明電極として使われる時には、ITO、IZO、ZnO、またはInで備えられ、反射型電極として使われる時には、Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr及びこれらの化合物で反射膜を形成した後、その上にITO、IZO、ZnO、またはInを形成できる。 The first electrode 61 may be provided as a transparent electrode or a reflective electrode. When used as a transparent electrode, the first electrode 61 is provided with ITO, IZO, ZnO, or In 2 O 3 , and when used as a reflective electrode, Ag, After forming a reflective film with Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr and their compounds, ITO, IZO, ZnO, or In 2 O 3 can be formed thereon.

一方、第2電極63も透明電極または反射型電極として備えられうるが、透明電極として使われる時には、第2電極63がカソード電極として使われるので、仕事関数の小さな金属、すなわち、Li、Ca、LiF/Ca、LiF/Al、Al、Ag、Mg、及びこれらの化合物が有機層62の方向に向かうように蒸着した後、その上にITO、IZO、ZnO、またはInなどの透明電極形成用物質で補助電極層やバス電極ラインを形成できる。そして、反射型電極として使われる時には、前記Li、Ca、LiF/Ca、LiF/Al、Al、Ag、Mg、及びこれらの化合物を全面蒸着して形成する。 On the other hand, the second electrode 63 can also be provided as a transparent electrode or a reflective electrode. However, when the second electrode 63 is used as a transparent electrode, the second electrode 63 is used as a cathode electrode. After depositing LiF / Ca, LiF / Al, Al, Ag, Mg, and their compounds in the direction of the organic layer 62, a transparent electrode such as ITO, IZO, ZnO, or In 2 O 3 is formed thereon. An auxiliary electrode layer and a bus electrode line can be formed with the forming material. When used as a reflective electrode, the Li, Ca, LiF / Ca, LiF / Al, Al, Ag, Mg, and their compounds are deposited on the entire surface.

このような有機発光ディスプレイ装置で、発光層を備える有機層62などは、詳述する薄膜蒸着装置(図1の100参照)によって形成されうる。   In such an organic light emitting display device, the organic layer 62 including a light emitting layer can be formed by a thin film deposition apparatus (see 100 in FIG. 1) described in detail.

詳細には、有機層62は発光層62R、62G、62Bと補助層62R’、62G’とを備えることができる。使われた物質によって、前記発光層62R、62G、62Bは、赤色、緑色または青色の光を放出できる。一方、補助層62R’、62G’は、前述したホール輸送層(HTL:Hole Transport Layer)と同じ材質で形成され、補助層62R’、62G’を備える中間層の厚さが、赤色、緑色及び青色の光を放出する副画素で相異なる厚さを持つように形成される。これをさらに詳細に説明すれば、次の通りである。   Specifically, the organic layer 62 may include light emitting layers 62R, 62G, and 62B and auxiliary layers 62R ′ and 62G ′. Depending on the material used, the light emitting layers 62R, 62G, and 62B may emit red, green, or blue light. Meanwhile, the auxiliary layers 62R ′ and 62G ′ are formed of the same material as the hole transport layer (HTL) described above, and the intermediate layers including the auxiliary layers 62R ′ and 62G ′ have red, green, and green thicknesses. Sub-pixels that emit blue light are formed to have different thicknesses. This will be described in more detail as follows.

前記第1電極61と第2電極63のうち、いずれか一方は反射型電極であり、他方は半透明電極または透明電極である。したがって、素子駆動時に前記第1電極61と第2電極63との間に共振現象が起きる。これにより、有機発光ディスプレイ装置の駆動時、前記第1電極61と第2電極63との間の発光層62R、62G、62Bで発生した光が、前記第1電極61と第2電極63との間で共振しつつ有機発光ディスプレイ装置の外部に取出されるので、発光輝度及び発光効率が増大しうる。このような共振構造を形成するために、本発明の第1実施形態による有機発光ディスプレイ装置は、補助層62R’、62G’を備える中間層の厚さが、赤色、緑色及び青色の光を放出する副画素で相異なる厚さを持つように形成されうる。すなわち、第1電極61と第2電極63との間に備えられた有機層のうち、補助層62R’、62G’が発光層の発光カラー毎に最適化された厚さを持つことによって、優れた駆動電圧、電流密度、発光輝度、色純度、発光効率及び寿命特性などを持つことができる。   One of the first electrode 61 and the second electrode 63 is a reflective electrode, and the other is a translucent electrode or a transparent electrode. Therefore, a resonance phenomenon occurs between the first electrode 61 and the second electrode 63 when the element is driven. Accordingly, when the organic light emitting display device is driven, light generated in the light emitting layers 62R, 62G, and 62B between the first electrode 61 and the second electrode 63 is transmitted between the first electrode 61 and the second electrode 63. Since it is taken out of the organic light emitting display device while resonating, the light emission luminance and the light emission efficiency can be increased. In order to form such a resonant structure, the organic light emitting display device according to the first embodiment of the present invention emits light of red, green and blue in which the thickness of the intermediate layer including the auxiliary layers 62R ′ and 62G ′. The subpixels may have different thicknesses. That is, among the organic layers provided between the first electrode 61 and the second electrode 63, the auxiliary layers 62R ′ and 62G ′ have excellent thicknesses optimized for each light emitting color of the light emitting layer. Drive voltage, current density, light emission luminance, color purity, light emission efficiency, life characteristics, and the like.

ところが、従来の有機発光ディスプレイ装置では、このような第1電極61の上部に補助層62R’、62G’がまず形成された後、その上に赤色発光層62R、緑色発光層62G、青色発光層62Bが順に形成されることが一般的であった。ところが、本発明のように基板とパターニングスリットシートとが離隔している場合、基板に少なからず陰影が発生しうるという問題点があった。このように陰影が発生して隣接する発光層が互いに混合される場合、発光効率が低下し、駆動電圧が上昇するなどの問題点が発生した。   However, in the conventional organic light emitting display device, auxiliary layers 62R ′ and 62G ′ are first formed on the first electrode 61, and then a red light emitting layer 62R, a green light emitting layer 62G, and a blue light emitting layer are formed thereon. It was common that 62B was formed in order. However, when the substrate and the patterning slit sheet are separated from each other as in the present invention, there is a problem that a shadow may occur on the substrate. When shadows are generated and adjacent light emitting layers are mixed with each other, problems such as a decrease in light emission efficiency and an increase in driving voltage occur.

すなわち、下記の表1から分かるように、重畳領域のない標準状態での青色発光層62Bの外部量子効率が6.29%であるのに対し、青色発光層62Bに赤色発光層62Rまたは緑色発光層Gがわずか1%のみ重畳する場合であっても、外部量子効率はそれぞれ1.53%、2.76%に急激に減少することが分かる。   That is, as can be seen from Table 1 below, the external quantum efficiency of the blue light emitting layer 62B in the standard state without the overlapping region is 6.29%, while the red light emitting layer 62R or the green light emitting layer is included in the blue light emitting layer 62B. It can be seen that even when the layer G overlaps by only 1%, the external quantum efficiency rapidly decreases to 1.53% and 2.76%, respectively.

Figure 2015120982
Figure 2015120982

このような問題点を解決するために、本発明の一実施形態による有機発光ディスプレイ装置は、一画素内でサブピクセルが青色(B)、緑色(G)、赤色(R)順に配され、青色発光層62Bの一端部上に緑色補助層62G’及び緑色発光層62Gの一端部がオーバーラップされ、緑色発光層62Gの他端部上に赤色補助層62R’及び赤色発光層62Rの一端部がオーバーラップされるように形成されることを一特徴とする。   In order to solve such a problem, an OLED display according to an exemplary embodiment of the present invention includes subpixels arranged in the order of blue (B), green (G), and red (R) in one pixel. The green auxiliary layer 62G ′ and one end of the green light emitting layer 62G overlap on one end of the light emitting layer 62B, and the red auxiliary layer 62R ′ and one end of the red light emitting layer 62R are on the other end of the green light emitting layer 62G. One feature is that they are formed to overlap.

前述したように、第1薄膜蒸着アセンブリー(図4の100参照)には青色発光層62Bの材料になる蒸着物質が備えられ、第2薄膜蒸着アセンブリー(図4の200参照)には緑色補助層62G’の材料になる蒸着物質が備えられ、第3薄膜蒸着アセンブリー(図4の300参照)には緑色発光層62Gの材料になる蒸着物質が備えられ、第4薄膜蒸着アセンブリー(図4の400参照)には赤色補助層62R’の材料になる蒸着物質が備えられ、第5薄膜蒸着アセンブリー(図4の500参照)には赤色発光層62Rの材料になる蒸着物質が備えられうる。   As described above, the first thin film deposition assembly (see 100 in FIG. 4) includes a deposition material to be the material of the blue light emitting layer 62B, and the second thin film deposition assembly (see 200 in FIG. 4) has a green auxiliary layer. The third thin film deposition assembly (see 300 in FIG. 4) is provided with a deposition material to be the material of the green light emitting layer 62G, and the fourth thin film deposition assembly (400 in FIG. 4) is provided. (See FIG. 4) may be provided with a deposition material to be a material for the red auxiliary layer 62R ′, and the fifth thin film deposition assembly (see 500 in FIG. 4) may be provided with a deposition material to be the material for the red light emitting layer 62R.

この場合、最初に青色発光層62Bが蒸着され、次いで、緑色補助層62G’が蒸着される。この時、青色発光層62Bの右側端部と、緑色補助層62G’の左側端部とがある程度重なりつつ、青色発光層62Bの右側端部上に緑色補助層62G’の左側端部が蒸着される。次いで、緑色補助層62G’の上部に緑色発光層62Gが蒸着される。すなわち、青色発光層62Bと緑色発光層62Gとの間に緑色補助層62G’が介在されることで、互いに隣接した青色発光層62Bと緑色発光層62Gとが直接接触しなくなる。   In this case, the blue light emitting layer 62B is first deposited, and then the green auxiliary layer 62G 'is deposited. At this time, the left end portion of the green auxiliary layer 62G ′ is deposited on the right end portion of the blue light emitting layer 62B while the right end portion of the blue light emitting layer 62B and the left end portion of the green auxiliary layer 62G ′ overlap to some extent. The Next, the green light emitting layer 62G is deposited on the green auxiliary layer 62G '. That is, since the green auxiliary layer 62G 'is interposed between the blue light emitting layer 62B and the green light emitting layer 62G, the blue light emitting layer 62B and the green light emitting layer 62G adjacent to each other are not in direct contact with each other.

次いで、赤色補助層62R’が蒸着される。この時、緑色発光層62Gの右側端部と、赤色補助層62R’の左側端部とがある程度重なりつつ、緑色発光層62Gの右側端部上に赤色補助層62R’の左側端部が蒸着される。次いで、赤色補助層62R’の上部に赤色発光層62Rが蒸着される。すなわち、緑色発光層62Gと赤色発光層62Rとの間に赤色補助層62R’が介在されることで、互いに隣接した緑色発光層Gと赤色発光層Rとが直接接触しなくなる。   Next, a red auxiliary layer 62R 'is deposited. At this time, the left end portion of the red auxiliary layer 62R ′ is deposited on the right end portion of the green light emitting layer 62G while the right end portion of the green light emitting layer 62G and the left end portion of the red auxiliary layer 62R ′ overlap to some extent. The Next, a red light emitting layer 62R is deposited on the red auxiliary layer 62R '. That is, since the red auxiliary layer 62R 'is interposed between the green light emitting layer 62G and the red light emitting layer 62R, the green light emitting layer G and the red light emitting layer R adjacent to each other are not in direct contact with each other.

すなわち、下記の表2から分かるように、重畳領域のない標準状態での青色発光層62Bの外部量子効率が6.29%であり、赤色補助層R’と赤色発光層62Rとが1%重畳する場合の外部量子効率は5.78%であり、緑色補助層G’と緑色発光層62Gとが1%重畳する場合の外部量子効率は5.42%であり、互いに隣接した発光層の間に中間層が介在されていない表1と比較して発光層の発光効率が大きく向上し、混色現象が消え、色座標改善効果が生じることが分かる。   That is, as can be seen from Table 2 below, the external quantum efficiency of the blue light emitting layer 62B in the standard state without the overlapping region is 6.29%, and the red auxiliary layer R ′ and the red light emitting layer 62R are overlapped by 1%. The external quantum efficiency is 5.78%, and when the green auxiliary layer G ′ and the green light emitting layer 62G overlap each other by 1%, the external quantum efficiency is 5.42%, between the adjacent light emitting layers. It can be seen that the luminous efficiency of the light emitting layer is greatly improved as compared with Table 1 in which no intermediate layer is interposed between them, the color mixing phenomenon disappears, and the color coordinate improving effect is produced.

Figure 2015120982
Figure 2015120982

一方、図面には図示されていないが、第1薄膜蒸着アセンブリーには青色発光層の材料になる蒸着物質が備えられ、第2薄膜蒸着アセンブリーには赤色補助層の材料になる蒸着物質が備えられ、第3薄膜蒸着アセンブリーには赤色発光層の材料になる蒸着物質が備えられ、第4薄膜蒸着アセンブリーには緑色補助層の材料になる蒸着物質が備えられ、第5薄膜蒸着アセンブリーには緑色発光層の材料になる蒸着物質が備えられうる。   Meanwhile, although not shown in the drawings, the first thin film deposition assembly is provided with a deposition material to be a material of the blue light emitting layer, and the second thin film deposition assembly is provided with a deposition material to be a material of the red auxiliary layer. The third thin film deposition assembly includes a deposition material that is a material for the red light emitting layer, the fourth thin film deposition assembly includes a deposition material that is a material for the green auxiliary layer, and the fifth thin film deposition assembly includes a green light emission. A vapor deposition material that becomes the material of the layer may be provided.

この場合、最初に青色発光層が蒸着され、次いで、赤色補助層が蒸着される。この時、青色発光層の右側端部と、赤色補助層の左側端部とがある程度重畳しつつ、青色発光層の右側端部上に赤色補助層の左側端部が蒸着される。次いで、赤色補助層の上部に赤色発光層が蒸着される。すなわち、青色発光層と赤色発光層との間に赤色補助層が介在されることで、互いに隣接した青色発光層と赤色発光層とが直接接触しなくなる。   In this case, a blue light emitting layer is first deposited and then a red auxiliary layer is deposited. At this time, the left end portion of the red auxiliary layer is deposited on the right end portion of the blue light emitting layer while the right end portion of the blue light emitting layer and the left end portion of the red auxiliary layer overlap each other to some extent. Next, a red light emitting layer is deposited on the red auxiliary layer. That is, since the red auxiliary layer is interposed between the blue light emitting layer and the red light emitting layer, the blue light emitting layer and the red light emitting layer adjacent to each other are not in direct contact with each other.

次いで、緑色補助層が蒸着される。この時、赤色発光層の右側端部と、緑色補助層の左側端部とがある程度重畳しつつ、赤色発光層の右側端部上に緑色補助層の左側端部が蒸着される。次いで、緑色補助層の上部に緑色発光層が蒸着される。すなわち、赤色発光層と緑色発光層との間に緑色補助層が介在されることで、互いに隣接した赤色発光層と緑色発光層とが直接接触しなくなる。   A green auxiliary layer is then deposited. At this time, the left end of the green auxiliary layer is deposited on the right end of the red light emitting layer while the right end of the red light emitting layer and the left end of the green auxiliary layer overlap to some extent. Next, a green light emitting layer is deposited on the green auxiliary layer. That is, since the green auxiliary layer is interposed between the red light emitting layer and the green light emitting layer, the red light emitting layer and the green light emitting layer adjacent to each other do not come into direct contact with each other.

かかる本発明によって、隣接発光層との重畳領域の発生による効率低下及び混色影響が最小化する効果を得ることができる。   According to the present invention, it is possible to obtain an effect of reducing the efficiency reduction and the influence of color mixing due to the generation of the overlapping region with the adjacent light emitting layer.

(第2実施形態)
図6は、本発明の第2実施形態に関する薄膜蒸着アセンブリーを概略的に図示した斜視図である。
(Second Embodiment)
FIG. 6 is a perspective view schematically illustrating a thin film deposition assembly according to a second embodiment of the present invention.

図6を参照すれば、本発明の第2実施形態に関する薄膜蒸着アセンブリー700は、蒸着源710、蒸着源ノズル部720、第1遮断板アセンブリー730、第2遮断板アセンブリー740、パターニングスリットシート750及び基板600を備える。   Referring to FIG. 6, a thin film deposition assembly 700 according to the second embodiment of the present invention includes a deposition source 710, a deposition source nozzle unit 720, a first blocking plate assembly 730, a second blocking plate assembly 740, a patterning slit sheet 750, and A substrate 600 is provided.

ここで、図6には説明の便宜のためにチャンバを図示していないが、図6のあらゆる構成は、適切な真空度が維持されるチャンバ内に配されることが望ましい。これは、蒸着物質の直進性を確保するためである。   Here, although the chamber is not illustrated in FIG. 6 for convenience of explanation, it is desirable that all the configurations in FIG. 6 are arranged in a chamber in which an appropriate degree of vacuum is maintained. This is to ensure straightness of the vapor deposition material.

このようなチャンバ(図示せず)内には被蒸着体である基板600が配される。そして、チャンバ(図示せず)内で基板600と対向する側には、蒸着物質715が収納及び加熱される蒸着源710が配される。蒸着源710は、坩堝711と、ヒータ712とを備える。   In such a chamber (not shown), a substrate 600 which is a deposition target is disposed. A deposition source 710 that stores and heats the deposition material 715 is disposed on the side facing the substrate 600 in a chamber (not shown). The vapor deposition source 710 includes a crucible 711 and a heater 712.

蒸着源710の一側、詳細には、蒸着源710から基板600に向かう側には蒸着源ノズル部720が配される。そして、蒸着源ノズル部720には、X軸方向に沿って複数の蒸着源ノズル721が形成される。   A vapor deposition source nozzle unit 720 is disposed on one side of the vapor deposition source 710, specifically, on the side facing the substrate 600 from the vapor deposition source 710. In the vapor deposition source nozzle portion 720, a plurality of vapor deposition source nozzles 721 are formed along the X-axis direction.

蒸着源ノズル部720の一側には第1遮断板アセンブリー730が備えられる。前記第1遮断板アセンブリー730は、複数の第1遮断板731と、第1遮断板731の外側に備えられる第1遮断板フレーム732とを備える。   A first barrier plate assembly 730 is provided on one side of the deposition source nozzle unit 720. The first shield plate assembly 730 includes a plurality of first shield plates 731 and a first shield plate frame 732 provided outside the first shield plates 731.

第1遮断板アセンブリー730の一側には第2遮断板アセンブリー740が備えられる。前記第2遮断板アセンブリー740は、複数の第2遮断板741と、第2遮断板741の外側に備えられる第2遮断板フレーム742とを備える。   A second barrier plate assembly 740 is provided on one side of the first barrier plate assembly 730. The second shield plate assembly 740 includes a plurality of second shield plates 741 and a second shield plate frame 742 provided outside the second shield plate 741.

そして、蒸着源710と基板600との間には、パターニングスリットシート750及びフレーム755がさらに備えられる。フレーム755は窓枠のような格子状に形成され、その内側にパターニングスリットシート750が結合される。そして、パターニングスリットシート750には、X軸方向に沿って複数のパターニングスリット751が形成される。   A patterning slit sheet 750 and a frame 755 are further provided between the vapor deposition source 710 and the substrate 600. The frame 755 is formed in a lattice shape like a window frame, and a patterning slit sheet 750 is coupled to the inside thereof. In the patterning slit sheet 750, a plurality of patterning slits 751 are formed along the X-axis direction.

ここで、本発明の第2実施形態に関する薄膜蒸着アセンブリー700は、遮断板アセンブリーが第1遮断板アセンブリー730と第2遮断板アセンブリー740とに分離されていることを一特徴とする。   Here, the thin film deposition assembly 700 according to the second embodiment of the present invention is characterized in that the barrier plate assembly is separated into a first barrier plate assembly 730 and a second barrier plate assembly 740.

詳細には、前記複数の第1遮断板731はX軸方向に沿って互いに平行に備えられうる。そして、前記複数の第1遮断板731は等間隔で形成されうる。また、それぞれの第1遮断板731は、図面からみてYZ平面と平行に、言い換えれば、X軸方向に垂直になるように形成される。   Specifically, the plurality of first blocking plates 731 may be provided in parallel with each other along the X-axis direction. The plurality of first blocking plates 731 may be formed at regular intervals. Each first blocking plate 731 is formed in parallel to the YZ plane as viewed from the drawing, in other words, perpendicular to the X-axis direction.

また、前記複数の第2遮断板741は、X軸方向に沿って互いに平行に備えられうる。そして、前記複数の第2遮断板741は等間隔で形成されうる。また、それぞれの第2遮断板741は、図面からみた時にYZ平面と平行に、言い換えれば、X軸方向に垂直になるように形成される。   The plurality of second blocking plates 741 may be provided in parallel with each other along the X-axis direction. The plurality of second blocking plates 741 may be formed at equal intervals. Each second blocking plate 741 is formed to be parallel to the YZ plane when viewed from the drawing, in other words, to be perpendicular to the X-axis direction.

このように配された複数の第1遮断板731及び第2遮断板741は、蒸着源ノズル部720とパターニングスリットシート750との間の空間を区切る役割を行う。ここで、本発明の第2実施形態に関する薄膜蒸着アセンブリー700は、前記第1遮断板731及び第2遮断板741によって、蒸着物質が噴射されるそれぞれの蒸着源ノズル721毎に蒸着空間が分離されることを一特徴とする。   The plurality of first blocking plates 731 and second blocking plates 741 arranged in this manner serve to partition the space between the deposition source nozzle unit 720 and the patterning slit sheet 750. Here, in the thin film deposition assembly 700 according to the second embodiment of the present invention, the deposition space is separated for each deposition source nozzle 721 to which the deposition material is sprayed by the first blocking plate 731 and the second blocking plate 741. One of the features.

ここで、それぞれの第2遮断板741は、それぞれの第1遮断板731と一対一対応するように配されうる。言い換えれば、それぞれの第2遮断板741は、それぞれの第1遮断板731とアラインされて互いに平行に配されうる。すなわち、互いに対応する第1遮断板731と第2遮断板741とは互いに同じ平面上に位置する。このように、互いに平行に配された第1遮断板731と第2遮断板741とによって、蒸着源ノズル部720と後述するパターニングスリットシート750との間の空間が区切られることによって、一つの蒸着源ノズル721から排出される蒸着物質は、他の蒸着源ノズル721から排出された蒸着物質と混合されず、パターニングスリット751を通過して基板600に蒸着される。言い換えれば、第1遮断板731及び第2遮断板741は、蒸着源ノズル721を通じて排出される蒸着物質が分散されないように蒸着物質のZ軸方向の移動経路をガイドする役割を行う。   Here, each of the second blocking plates 741 may be arranged to have a one-to-one correspondence with each of the first blocking plates 731. In other words, the second blocking plates 741 may be aligned with the first blocking plates 731 and parallel to each other. That is, the first blocking plate 731 and the second blocking plate 741 corresponding to each other are located on the same plane. As described above, the first blocking plate 731 and the second blocking plate 741 arranged in parallel with each other divides the space between the deposition source nozzle unit 720 and the patterning slit sheet 750 described later, thereby providing one deposition. The vapor deposition material discharged from the source nozzle 721 is not mixed with the vapor deposition material discharged from the other vapor deposition source nozzles 721, passes through the patterning slit 751, and is deposited on the substrate 600. In other words, the first blocking plate 731 and the second blocking plate 741 serve to guide the movement path of the deposition material in the Z-axis direction so that the deposition material discharged through the deposition source nozzle 721 is not dispersed.

図面には、第1遮断板731のX軸方向の幅と第2遮断板741のX軸方向の幅とが同一であるように図示されているが、本発明の思想はこれに制限されるものではない。すなわち、パターニングスリットシート750との精密なアラインが求められる第2遮断板741は相対的に薄く形成される一方、精密なアラインが求められない第1遮断板731は相対的に厚く形成されて、その製造を容易にすることも可能であるといえる。   In the drawing, the width in the X-axis direction of the first blocking plate 731 and the width in the X-axis direction of the second blocking plate 741 are shown to be the same, but the idea of the present invention is limited to this. It is not a thing. That is, the second blocking plate 741 that requires precise alignment with the patterning slit sheet 750 is formed relatively thin, while the first blocking plate 731 that does not require precise alignment is formed relatively thick, It can be said that the manufacture can be facilitated.

一方、図面には図示されていないが、本発明の第2実施形態に関する薄膜蒸着装置には薄膜蒸着アセンブリーが複数備えられうる。すなわち、本発明の第2実施形態に関する薄膜蒸着装置は、青色発光層材料B、緑色補助層材料G’、緑色発光層材料G、赤色補助層材料R’、赤色発光層材料Rが順に蒸着されるマルチ蒸着源を備えることもできる。そして、基板600は、図6の矢印C方向に移動しつつスキャニング方式で蒸着が行われる。このような複数の薄膜蒸着アセンブリーについては第1実施形態で詳細に記述したので、本実施形態ではその詳細な説明は省略する。   Meanwhile, although not shown in the drawings, the thin film deposition apparatus according to the second embodiment of the present invention may include a plurality of thin film deposition assemblies. That is, in the thin film deposition apparatus according to the second embodiment of the present invention, the blue light emitting layer material B, the green auxiliary layer material G ′, the green light emitting layer material G, the red auxiliary layer material R ′, and the red light emitting layer material R are sequentially deposited. A multi-vapor deposition source can also be provided. The substrate 600 is deposited in a scanning manner while moving in the direction of arrow C in FIG. Since such a plurality of thin film deposition assemblies have been described in detail in the first embodiment, detailed description thereof will be omitted in this embodiment.

(第3実施形態)
図7は、本発明の第3実施形態に関する薄膜蒸着アセンブリーを概略的に図示した斜視図であり、図8は、図7の薄膜蒸着アセンブリーの概略的な側面図であり、図9は、図7の薄膜蒸着アセンブリーの概略的な平面図である。
(Third embodiment)
7 is a perspective view schematically illustrating a thin film deposition assembly according to a third embodiment of the present invention, FIG. 8 is a schematic side view of the thin film deposition assembly of FIG. 7, and FIG. 7 is a schematic plan view of 7 thin film deposition assembly. FIG.

図7、図8及び図9を参照すれば、本発明の第3実施形態に関する薄膜蒸着アセンブリー1100は、蒸着源1110、蒸着源ノズル部1120及びパターニングスリットシート1150を備える。   Referring to FIGS. 7, 8 and 9, a thin film deposition assembly 1100 according to the third embodiment of the present invention includes a deposition source 1110, a deposition source nozzle unit 1120 and a patterning slit sheet 1150.

ここで、図7、図8及び図9には、説明の便宜のためにチャンバを図示していないが、図7ないし図9のあらゆる構成は、適切な真空度が維持されるチャンバ内に配されることが望ましい。これは、蒸着物質の直進性を確保するためである。   Here, the chamber is not shown in FIGS. 7, 8 and 9 for convenience of explanation, but all the configurations in FIGS. 7 to 9 are arranged in a chamber in which an appropriate degree of vacuum is maintained. It is desirable that This is to ensure straightness of the vapor deposition material.

かかるチャンバ(図示せず)内には被蒸着体である基板600が配される。そして、チャンバ(図示せず)内で基板600と対向する側には、蒸着物質1115が収納及び加熱される蒸着源1110が配される。蒸着源1110は、坩堝1111と、ヒータ1112とを備える。   In such a chamber (not shown), a substrate 600 that is a deposition target is disposed. A deposition source 1110 that stores and heats the deposition material 1115 is disposed on the side facing the substrate 600 in a chamber (not shown). The vapor deposition source 1110 includes a crucible 1111 and a heater 1112.

蒸着源1110の一側、詳細には、蒸着源1110から基板600に向かう側には蒸着源ノズル部1120が配される。そして、蒸着源ノズル部1120には、Y軸方向、すなわち、基板600のスキャン方向に沿って複数の蒸着源ノズル1121が形成される。ここで、前記複数の蒸着源ノズル1121は等間隔で形成できる。蒸着源1110内で気化した蒸着物質1115は、このような蒸着源ノズル部1120を通過して被蒸着体である基板600側に向かうようになる。このように、蒸着源ノズル部1120上にY軸方向、すなわち、基板600のスキャン方向に沿って複数の蒸着源ノズル1121が形成される場合、パターニングスリットシート1150のそれぞれのパターニングスリット1151を通過する蒸着物質により形成されるパターンのサイズは、蒸着源ノズル1121一つのサイズのみに影響を受けるので(すなわち、X軸方向には蒸着源ノズル1121が一つのみ存在するので)、陰影が発生しなくなる。また、複数の蒸着源ノズル1121がスキャン方向に存在するので、個別蒸着源ノズル間のフラックス差が発生しても、その差が相殺されて蒸着均一度が一定に維持される効果を得ることができる。   A deposition source nozzle unit 1120 is disposed on one side of the deposition source 1110, specifically, on the side facing the substrate 600 from the deposition source 1110. A plurality of vapor deposition source nozzles 1121 are formed in the vapor deposition source nozzle portion 1120 along the Y-axis direction, that is, the scan direction of the substrate 600. Here, the plurality of vapor deposition source nozzles 1121 can be formed at equal intervals. The vapor deposition material 1115 vaporized in the vapor deposition source 1110 passes through the vapor deposition source nozzle portion 1120 and moves toward the substrate 600 that is the vapor deposition target. As described above, when the plurality of vapor deposition source nozzles 1121 are formed on the vapor deposition source nozzle portion 1120 along the Y-axis direction, that is, the scanning direction of the substrate 600, each of the patterning slit sheets 1150 passes through the patterning slits 1151. Since the size of the pattern formed by the vapor deposition material is affected only by the size of one vapor deposition source nozzle 1121 (that is, only one vapor deposition source nozzle 1121 exists in the X-axis direction), no shadow is generated. . In addition, since a plurality of vapor deposition source nozzles 1121 exist in the scanning direction, even if a flux difference occurs between the individual vapor deposition source nozzles, the difference is offset and an effect of maintaining the deposition uniformity constant can be obtained. it can.

一方、蒸着源1110と基板600との間には、パターニングスリットシート1150及びフレーム1155がさらに備えられる。フレーム1155は、窓枠状に形成され、その内側にパターニングスリットシート1150が結合される。そして、パターニングスリットシート1150には、X軸方向に沿って複数のパターニングスリット1151が形成される。蒸着源1110内で気化した蒸着物質1115は、蒸着源ノズル部1120及びパターニングスリットシート1150を通過して被蒸着体である基板600側に向かうようになる。この時、前記パターニングスリットシート1150は、従来のFMM、特に、ストライプタイプのマスクの製造方法と同じ方法であるエッチングを通じて製作されうる。   Meanwhile, a patterning slit sheet 1150 and a frame 1155 are further provided between the vapor deposition source 1110 and the substrate 600. The frame 1155 is formed in a window frame shape, and a patterning slit sheet 1150 is coupled to the inside thereof. In the patterning slit sheet 1150, a plurality of patterning slits 1151 are formed along the X-axis direction. The vapor deposition material 1115 vaporized in the vapor deposition source 1110 passes through the vapor deposition source nozzle portion 1120 and the patterning slit sheet 1150 toward the substrate 600 that is the vapor deposition target. At this time, the patterning slit sheet 1150 may be manufactured through etching, which is the same method as the manufacturing method of a conventional FMM, particularly a stripe type mask.

一方、前述した蒸着源1110(及びこれと結合された蒸着源ノズル部1120)とパターニングスリットシート1150とは互いに所定間隔をおいて離隔するように形成され、蒸着源1110(及びこれと結合された蒸着源ノズル部1120)とパターニングスリットシート1150とは、連結部材1135によって互いに連結されうる。すなわち、蒸着源1110、蒸着源ノズル部1120及びパターニングスリットシート1150が連結部材1135により連結されて互いに一体に形成されうる。ここで、連結部材1135は、蒸着源ノズル1121を通じて排出される蒸着物質が分散されないように蒸着物質の移動経路をガイドできる。図面には、連結部材1135が蒸着源1110、蒸着源ノズル部1120及びパターニングスリットシート1150の左右方向のみに形成されて、蒸着物質のX軸方向のみをガイドすると図示されているが、これは、図示の便宜のためのものであって、本発明の思想はこれに制限されず、連結部材1135がボックス形態の密閉型に形成されて蒸着物質のX軸方向及びY軸方向移動を同時にガイドしてもよい。   Meanwhile, the deposition source 1110 (and the deposition source nozzle unit 1120 coupled thereto) and the patterning slit sheet 1150 are formed to be spaced apart from each other by a predetermined distance, and the deposition source 1110 (and the deposition source 1110 coupled thereto) is formed. The deposition source nozzle unit 1120) and the patterning slit sheet 1150 may be connected to each other by a connecting member 1135. That is, the vapor deposition source 1110, the vapor deposition source nozzle unit 1120, and the patterning slit sheet 1150 may be connected to each other by the connecting member 1135 and integrally formed. Here, the connecting member 1135 can guide the movement path of the deposition material so that the deposition material discharged through the deposition source nozzle 1121 is not dispersed. The drawing shows that the connecting member 1135 is formed only in the horizontal direction of the vapor deposition source 1110, the vapor deposition source nozzle unit 1120 and the patterning slit sheet 1150 and guides only the X-axis direction of the vapor deposition material. For the convenience of illustration, the idea of the present invention is not limited to this, and the connecting member 1135 is formed in a box-shaped sealed type to simultaneously guide the movement of the deposition material in the X-axis direction and the Y-axis direction. May be.

前述したように、本発明の一実施形態に関する薄膜蒸着アセンブリー1100は、基板600に対して相対的に移動しつつ蒸着を行い、このように薄膜蒸着アセンブリー1100が基板600に対して相対的に移動するために、パターニングスリットシート1150は基板600から所定間隔をおいて離隔するように形成される。   As described above, the thin film deposition assembly 1100 according to an embodiment of the present invention performs deposition while moving relative to the substrate 600, and thus the thin film deposition assembly 1100 moves relative to the substrate 600. Therefore, the patterning slit sheet 1150 is formed to be separated from the substrate 600 at a predetermined interval.

このような本発明によってマスクを基板より小さく形成した後、マスクを基板に対して移動させつつ蒸着を行えることで、マスク製作が容易になる効果を得ることができる。また、基板とマスクとの接触による不良を防止する効果を得ることができる。また、基板とマスクとを密着させる工程に要する時間が不要になるため、製造速度が向上する効果を得ることができる。   After the mask is formed smaller than the substrate according to the present invention, the mask can be easily manufactured by moving the mask relative to the substrate and performing deposition. In addition, it is possible to obtain an effect of preventing defects due to contact between the substrate and the mask. Further, since the time required for the step of bringing the substrate and the mask into close contact with each other is unnecessary, an effect of improving the manufacturing speed can be obtained.

一方、図面には図示されていないが、本発明の第3実施形態に関する薄膜蒸着装置には薄膜蒸着アセンブリーが複数備えられうる。すなわち、本発明の第3実施形態に関する薄膜蒸着装置は、青色発光層材料B、緑色補助層材料G’、緑色発光層材料G、赤色補助層材料R’、赤色発光層材料Rが順に蒸着されるマルチ蒸着源を備えてもよい。そして、基板600は、図7の矢印A方向に移動しつつスキャニング方式で蒸着が行われる。このような複数の薄膜蒸着アセンブリーについては第1実施形態で詳細に記述したので、本実施形態ではその詳細な説明は省略する。   Meanwhile, although not shown in the drawings, the thin film deposition apparatus according to the third embodiment of the present invention may include a plurality of thin film deposition assemblies. That is, in the thin film deposition apparatus according to the third embodiment of the present invention, the blue light emitting layer material B, the green auxiliary layer material G ′, the green light emitting layer material G, the red auxiliary layer material R ′, and the red light emitting layer material R are sequentially deposited. Multiple vapor deposition sources may be provided. The substrate 600 is deposited by a scanning method while moving in the direction of arrow A in FIG. Since such a plurality of thin film deposition assemblies have been described in detail in the first embodiment, detailed description thereof will be omitted in this embodiment.

(第4実施形態)
図10は、本発明の第4実施形態による薄膜蒸着アセンブリーを示す図面である。図面を参照すれば、本発明の第4実施形態による薄膜蒸着アセンブリーは、蒸着源1210、蒸着源ノズル部1220及びパターニングスリットシート1250を備える。ここで、蒸着源1210は、その内部に蒸着物質1215が満たされる坩堝1211と、坩堝1211を加熱させて坩堝1211の内部に満たされた蒸着物質1215を蒸着源ノズル部1220側に蒸発させるためのヒータ1212とを備える。一方、蒸着源1210の一側には蒸着源ノズル部1220が配され、蒸着源ノズル部1220にはY軸方向に沿って複数の蒸着源ノズル1221が形成される。一方、蒸着源1210と基板600との間にはパターニングスリットシート1250及びフレーム1255がさらに備えられ、パターニングスリットシート1250にはX軸方向に沿って複数のパターニングスリット1251が形成される。そして、蒸着源1210及び蒸着源ノズル部1220とパターニングスリットシート1250とは、連結部材1235によって結合される。
(Fourth embodiment)
FIG. 10 illustrates a thin film deposition assembly according to a fourth embodiment of the present invention. Referring to the drawings, a thin film deposition assembly according to a fourth embodiment of the present invention includes a deposition source 1210, a deposition source nozzle unit 1220, and a patterning slit sheet 1250. Here, the vapor deposition source 1210 has a crucible 1211 filled with a vapor deposition material 1215 therein, and heats the crucible 1211 to evaporate the vapor deposition material 1215 filled inside the crucible 1211 to the vapor deposition source nozzle portion 1220 side. And a heater 1212. Meanwhile, a vapor deposition source nozzle unit 1220 is disposed on one side of the vapor deposition source 1210, and a plurality of vapor deposition source nozzles 1221 are formed in the vapor deposition source nozzle unit 1220 along the Y-axis direction. Meanwhile, a patterning slit sheet 1250 and a frame 1255 are further provided between the deposition source 1210 and the substrate 600, and a plurality of patterning slits 1251 are formed in the patterning slit sheet 1250 along the X-axis direction. The vapor deposition source 1210 and the vapor deposition source nozzle unit 1220 and the patterning slit sheet 1250 are coupled by a connecting member 1235.

本実施形態では、蒸着源ノズル部1220に形成された複数の蒸着源ノズル1221が所定角度チルトされて配されるという点で、前述した実施形態と区別される。詳細には、蒸着源ノズル1221は、2列の蒸着源ノズル1221a、1221bで形成され、前記2列の蒸着源ノズル1221a、1221bは互いに交互に配される。この時、蒸着源ノズル1221a、1221bは、XZ平面上で所定角度チルトされて形成されうる。   This embodiment is distinguished from the above-described embodiment in that a plurality of vapor deposition source nozzles 1221 formed in the vapor deposition source nozzle portion 1220 are arranged with a predetermined angle tilt. Specifically, the vapor deposition source nozzle 1221 is formed by two rows of vapor deposition source nozzles 1221a and 1221b, and the two rows of vapor deposition source nozzles 1221a and 1221b are alternately arranged. At this time, the deposition source nozzles 1221a and 1221b may be formed with a predetermined angle tilt on the XZ plane.

ここで、第1列の蒸着源ノズル1221aは、第2列の蒸着源ノズル1221bに対向するようにチルトされ、第2列の蒸着源ノズル1221bは、第1列の蒸着源ノズル1221aに対向するようにチルトされうる。言い換えれば、左側列に配された蒸着源ノズル1221aは、パターニングスリットシート1250の右側端部に向かうように配され、右側列に配された蒸着源ノズル1221bは、パターニングスリットシート1250の左側端部に向かうように配されうる。   Here, the first row deposition source nozzle 1221a is tilted to face the second row deposition source nozzle 1221b, and the second row deposition source nozzle 1221b faces the first row deposition source nozzle 1221a. Can be tilted. In other words, the vapor deposition source nozzles 1221a arranged in the left column are arranged to face the right end portion of the patterning slit sheet 1250, and the vapor deposition source nozzles 1221b arranged in the right column are arranged in the left end portion of the patterning slit sheet 1250. It can be arranged to go to.

図11は、本発明による薄膜蒸着アセンブリーで蒸着源ノズルをチルトさせていない場合における、基板に蒸着された蒸着膜の分布形態を概略的に示す図面であり、図12は、本発明による薄膜蒸着アセンブリーで蒸着源ノズルをチルトさせた場合における、基板に蒸着された蒸着膜の分布形態を概略的に示す図面である。図11と図12とを比較すれば、蒸着源ノズルをチルトさせた時に基板の両端部に成膜される蒸着膜の厚さが相対的に増大して、蒸着膜の均一度が上昇するということが分かる。   FIG. 11 is a schematic view illustrating a distribution pattern of a deposited film deposited on a substrate when the deposition source nozzle is not tilted in the thin film deposition assembly according to the present invention, and FIG. 12 is a thin film deposition according to the present invention. 6 is a diagram schematically illustrating a distribution form of a deposited film deposited on a substrate when the deposition source nozzle is tilted by the assembly. Comparing FIG. 11 and FIG. 12, when the deposition source nozzle is tilted, the thickness of the deposited film formed on both ends of the substrate is relatively increased, and the uniformity of the deposited film is increased. I understand that.

このような構成によって、基板の中央と終端部分での成膜厚さ差が低減して、全体的な蒸着物質の厚さが均一になるように蒸着量を制御でき、さらには、材料利用効率が向上する効果を得ることができる。   With such a configuration, the deposition amount can be controlled so that the thickness of the entire deposition material is uniform by reducing the difference in film thickness between the center and the end of the substrate. The effect which improves can be acquired.

以下、図4に示した複数の薄膜蒸着アセンブリーを備える薄膜蒸着装置の全体的なシステム構成について詳細に説明する。 Hereinafter, the overall system configuration of the thin film deposition apparatus including the plurality of thin film deposition assemblies shown in FIG. 4 will be described in detail.

図13は、本発明の一実施形態に関する薄膜蒸着装置を概略的に図示したシステム構成図であり、図14は、図13の変形例を図示したものである。図15は、静電チャック800の一例を示す概略面である。 FIG. 13 is a system configuration diagram schematically illustrating a thin film deposition apparatus according to an embodiment of the present invention, and FIG. 14 illustrates a modification of FIG. FIG. 15 is a schematic view showing an example of the electrostatic chuck 800.

図13を参照すれば、本発明の一実施形態による薄膜蒸着装置は、ローディング部910、蒸着部930、アンローディング部920、第1循環部810及び第2循環部820を備える。 Referring to FIG. 13, the thin film deposition apparatus according to an embodiment of the present invention includes a loading unit 910, a deposition unit 930, an unloading unit 920, a first circulation unit 810 and a second circulation unit 820.

ローディング部910は、第1ラック912と、導入ロボット914と、導入室916と、第1反転室918とを備えることができる。 The loading unit 910 can include a first rack 912, an introduction robot 914, an introduction chamber 916, and a first inversion chamber 918.

第1ラック912には蒸着が行われる前の基板600が多く積載されており、導入ロボット914は、前記第1ラック912から基板600を捉えて第2循環部820から移送されてきた静電チャック800に基板600を載置した後、基板600が付着された静電チャック800を導入室916に移す。 A large number of substrates 600 before vapor deposition are loaded on the first rack 912, and the introduction robot 914 captures the substrates 600 from the first rack 912 and transfers them from the second circulation unit 820. After placing the substrate 600 on 800, the electrostatic chuck 800 to which the substrate 600 is attached is moved to the introduction chamber 916.

導入室916に隣接して第1反転室918が備えられ、第1反転室918に位置した第1反転ロボット919が静電チャック800を反転させて、静電チャック800を蒸着部930の第1循環部810に装着する。 A first reversing chamber 918 is provided adjacent to the introduction chamber 916, and the first reversing robot 919 located in the first reversing chamber 918 reverses the electrostatic chuck 800, so that the electrostatic chuck 800 is attached to the first evaporation chamber 930. Attached to the circulation unit 810.

静電チャック800は、図15から分かるように、セラミックからなる本体801の内部に電圧が印加される電極802が埋め立てられたものであって、この電極802に高電圧が印加されることによって本体801の表面に基板600を付着させることである。 As can be seen from FIG. 15, the electrostatic chuck 800 has a body 801 made of ceramic embedded with an electrode 802 to which a voltage is applied, and the main body is applied by applying a high voltage to the electrode 802. The substrate 600 is attached to the surface 801.

図13からみれば、導入ロボット914は、静電チャック800の上面に基板600を載せ、この状態で静電チャック800は導入室916に移送され、第1反転ロボット919が静電チャック800を反転させることによって、蒸着部930では基板600が下方を向くように位置する。 13, the introduction robot 914 places the substrate 600 on the upper surface of the electrostatic chuck 800, and in this state, the electrostatic chuck 800 is transferred to the introduction chamber 916, and the first reversing robot 919 reverses the electrostatic chuck 800. By doing so, the substrate 600 is positioned in the vapor deposition section 930 so as to face downward.

アンローディング部920の構成は、前述したローディング部910の構成と逆に構成される。すなわち、蒸着部930を経た基板600及び静電チャック800を、第2反転室928で第2反転ロボット929が反転させて搬出室926に移送し、搬出ロボット924が搬出室926から基板600及び静電チャック800を取り出した後、基板600を静電チャック800から分離して第2ラック922に積載する。基板600と分離された静電チャック800は、第2循環部820を通じてローディング部910に回送される。 The configuration of the unloading unit 920 is opposite to the configuration of the loading unit 910 described above. That is, the substrate 600 and the electrostatic chuck 800 that have passed through the vapor deposition section 930 are transferred to the carry-out chamber 926 by being reversed by the second reverse robot 929 in the second reverse chamber 928, and the carry-out robot 924 is moved from the carry-out chamber 926 to the substrate 600 and the static chuck 800. After the electric chuck 800 is taken out, the substrate 600 is separated from the electrostatic chuck 800 and loaded on the second rack 922. The electrostatic chuck 800 separated from the substrate 600 is sent to the loading unit 910 through the second circulation unit 820.

しかし、本発明は必ずしもこれに限定されるものではなく、基板600が静電チャック800に最初に固定される時から静電チャック800の下面に基板600を固定させて、そのまま蒸着部930に移送させてもよい。この場合、例えば、第1反転室918及び第1反転ロボット919と第2反転室928及び第2反転ロボット929は必要なくなる。 However, the present invention is not necessarily limited to this, and the substrate 600 is fixed to the lower surface of the electrostatic chuck 800 from the time when the substrate 600 is first fixed to the electrostatic chuck 800 and is transferred to the vapor deposition unit 930 as it is. You may let them. In this case, for example, the first inversion chamber 918, the first inversion robot 919, the second inversion chamber 928, and the second inversion robot 929 are not necessary.

蒸着部930は少なくとも一つの蒸着用チャンバを備える。図1による本発明の望ましい一実施形態によれば、前記蒸着部930は第1チャンバ931を備え、この第1チャンバ931内に複数の薄膜蒸着アセンブリー100、200、300、400が配される。図13に図示された本発明の望ましい一実施形態によれば、前記第1チャンバ931内に第1薄膜蒸着アセンブリー100、第2薄膜蒸着アセンブリー200、第3薄膜蒸着アセンブリー300及び第4薄膜蒸着アセンブリー400の4つの薄膜蒸着アセンブリーが設けられているが、その数は蒸着物質及び蒸着条件によって可変できる。前記第1チャンバ931は、蒸着が進む間は真空に維持される。 The deposition unit 930 includes at least one deposition chamber. 1, the deposition unit 930 includes a first chamber 931 in which a plurality of thin film deposition assemblies 100, 200, 300, and 400 are disposed. 13, a first thin film deposition assembly 100, a second thin film deposition assembly 200, a third thin film deposition assembly 300, and a fourth thin film deposition assembly in the first chamber 931. Referring to FIG. There are 400 four thin film deposition assemblies, the number of which can vary depending on the deposition material and deposition conditions. The first chamber 931 is maintained in a vacuum while vapor deposition proceeds.

また、図14による本発明の他の一実施形態によれば、前記蒸着部930は互いに連係した第1チャンバ931及び第2チャンバ932を備え、第1チャンバ931には第1、2薄膜蒸着アセンブリー100、200が、第2チャンバ932には第3、4薄膜蒸着アセンブリー300、400が配されうる。この時、チャンバの数が追加されうるということは言うまでもない。 In addition, according to another embodiment of the present invention according to FIG. 14, the deposition unit 930 includes a first chamber 931 and a second chamber 932 that are linked to each other, and the first chamber 931 includes first and second thin film deposition assemblies. The third and fourth thin film deposition assemblies 300 and 400 may be disposed in the second chamber 932. At this time, it goes without saying that the number of chambers can be added.

一方、図13による本発明の望ましい一実施形態によれば、前記基板600が固定された静電チャック800は、第1循環部810により少なくとも蒸着部930に、望ましくは、前記ローディング部910、蒸着部930及びアンローディング部920に順次移動し、前記アンローディング部920で基板600と分離された静電チャック800は、第2循環部820により前記ローディング部910に戻される。 Meanwhile, according to an exemplary embodiment of the present invention according to FIG. 13, the electrostatic chuck 800 to which the substrate 600 is fixed is at least the deposition unit 930 by the first circulation unit 810, preferably the loading unit 910 and the deposition unit. The electrostatic chuck 800 that sequentially moves to the unit 930 and the unloading unit 920 and is separated from the substrate 600 by the unloading unit 920 is returned to the loading unit 910 by the second circulation unit 820.

前記第1循環部810は、前記蒸着部930を通過する時に前記第1チャンバ931を貫通するように備えられ、前記第2循環部820は、静電チャックが移送されるように備えられる。 The first circulation unit 810 is provided to pass through the first chamber 931 when passing through the vapor deposition unit 930, and the second circulation unit 820 is provided to transfer an electrostatic chuck.

本発明は、図面に図示された実施形態を参考までに説明されたが、これは例示的なものに過ぎず、当業者ならばこれより多様な変形及び均等な他の実施形態が可能であるという点を理解できるであろう。したがって、本発明の真の技術的保護範囲は特許請求の範囲の技術的思想によって定められねばならない。   Although the present invention has been described with reference to the embodiments illustrated in the drawings, this is merely exemplary, and various modifications and equivalent other embodiments may be made by those skilled in the art. You will understand that. Therefore, the true technical protection scope of the present invention must be determined by the technical idea of the claims.

本発明は、有機発光ディスプレイ装置関連の技術分野に好適に用いられる。   The present invention is suitably used in a technical field related to an organic light emitting display device.

100 薄膜蒸着アセンブリー
110 蒸着源
120 蒸着源ノズル部
130 遮断板アセンブリー
150 パターニングスリットシート
DESCRIPTION OF SYMBOLS 100 Thin film vapor deposition assembly 110 Deposition source 120 Deposition source nozzle part 130 Blocking plate assembly 150 Patterning slit sheet

Claims (22)

基板上に薄膜を形成するための薄膜蒸着装置において、
前記薄膜蒸着装置は複数の薄膜蒸着アセンブリーを備え、
前記複数の薄膜蒸着アセンブリーのそれぞれは、
蒸着物質を放射する蒸着源と、
前記蒸着源の一側に配され、第1方向に沿って複数の蒸着源ノズルが形成される蒸着源ノズル部と、
前記蒸着源ノズル部と対向して配され、前記第1方向に対して垂直な第2方向に沿って複数のパターニングスリットが形成されるパターニングスリットシートと、を備え、
前記基板が、前記薄膜蒸着装置に対して前記第1方向に沿って移動しつつ蒸着が行われ、
前記蒸着源、前記蒸着源ノズル部及び前記パターニングスリットシートは一体に形成され、
前記複数の薄膜蒸着アセンブリーの各蒸着源には、少なくとも赤色発光層材料、緑色発光層材料、青色発光層材料又は補助層材料が備えられ、
前記複数の薄膜蒸着アセンブリーの各蒸着源のうち、赤色発光層材料、緑色発光層材料、青色発光層材料のうちいずれか一つが備えられた二つの蒸着源の間に、補助層材料が備えられた少なくとも一つの蒸着源が配されることを特徴とする薄膜蒸着装置。
In a thin film deposition apparatus for forming a thin film on a substrate,
The thin film deposition apparatus includes a plurality of thin film deposition assemblies,
Each of the plurality of thin film deposition assemblies includes:
A deposition source that radiates the deposition material;
A vapor deposition source nozzle part disposed on one side of the vapor deposition source, wherein a plurality of vapor deposition source nozzles are formed along a first direction;
A patterning slit sheet that is arranged opposite to the vapor deposition source nozzle part and has a plurality of patterning slits formed along a second direction perpendicular to the first direction,
The substrate is deposited while moving along the first direction with respect to the thin film deposition apparatus,
The deposition source, the deposition source nozzle part and the patterning slit sheet are integrally formed,
Each deposition source of the plurality of thin film deposition assemblies includes at least a red light emitting layer material, a green light emitting layer material, a blue light emitting layer material, or an auxiliary layer material,
An auxiliary layer material is provided between two deposition sources each including one of a red light emitting layer material, a green light emitting layer material, and a blue light emitting layer material among the plurality of thin film deposition assemblies. A thin film deposition apparatus, wherein at least one deposition source is disposed.
前記薄膜蒸着アセンブリーは少なくとも5つ備えられ、前記少なくとも5つの薄膜蒸着アセンブリーの各蒸着源にはそれぞれ、青色発光層材料、補助層材料、緑色発光層材料、補助層材料及び赤色発光層材料が順に備えられることを特徴とする請求項1に記載の薄膜蒸着装置。   At least five thin film deposition assemblies are provided, and each of the deposition sources of the at least five thin film deposition assemblies includes a blue light emitting layer material, an auxiliary layer material, a green light emitting layer material, an auxiliary layer material, and a red light emitting layer material in order. The thin film deposition apparatus according to claim 1, wherein the thin film deposition apparatus is provided. 前記薄膜蒸着アセンブリーは少なくとも5つ備えられ、前記少なくとも5つの薄膜蒸着アセンブリーの各蒸着源にはそれぞれ、青色発光層材料、補助層材料、赤色発光層材料、補助層材料及び緑色発光層材料が順に備えられることを特徴とする請求項1に記載の薄膜蒸着装置。   At least five thin film deposition assemblies are provided, and each of the deposition sources of the at least five thin film deposition assemblies includes a blue light emitting layer material, an auxiliary layer material, a red light emitting layer material, an auxiliary layer material, and a green light emitting layer material in order. The thin film deposition apparatus according to claim 1, wherein the thin film deposition apparatus is provided. 前記複数の薄膜蒸着アセンブリーの各蒸着源に備えられた各蒸着物質が順に前記基板上に蒸着されることを特徴とする請求項1に記載の薄膜蒸着装置。   The thin film deposition apparatus according to claim 1, wherein each deposition material provided in each deposition source of the plurality of thin film deposition assemblies is sequentially deposited on the substrate. 前記基板上に蒸着された蒸着物質は、少なくとも二つの発光層材料の間に一つの補助層材料が蒸着されることを特徴とする請求項4に記載の薄膜蒸着装置。   The thin film deposition apparatus of claim 4, wherein one auxiliary layer material is deposited between at least two light emitting layer materials as the deposition material deposited on the substrate. 前記薄膜蒸着装置と前記基板とは、前記基板で前記蒸着物質が蒸着される面と平行な面に沿って、いずれか一方が他方に対して相対的に移動することを特徴とする請求項1に記載の薄膜蒸着装置。   2. The thin film deposition apparatus and the substrate are configured such that one of the thin film deposition apparatus and the substrate moves relative to the other along a plane parallel to a plane on which the deposition material is deposited on the substrate. The thin film vapor deposition apparatus described in 1. 前記各薄膜蒸着アセンブリーの前記パターニングスリットシートは、前記基板より小さく形成されることを特徴とする請求項1に記載の薄膜蒸着装置。   The thin film deposition apparatus of claim 1, wherein the patterning slit sheet of each thin film deposition assembly is formed smaller than the substrate. 前記複数の薄膜蒸着アセンブリーの各蒸着源は、各蒸着源毎に蒸着温度が制御可能に備えられることを特徴とする請求項1に記載の薄膜蒸着装置。   The thin film deposition apparatus according to claim 1, wherein each deposition source of the plurality of thin film deposition assemblies is provided such that a deposition temperature can be controlled for each deposition source. 前記蒸着源及び前記蒸着源ノズル部と前記パターニングスリットシートとは、連結部材により結合されて一体に形成されることを特徴とする請求項1に記載の薄膜蒸着装置。   The thin film deposition apparatus according to claim 1, wherein the deposition source, the deposition source nozzle portion, and the patterning slit sheet are integrally formed by being coupled by a connecting member. 前記連結部材は、前記蒸着物質の移動経路をガイドすることを特徴とする請求項9に記載の薄膜蒸着装置。   The thin film deposition apparatus of claim 9, wherein the connecting member guides a moving path of the deposition material. 前記連結部材は、前記蒸着源及び前記蒸着源ノズル部と前記パターニングスリットシートとの間の空間を外部から密閉するように形成されることを特徴とする請求項9に記載の薄膜蒸着装置。   The thin film deposition apparatus according to claim 9, wherein the connecting member is formed so as to seal a space between the deposition source and the deposition source nozzle part and the patterning slit sheet from the outside. 前記薄膜蒸着装置は、前記基板と所定距離で離隔して形成されることを特徴とする請求項1に記載の薄膜蒸着装置。   The thin film deposition apparatus according to claim 1, wherein the thin film deposition apparatus is formed at a predetermined distance from the substrate. 前記基板が前記薄膜蒸着装置に対して前記第1方向に沿って移動しつつ、前記基板上に前記蒸着物質が連続的に蒸着されることを特徴とする請求項1に記載の薄膜蒸着装置。   The thin film deposition apparatus according to claim 1, wherein the deposition material is continuously deposited on the substrate while the substrate moves along the first direction with respect to the thin film deposition apparatus. 前記複数の蒸着源ノズルは、所定角度チルトされるように形成されることを特徴とする請求項1に記載の薄膜蒸着装置。   The thin film deposition apparatus according to claim 1, wherein the plurality of deposition source nozzles are formed to be tilted at a predetermined angle. 前記複数の蒸着源ノズルは、前記第1方向に沿って形成された2列の蒸着源ノズルを備え、前記2列の蒸着源ノズルは互いに対向する方向にチルトされていることを特徴とする請求項14に記載の薄膜蒸着装置。   The plurality of vapor deposition source nozzles includes two rows of vapor deposition source nozzles formed along the first direction, and the two rows of vapor deposition source nozzles are tilted in directions facing each other. Item 15. The thin film deposition apparatus according to Item 14. 前記複数の蒸着源ノズルは、前記第1方向に沿って形成された2列の蒸着源ノズルを備え、
前記2列の蒸着源ノズルのうち第1側に配された蒸着源ノズルは、パターニングスリットシートの第2側端部に向かうように配され、
前記2列の蒸着源ノズルのうち第2側に配された蒸着源ノズルは、パターニングスリットシートの第1側端部に向かうように配されることを特徴とする請求項14に記載の薄膜蒸着装置。
The plurality of vapor deposition source nozzles includes two rows of vapor deposition source nozzles formed along the first direction,
Of the two rows of vapor deposition source nozzles, the vapor deposition source nozzle disposed on the first side is disposed to face the second side end of the patterning slit sheet,
The thin film deposition according to claim 14, wherein the deposition source nozzle disposed on the second side of the two rows of deposition source nozzles is disposed toward the first side end of the patterning slit sheet. apparatus.
基板上に薄膜を形成する薄膜蒸着装置を利用した有機発光ディスプレイ装置の製造方法において、
前記基板を前記薄膜蒸着装置に対して所定距離で離隔して配する段階と、
前記薄膜蒸着装置と前記基板のうちいずれか一方を他方に対して相対的に移動させつつ、前記薄膜蒸着装置から放射される蒸着物質を前記基板上に蒸着する段階と、を含み、
前記薄膜蒸着装置は、
蒸着物質を放射する蒸着源と、
前記蒸着源の一側に配され、第1方向に沿って複数の蒸着源ノズルが形成される蒸着源ノズル部と、
前記蒸着源ノズル部と対向して配され、前記第1方向に対して垂直な第2方向に沿って複数のパターニングスリットが形成されるパターニングスリットシートと、を備える薄膜蒸着アセンブリーを複数備え、
前記複数の薄膜蒸着アセンブリーの各蒸着源には、少なくとも赤色発光層材料、緑色発光層材料、青色発光層材料又は補助層材料が備えられ、
前記複数の薄膜蒸着アセンブリーの各蒸着源のうち、赤色発光層材料、緑色発光層材料、青色発光層材料のうちいずれか一つが備えられた二つの蒸着源の間に、補助層材料が備えられた少なくとも一つの蒸着源が配されることを特徴とする有機発光ディスプレイ装置の製造方法。
In a method for manufacturing an organic light emitting display device using a thin film deposition apparatus for forming a thin film on a substrate,
Disposing the substrate at a predetermined distance from the thin film deposition apparatus;
Depositing a deposition material emitted from the thin film deposition apparatus on the substrate while moving either one of the thin film deposition apparatus and the substrate relative to the other, and
The thin film deposition apparatus comprises:
A deposition source that radiates the deposition material;
A vapor deposition source nozzle part disposed on one side of the vapor deposition source, wherein a plurality of vapor deposition source nozzles are formed along a first direction;
A plurality of thin film deposition assemblies comprising: a patterning slit sheet that is arranged opposite to the deposition source nozzle part and in which a plurality of patterning slits are formed along a second direction perpendicular to the first direction;
Each deposition source of the plurality of thin film deposition assemblies includes at least a red light emitting layer material, a green light emitting layer material, a blue light emitting layer material, or an auxiliary layer material,
An auxiliary layer material is provided between two deposition sources each including one of a red light emitting layer material, a green light emitting layer material, and a blue light emitting layer material among the plurality of thin film deposition assemblies. A method of manufacturing an organic light emitting display device, wherein at least one vapor deposition source is disposed.
前記蒸着物質を前記基板上に蒸着する段階は、
前記複数の薄膜蒸着アセンブリーに備えられた青色発光層材料、補助層材料、緑色発光層材料、補助層材料及び赤色発光層材料を順に前記基板上に蒸着する段階を含む請求項17に記載の有機発光ディスプレイ装置の製造方法。
Depositing the deposition material on the substrate comprises:
The organic light emitting diode according to claim 17, comprising: sequentially depositing a blue light emitting layer material, an auxiliary layer material, a green light emitting layer material, an auxiliary layer material, and a red light emitting layer material provided on the plurality of thin film deposition assemblies on the substrate. Manufacturing method of light emitting display device.
前記蒸着物質を前記基板上に蒸着する段階は、
前記複数の薄膜蒸着アセンブリーに備えられた青色発光層材料、補助層材料、赤色発光層材料、補助層材料及び緑色発光層材料を順に前記基板上に蒸着する段階を含む請求項17に記載の有機発光ディスプレイ装置の製造方法。
Depositing the deposition material on the substrate comprises:
The organic light emitting device of claim 17, further comprising: sequentially depositing a blue light emitting layer material, an auxiliary layer material, a red light emitting layer material, an auxiliary layer material, and a green light emitting layer material provided on the plurality of thin film deposition assemblies on the substrate. Manufacturing method of light emitting display device.
前記複数の薄膜蒸着アセンブリーの各蒸着源に備えられた各蒸着物質を順に前記基板上に蒸着することを特徴とする請求項17に記載の有機発光ディスプレイ装置の製造方法。   The method of claim 17, wherein the deposition materials provided in the deposition sources of the plurality of thin film deposition assemblies are sequentially deposited on the substrate. 前記蒸着物質を前記基板上に蒸着する段階は、
前記複数の薄膜蒸着アセンブリー毎に蒸着温度を制御する段階をさらに含む請求項17に記載の有機発光ディスプレイ装置の製造方法。
Depositing the deposition material on the substrate comprises:
The method of claim 17, further comprising controlling a deposition temperature for each of the plurality of thin film deposition assemblies.
請求項17に記載の方法によって製造された有機発光ディスプレイ装置。   An organic light emitting display device manufactured by the method according to claim 17.
JP2015018336A 2010-04-28 2015-02-02 Thin film deposition apparatus and organic light emitting display device manufacturing method Active JP6049774B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0039496 2010-04-28
KR20100039496 2010-04-28
KR1020110031288A KR101801351B1 (en) 2010-04-28 2011-04-05 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same and organic light emitting display apparatus using the same
KR10-2011-0031288 2011-04-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011097909A Division JP5985796B2 (en) 2010-04-28 2011-04-26 Thin film deposition apparatus and organic light emitting display device manufacturing method

Publications (2)

Publication Number Publication Date
JP2015120982A true JP2015120982A (en) 2015-07-02
JP6049774B2 JP6049774B2 (en) 2016-12-21

Family

ID=45391457

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013128405A Active JP5628972B2 (en) 2010-04-28 2013-06-19 Thin film deposition apparatus, organic light emitting display device manufacturing method using the same, and organic light emitting display device manufactured using the same
JP2015018336A Active JP6049774B2 (en) 2010-04-28 2015-02-02 Thin film deposition apparatus and organic light emitting display device manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013128405A Active JP5628972B2 (en) 2010-04-28 2013-06-19 Thin film deposition apparatus, organic light emitting display device manufacturing method using the same, and organic light emitting display device manufactured using the same

Country Status (5)

Country Link
JP (2) JP5628972B2 (en)
KR (1) KR101801351B1 (en)
CN (1) CN103474447B (en)
DE (1) DE102011017648B4 (en)
TW (2) TWI540777B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127662A (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Vapor deposition device and vapor deposition source
WO2019064452A1 (en) * 2017-09-28 2019-04-04 シャープ株式会社 Vapor deposition particle emitting device, vapor deposition apparatus, vapor deposition film production method

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328726B2 (en) 2009-08-25 2013-10-30 三星ディスプレイ株式會社 Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5677785B2 (en) 2009-08-27 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101084184B1 (en) 2010-01-11 2011-11-17 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101174875B1 (en) 2010-01-14 2012-08-17 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101193186B1 (en) 2010-02-01 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101156441B1 (en) 2010-03-11 2012-06-18 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101202348B1 (en) 2010-04-06 2012-11-16 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
KR101223723B1 (en) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101723506B1 (en) 2010-10-22 2017-04-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101738531B1 (en) 2010-10-22 2017-05-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus, and organic light emitting display apparatus manufactured by the method
KR20120045865A (en) 2010-11-01 2012-05-09 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR20120065789A (en) 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR101760897B1 (en) 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
KR101852517B1 (en) 2011-05-25 2018-04-27 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101840654B1 (en) 2011-05-25 2018-03-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101857249B1 (en) 2011-05-27 2018-05-14 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR101826068B1 (en) 2011-07-04 2018-02-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition
KR101919021B1 (en) * 2011-12-15 2019-02-11 엘지디스플레이 주식회사 Deposition apparatus for fabricating emitting diode
US9461277B2 (en) 2012-07-10 2016-10-04 Samsung Display Co., Ltd. Organic light emitting display apparatus
KR101996435B1 (en) * 2012-07-10 2019-07-05 삼성디스플레이 주식회사 Organic light emitting display apparatus and method for manufacturing of the same
KR102013315B1 (en) 2012-07-10 2019-08-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus and organic light emitting display apparatus manufactured by the method
KR101632298B1 (en) 2012-07-16 2016-06-22 삼성디스플레이 주식회사 Flat panel display device and manufacturing method thereof
KR102363252B1 (en) 2014-11-12 2022-02-16 삼성디스플레이 주식회사 Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the same and organic light-emitting display device
CN104775091A (en) * 2015-04-10 2015-07-15 安徽铜峰电子股份有限公司 Spraying device baffle plate for forming metalized film screen zone
KR101803511B1 (en) * 2016-02-18 2017-11-30 주식회사 아마다스 Interface module device of digital door lock
CN109957755A (en) * 2017-12-14 2019-07-02 湘潭宏大真空技术股份有限公司 Optics evaporation in vacuo coating machine
CN109957760A (en) * 2017-12-14 2019-07-02 湘潭宏大真空技术股份有限公司 Linear vacuum plated film monomer evaporator
CN109957761A (en) * 2017-12-14 2019-07-02 湘潭宏大真空技术股份有限公司 Based on linear evaporator vacuum coating uniset
KR102604312B1 (en) * 2018-09-11 2023-11-20 엘지디스플레이 주식회사 Organic Light Emitting Display Device
CN112575308B (en) * 2019-09-29 2023-03-24 宝山钢铁股份有限公司 Vacuum coating device capable of efficiently coating strip steel under vacuum
CN111128809A (en) * 2019-12-31 2020-05-08 沈阳拓荆科技有限公司 Deposition device and method for multilayer stack film
CN113193022B (en) * 2021-04-26 2022-09-09 睿馨(珠海)投资发展有限公司 High-resolution AMOLED display device and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2003077662A (en) * 2001-06-22 2003-03-14 Junji Kido Method and device for manufacturing organic electroluminescent element
JP2003257644A (en) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd Method of manufacturing organic electroluminescence display device
JP2004238688A (en) * 2003-02-06 2004-08-26 Sony Corp Apparatus for manufacturing organic light emitting device and system for manufacturing display device
JP2004349101A (en) * 2003-05-22 2004-12-09 Seiko Epson Corp Film forming method, film forming device, manufacturing method of organic electroluminescent device, and organic electroluminescent device
JP2004355975A (en) * 2003-05-29 2004-12-16 Sony Corp Manufacturing method of display device
WO2005094130A1 (en) * 2004-03-26 2005-10-06 Matsushita Electric Works, Ltd. Organic light emitting element
JP2007146219A (en) * 2005-11-28 2007-06-14 Hitachi Zosen Corp Vacuum vapor deposition apparatus
JP2009181755A (en) * 2008-01-29 2009-08-13 Seiko Epson Corp Light-emitting element, display apparatus, and electronic apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2425263Y (en) * 2000-05-29 2001-03-28 葛世潮 Organic light-emitting diode illuminator
US6815723B2 (en) * 2001-12-28 2004-11-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
WO2004028214A1 (en) * 2002-09-20 2004-04-01 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and manufacturing method of light emitting device
US7339139B2 (en) * 2003-10-03 2008-03-04 Darly Custom Technology, Inc. Multi-layered radiant thermal evaporator and method of use
US7273663B2 (en) * 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
EP1717339A2 (en) * 2005-04-20 2006-11-02 Applied Films GmbH & Co. KG Continuous coating apparatus
JP2006324649A (en) * 2005-04-22 2006-11-30 Semiconductor Energy Lab Co Ltd Manufacturing method of organic semiconductor device
KR100729089B1 (en) * 2005-08-26 2007-06-14 삼성에스디아이 주식회사 Organic light emitting display and method for fabricating the same
KR100829761B1 (en) * 2007-05-16 2008-05-15 삼성에스디아이 주식회사 An organic light emitting device
JP2009049223A (en) * 2007-08-21 2009-03-05 Seiko Epson Corp Light emitting device
JP2009170200A (en) * 2008-01-15 2009-07-30 Sony Corp Method of manufacturing display device
KR20100039496A (en) 2008-10-08 2010-04-16 엘지전자 주식회사 Iptv receiver and method for changing channel of iptv receiver

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2003077662A (en) * 2001-06-22 2003-03-14 Junji Kido Method and device for manufacturing organic electroluminescent element
JP2003257644A (en) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd Method of manufacturing organic electroluminescence display device
JP2004238688A (en) * 2003-02-06 2004-08-26 Sony Corp Apparatus for manufacturing organic light emitting device and system for manufacturing display device
JP2004349101A (en) * 2003-05-22 2004-12-09 Seiko Epson Corp Film forming method, film forming device, manufacturing method of organic electroluminescent device, and organic electroluminescent device
JP2004355975A (en) * 2003-05-29 2004-12-16 Sony Corp Manufacturing method of display device
WO2005094130A1 (en) * 2004-03-26 2005-10-06 Matsushita Electric Works, Ltd. Organic light emitting element
JP2007146219A (en) * 2005-11-28 2007-06-14 Hitachi Zosen Corp Vacuum vapor deposition apparatus
JP2009181755A (en) * 2008-01-29 2009-08-13 Seiko Epson Corp Light-emitting element, display apparatus, and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127662A (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Vapor deposition device and vapor deposition source
WO2019064452A1 (en) * 2017-09-28 2019-04-04 シャープ株式会社 Vapor deposition particle emitting device, vapor deposition apparatus, vapor deposition film production method
JPWO2019064452A1 (en) * 2017-09-28 2020-10-08 シャープ株式会社 Thin-film particle injection device, thin-film deposition device, and thin-film film manufacturing method

Also Published As

Publication number Publication date
TW201442318A (en) 2014-11-01
JP2013214524A (en) 2013-10-17
TWI527285B (en) 2016-03-21
KR101801351B1 (en) 2017-11-27
CN103474447A (en) 2013-12-25
KR20110120213A (en) 2011-11-03
DE102011017648A1 (en) 2012-03-01
TWI540777B (en) 2016-07-01
TW201214826A (en) 2012-04-01
CN103474447B (en) 2016-09-21
DE102011017648B4 (en) 2017-05-04
JP6049774B2 (en) 2016-12-21
JP5628972B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP6049774B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method
JP5985796B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method
KR101174875B1 (en) Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101193186B1 (en) Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101097311B1 (en) Organic light emitting display apparatus and apparatus for thin layer deposition for manufacturing the same
JP5847437B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
KR101760897B1 (en) Deposition source and apparatus for organic layer deposition having the same
JP5364731B2 (en) Thin film deposition equipment
JP5328726B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5611718B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
KR101840654B1 (en) Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101146996B1 (en) Method for manufacturing of organic light emitting display apparatus
JP5328727B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5211114B2 (en) Thin film deposition equipment
KR20120029895A (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR20120012300A (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR20120057290A (en) Apparatus for thin layer deposition
KR101097334B1 (en) Apparatus for thin layer deposition
KR101234231B1 (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101193189B1 (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161122

R150 Certificate of patent or registration of utility model

Ref document number: 6049774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250