JP2015115382A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2015115382A
JP2015115382A JP2013254682A JP2013254682A JP2015115382A JP 2015115382 A JP2015115382 A JP 2015115382A JP 2013254682 A JP2013254682 A JP 2013254682A JP 2013254682 A JP2013254682 A JP 2013254682A JP 2015115382 A JP2015115382 A JP 2015115382A
Authority
JP
Japan
Prior art keywords
semiconductor element
semiconductor device
covering
semiconductor
sealing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013254682A
Other languages
Japanese (ja)
Other versions
JP6041795B2 (en
Inventor
穂隆 六分一
Hotaka Rokubuichi
穂隆 六分一
山本 圭
Kei Yamamoto
圭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013254682A priority Critical patent/JP6041795B2/en
Publication of JP2015115382A publication Critical patent/JP2015115382A/en
Application granted granted Critical
Publication of JP6041795B2 publication Critical patent/JP6041795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molded semiconductor device which corresponds to a high temperature and has high reliability.SOLUTION: A semiconductor device comprises: a semiconductor element 5 which has an electrode formed on a principal surface 5a and a rear face bonded to a circuit surface 6f of a heat spreader 6; a lead frame 3 bonded to the electrode; a coating body 2 which covers the circuit surface 6f so as to surround the semiconductor element 5; and an encapsulation body 1 for encapsulating and wrapping a part of the lead frame, which is bonded to the electrode on the principal surface 5a and the semiconductor element 5 and the coating body 2. The coating body 2 is formed by a material having an elastic modulus lower than that of the encapsulation body 1 and formed at a distance from the semiconductor element 5 in an extension direction of the circuit surface 6f and formed to have a height equal to or higher than a height of the principal surface 5a of the semiconductor element in a height direction from the circuit surface 6f so as not to reach a surface 1f of the encapsulation body 1.

Description

本発明は、電力用半導体素子を含む回路部材を樹脂で封止した半導体装置に関するものである。   The present invention relates to a semiconductor device in which a circuit member including a power semiconductor element is sealed with a resin.

電力用半導体素子を用いた半導体装置は、半導体素子をエポキシ樹脂などの熱硬化性樹脂で封止したモールド型と、ゲル状樹脂で封止したゲル封止型が使用されている。特にモールド型の半導体装置は小型で信頼性に優れており、取り扱いが容易であることから、空調機器の制御などに広く用いられている。また、近年は、モーター制御を行う自動車の動力制御などにも使用されている。   2. Description of the Related Art A semiconductor device using a power semiconductor element uses a mold type in which a semiconductor element is sealed with a thermosetting resin such as an epoxy resin, and a gel sealing type in which a semiconductor element is sealed with a gel-like resin. In particular, mold-type semiconductor devices are small and excellent in reliability, and are easy to handle, and thus are widely used for control of air-conditioning equipment. In recent years, it is also used for power control of automobiles that perform motor control.

一方、半導体装置では、小型化・大容量化を目的として放熱性を向上させるために熱伝導性に優れた金属やセラミックスを基板として用い、半導体素子で発熱した熱を拡散する手法を取り入れている。例えば、高熱伝導なセラミックスの絶縁基板をはんだで接合した構造や(例えば、特許文献1参照。)、銅製のヒートスプレッダ上に半導体素子がはんだ等により接合されているモールド型半導体装置がある(例えば、特許文献2参照。)。   On the other hand, semiconductor devices use metal or ceramics with excellent thermal conductivity as a substrate to improve heat dissipation for the purpose of miniaturization and large capacity, and adopt a method of diffusing heat generated by semiconductor elements. . For example, there is a structure in which an insulating substrate made of high thermal conductivity ceramic is joined by solder (for example, see Patent Document 1), or a mold type semiconductor device in which a semiconductor element is joined by solder or the like on a copper heat spreader (for example, (See Patent Document 2).

特開2007−184315号公報(段落0014〜0018、図1)JP 2007-184315 A (paragraphs 0014 to 0018, FIG. 1) 特開平1−280336号公報(第4頁左下欄〜第5頁左上欄、第1図)JP-A-1-280336 (page 4, lower left column to page 5, upper left column, FIG. 1)

しかしながら、このような半導体装置あっては、放熱性を向上させるために、より大きく厚い基板を用いる必要がある。基板の面積が大きくなるほど、封止樹脂と基板の線膨張係数の差によって発生する熱応力の影響が大きくなる。   However, in such a semiconductor device, it is necessary to use a larger and thicker substrate in order to improve heat dissipation. As the area of the substrate increases, the influence of thermal stress generated by the difference in the linear expansion coefficient between the sealing resin and the substrate increases.

一方、従来のシリコン(Si)製半導体素子に比べて、低損失、高耐圧、高温動作が可能な化合物半導体素子として、例えば炭化ケイ素(SiC)製半導体素子の半導体装置への適用が進められている。SiC製半導体素子は、Si製半導体素子と比較して弾性率が高いことや、これまで以上のより厳しい温度環境下で動作することが想定されており、半導体素子にかかる応力が増大する傾向にある。モールド型の半導体装置においては、半導体素子と封止体との界面にかかる応力はこれまで以上に高くなり、その結果、半導体素子と封止体との界面で剥離が生じたり、半導体素子端部付近の封止体にクラックが生じたりすることがあり、半導体装置の絶縁信頼性低下を招くことがあった。   On the other hand, as a compound semiconductor element capable of operating at a low loss, high withstand voltage, and high temperature as compared with a conventional silicon (Si) semiconductor element, application of, for example, a silicon carbide (SiC) semiconductor element to a semiconductor device has been promoted. Yes. SiC semiconductor elements are expected to have higher elastic modulus than Si semiconductor elements and operate under more severe temperature environments than ever, and the stress on the semiconductor elements tends to increase. is there. In a mold type semiconductor device, the stress applied to the interface between the semiconductor element and the sealing body is higher than ever, and as a result, peeling occurs at the interface between the semiconductor element and the sealing body, In some cases, cracks may occur in the nearby sealing body, leading to a decrease in insulation reliability of the semiconductor device.

この発明は、上記のような問題点を解決するためになされたものであり、高温に対応する信頼性の高い半導体装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a highly reliable semiconductor device corresponding to a high temperature.

本発明にかかる半導体装置は、回路基板と、主面に電極が形成され、前記回路基板の回路面に裏面が接合された半導体素子と、前記電極に接合された配線部材と、前記半導体素子を取り囲むように、前記回路面を覆う被覆体と、前記配線部材の前記電極に接合された部分と前記半導体素子および前記被覆体を包むように封止する封止体と、を備え、前記被覆体は、前記封止体よりも弾性率が低い材料で形成され、かつ、前記回路面の延在方向において、前記半導体素子から間隔をあけるとともに、前記回路面からの高さ方向において、前記半導体素子の主面の高さ以上で、前記封止体の表面に達しない高さになるように形成されていることを特徴とする。   A semiconductor device according to the present invention includes a circuit board, a semiconductor element having an electrode formed on a main surface, and a back surface bonded to the circuit surface of the circuit board, a wiring member bonded to the electrode, and the semiconductor element. A covering that covers the circuit surface, a portion that is joined to the electrode of the wiring member, and a sealing body that seals the semiconductor element and the covering so as to surround the covering, And formed of a material having a lower elastic modulus than the sealing body, and spaced from the semiconductor element in the extending direction of the circuit surface, and in the height direction from the circuit surface, It is characterized by being formed so as to have a height not less than the height of the main surface and not reaching the surface of the sealing body.

この発明によれば、半導体素子を取り囲むように回路面に配置した被覆体によって、半導体素子と封止体との界面に発生する熱応力が低減され、半導体素子端部付近で発生する剥離やクラックが防止でき、絶縁信頼性の高い半導体装置を得ることができる。   According to the present invention, the covering disposed on the circuit surface so as to surround the semiconductor element reduces the thermal stress generated at the interface between the semiconductor element and the sealing body, and causes peeling or cracking that occurs near the edge of the semiconductor element. Thus, a semiconductor device with high insulation reliability can be obtained.

本発明の実施の形態1にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体装置の半導体素子周辺部分の構成を説明するための、封止体を除いた状態での部分平面図と部分断面図である。2A and 2B are a partial plan view and a partial cross-sectional view, excluding a sealing body, for explaining a configuration of a semiconductor element peripheral portion of the semiconductor device according to the first exemplary embodiment of the present invention; 本発明の実施の形態1にかかる半導体装置を構成する被覆体の配置を説明するための部分断面図である。It is a fragmentary sectional view for demonstrating arrangement | positioning of the covering which comprises the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体装置を構成する被覆体の配置を説明するための平面模式図である。It is a plane schematic diagram for demonstrating arrangement | positioning of the covering which comprises the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1の変形例にかかる半導体装置の構成を説明するための部分平面図である。It is a fragmentary top view for demonstrating the structure of the semiconductor device concerning the modification of Embodiment 1 of this invention. 本発明の実施の形態2にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning Embodiment 3 of this invention.

実施の形態1.
図1〜図4は、本発明の実施の形態1にかかる半導体装置について説明するためのもので、図1は半導体装置の断面模式図である。図2は半導体装置から封止体や配線部材を除いた状態での半導体素子周辺部分の構成を説明するための図で、上段が部分平面図、下段が部分断面図である。図3は半導体装置を構成する被覆体の配置を説明するための部分断面図、図4は被覆体の配置を説明するための平面模式図である。また、図5(a)と(b)は、本発明の実施の形態1の変形例として、それぞれ複数の半導体素子が隣接して配置されたときの被覆体の配置を説明するための部分平面図である。なお、図2の上段と図5は断面図ではないが、便宜上、被覆体の設置領域をハッチングで示している。以下、詳細に説明する。
Embodiment 1 FIG.
1 to 4 are diagrams for explaining a semiconductor device according to a first embodiment of the present invention, and FIG. 1 is a schematic cross-sectional view of the semiconductor device. FIG. 2 is a view for explaining the configuration of the peripheral portion of the semiconductor element in a state in which the sealing body and the wiring member are removed from the semiconductor device. FIG. 3 is a partial cross-sectional view for explaining the arrangement of the covering constituting the semiconductor device, and FIG. 4 is a schematic plan view for explaining the arrangement of the covering. FIGS. 5A and 5B are partial planes for explaining the arrangement of the cover when a plurality of semiconductor elements are arranged adjacent to each other as a modification of the first embodiment of the present invention. FIG. 2 and FIG. 5 are not cross-sectional views, but for convenience, the installation area of the covering is indicated by hatching. Details will be described below.

本発明の実施の形態1にかかる半導体装置100は、図1に示すように、熱伝導性に優れ、発熱を拡散することを目的とした金属製の伝熱板(ヒートスプレッダ6)の一方の面(回路面6f)に、電力を制御するための半導体素子5が、はんだや銀接合材のような接合材4等によって搭載(接合)されている。そして、半導体素子5の主面5aに形成された電極には、ダイレクトリード接合によってリードフレーム3が接合され、配線されている。また、半導体素子5の裏面電極と接合されたヒートスプレッダ6の回路面6fにもリードフレーム3が接合され、半導体素子5の主電力用の両極が外部に対して接続可能な状態になっている。なお、ヒートスプレッダ6は、半導体素子5の発熱に対して熱抵抗を低減することを目的としており、ヒートスプレッダ6を備える必要がない場合は、リードフレーム3のパターン上に半導体素子5が直接搭載されていてもよい。また、配線部材としては、上述したリードフレーム3に限ることなく、図示しないボンディングワイヤ等を用いてもよい。   As shown in FIG. 1, the semiconductor device 100 according to the first embodiment of the present invention has one surface of a metal heat transfer plate (heat spreader 6) that has excellent thermal conductivity and aims to diffuse heat generation. A semiconductor element 5 for controlling electric power is mounted (bonded) on the (circuit surface 6f) by a bonding material 4 such as solder or a silver bonding material. The lead frame 3 is joined and wired to the electrode formed on the main surface 5a of the semiconductor element 5 by direct lead joining. Further, the lead frame 3 is also joined to the circuit surface 6f of the heat spreader 6 joined to the back electrode of the semiconductor element 5, so that both main power poles of the semiconductor element 5 can be connected to the outside. The heat spreader 6 is intended to reduce the thermal resistance against the heat generated by the semiconductor element 5. When the heat spreader 6 is not required, the semiconductor element 5 is directly mounted on the pattern of the lead frame 3. May be. Further, the wiring member is not limited to the lead frame 3 described above, and a bonding wire or the like (not shown) may be used.

半導体素子5は、電力(パワー)を制御するための素子であり、パワー半導体素子あるいは電力用半導体素子とも称される。具体的には、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子、あるいは還流ダイオードのような整流素子が用いられる。半導体素子5には、本実施の形態1および以降の実施の形態においては、炭化珪素(SiC)などのワイドバンドギャップ半導体を用いている。ワイドバンドギャップ半導体を構成する材料(半導体材料)としては、例えば、炭化珪素(SiC)、窒化ガリウム系材料またはダイヤモンドがある。ワイドバンドギャップ半導体を用いた場合、許容電流密度が高く、電力損失も低いため、半導体素子を用いた装置の小型化が可能となる。また、ワイドバンドギャップ半導体のみでなく、Si半導体が混載されていてもよい。   The semiconductor element 5 is an element for controlling electric power, and is also referred to as a power semiconductor element or a power semiconductor element. Specifically, for example, a switching element such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor) or a rectifying element such as a freewheeling diode is used. The semiconductor element 5 uses a wide band gap semiconductor such as silicon carbide (SiC) in the first embodiment and the following embodiments. Examples of a material (semiconductor material) constituting the wide band gap semiconductor include silicon carbide (SiC), a gallium nitride-based material, and diamond. When a wide bandgap semiconductor is used, the allowable current density is high and the power loss is low, so that a device using a semiconductor element can be downsized. Moreover, not only a wide band gap semiconductor but also a Si semiconductor may be mixed.

ヒートスプレッダ6のリードフレーム3や半導体素子5が搭載されている回路面6fの反対側の面には、絶縁層7と金属箔8が設けられている。絶縁層7には絶縁シートを用いることができる。絶縁シートは、エポキシ樹脂に熱伝導性に優れるシリカ、アルミナ、窒化ホウ素、窒化アルミニウム等の無機粉末が少なくとも1種以上充填されており、これらの無機粉末は単独でも複数の組合せでもよい。また金属箔8は後述する封止体1に封止されることなく、外部に露出しており、放熱性を確保するだけでなく、絶縁層7が外部からの接触により傷がつかないための保護層としての役目も果たしている。この目的を満たすものであれば、銅やアルミなどの金属箔でも、厚めの銅板でも構わない。   An insulating layer 7 and a metal foil 8 are provided on the surface of the heat spreader 6 opposite to the circuit surface 6f on which the lead frame 3 and the semiconductor element 5 are mounted. An insulating sheet can be used for the insulating layer 7. In the insulating sheet, an epoxy resin is filled with at least one inorganic powder such as silica, alumina, boron nitride, and aluminum nitride that has excellent thermal conductivity. These inorganic powders may be used alone or in combination. Further, the metal foil 8 is exposed to the outside without being sealed by the sealing body 1 to be described later, so that not only the heat dissipation is ensured but also the insulating layer 7 is not damaged by contact from the outside. It also serves as a protective layer. A metal foil such as copper or aluminum or a thick copper plate may be used as long as it satisfies this purpose.

そして、リードフレーム3の一部、および少なくとも半導体素子5の主面5aを含む回路面6f側の部材(回路部材)を包むように、金属箔8の側部から回路部材全体を封止するようにトランスファモールドにより封止体1が形成されている。これにより、一般的にモジュールと呼ばれる半導体装置が完成する。   Then, the entire circuit member is sealed from the side portion of the metal foil 8 so as to enclose a part of the lead frame 3 and a member (circuit member) on the circuit surface 6 f side including at least the main surface 5 a of the semiconductor element 5. The sealing body 1 is formed by transfer molding. Thereby, a semiconductor device generally called a module is completed.

封止体1は、エポキシ樹脂に熱膨張係数の小さい溶融シリカ等の無機粉末や熱伝導性が優れるアルミナなどが充填されている。エポキシ樹脂は、パワー半導体装置の放熱性や動作時の発熱量、動作温度にもよるが、一般的なオルトクレゾールノボラック型やジシクロペンタジエン型など特に限定されることはない。例えばSiCなどを用いた半導体素子5の動作温度の高温化により、ナフタレン型や多官能型を用いた、より耐熱性の高い樹脂を用いることもできる。   In the sealing body 1, an epoxy resin is filled with inorganic powder such as fused silica having a small thermal expansion coefficient, alumina having excellent thermal conductivity, or the like. The epoxy resin is not particularly limited, such as a general ortho-cresol novolac type or a dicyclopentadiene type, although it depends on the heat dissipation of the power semiconductor device, the amount of heat generated during operation, and the operating temperature. For example, by increasing the operating temperature of the semiconductor element 5 using SiC or the like, a resin having higher heat resistance such as naphthalene type or polyfunctional type can be used.

また、温度サイクルなどの信頼性試験で発生する熱応力を想定した場合、熱膨張係数の違いにより、温度差が生じた場合には接触面でのひずみの違いが生じ、応力が発生する。ワイドバンドギャップ半導体を用いた場合、Si半導体に比べて弾性率が高くなることや、より厳しい環境下での動作を想定するため、封止体1の熱膨張係数は、ワイドバンドギャップ半導体の線膨張係数になるべく近い方が望ましい。本実施の形態の場合、後述する被覆体2を設けることで、封止体1と半導体素子5との界面での熱応力が緩和されているため、従来よりも大きな線膨張係数の樹脂を適用することができる。そのため、封止体1はヒートスプレッダ6と半導体素子5の熱膨張係数の間の範囲の樹脂を適用することが望ましい。   In addition, assuming a thermal stress generated in a reliability test such as a temperature cycle, if a temperature difference occurs due to a difference in thermal expansion coefficient, a difference in strain occurs on the contact surface, and stress is generated. When a wide bandgap semiconductor is used, the thermal expansion coefficient of the encapsulant 1 is the line of the wide bandgap semiconductor in order to assume a higher elastic modulus than that of the Si semiconductor and to operate in a more severe environment. It is desirable that the coefficient of expansion is as close as possible. In the case of the present embodiment, since the thermal stress at the interface between the sealing body 1 and the semiconductor element 5 is relaxed by providing the covering 2 described later, a resin having a larger linear expansion coefficient than the conventional one is applied. can do. Therefore, it is desirable to apply a resin in a range between the heat spreader 6 and the thermal expansion coefficient of the semiconductor element 5 to the sealing body 1.

そして、本実施の形態1にかかる半導体装置100の特徴として、半導体素子5を取り囲むように、回路面6fを覆う被覆体2を配置している。被覆体2は、図2に示すように、半導体素子5、および半導体素子5をヒートスプレッダ6に接合するための接合材4に対して接しておらず、ヒートスプレッダ6の端部までを覆うように配置されている。なお、ヒートスプレッダ6上に電極またはワイヤがある場合、これらを避けて被覆体2を配置しても良い。   As a feature of the semiconductor device 100 according to the first embodiment, the covering 2 that covers the circuit surface 6f is disposed so as to surround the semiconductor element 5. As shown in FIG. 2, the covering 2 is disposed so as to cover the semiconductor element 5 and the bonding material 4 for bonding the semiconductor element 5 to the heat spreader 6 and cover the end of the heat spreader 6. Has been. In addition, when there exists an electrode or a wire on the heat spreader 6, you may arrange | position the covering body 2 avoiding these.

被覆体2に使用される材料は、封止体1を構成する材料よりも弾性率が低い材料であって、例えば、エポキシ樹脂、シリコーンゲル、シリコーンゴム、メラミン樹脂、フェノール樹脂、ポリアミド、ポリイミド、ポリブチレンテレフタレート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルホン、ポリフェニレンサルファイドが挙げられる。これらの材料の中にシリカ、アルミナ、窒化ホウ素、窒化アルミニウム等の無機粉末の充填材が含まれていても良い。   The material used for the covering 2 is a material having a lower elastic modulus than the material constituting the sealing body 1, for example, epoxy resin, silicone gel, silicone rubber, melamine resin, phenol resin, polyamide, polyimide, Examples include polybutylene terephthalate, polyether ether ketone, polyether imide, polyether sulfone, and polyphenylene sulfide. These materials may contain a filler of inorganic powder such as silica, alumina, boron nitride, aluminum nitride.

そして、図3および図4に示すように、半導体素子5と被覆体2とは、回路面6fに平行な方向において、半導体素子5の側面5sから一定範囲の間隔Dをあけるとともに、一定範囲の厚みt2を有するように設定している。間隔Dは、半導体素子5の側面5sと被覆体2の半導体素子5を囲む開口の内側面2sとの間隔であり、半導体素子5および接合材4に接することがないよう、0よりも大きく、かつ、半導体素子5の一辺の長さをLとした場合、0.2L以内に設定している。つまり、図4に示すように、内側面2sが側面5sおよび接合材4から離れる最低限の距離のラインPiから、側面5sから0.2L分離れたラインPxで囲まれる範囲に入るように設定している。一方、外側については、ヒートスプレッダ6の端部までを覆うように設定している。なお、間隔Dの範囲を式で表現すると、「0<D≦0.2L」となり、これは、封止体1のうち、半導体素子5の側面5sに接する部分の厚みが0よりも大きく、かつ、0.2L以下になることを示している。   As shown in FIGS. 3 and 4, the semiconductor element 5 and the covering 2 are spaced apart from the side surface 5s of the semiconductor element 5 by a certain range D in the direction parallel to the circuit surface 6f. It is set to have a thickness t2. The interval D is an interval between the side surface 5s of the semiconductor element 5 and the inner side surface 2s of the opening surrounding the semiconductor element 5 of the covering 2 and is larger than 0 so as not to contact the semiconductor element 5 and the bonding material 4. In addition, when the length of one side of the semiconductor element 5 is L, it is set within 0.2L. That is, as shown in FIG. 4, the inner side surface 2s is set so as to fall within a range surrounded by a line Px separated from the side surface 5s by 0.2L from the line Pi having a minimum distance away from the side surface 5s and the bonding material 4. doing. On the other hand, the outer side is set so as to cover up to the end of the heat spreader 6. In addition, when the range of the distance D is expressed by an equation, “0 <D ≦ 0.2L”, which is that the thickness of the portion of the sealing body 1 that contacts the side surface 5s of the semiconductor element 5 is greater than 0. And it shows that it becomes 0.2L or less.

例えば、D>0.2Lになるように、半導体素子5に対して間隔を過剰にあけ、内側面2sがPxより外側になるように被覆体2を配置した場合、半導体素子5の角部(例えば、主面5aと側面5sとの角)にかかる熱応力を十分に緩和することができないことがある。また、内側面2sがPiよりも内側になるように被覆体2を配置し、被覆体2が半導体素子5あるいは接合材4に接していたり、覆っていたりすると、封止体1による半導体素子5や接合材4を強固に固めて拘束する効果が弱まり、半導体素子5と回路面6f間の接合の信頼性の低下に繋がる。   For example, when the cover 2 is disposed so that the inner surface 2s is outside Px so that the distance from the semiconductor element 5 is excessively set so that D> 0.2L, the corners of the semiconductor element 5 ( For example, the thermal stress applied to the corners of the main surface 5a and the side surface 5s may not be sufficiently relaxed. Further, when the covering body 2 is arranged so that the inner side surface 2 s is inside the Pi, and the covering body 2 is in contact with or covers the semiconductor element 5 or the bonding material 4, the semiconductor element 5 by the sealing body 1. In addition, the effect of firmly fixing and constraining the bonding material 4 is weakened, leading to a decrease in the reliability of bonding between the semiconductor element 5 and the circuit surface 6f.

この設定は、図5に示すように、複数の半導体素子5が近距離で配置されている場合にも同様である。つまり、半導体素子5の側面5sどうしの間隔が0.2Lよりも大きな場合は、間隔Dが0.2L以下になるように、開口を分割する。一方、半導体素子5の側面5sどうしの間隔が、0.2L以下の場合、被覆体2がいずれかの半導体素子5あるいは接合材4に接することがないのであれば、分割してもよい。しかし、開口を分割すると工程が増加する場合が多く、基本的には、一つの開口内に配置する。   This setting is the same when a plurality of semiconductor elements 5 are arranged at a short distance as shown in FIG. That is, when the interval between the side surfaces 5s of the semiconductor element 5 is larger than 0.2L, the opening is divided so that the interval D is 0.2L or less. On the other hand, if the distance between the side surfaces 5s of the semiconductor element 5 is 0.2L or less, the covering 2 may be divided if it does not contact any of the semiconductor elements 5 or the bonding material 4. However, dividing the opening often increases the number of processes, and basically, the openings are arranged in one opening.

被覆体2の厚みt2は、半導体素子5の厚さよりも厚く、ヒートスプレッダ6の回路面6fから封止体1の表面1fまでの距離、つまり封止体1が回路面6fを直接覆っていた場合の本来の厚みt1の3/4以下になるように設定している。なお、t2の下限値は、厳密には、接合材4を含めた実装高さ、つまり、ヒートスプレッダ6の回路面6fから半導体素子5の主面5aまでの高さである。厚み2の下限値は、被覆体2の回路面6fからの高さが、半導体素子5の主面の高さよりも低くなり、被覆体2が反りを吸収しきれず、十分に応力緩和の効果を発揮しないことのないよう設定したものである。一方、上限値については、厚さt2が封止体1の本来の厚みt1の3/4を超えると、その部分の封止体1の厚みが薄く(本来の厚みt1の1/4未満)なることで、モジュールの強度が低下し、封止体1に割れが発生することを防止するために設定したものである。   The thickness t2 of the cover 2 is larger than the thickness of the semiconductor element 5, and the distance from the circuit surface 6f of the heat spreader 6 to the surface 1f of the sealing body 1, that is, the sealing body 1 directly covers the circuit surface 6f. Is set to be 3/4 or less of the original thickness t1. Strictly speaking, the lower limit value of t2 is the mounting height including the bonding material 4, that is, the height from the circuit surface 6f of the heat spreader 6 to the main surface 5a of the semiconductor element 5. The lower limit value of the thickness 2 is that the height of the covering 2 from the circuit surface 6f is lower than the height of the main surface of the semiconductor element 5, and the covering 2 cannot fully absorb the warp. It is set so as not to exhibit. On the other hand, as for the upper limit value, when the thickness t2 exceeds 3/4 of the original thickness t1 of the sealing body 1, the thickness of the sealing body 1 at that portion is thin (less than 1/4 of the original thickness t1). Thus, the module is set to prevent the strength of the module from being reduced and the sealing body 1 from being cracked.

これにより、封止体1よりも弾性が低い被覆体2が、モジュール全体の反りを吸収し、封止体1と半導体素子5の界面に発生する熱応力を低減させ、封止体1の剥離やクラックの発生を防止することができる。また、被覆体2は半導体素子5と接合材4に接していないことから、半導体素子5に接合されたはんだやアルミワイヤなどの接合材4は、封止体1により強固に封止されており、温度サイクル試験やパワーサイクル試験における信頼性を高く保つことができる。   Thereby, the covering body 2 having lower elasticity than the sealing body 1 absorbs the warp of the entire module, reduces the thermal stress generated at the interface between the sealing body 1 and the semiconductor element 5, and peels off the sealing body 1. And the generation of cracks can be prevented. Further, since the covering 2 is not in contact with the semiconductor element 5 and the bonding material 4, the bonding material 4 such as solder or aluminum wire bonded to the semiconductor element 5 is firmly sealed by the sealing body 1. The reliability in the temperature cycle test and the power cycle test can be kept high.

つぎに、本実施の形態1にかかる半導体装置100の効果を検証するため、被覆体2の物性や間隔D、厚さt2等をパラメータとして温度サイクル試験による信頼性試験を行った。   Next, in order to verify the effect of the semiconductor device 100 according to the first embodiment, a reliability test by a temperature cycle test was performed using the physical properties, distance D, thickness t2 and the like of the covering 2 as parameters.

温度サイクル試験は、半導体装置100を温度制御可能な恒温槽に入れ、恒温槽内の温度を−60℃と180℃との間を繰り返し往復させて実施させた。信頼性の判定基準は、温度サイクル試験が1000サイクル経過後に剥離無きこととした。剥離有無の判断は、超音波映像装置(日立エンジニアリング・アンド・サービス製FineSAT)で観察して実施した。以下、試験に用いた本実施の形態1にかかる半導体装置100の試験サンプル(実施例)、および比較対象の半導体装置の試験サンプル(比較例)の構成、および試験結果について説明する。   The temperature cycle test was carried out by putting the semiconductor device 100 in a thermostat capable of temperature control and repeatedly reciprocating the temperature in the thermostat between −60 ° C. and 180 ° C. The criterion for reliability was that there was no peeling after 1000 cycles of the temperature cycle test. Judgment of the presence or absence of peeling was carried out by observing with an ultrasonic imaging apparatus (FineSAT manufactured by Hitachi Engineering & Service). The configuration and test results of the test sample (example) of the semiconductor device 100 according to the first embodiment used in the test and the test sample (comparative example) of the semiconductor device to be compared will be described below.

<共通条件>
各試験サンプルには、半導体素子5を回路面6fに接合し、他方の面に絶縁層7と金属箔8を設けたヒートスプレッダ6にリードフレーム3を接合し、全体を封止体1で封止したモールド型半導体装置を用いた。半導体素子5は、10mm×10mm×0.3mmのSiC製半導体素子とし、ヒートスプレッダ6は20mm×40mm×3.0mmとした。ヒートスプレッダ6とリードフレーム3や金属箔8は放熱性を考えて銅とした。ヒートスプレッダ6上にはMOSFETとSBD(Schottky Barrier Diode:ショットキーバリアダイオード)の2種の半導体素子5を搭載した。絶縁層7にはエポキシ製の絶縁シートを用いた。
<Common conditions>
In each test sample, the semiconductor element 5 is bonded to the circuit surface 6f, the lead frame 3 is bonded to the heat spreader 6 provided with the insulating layer 7 and the metal foil 8 on the other surface, and the whole is sealed with the sealing body 1. The molded type semiconductor device was used. The semiconductor element 5 was a SiC semiconductor element of 10 mm × 10 mm × 0.3 mm, and the heat spreader 6 was 20 mm × 40 mm × 3.0 mm. The heat spreader 6, the lead frame 3, and the metal foil 8 were made of copper in consideration of heat dissipation. On the heat spreader 6, two types of semiconductor elements 5 of MOSFET and SBD (Schottky Barrier Diode) are mounted. An insulating sheet made of epoxy was used for the insulating layer 7.

封止体1は、ガラス転移点(Tg)が約190℃のエポキシ樹脂にシリカを82重量%充填し、熱膨張係数αが12ppm/K、弾性率Eが12GPaとなるものを用いた。そして、各試験サンプルの作製方法は、ヒートスプレッダ6上に半導体素子5を接合後、被覆体2を設置し、リードフレーム3と絶縁層7と金属箔8と合わせてトランスファモールド成型による樹脂封止を行った。   As the sealing body 1, an epoxy resin having a glass transition point (Tg) of about 190 ° C. filled with 82% by weight of silica, a thermal expansion coefficient α of 12 ppm / K, and an elastic modulus E of 12 GPa was used. The test sample is prepared by bonding the semiconductor element 5 on the heat spreader 6, placing the covering 2, and combining the lead frame 3, the insulating layer 7, and the metal foil 8 with resin molding by transfer molding. went.

成型は、約180℃で120秒間行い、金型取り出し後にオーブンにて180℃4時間のポストモールドキュア(PMC)を実施した。PMC後に、温度サイクル試験として、冷熱衝撃試験機(ESPEC製TSD−100)を用いて−60℃と180℃との間を繰り返し往復させて実施し、1000サイクル後の剥離有無判断を超音波映像装置にて行った。成形性の判断基準は、成形後のモジュールの外観および内部にクラックが無いことを判断基準とした。なお、成形性の時点で不合格(×)と評価した場合は、信頼性試験は実施していない。   Molding was performed at about 180 ° C. for 120 seconds, and after mold removal, post mold curing (PMC) at 180 ° C. for 4 hours was performed in an oven. After PMC, as a temperature cycle test, a thermal shock tester (TSP-100 manufactured by ESPEC) was used to repeatedly reciprocate between −60 ° C. and 180 ° C. Performed in the apparatus. The criteria for determining moldability were determined based on the appearance and the absence of cracks inside the module after molding. In addition, the reliability test is not implemented when it evaluates as a disqualification (x) at the time of a moldability.

<実施例1>
被覆体2を構成する主材料として、Tgが約170℃のエポキシ樹脂を使用した。被覆体2にはシリカの充填材の含量が5%のものを使用し、熱膨張係数αが50ppm/Kで、弾性率Eが2GPaのものを用いた。被覆体2は、粉末状のものを予め任意の形状に圧縮成型し、半導体素子5とその接合材4に接することの無いようD=0.2mmとして、t2=0.8mmでヒートスプレッダ6上に均一に設置して形成した。本実施例1の試験サンプルに対して各判定を行ったところ、温度サイクル性、成形性を満足しており、信頼性の高い半導体装置100が得られた。
<Example 1>
An epoxy resin having a Tg of about 170 ° C. was used as a main material constituting the covering 2. As the covering 2, a silica filler having a silica filler content of 5% was used, a thermal expansion coefficient α of 50 ppm / K, and an elastic modulus E of 2 GPa. The covering 2 is compression-molded into an arbitrary shape in advance, and D = 0.2 mm so as not to contact the semiconductor element 5 and its bonding material 4, and t2 = 0.8 mm on the heat spreader 6. Uniformly installed and formed. When each determination was performed on the test sample of Example 1, the semiconductor device 100 having high reliability and temperature cycleability and moldability was obtained.

<実施例2>
本実施例2では、実施例1に対してシリカの充填材の添加量を調整し、被覆体2の物性を変化させた以外は、同様に実施した。被覆体2の物性は線膨張係数αが13ppm/K、弾性率Eが10GPaであった。本実施例2の試験サンプルに対して各判定を行ったところ、温度サイクル性、成形性を満足しており、信頼性の高い半導体装置100が得られた。
<Example 2>
Example 2 was carried out in the same manner as Example 1 except that the amount of silica filler added was adjusted and the physical properties of the covering 2 were changed. The physical properties of the coated body 2 were a linear expansion coefficient α of 13 ppm / K and an elastic modulus E of 10 GPa. When each determination was performed on the test sample of Example 2, the semiconductor device 100 having high temperature cycle and moldability and having high reliability was obtained.

<実施例3>
本実施例3では、実施例1に対して、被覆体2としてシリコーンゲルを用いた以外は同様に実施した。被覆体2の物性は線膨張係数αが600ppm/K、弾性率Eが3.0×10−6GPaであった。シリコーンゲルは、ディスペンサを用いて任意の形状に塗布し、120℃で10分間ポストキュアを行った後、トランスファモールドによる樹脂封止を行った。本実施例3の試験サンプルに対して各判定を行ったところ、温度サイクル性、成形性を満足しており、信頼性の高い半導体装置100が得られた。
<Example 3>
In this Example 3, it implemented similarly to Example 1 except having used the silicone gel as the coating body 2. FIG. The physical properties of the coated body 2 were a linear expansion coefficient α of 600 ppm / K and an elastic modulus E of 3.0 × 10 −6 GPa. The silicone gel was applied in an arbitrary shape using a dispenser, post-cured at 120 ° C. for 10 minutes, and then resin-sealed by transfer molding. When each determination was performed on the test sample of Example 3, the semiconductor device 100 having high reliability and temperature cycleability and moldability was obtained.

<実施例4>
本実施例4では、実施例1に対して半導体素子5と被覆体2との間隔Dを変えた以外は同様に実施した。半導体素子5と被覆体2との間隔D=2.0mmとした。本実施例4の試験サンプルに対して各判定を行ったところ、温度サイクル性、成形性を満足しており、信頼性の高い半導体装置100が得られた。
<Example 4>
In the present Example 4, it implemented similarly except having changed the space | interval D of the semiconductor element 5 and the covering body 2 with respect to Example 1. FIG. The distance D between the semiconductor element 5 and the covering 2 was set to 2.0 mm. When each determination was performed on the test sample of Example 4, the semiconductor device 100 having high temperature cycleability and moldability and having high reliability was obtained.

<実施例5>
本実施例5では、実施例1に対して被覆体2の厚さt2を変えた以外は同様に実施した。被覆体2の厚さt2=0.4mmとした。本実施例5の試験サンプルに対して各判定を行ったところ、温度サイクル性、成形性を満足しており、信頼性の高い半導体装置100が得られた。
<Example 5>
In this Example 5, it implemented similarly except having changed thickness t2 of the covering 2 with respect to Example 1. FIG. The thickness t2 of the covering 2 was set to 0.4 mm. When each determination was performed on the test sample of Example 5, the semiconductor device 100 having high reliability and temperature cycleability and moldability was obtained.

<実施例6>
本実施例6では、実施例1に対して被覆体2厚さt2を変えた以外は同様に実施した。被覆体2の厚さt2=3.0mmとした。本実施例6の試験サンプルに対して各判定を行ったところ、温度サイクル性、成形性を満足しており、信頼性の高い半導体装置100が得られた。
<Example 6>
In the present Example 6, it implemented similarly except having changed the covering 2 thickness t2 with respect to Example 1. FIG. The thickness t2 of the covering 2 was set to 3.0 mm. When each determination was performed on the test sample of Example 6, the semiconductor device 100 having high temperature cycleability and moldability and having high reliability was obtained.

<比較例1>
本比較例1では、実施例1に対して被覆体2を用いずに試験サンプルを作成した。本比較例1の試験サンプルに対して各判定を行ったところ、成形性は満足していたが、温度サイクル試験において半導体素子5と封止体1との界面で剥離およびクラックが生じたため、温度サイクル性の判定は×であった。
<Comparative Example 1>
In this comparative example 1, a test sample was prepared without using the covering 2 with respect to the example 1. When each determination was performed on the test sample of Comparative Example 1, the moldability was satisfactory, but peeling and cracking occurred at the interface between the semiconductor element 5 and the sealing body 1 in the temperature cycle test. The cycle property was evaluated as x.

<比較例2>
本比較例2では、実施例1に対してシリカの充填材の添加量を調整し、被覆体2の物性を変化させた以外は同様に実施した。被覆体2の物性は線膨張係数αが10ppm/K、弾性率Eが12GPaであった。本比較例2の試験サンプルに対して各判定を行ったところ、成形性は満足していたが、温度サイクル試験において半導体素子5にかかる応力緩和の効果が小さく、半導体素子5と封止体1との界面で剥離およびクラックが生じたため、温度サイクル性の判定は×であった。
<Comparative Example 2>
In this comparative example 2, it carried out similarly to the example 1 except having adjusted the addition amount of the silica filler and changing the physical property of the coating 2. The physical properties of the covering 2 were a linear expansion coefficient α of 10 ppm / K and an elastic modulus E of 12 GPa. When each determination was made on the test sample of Comparative Example 2, the moldability was satisfactory, but the effect of stress relaxation applied to the semiconductor element 5 in the temperature cycle test was small, and the semiconductor element 5 and the sealing body 1 Since peeling and cracks occurred at the interface, the temperature cycle property was judged as x.

<比較例3>
本比較例2では、実施例1に対して、被覆体2としてポリプロピレンを用いた以外は同様に実施した。被覆体2の物性は線膨張係数αが100ppm/K、弾性率Eが1.5×10−3GPaであった。ポリプロピレンを圧縮成型により任意の形状に成型した後、ヒートスプレッダ6上に設置し、リードフレーム3や絶縁層7と金属箔8と合わせてトランスファモールドによる樹脂封止を行った。本比較例3の試験サンプルに対して各判定を行ったところ、成型直後に封止体1にクラックが生じた。ポリプロピレンは融点が約130℃であり、液状から固体状に相変化する際の急激な体積変化が原因でクラックが生じたと考えられる。ゆえに、成形性の判定は×であった。
<Comparative Example 3>
In this comparative example 2, it implemented similarly to Example 1 except having used the polypropylene as the coating body 2. FIG. The physical properties of the coated body 2 were a linear expansion coefficient α of 100 ppm / K and an elastic modulus E of 1.5 × 10 −3 GPa. Polypropylene was molded into an arbitrary shape by compression molding, and then placed on the heat spreader 6, and the resin was sealed by transfer molding together with the lead frame 3, the insulating layer 7 and the metal foil 8. When each determination was performed on the test sample of Comparative Example 3, a crack occurred in the sealing body 1 immediately after molding. Polypropylene has a melting point of about 130 ° C., and it is thought that cracks occurred due to a sudden volume change when the phase changed from a liquid state to a solid state. Therefore, the moldability was judged as x.

<比較例4>
本比較例では、実施例1に対して半導体素子5と被覆体2との間隔Dを変えた以外は同様に実施した。被覆体2が、半導体素子5とヒートスプレッダ6を接合する接合材4の一部が覆われるようにした。つまり、内側面2sが図4におけるラインPiより内側になるようにした。本比較例4の試験サンプルに対して各判定を行ったところ、成形性は満足していたが、温度サイクル試験において半導体素子5とヒートスプレッダ6を接合する接合材4にクラックが生じたため、温度サイクル性の判定は×であった。
<Comparative Example 4>
In this comparative example, it implemented similarly except having changed the space | interval D of the semiconductor element 5 and the covering 2 with respect to Example 1. FIG. The covering 2 covered a part of the bonding material 4 for bonding the semiconductor element 5 and the heat spreader 6. That is, the inner side surface 2s is set to be inside the line Pi in FIG. When each determination was performed on the test sample of the present comparative example 4, the moldability was satisfactory, but cracks occurred in the bonding material 4 for bonding the semiconductor element 5 and the heat spreader 6 in the temperature cycle test. The sex judgment was x.

<比較例5>
本比較例では、実施例1に対して半導体素子5と被覆体との間隔Dを変えた以外は同様に実施した。半導体素子5と被覆体2との間隔D=2.5mmとした。つまり、間隔Dが0.2Lを超え、図4におけるラインPxより外側になるようにした。本比較例4の試験サンプルに対して各判定を行ったところ、成形性は満足していたが、温度サイクル試験において半導体素子5にかかる応力緩和の効果が小さく、半導体素子5と封止体1との界面に剥離が生じたため、温度サイクル性の判定は×であった。
<Comparative Example 5>
In this comparative example, it implemented similarly except having changed the space | interval D of the semiconductor element 5 and a covering body with respect to Example 1. FIG. The distance D between the semiconductor element 5 and the covering 2 was set to 2.5 mm. That is, the interval D exceeds 0.2L and is outside the line Px in FIG. When each determination was performed on the test sample of Comparative Example 4, the moldability was satisfactory, but the effect of stress relaxation applied to the semiconductor element 5 in the temperature cycle test was small, and the semiconductor element 5 and the sealing body 1 Since the peeling occurred at the interface, the temperature cycle property was judged as x.

<比較例6>
本比較例6では、実施例1に対して被覆体2の厚さt2を変えた以外は同様に実施した。被覆体2の厚さt2=0.3mmとした。つまり、接合材4の厚さを加味すると、被覆体2の高さが主面5aよりも低くなるようにした。本比較例6の試験サンプルに対して各判定を行ったところ、成形性は満足していたが、温度サイクル試験において半導体素子5と封止体1との界面で剥離およびクラックが生じたため、温度サイクル性の判定は×であった。
<Comparative Example 6>
In this comparative example 6, it implemented similarly except having changed thickness t2 of the covering 2 with respect to Example 1. FIG. The thickness t2 of the covering 2 was set to 0.3 mm. That is, when the thickness of the bonding material 4 is taken into account, the height of the covering 2 is made lower than the main surface 5a. When each determination was performed on the test sample of Comparative Example 6, the moldability was satisfactory, but peeling and cracking occurred at the interface between the semiconductor element 5 and the sealing body 1 in the temperature cycle test. The cycle property was evaluated as x.

<比較例7>
本比較例7では、実施例1に対して被覆体2の厚さt2を変えた以外は同様に実施した。被覆体2の厚さt2=3.5mmとした。なお、3.5mmは、回路面6fから封止体1の表面1fまでの距離、つまり封止体1の本来の厚みt1の3/4よりも大きな値である。本比較例7の試験サンプルに対して各判定を行ったところ、成形性の判定は×であった。これは、被覆体2の高さが、封止体1の本来の厚みt1の3/4を越え、被覆体2上部分の封止体1の厚みが薄くなったため、樹脂強度が低下してクラックに繋がったと考えられる。
<Comparative Example 7>
In this comparative example 7, it implemented similarly except having changed thickness t2 of the covering 2 with respect to Example 1. FIG. The thickness t2 of the covering 2 was set to 3.5 mm. Note that 3.5 mm is a value larger than the distance from the circuit surface 6f to the surface 1f of the sealing body 1, that is, 3/4 of the original thickness t1 of the sealing body 1. When each determination was performed on the test sample of Comparative Example 7, the determination of moldability was x. This is because the height of the covering body 2 exceeds 3/4 of the original thickness t1 of the sealing body 1, and the thickness of the sealing body 1 on the upper portion of the covering body 2 is reduced. This is thought to have led to a crack.

上記試験結果のうち、実施例1〜実施例6の成形性と信頼性の結果を表1に、比較例1〜比較例7の成形性と信頼性の結果を表2に示す。   Among the test results, the moldability and reliability results of Examples 1 to 6 are shown in Table 1, and the moldability and reliability results of Comparative Examples 1 to 7 are shown in Table 2.

Figure 2015115382
Figure 2015115382

Figure 2015115382
Figure 2015115382

上記実施例1から実施例6では、半導体素子5と封止体1との界面に発生する熱応力が低減され、半導体素子5の端部付近での剥離やクラックの発生が防止でき、絶縁信頼性の高い半導体装置100が得られた。また、応力低減構造となっていることから、封止体1に求められる弾性率Eや線膨張係数α、樹脂強度などの要求特性値の許容幅が広がったことが示唆された。本発明の実施の形態1にかかる半導体装置100では、封止体1より弾性率の低い被覆体2が半導体素子5およびその接合材4に接しないように囲んでいる。これにより、半導体素子5に接合されたはんだやアルミワイヤなどの接合材4は、封止体1により強固に封止されることになり、温度サイクル試験やパワーサイクル試験における応力低減と接合材の信頼性を両立することができるとわかった。   In the first to sixth embodiments, the thermal stress generated at the interface between the semiconductor element 5 and the sealing body 1 is reduced, peeling and cracking in the vicinity of the end of the semiconductor element 5 can be prevented, and insulation reliability can be prevented. A highly reliable semiconductor device 100 was obtained. In addition, the stress reduction structure suggests that the allowable range of required characteristic values such as the elastic modulus E, linear expansion coefficient α, and resin strength required for the sealing body 1 has increased. In the semiconductor device 100 according to the first embodiment of the present invention, the covering body 2 having a lower elastic modulus than the sealing body 1 is surrounded so as not to contact the semiconductor element 5 and the bonding material 4 thereof. As a result, the bonding material 4 such as solder or aluminum wire bonded to the semiconductor element 5 is firmly sealed by the sealing body 1, which reduces the stress in the temperature cycle test and the power cycle test and reduces the bonding material. It was found that both reliability could be achieved.

なお、上記信頼性試験は、封止体1には、表3に示すように、同じ物性値(弾性率E=12(単位:GPa)、線膨張係数α=12(単位:ppm/K))のものを使用して行った。しかし、封止体1と被覆体2との弾性率の大小関係、および被覆体2の厚さt2と半導体素子5との間隔Dの基準を満たせば、封止体1の物性が異なっていても同様の効果を得ることができることを別途確かめている。例えば、封止体1の弾性率Eが12GPaより高い場合や低い場合についてである。   In the reliability test, the sealed body 1 has the same physical property values (elastic modulus E = 12 (unit: GPa), linear expansion coefficient α = 12 (unit: ppm / K) as shown in Table 3. ) Was used. However, the physical properties of the sealing body 1 are different if the relationship between the elastic modulus of the sealing body 1 and the covering body 2 and the standard of the distance D between the thickness t2 of the covering body 2 and the semiconductor element 5 are satisfied. Has confirmed separately that the same effect can be obtained. For example, it is about the case where the elastic modulus E of the sealing body 1 is higher or lower than 12 GPa.

Figure 2015115382
Figure 2015115382

そこで、なぜ、上記の条件を満たせば、応力低減と接合材の信頼性を両立することができるかについて以下のように検討した。
封止体1の材料であるトランスファモールド用の封止樹脂は、充填剤の量を変えることで、Eとαを変化させることが可能である。ただし、Eとαはトレードオフの関係になっており、E×αの値が一定になるように変化することが経験的にわかっている。そのため、弾性率Eを下げると線膨張係数αが上昇することになり、例えば、E=12GPa、α=12ppm/Kの材料をE=10GPaになるように充填剤の量を変えると、α=14.4ppm/Kになる。
Therefore, why the stress reduction and the reliability of the bonding material can be achieved at the same time when the above conditions are satisfied was examined as follows.
The sealing resin for transfer mold, which is a material of the sealing body 1, can change E and α by changing the amount of the filler. However, E and α are in a trade-off relationship, and it is empirically known that the value of E × α changes so as to be constant. Therefore, when the elastic modulus E is lowered, the linear expansion coefficient α increases. For example, when the amount of filler is changed so that E = 12 GPa, α = 12 ppm / K, and E = 10 GPa, α = It becomes 14.4 ppm / K.

一方、半導体装置における信頼性は、半導体素子5と封止体1との界面での熱応力の影響が大きいと考えられる。熱応力σは、起動停止に伴う温度変化において、封止体1と半導体素子5との線膨張係数の差から発生するもので、式(1)で表すことができる。   On the other hand, it is considered that the reliability of the semiconductor device is greatly influenced by thermal stress at the interface between the semiconductor element 5 and the sealing body 1. The thermal stress σ is generated from the difference in coefficient of linear expansion between the sealing body 1 and the semiconductor element 5 in the temperature change accompanying the start and stop, and can be expressed by Expression (1).

Figure 2015115382
Figure 2015115382

式(1)において、下付きのrが封止体1の、sが半導体素子5の物性を示す。半導体素子5がワイドバンドギャップ半導体であるSiCの場合、線膨張係数αは3ppm/K程度と封止体1の線膨張係数αよりも小さな値であるため、封止体1の線膨張係数αと弾性率Eが小さいほど、熱応力σは小さくなると言える。しかし、封止体1は、リードフレーム3等の金属部材をも拘束しており、線膨張係数αを半導体素子5の線膨張係数αのみに合わせることはできない。そのため、封止体1の線膨張係数αは、金属部材と半導体素子5の物性値の中間の狭い範囲でしか調整することができない。その結果、式(1)のカッコ内の部分において、半導体素子5の線膨張係数αは無視できる程度となり、熱応力σは、封止体1のEとαの積に比例する形になる。つまり、Eとαの積が一定となる経験則を考慮すると、充填剤の量を変化させるだけでは、熱応力に大きな変化がないことが考えられる。実際、現在開発されている封止樹脂では、Eとαの積を小さくすることが限界に近くなっており、表3に示した封止体1の物性値は、熱応力σが小さくなるための限界に近い値のものを使用していることになる。 In the formula (1), subscript r indicates the physical properties of the sealing body 1, and s indicates the physical properties of the semiconductor element 5. In the case where the semiconductor element 5 is SiC, which is a wide band gap semiconductor, the linear expansion coefficient α s is about 3 ppm / K, which is a value smaller than the linear expansion coefficient α r of the sealing body 1. It can be said that the smaller the coefficient α r and the elastic modulus Er , the smaller the thermal stress σ. However, the sealing body 1 also constrains a metal member such as the lead frame 3, and the linear expansion coefficient α r cannot be matched only with the linear expansion coefficient α s of the semiconductor element 5. Therefore, the linear expansion coefficient α r of the sealing body 1 can be adjusted only within a narrow range between the physical properties of the metal member and the semiconductor element 5. As a result, the linear expansion coefficient α s of the semiconductor element 5 becomes negligible in the portion in parentheses in the expression (1), and the thermal stress σ is proportional to the product of E r and α r of the sealing body 1. become. That is, considering an empirical rule in which the product of E and α is constant, it is considered that there is no significant change in thermal stress only by changing the amount of filler. Actually, in the currently developed sealing resin, it is close to the limit to reduce the product of E and α, and the physical properties of the sealing body 1 shown in Table 3 are because the thermal stress σ is small. The value close to the limit is used.

一方で、被覆体2は半導体素子5と接していないことから、線膨張係数αの影響が封止体1ほど大きくないことが応力解析で明らかになっている。そのため、被覆体2については、弾性率Eを小さくすることで線膨張係数αが大きくなったとしても、低弾性な(柔らかい)ために反りを吸収し、半導体素子5と封止体1との界面に生ずる熱応力を低減することが可能となる。さらに、被覆体2は、トランスファモールドによって成形されるものではないため、封止体1よりも耐熱性や電気特性など樹脂設計の幅が広く、反りを吸収する作用に特化して物性を調整することができる。   On the other hand, since the covering 2 is not in contact with the semiconductor element 5, the stress analysis reveals that the influence of the linear expansion coefficient α is not as great as that of the sealing body 1. Therefore, even when the linear expansion coefficient α is increased by reducing the elastic modulus E, the covering 2 absorbs warpage due to low elasticity (soft), and the semiconductor element 5 and the sealing body 1 It becomes possible to reduce the thermal stress generated at the interface. Furthermore, since the covering body 2 is not formed by transfer molding, the resin design has a wider range of heat resistance and electrical characteristics than the sealing body 1, and the physical properties are adjusted specifically for the action of absorbing warpage. be able to.

これを単純な系で数値を用いて説明すると、封止体1の物性によるαとEの積は、E=12GPa、α=12ppm/Kの場合に144となり、充填量を調整して、E=10GPa、α=14.4ppm/Kの場合でも144になり、熱応力σは同様の値となる。一方、本実施の形態1のように、被覆体2を用い、被覆体2の物性を10GPaに設定すると、被覆体2の線膨張係数αは熱応力には大きく影響せず、封止体1より低弾性な被覆体2が、反りを吸収する効果が作用して応力が下がり、封止体1のみを使用した場合に比べて熱応力が小さくなる。   When this is explained using numerical values in a simple system, the product of α and E due to the physical properties of the sealing body 1 becomes 144 when E = 12 GPa and α = 12 ppm / K, and the filling amount is adjusted to obtain E = 10 GPa and α = 14.4 ppm / K, it becomes 144, and the thermal stress σ has the same value. On the other hand, when the cover 2 is used and the physical property of the cover 2 is set to 10 GPa as in the first embodiment, the linear expansion coefficient α of the cover 2 does not greatly affect the thermal stress, and the sealing body 1 The lower elastic covering 2 has the effect of absorbing the warp and the stress is reduced, and the thermal stress is reduced as compared with the case where only the sealing body 1 is used.

つまり、上述した条件を満たすように被覆体2を回路面6f上に形成すれば、半導体素子5と封止体1との界面に発生する熱応力が低減され、半導体素子5の端部付近で発生する剥離やクラックが防止でき、絶縁信頼性の高い半導体装置100が得られる。また、本実施の形態1の半導体装置100を図示しないヒートシンクなどに取り付ける際、被覆体2が反りを吸収するため、半導体装置100全体の反りが低減され、取り付けが容易になるという効果が得られる。それに加えて、応力低減構造となっていることから、封止体1に求められる弾性率Eや線膨張係数α、樹脂強度などの要求特性値の許容幅が広がり、半導体装置100の生産性向上、低コスト化につながる。また、本構造の特徴である被覆体2は半導体素子5およびその接合材4に接していないことから、半導体素子5に接合されたはんだやアルミワイヤなどの接合材4は、封止体1により強固に封止されており、温度サイクル試験やパワーサイクル試験における信頼性を高く保つことができる。   That is, if the covering 2 is formed on the circuit surface 6f so as to satisfy the above-described conditions, the thermal stress generated at the interface between the semiconductor element 5 and the sealing body 1 is reduced, and near the end of the semiconductor element 5. Separation and cracks that occur can be prevented, and the semiconductor device 100 with high insulation reliability can be obtained. Further, when the semiconductor device 100 according to the first embodiment is attached to a heat sink or the like (not shown), the covering 2 absorbs the warp, so that the warp of the entire semiconductor device 100 is reduced and the attachment is facilitated. . In addition, since it has a stress reduction structure, the allowable range of required characteristic values such as elastic modulus E, linear expansion coefficient α, and resin strength required for the sealing body 1 is widened, and the productivity of the semiconductor device 100 is improved. , Leading to lower costs. Further, since the covering 2 which is a feature of this structure is not in contact with the semiconductor element 5 and its bonding material 4, the bonding material 4 such as solder or aluminum wire bonded to the semiconductor element 5 is removed by the sealing body 1. It is tightly sealed and can maintain high reliability in temperature cycle tests and power cycle tests.

以上のように、本発明の実施の形態1にかかる半導体装置100によれば、回路基板(ヒートスプレッダ6)と、主面5aに電極が形成され、回路基板(ヒートスプレッダ6)の回路面6fに裏面が接合された半導体素子5と、電極に接合された配線部材(リードフレーム3)と、半導体素子5を取り囲むように、回路面6fを覆う被覆体2と、配線部材(リードフレーム3)の主面5aの電極に接合された部分と半導体素子5および被覆体2を包むように封止する封止体1と、を備え、被覆体2は、封止体1よりも弾性率が低い材料で形成され、かつ、回路面6fの延在方向において、半導体素子5から間隔Dをあけるとともに、回路面6fからの高さ方向において、半導体素子5の主面5aの高さ以上で、封止体1の表面1fに達しない高さになるように形成されているように構成したので、半導体素子5と封止体1との界面に発生する熱応力が低減され、半導体素子5の端部付近で発生する剥離やクラックが防止でき、絶縁信頼性の高い半導体装置100を得ることができる。   As described above, according to the semiconductor device 100 according to the first embodiment of the present invention, the circuit board (heat spreader 6) and the electrodes are formed on the main surface 5a, and the back surface is formed on the circuit surface 6f of the circuit board (heat spreader 6). Of the semiconductor element 5 bonded to each other, the wiring member (lead frame 3) bonded to the electrode, the covering 2 covering the circuit surface 6f so as to surround the semiconductor element 5, and the main members of the wiring member (lead frame 3). A portion bonded to the electrode of the surface 5a and a sealing body 1 for sealing so as to enclose the semiconductor element 5 and the covering body 2. The covering body 2 is formed of a material having a lower elastic modulus than that of the sealing body 1. In addition, the sealing body 1 is spaced apart from the semiconductor element 5 in the extending direction of the circuit surface 6f, and at least the height of the main surface 5a of the semiconductor element 5 in the height direction from the circuit surface 6f. Does not reach the surface 1f As a result, the thermal stress generated at the interface between the semiconductor element 5 and the sealing body 1 is reduced, and peeling and cracks that occur near the edge of the semiconductor element 5 are prevented. In addition, the semiconductor device 100 with high insulation reliability can be obtained.

なおかつ、被覆体2は、半導体素子5と回路面6fとを接合する接合材4に接触しないように形成されているので、接合材4は封止体1でしっかりと拘束され、接合信頼性が保たれる。   In addition, since the covering 2 is formed so as not to contact the bonding material 4 for bonding the semiconductor element 5 and the circuit surface 6f, the bonding material 4 is firmly restrained by the sealing body 1, and the bonding reliability is improved. Kept.

被覆体2の高さt2が、回路面6fから封止体1の表面1fまでの高さt1の3/4以下になるように構成したので、モジュール(半導体装置100)の強度が保持され、封止体1に割れが発生することもない。   Since the height t2 of the cover 2 is configured to be 3/4 or less of the height t1 from the circuit surface 6f to the surface 1f of the sealing body 1, the strength of the module (semiconductor device 100) is maintained. There is no occurrence of cracks in the sealing body 1.

半導体素子5と被覆体2との間隔Dが、半導体素子5の辺の長さLの0.2倍以下になるように設定されているので、被覆体2が、半導体素子5にかかる熱応力を緩和する緩衝材としての機能を確実に発揮することができる。   Since the distance D between the semiconductor element 5 and the cover 2 is set to be 0.2 times or less the side length L of the semiconductor element 5, the cover 2 has a thermal stress applied to the semiconductor element 5. The function as a cushioning material that relaxes can be reliably exhibited.

また、被覆体2が、エポキシ樹脂、シリコーンゲル、シリコーンゴム、メラミン樹脂、フェノール樹脂、ポリアミド、ポリイミド、ポリブチレンテレフタレート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルホン、およびポリフェニレンサルファイドの少なくともいずれかを用いて形成されるので、緩衝材として機能する被覆体2を容易に形成することができる。   The covering 2 is at least any one of an epoxy resin, silicone gel, silicone rubber, melamine resin, phenol resin, polyamide, polyimide, polybutylene terephthalate, polyether ether ketone, polyether imide, polyether sulfone, and polyphenylene sulfide. Therefore, the covering body 2 that functions as a buffer material can be easily formed.

実施の形態2.
本実施の形態2にかかる半導体装置では、実施の形態1にかかる半導体装置に対して、ヒートスプレッダの代わりに絶縁基板を用いるようにしたものである。図6は、本発明の実施の形態2にかかる半導体装置の構成を説明するための断面模式図である。図中、実施の形態1と同様のものには同じ符号を付し、詳細な説明は省略する。
Embodiment 2. FIG.
In the semiconductor device according to the second embodiment, an insulating substrate is used instead of the heat spreader as compared with the semiconductor device according to the first embodiment. FIG. 6 is a schematic cross-sectional view for explaining the configuration of the semiconductor device according to the second embodiment of the present invention. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.

図6に示すように、本実施の形態2にかかる半導体装置100では、実施の形態1のように熱拡散を目的としたヒートスプレッダ6の代わりに、例えばDBC(Direct Bonding Copper)のようなセラミックス基材10bの両面に導電層10a、10cが形成された
絶縁基板10を用いたものである。絶縁基板10の熱伝導率が十分に高く熱抵抗が小さければ、ヒートスプレッダ6を使用しなくてもよい。そして、図6では、2つの半導体素子5が、絶縁基板10の回路面10f側の導電層10aの所定位置に、はんだ等の接合材4を用いて接合されている。そして、実施の形態1と同様の条件で、2つの半導体素子5および接合材4に接することなく内側面が半導体素子5を囲むとともに、外側が導電層10aの端部まで覆う被覆体2を配置し、その上からトランスファモールド成型により封止体1を形成している。
As shown in FIG. 6, in the semiconductor device 100 according to the second embodiment, a ceramic substrate such as DBC (Direct Bonding Copper) is used instead of the heat spreader 6 for heat diffusion as in the first embodiment. The insulating substrate 10 in which conductive layers 10a and 10c are formed on both surfaces of the material 10b is used. If the thermal conductivity of the insulating substrate 10 is sufficiently high and the thermal resistance is small, the heat spreader 6 may not be used. In FIG. 6, the two semiconductor elements 5 are bonded to a predetermined position of the conductive layer 10 a on the circuit surface 10 f side of the insulating substrate 10 using a bonding material 4 such as solder. Then, under the same conditions as in the first embodiment, the covering 2 is disposed so that the inner surface surrounds the semiconductor element 5 without being in contact with the two semiconductor elements 5 and the bonding material 4, and the outer side covers the end of the conductive layer 10a. Then, the sealing body 1 is formed by transfer molding from above.

また、本実施の形態2においては、リードフレーム3は、半導体素子5や導電層10aに直接接合されておらず、ボンディングワイヤ9を介して電気接続するようにしている。そして、例えば、ボンディングワイヤ9のうち、半導体素子5間を接続するものは、その間にある被覆体2をまたぐように配線している。   In the second embodiment, the lead frame 3 is not directly bonded to the semiconductor element 5 or the conductive layer 10 a but is electrically connected via the bonding wire 9. For example, the bonding wires 9 that connect the semiconductor elements 5 are wired so as to straddle the covering 2 between them.

本実施の形態2においても、実施の形態1と同様の効果が得られ、信頼性の高い半導体装置100が得られる。また、絶縁基板10はヒートスプレッダ6のような金属基板に比べて線膨張係数αが小さいため、モジュール全体の反りが大きくなる傾向にあるが、本実施の形態では、被覆体2が反りを吸収するため、反りの抑制が可能である。   Also in the second embodiment, the same effect as in the first embodiment is obtained, and the highly reliable semiconductor device 100 is obtained. Further, since the insulating substrate 10 has a smaller linear expansion coefficient α than the metal substrate such as the heat spreader 6, the warping of the entire module tends to increase, but in the present embodiment, the covering 2 absorbs the warping. Therefore, warpage can be suppressed.

以上のように、本実施の形態2にかかる半導体装置100によれば、回路基板が、セラミックス基材10bの少なくとも一方の面に導電層10aが形成された絶縁基板10であっても、実施の形態1と同様に、半導体素子5と封止体1との界面に発生する熱応力が低減され、半導体素子5の端部付近で発生する剥離やクラックが防止でき、絶縁信頼性の高い半導体装置100を得ることができる。   As described above, according to the semiconductor device 100 according to the second embodiment, even if the circuit board is the insulating substrate 10 in which the conductive layer 10a is formed on at least one surface of the ceramic base material 10b, Similar to Embodiment 1, the thermal stress generated at the interface between the semiconductor element 5 and the sealing body 1 is reduced, and peeling and cracks generated near the end of the semiconductor element 5 can be prevented, and the semiconductor device having high insulation reliability 100 can be obtained.

実施の形態3.
上記実施の形態1あるいは2では、トランスファモールド成型のように成形金型による成形で封止体を形成し、封止体が半導体装置の筐体を兼ねるように構成していた。しかし、本実施の形態3にかかる半導体装置では、筐体となるケースを別途製造し、ケース内にポッティングにより封止体を形成するようにしたものである。図7は、本発明の実施の形態3にかかる半導体装置の構成を説明するための断面模式図である。図中、実施の形態1または2と同様のものには同じ符号を付し、詳細な説明は省略する。
Embodiment 3 FIG.
In the first or second embodiment, the sealing body is formed by molding using a molding die such as transfer molding, and the sealing body also serves as the housing of the semiconductor device. However, in the semiconductor device according to the third embodiment, a case serving as a housing is separately manufactured, and a sealing body is formed in the case by potting. FIG. 7 is a schematic cross-sectional view for explaining the configuration of the semiconductor device according to the third embodiment of the present invention. In the figure, the same components as those in the first or second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図7に示すように、本実施の形態3にかかる半導体装置100では、例えば、ポリフェニレンサルファイド(PPS:Poly Phenylene Sulfide)を用いたケース12を半導体装置100の筐体に用いている。ケース12は難燃性の樹脂であればPPS以外のものでも、フィラー強化やアロイ強化されていてもよい。ケース12内に収めた金属製の放熱板13の上部に、実施の形態2で説明した絶縁基板10と半導体素子5を実装後、被覆体2を配置し、封止体1でポッティングを行い封止した。その後、150℃で3時間キュアを行い作製した。封止体1には、例えばエポキシ樹脂を用いることができ、シリカやアルミナなどの無機フィラーが含有していても良い。   As shown in FIG. 7, in the semiconductor device 100 according to the third embodiment, for example, a case 12 using polyphenylene sulfide (PPS) is used for the housing of the semiconductor device 100. The case 12 may be other than PPS as long as it is a flame retardant resin, and may be filler reinforced or alloy reinforced. After mounting the insulating substrate 10 and the semiconductor element 5 described in the second embodiment on the upper part of the metal heat sink 13 housed in the case 12, the covering body 2 is arranged, potted with the sealing body 1 and sealed. Stopped. Thereafter, curing was performed at 150 ° C. for 3 hours. For the sealing body 1, for example, an epoxy resin can be used, and an inorganic filler such as silica or alumina may be contained.

また、本実施の形態3においては、リード端子11は、ケース12に固定されており、半導体素子5や導電層10aとの電気接続は、ボンディングワイヤ9を介して行っている。そして、実施の形態2と同様に、例えば、ボンディングワイヤ9のうち、半導体素子5間を接続するものは、その間にある被覆体2をまたぐように配線している。   In the third embodiment, the lead terminal 11 is fixed to the case 12, and electrical connection with the semiconductor element 5 and the conductive layer 10 a is performed via the bonding wire 9. As in the second embodiment, for example, the bonding wires 9 that connect the semiconductor elements 5 are wired so as to straddle the covering 2 between them.

本実施の形態3でも、上記実施の形態1あるいは2で説明したのと同様の条件で被覆体2を配置していれば、同様の効果が得られ、信頼性の高い半導体装置100が得られる。   Also in the third embodiment, if the covering 2 is arranged under the same conditions as described in the first or second embodiment, the same effect can be obtained and the highly reliable semiconductor device 100 can be obtained. .

以上のように、本実施の形態3にかかる半導体装置100によれば、半導体装置100の外枠となるケース12を備え、封止体1は、樹脂をケース12の中にポッティングすることによって形成されたものであっても、上記実施の形態1あるいは2と同様に、半導体素子5と封止体1との界面に発生する熱応力が低減され、半導体素子5の端部付近で発生する剥離やクラックが防止でき、絶縁信頼性の高い半導体装置100を得ることができる。   As described above, according to the semiconductor device 100 according to the third embodiment, the case 12 serving as the outer frame of the semiconductor device 100 is provided, and the sealing body 1 is formed by potting resin into the case 12. Even if this is done, as in the first or second embodiment, the thermal stress generated at the interface between the semiconductor element 5 and the sealing body 1 is reduced, and peeling occurs near the end of the semiconductor element 5. Thus, the semiconductor device 100 with high insulation reliability can be obtained.

なお、上記実施の形態1〜3においては、半導体素子5にワイドバンドギャップ半導体材料であるSiCを適用することを想定しているが、一般的に用いられているシリコンを使用してもよいことは言うまでもない。しかし、バンドギャップが大きい、いわゆるワイドギャップ半導体を形成できる炭化ケイ素や、窒化ガリウム系材料又はダイヤモンド又は酸化ガリウム系材料を用いた時の方が、高耐電圧、耐高温動作を要求されるため、本発明の効果が顕著に顕れる。つまり、本発明による効果を発揮することで、ワイドバンドギャップ半導体の特性を活かすことができるようになる。   In the first to third embodiments, it is assumed that SiC, which is a wide band gap semiconductor material, is applied to the semiconductor element 5, but silicon that is generally used may be used. Needless to say. However, when using silicon carbide that can form a so-called wide gap semiconductor with a large band gap, gallium nitride-based material or diamond or gallium oxide-based material, high withstand voltage and high temperature resistant operation are required. The effect of the present invention is noticeable. That is, by exhibiting the effect of the present invention, the characteristics of the wide band gap semiconductor can be utilized.

1:封止体、 1f:封止体表面、 2:被覆体、 2s:内側面、 3:リードフレーム(配線部材)、 4:接合材、 5:半導体素子、 6:ヒートスプレッダ(回路基板)、 6f:回路面、 7:絶縁シート(絶縁層)、 8:金属箔、 9:ボンディングワイヤ(配線部材)、 10:絶縁基板(回路基板)、 10a,10c:導電層、 10b:セラミックス基材(絶縁層)、 10f:回路面、 11:リード端子、 12:ケース、 13:放熱板、 100:半導体装置、
D:被覆体(の内側面)と半導体素子(の側面)との間隔、 t1:回路面上の封止体の本来の厚み(回路面からの高さ)、 t2:被覆体の厚み(回路面からの高さ)、 L:半導体素子の辺の長さ。
1: Sealed body, 1f: Sealed body surface, 2: Covered body, 2s: Inner side surface, 3: Lead frame (wiring member), 4: Bonding material, 5: Semiconductor element, 6: Heat spreader (circuit board), 6f: circuit surface, 7: insulating sheet (insulating layer), 8: metal foil, 9: bonding wire (wiring member), 10: insulating substrate (circuit board), 10a, 10c: conductive layer, 10b: ceramic substrate ( Insulating layer), 10f: circuit surface, 11: lead terminal, 12: case, 13: heat sink, 100: semiconductor device,
D: Distance between cover (inside surface) and semiconductor element (side surface), t1: original thickness of sealing body on circuit surface (height from circuit surface), t2: thickness of cover (circuit) Height from the surface), L: length of the side of the semiconductor element.

Claims (11)

回路基板と、
主面に電極が形成され、前記回路基板の回路面に裏面が接合された半導体素子と、
前記電極に接合された配線部材と、
前記半導体素子を取り囲むように、前記回路面を覆う被覆体と、
前記配線部材の前記電極に接合された部分と前記半導体素子および前記被覆体を包むように封止する封止体と、を備え、
前記被覆体は、前記封止体よりも弾性率が低い材料で形成され、かつ、前記回路面の延在方向において、前記半導体素子から間隔をあけるとともに、前記回路面からの高さ方向において、前記半導体素子の主面の高さ以上で、前記封止体の表面に達しない高さになるように形成されていることを特徴とする半導体装置。
A circuit board;
A semiconductor element having an electrode formed on a main surface and a back surface bonded to a circuit surface of the circuit board;
A wiring member joined to the electrode;
A covering covering the circuit surface so as to surround the semiconductor element;
A portion that is joined to the electrode of the wiring member and a sealing body that seals so as to enclose the semiconductor element and the covering,
The covering body is formed of a material having a lower elastic modulus than the sealing body, and is spaced from the semiconductor element in the extending direction of the circuit surface, and in the height direction from the circuit surface, A semiconductor device, wherein the semiconductor device is formed to have a height not less than a height of a main surface of the semiconductor element and not reaching a surface of the sealing body.
前記被覆体は、前記半導体素子と前記回路面とを接合する接合材に接触しないように形成されていることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the covering is formed so as not to contact a bonding material that bonds the semiconductor element and the circuit surface. 前記被覆体の高さが、前記回路面から前記封止体の表面までの高さの3/4以下に設定されていることを特徴とする請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein a height of the covering body is set to 3/4 or less of a height from the circuit surface to the surface of the sealing body. 前記半導体素子と前記被覆体との間隔が、前記半導体素子の辺の長さの0.2倍以下に設定されていることを特徴とする請求項1から3のいずれか1項に記載の半導体装置。   4. The semiconductor according to claim 1, wherein an interval between the semiconductor element and the covering is set to be 0.2 times or less of a side length of the semiconductor element. 5. apparatus. 前記被覆体が、エポキシ樹脂、シリコーンゲル、シリコーンゴム、メラミン樹脂、フェノール樹脂、ポリアミド、ポリイミド、ポリブチレンテレフタレート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルホン、およびポリフェニレンサルファイドの少なくともいずれかを用いて形成されていることを特徴とする請求項1から4のいずれか1項に記載の半導体装置。   The covering is made of at least one of epoxy resin, silicone gel, silicone rubber, melamine resin, phenol resin, polyamide, polyimide, polybutylene terephthalate, polyether ether ketone, polyether imide, polyether sulfone, and polyphenylene sulfide. The semiconductor device according to claim 1, wherein the semiconductor device is formed by using the semiconductor device. 前記封止体は、トランスファモールド成型によって形成されたものであることを特徴とする請求項1から5のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the sealing body is formed by transfer molding. 当該半導体装置の外枠となるケースを備え、
前記封止体は、樹脂を前記ケースの中にポッティングすることによって形成されたものであることを特徴とする請求項1から5のいずれか1項に記載の半導体装置。
A case serving as an outer frame of the semiconductor device;
The semiconductor device according to claim 1, wherein the sealing body is formed by potting resin into the case.
前記回路基板は、裏面に絶縁層が形成された伝熱板であることを特徴とする請求項1から7のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the circuit board is a heat transfer plate having an insulating layer formed on a back surface. 前記回路基板は、セラミックス基材の少なくとも一方の面に導電層が形成された絶縁基板であることを特徴とする請求項1から7のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the circuit board is an insulating board having a conductive layer formed on at least one surface of a ceramic base material. 前記半導体素子は、ワイドバンドギャップ半導体材料で形成されていることを特徴とする請求項1から9のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor element is formed of a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム系材料、ダイヤモンド、および酸化ガリウム系材料のうちのいずれかであることを特徴とする請求項10に記載の半導体装置。   The semiconductor device according to claim 10, wherein the wide band gap semiconductor material is any one of silicon carbide, a gallium nitride-based material, diamond, and a gallium oxide-based material.
JP2013254682A 2013-12-10 2013-12-10 Semiconductor device Expired - Fee Related JP6041795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254682A JP6041795B2 (en) 2013-12-10 2013-12-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254682A JP6041795B2 (en) 2013-12-10 2013-12-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2015115382A true JP2015115382A (en) 2015-06-22
JP6041795B2 JP6041795B2 (en) 2016-12-14

Family

ID=53528943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254682A Expired - Fee Related JP6041795B2 (en) 2013-12-10 2013-12-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6041795B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041565A (en) * 2015-08-20 2017-02-23 日産自動車株式会社 Semiconductor device
WO2017138402A1 (en) * 2016-02-08 2017-08-17 ローム株式会社 Semiconductor device, power module, method for manufacturing semiconductor device and method for manufacturing power module
US10559478B2 (en) 2016-12-26 2020-02-11 Shindengen Electric Manufacturing Co., Ltd. Method for manufacturing electronic device and electronic device
KR20200145091A (en) * 2019-06-20 2020-12-30 제엠제코(주) Semiconductor package
WO2021141130A1 (en) * 2020-01-10 2021-07-15 株式会社Flosfia Conductive metal oxide film, semiconductor element, and semiconductor device
US11387210B2 (en) 2019-03-15 2022-07-12 Fuji Electric Co., Ltd. Semiconductor module and manufacturing method therefor
DE112021008403T5 (en) 2021-10-25 2024-08-08 Mitsubishi Electric Corporation Semiconductor device, power conversion device and method for manufacturing a semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091472A (en) * 1998-09-10 2000-03-31 Toshiba Corp Semiconductor device
JP2002076197A (en) * 2000-08-24 2002-03-15 Toshiba Corp Board for semiconductor device and semiconductor device
JP2006351737A (en) * 2005-06-15 2006-12-28 Hitachi Ltd Semiconductor power module
JP2009252838A (en) * 2008-04-02 2009-10-29 Mitsubishi Electric Corp Semiconductor device
JP2010199516A (en) * 2009-02-27 2010-09-09 Denso Corp Electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091472A (en) * 1998-09-10 2000-03-31 Toshiba Corp Semiconductor device
JP2002076197A (en) * 2000-08-24 2002-03-15 Toshiba Corp Board for semiconductor device and semiconductor device
JP2006351737A (en) * 2005-06-15 2006-12-28 Hitachi Ltd Semiconductor power module
JP2009252838A (en) * 2008-04-02 2009-10-29 Mitsubishi Electric Corp Semiconductor device
JP2010199516A (en) * 2009-02-27 2010-09-09 Denso Corp Electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041565A (en) * 2015-08-20 2017-02-23 日産自動車株式会社 Semiconductor device
WO2017138402A1 (en) * 2016-02-08 2017-08-17 ローム株式会社 Semiconductor device, power module, method for manufacturing semiconductor device and method for manufacturing power module
US10559478B2 (en) 2016-12-26 2020-02-11 Shindengen Electric Manufacturing Co., Ltd. Method for manufacturing electronic device and electronic device
US11387210B2 (en) 2019-03-15 2022-07-12 Fuji Electric Co., Ltd. Semiconductor module and manufacturing method therefor
KR20200145091A (en) * 2019-06-20 2020-12-30 제엠제코(주) Semiconductor package
KR102199360B1 (en) 2019-06-20 2021-01-06 제엠제코(주) Semiconductor package
WO2021141130A1 (en) * 2020-01-10 2021-07-15 株式会社Flosfia Conductive metal oxide film, semiconductor element, and semiconductor device
DE112021008403T5 (en) 2021-10-25 2024-08-08 Mitsubishi Electric Corporation Semiconductor device, power conversion device and method for manufacturing a semiconductor device

Also Published As

Publication number Publication date
JP6041795B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6041795B2 (en) Semiconductor device
US9171773B2 (en) Semiconductor device
JP6057926B2 (en) Semiconductor device
US10658284B2 (en) Shaped lead terminals for packaging a semiconductor device for electric power
US9754855B2 (en) Semiconductor module having an embedded metal heat dissipation plate
JP2012204366A (en) Semiconductor device
US10163752B2 (en) Semiconductor device
JP6676079B2 (en) Semiconductor device and manufacturing method thereof
CN104620372A (en) Semiconductor device
JP6057927B2 (en) Semiconductor device
JP2012015222A (en) Semiconductor device
JP5665572B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2015170785A (en) Insulation substrate and electric power semiconductor device
JP5921723B2 (en) Semiconductor device
JP6303776B2 (en) Semiconductor device
EP3958305A1 (en) Power semiconductor module arrangement and method for producing the same
JP2014053441A (en) Semiconductor device
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
CN113363231B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2012164796A (en) Power semiconductor device
US11626333B2 (en) Semiconductor device
US20160071777A1 (en) Semiconductor package and semiconductor device
JP2015162645A (en) Semiconductor device and manufacturing method of the same
JP6167825B2 (en) Semiconductor device
US11581229B2 (en) Power semiconductor module with adhesive filled tapered portion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161108

R151 Written notification of patent or utility model registration

Ref document number: 6041795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees