JP2015108185A - Manifold for vacuum evaporation system - Google Patents

Manifold for vacuum evaporation system Download PDF

Info

Publication number
JP2015108185A
JP2015108185A JP2014173380A JP2014173380A JP2015108185A JP 2015108185 A JP2015108185 A JP 2015108185A JP 2014173380 A JP2014173380 A JP 2014173380A JP 2014173380 A JP2014173380 A JP 2014173380A JP 2015108185 A JP2015108185 A JP 2015108185A
Authority
JP
Japan
Prior art keywords
nozzle
substrate
deposited
manifold
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014173380A
Other languages
Japanese (ja)
Other versions
JP6671095B2 (en
Inventor
松本 祐司
Yuji Matsumoto
祐司 松本
西村 剛
Takeshi Nishimura
剛 西村
博之 大工
Hiroyuki Daiku
博之 大工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2014173380A priority Critical patent/JP6671095B2/en
Publication of JP2015108185A publication Critical patent/JP2015108185A/en
Application granted granted Critical
Publication of JP6671095B2 publication Critical patent/JP6671095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the utilization efficiency of a vapor deposition material.SOLUTION: An in-line manifold for a vacuum evaporation system comprises: a plurality of emission nozzles 13 having a nozzle port which are provided on a substrate opposite surface 11a facing a substrate 12; and nozzle rows 14F and 14R protruding with an interval of a predetermined nozzle pitch P between them in a width direction of the substrate 12. The nozzle rows 14F and 14R are arranged with an interval of a predetermined nozzle pitch Lp between them in a movement direction of the substrate 12, and the emission nozzles 13 of the rear nozzle row 14R are arranged in the state of facing the emission nozzles 13 of the front nozzle row 14F in the movement direction of the substrate 12.

Description

本発明は、リニアソースを使用してインライン蒸着を行う、有機EL素子の製造に適した真空蒸着装置用マニホールドに関する。   The present invention relates to a manifold for a vacuum deposition apparatus suitable for manufacturing an organic EL element, which performs in-line deposition using a linear source.

インライン蒸着方式は、一定速度で移動される被蒸着基材に対向して、被蒸着材のリニアソースとなるマニホールドを幅方向に沿って配置し、このマニホールドに設けられた放出用ノズルから蒸発材料を放出して、被蒸着基材の表面に被着させるものである。   In the in-line vapor deposition method, a manifold that is a linear source of the vapor deposition material is arranged along the width direction facing the vapor deposition substrate that is moved at a constant speed, and the evaporation material is discharged from the discharge nozzle provided in this manifold. Is deposited on the surface of the substrate to be deposited.

インライン蒸着方式の真空蒸着装置において、特許文献1には、リニアソース用マニホールドを、蒸着材料を加熱気化させるためのるつぼとし、るつぼの上面に、複数の放出用ノズルをるつぼの長手方向に沿って形成し、各放出用ノズルに蒸着材料を放出するためのノズル口をそれぞれ形成したものが開示されている。   In the in-line deposition type vacuum deposition apparatus, Patent Document 1 discloses that a linear source manifold is a crucible for heating and vaporizing a deposition material, and a plurality of discharge nozzles are provided on the upper surface of the crucible along the longitudinal direction of the crucible. There is disclosed a technique in which nozzle ports for forming and discharging vapor deposition materials are formed in the respective discharge nozzles.

特許第4380319号公報(図1)Japanese Patent No. 4380319 (FIG. 1)

ところで、高価な有機ELなどの蒸着材料は、その利用効率(蒸発量に対する被着量の割合)を高める必要がある。このため、被蒸着基材と放出用ノズルとを接近させ、オリフィスであるノズル口と被蒸着基材との蒸着距離を短くすることが考えられる。蒸着距離を短くした場合、被着膜厚の均一性を確保するために、ノズル口を多くする必要が生じ、放出用ノズルが互いに接近してしまう。また放出用ノズルは、放出量を調整するために、ノズル口が出口を絞るオリフィスとなっているが、ノズル口の口径/放出用ノズル内径の比を一定以上確保しないと、1つの放出用ノズルから放出される蒸着材料の膜厚分布が一定にならない。したがって、ノズル口を接近して設置することは困難である。   By the way, expensive vapor deposition materials, such as organic EL, need to improve the utilization efficiency (ratio of the deposition amount with respect to the evaporation amount). For this reason, it is conceivable that the vapor deposition distance between the nozzle port which is an orifice and the vapor deposition substrate is shortened by bringing the vapor deposition substrate and the discharge nozzle close to each other. When the deposition distance is shortened, it is necessary to increase the number of nozzle openings in order to ensure the uniformity of the deposited film thickness, and the discharge nozzles approach each other. The discharge nozzle is an orifice that restricts the outlet in order to adjust the discharge amount. However, if the ratio of the diameter of the nozzle opening / the inner diameter of the discharge nozzle is not more than a certain value, one discharge nozzle The film thickness distribution of the vapor deposition material released from is not constant. Therefore, it is difficult to install the nozzle ports close to each other.

この対策として、ノズル口の口径を小さくすることが考えられるが、ノズル口の口径が小さくなると、放出流路のコンダクタンスが小さくなる。したがって、所定の蒸着レートを確保するために、るつぼ内の蒸着材料の蒸発温度(加熱温度)を上げなければならず、蒸発温度が上がると、蒸着材料によっては劣化しやすくなり、またランニングコストの増加につながるおそれがある。   As a countermeasure, it is conceivable to reduce the diameter of the nozzle port. However, if the diameter of the nozzle port is reduced, the conductance of the discharge channel is reduced. Therefore, in order to secure a predetermined vapor deposition rate, it is necessary to increase the evaporation temperature (heating temperature) of the vapor deposition material in the crucible. When the evaporation temperature increases, the vapor deposition material tends to deteriorate, and the running cost is reduced. May increase.

本発明は上記問題点を解決して、蒸着材料の利用効率を高めることができる真空蒸着装置用マニホールドを提供することを目的とする。   An object of the present invention is to provide a manifold for a vacuum vapor deposition apparatus that solves the above-described problems and can increase the utilization efficiency of the vapor deposition material.

請求項1記載の発明は、
一定速度で移動される被蒸着基材に対向して配置され、対向面に設けられた複数のノズル口から蒸着材料を放出して、被蒸着基材の表面に被着させるインライン式の真空蒸着装置用マニホールドであって、
単一のマニホールドの被蒸着基材の対向面に、前記ノズル口を有する複数の放出用ノズルを、被蒸着基材の幅方向に所定のノズルピッチをあけて突設したノズル列を設けるとともに、当該ノズル列を被蒸着基材の移動方向に所定間隔をあけて複数列配置し、
被蒸着基材の移動方向の前方のノズル列の放出用ノズルに対して、後方のノズル列の放出用ノズルを、被蒸着基材の移動方向に対向して配置したことを特徴とする。
The invention described in claim 1
In-line vacuum deposition that is placed opposite the substrate to be deposited that is moved at a constant speed, and that deposits the deposition material on the surface of the substrate to be deposited by discharging the deposition material from a plurality of nozzle openings provided on the opposing surface. A manifold for the device,
A plurality of discharge nozzles having the nozzle ports are provided on the opposite surface of the substrate to be vapor-deposited of a single manifold, and a nozzle row is provided with a predetermined nozzle pitch protruding in the width direction of the vapor-deposited substrate, A plurality of the nozzle rows are arranged at predetermined intervals in the moving direction of the substrate to be deposited,
The discharge nozzles in the rear nozzle row are arranged opposite the discharge nozzles in the rear nozzle row in the movement direction of the vapor deposition substrate, with respect to the discharge nozzles in the nozzle row in the front in the movement direction of the vapor deposition substrate.

請求項2記載の発明は、
一定速度で移動される被蒸着基材に対向してマニホールドを配置し、当該マニホールドに設けられた複数のノズル口から蒸着材料を放出して、被蒸着基材の表面に被着させるインライン式の真空蒸着装置用マニホールドであって、
単一のマニホールドの被蒸着基材の対向面に、ノズル口を有する複数の放出用ノズルを、被蒸着基材の幅方向に所定のノズルピッチをあけて突設したノズル列を設けるとともに、当該ノズル列を被蒸着基材の移動方向に所定間隔をあけて複数列配置し、
被蒸着基材の移動方向前方のノズル列の放出用ノズルに対して、後方のノズル列の放出用ノズル位置を、ノズルピッチの1/2をずらした千鳥位置に配置したことを特徴とする。
The invention according to claim 2
A manifold is arranged opposite the substrate to be vapor-deposited that is moved at a constant speed, the vapor deposition material is discharged from a plurality of nozzle ports provided in the manifold, and is deposited on the surface of the substrate to be vapor-deposited. A manifold for a vacuum deposition apparatus,
A plurality of discharge nozzles having nozzle openings are provided on the opposite surface of the substrate to be vapor-deposited of a single manifold, and a nozzle row is provided with a predetermined nozzle pitch projecting in the width direction of the vapor-deposited substrate. A plurality of nozzle rows are arranged at predetermined intervals in the moving direction of the substrate to be deposited,
It is characterized in that the discharge nozzle position of the rear nozzle row is arranged at a staggered position shifted by 1/2 of the nozzle pitch with respect to the discharge nozzle of the nozzle row ahead of the deposition substrate in the moving direction.

請求項3記載の発明は、請求項1または2に記載の構成において、
各ノズル列における放出用ノズルのノズルピッチ:P、ノズル口の口径:D’、ノズル口と被蒸着基材との蒸着距離:Sとすると、
D’<P<1.11×Sとしたことを特徴とする。
The invention according to claim 3 is the configuration according to claim 1 or 2,
Assuming that the nozzle pitch of the discharge nozzle in each nozzle row is P, the diameter of the nozzle port is D ′, and the deposition distance between the nozzle port and the substrate to be deposited is S,
D ′ <P <1.11 × S.

請求項4記載の発明は、請求項1乃至3のいずれかに記載の構成において、
放出用ノズルは、ノズル内径:D(mm)、ノズル長さ:L(mm)、ノズル口の口径:D’(mm)とすると、
L≧9×Dの場合に、D’≦2.7×D2/Lを満足し、
L<9×Dの場合に、D’≦D/3を満足することを特徴とする。
The invention according to claim 4 is the configuration according to any one of claims 1 to 3,
The discharge nozzle has a nozzle inner diameter: D (mm), a nozzle length: L (mm), and a nozzle opening diameter: D ′ (mm).
When L ≧ 9 × D, D ′ ≦ 2.7 × D 2 / L is satisfied,
In the case of L <9 × D, D ′ ≦ D / 3 is satisfied.

請求項5記載の発明は、請求項1乃至4のいずれかに記載の構成において、
被蒸着基材の幅に対応して、複数のノズル列のうちの少なくとも1つのノズル列で、端部側の放出用ノズルのノズル口を閉鎖する閉鎖プラグを取り付けることを特徴とする。
The invention according to claim 5 is the configuration according to any one of claims 1 to 4,
In accordance with the width of the substrate to be deposited, at least one nozzle row of the plurality of nozzle rows is provided with a closing plug for closing the nozzle port of the discharge nozzle on the end side.

請求項1記載の発明によれば、前方および後方のノズル列の各放出用ノズルを、被蒸着基材の移動方向に対向して配置することにより、ノズル列を一列に配置するときと比較して、蒸着レートを向上させることができる。これにより、ノズル口の口径を小さくすることで、放出流路のコンダクタンスが小さくなることがあっても、複数列配置にすることにより、所定の蒸着レートを確保することができる。   According to the first aspect of the present invention, the nozzles for discharge in the front and rear nozzle rows are arranged opposite to the moving direction of the substrate to be deposited, thereby comparing with the case where the nozzle rows are arranged in one row. Thus, the deposition rate can be improved. Thereby, even if the conductance of the discharge flow path may be reduced by reducing the diameter of the nozzle opening, a predetermined vapor deposition rate can be ensured by arranging in a plurality of rows.

請求項2記載の発明によれば、前方および後方のノズル列の各放出用ノズルを千鳥位置に配置することにより、各ノズル列において、放出用ノズルに十分なノズルピッチを確保しても、被蒸着基材の正面視における放出用ノズルを互いに接近して配置することができ、被着膜厚の均一性を向上させることができる。これにより、放出用ノズルと被蒸着基材との蒸着距離を短くすることができ、かつ被着膜厚の均一性を悪化させることなく材料の利用効率を向上させることができる。   According to the second aspect of the invention, by disposing the discharge nozzles of the front and rear nozzle rows at the staggered position, even if a sufficient nozzle pitch is secured for the discharge nozzles in each nozzle row, The discharge nozzles in the front view of the vapor deposition substrate can be disposed close to each other, and the uniformity of the film thickness can be improved. Thereby, the vapor deposition distance between the discharge nozzle and the vapor deposition substrate can be shortened, and the utilization efficiency of the material can be improved without deteriorating the uniformity of the deposited film thickness.

請求項3記載の発明によれば、蒸着距離:Sとすると、各ノズル列における放出用ノズルのノズルピッチ:Pを、ノズル口の口径を超えてS×1.11倍以下とすることにより、製品として必要な±5%以内の膜厚均一性を実現して蒸着することができる。   According to the invention of claim 3, when the deposition distance is S, the nozzle pitch: P of the discharge nozzle in each nozzle row is set to be not more than S × 1.11 times exceeding the nozzle opening diameter, Vapor deposition can be achieved while achieving film thickness uniformity within ± 5% required for products.

請求項4記載の発明によれば、放出用ノズルは、L≧9×Dの場合に、D’≦2.7×D2/Lが満足され、L<9×Dの場合に、D’≦D/3が満足された放出用ノズルを使用することにより、ノズル口から放出される蒸発材料の拡散状態が、cosθ則に従って均一になり、被着膜厚の均一性を向上させることができる。 According to the fourth aspect of the present invention, the discharge nozzle satisfies D ′ ≦ 2.7 × D 2 / L when L ≧ 9 × D, and D ′ when L <9 × D. By using a discharge nozzle satisfying ≦ D / 3, the diffusion state of the evaporation material discharged from the nozzle port becomes uniform according to the cos n θ rule, and the uniformity of the film thickness is improved. Can do.

請求項5記載の発明によれば、被蒸着基材の幅が狭くなる場合に、ノズル列の端部側の放出用ノズルのノズル口に、閉鎖プラグを取り付けて閉鎖することにより、無駄な蒸発材料の放出を抑制でき、ランニングコストを低減することができる。   According to the invention described in claim 5, when the width of the substrate to be deposited is narrowed, useless evaporation by attaching a closure plug to the nozzle port of the discharge nozzle on the end side of the nozzle row and closing it. The release of the material can be suppressed, and the running cost can be reduced.

(a)〜(c)は、本発明に係る真空蒸着装置用マニホールドの実施例1を示し、(a)は平面図、(b)は側面図、(c)は正面図である。(A)-(c) shows Example 1 of the manifold for vacuum evaporation systems which concerns on this invention, (a) is a top view, (b) is a side view, (c) is a front view. 放出用ノズルを示す縦断面図である。It is a longitudinal cross-sectional view which shows the nozzle for discharge | release. (a),(b)は、インライン蒸着方式による蒸着膜厚の説明図で、(a)は放出用ノズルの配置を示す概略平面図、(b)は膜厚を示す正面図である。(A), (b) is explanatory drawing of the vapor deposition film thickness by an in-line vapor deposition system, (a) is a schematic plan view which shows arrangement | positioning of the nozzle for discharge | release, (b) is a front view which shows a film thickness. 放出用ノズルのノズルピッチによる膜厚の変化を示す正面図で、(a)は狭いノズルピッチの場合、(b)は広いノズルピッチの場合を示す。It is a front view which shows the change of the film thickness by the nozzle pitch of the nozzle for discharge, (a) shows the case of a narrow nozzle pitch, (b) shows the case of a wide nozzle pitch. 蒸着距離に対するノズルピッチにおいて、膜厚均一性が±5%未満の範囲を示すグラフである。It is a graph which shows the range whose film thickness uniformity is less than +/- 5% in the nozzle pitch with respect to vapor deposition distance. 放出用ノズルにおいて、(放出用ノズルの長さ:L)×(ノズル口の口径:D’)/(放出用ノズル内径:D)と、cosθ則のn値との関係を示すグラフである。FIG. 5 is a graph showing a relationship between (length of discharge nozzle: L) × (nozzle port diameter: D ′) / (discharge nozzle inner diameter: D) and n value of cos n θ rule in the discharge nozzle. is there. 放出用ノズルにおいて、(ノズル口の口径:D’)/(放出用ノズル内径:D)と、cosθ則のn値との関係を示すグラフである。5 is a graph showing the relationship between (nozzle aperture: D ′) / (discharge nozzle inner diameter: D) and n value of cos n θ rule in the discharge nozzle. 本発明に係る真空蒸着装置用マニホールドの第2実施例を示す平面図である。It is a top view which shows 2nd Example of the manifold for vacuum evaporation systems which concerns on this invention. (a)〜(c)は、基板の幅が変更された時のマニホールドの使用状態を示し、(a)は基板がセンターラインに沿って移動される場合、(b)は基板がサイドラインに沿って移動される場合、(c)は閉鎖プラグ装着状態の放出用ノズルの縦断面を示す。(A)-(c) shows the usage state of the manifold when the width of the substrate is changed, (a) is when the substrate is moved along the center line, and (b) is when the substrate is moved to the side line. When moved along, (c) shows a longitudinal section of the discharge nozzle with the closure plug attached. 本発明に係る真空蒸着装置用マニホールドの第3実施例を示す平面図である。It is a top view which shows 3rd Example of the manifold for vacuum evaporation systems which concerns on this invention.

[実施例1]
以下、本発明に係るインライン蒸着方式の真空蒸着装置用マニホールドの実施例1を図1〜図4に基づいて説明する。
[Example 1]
A first embodiment of a manifold for an in-line vapor deposition apparatus according to the present invention will be described below with reference to FIGS.

図1,図2に示すように、このマニホールド11は、真空状態に保持された真空蒸着室内で、一定速度で移動される基板(被蒸着基材)12の被蒸着面に対向して配置されるものである。マニホールド12の対向面11aに、複数の放出用ノズル13が幅方向に所定のノズルピッチPで突設されたノズル列14F,14Rが、基板12の移動方向の前方および後方にそれぞれ設けられている。ここで、ノズルピッチPは、図2に示すように、各ノズル列14F,14Rで隣接する放出用ノズル13のノズル口15とノズル口15との距離をいう。   As shown in FIGS. 1 and 2, the manifold 11 is arranged in a vacuum deposition chamber kept in a vacuum state so as to face a deposition surface of a substrate (deposition substrate) 12 that is moved at a constant speed. Is. On the opposing surface 11a of the manifold 12, nozzle rows 14F and 14R in which a plurality of discharge nozzles 13 project at a predetermined nozzle pitch P in the width direction are provided at the front and rear in the movement direction of the substrate 12, respectively. . Here, as shown in FIG. 2, the nozzle pitch P refers to the distance between the nozzle ports 15 and 15 of the discharge nozzles 13 adjacent to each other in the nozzle rows 14F and 14R.

前方および後方のノズル列14F,14Rの放出用ノズル13は、基板12の移動方向に対向して配置されている。これら放出用ノズル13の先端面にノズル口15がそれぞれ形成されている。また、るつぼ(図示せず)で蒸着材料を加熱蒸発して得られた蒸発材料を、マニホールド11内に導入するために、マニホールド11の反対向面に材料導入口16が形成され、内径dの材料導入管17が接続されている。   The discharge nozzles 13 of the front and rear nozzle rows 14F and 14R are arranged facing the movement direction of the substrate 12. Nozzle ports 15 are respectively formed on the front end surfaces of the discharge nozzles 13. In addition, in order to introduce the evaporation material obtained by heating and evaporating the vapor deposition material with a crucible (not shown) into the manifold 11, a material introduction port 16 is formed on the opposite surface of the manifold 11, and the inner diameter d is increased. A material introduction pipe 17 is connected.

前方および後方のノズル列14F,14Rは、材料導入口16に対して所定の距離をあけて配置されており、さらに基板12の移動方向にノズル列間隔Lpをあけて配置されている。前後のノズル列14F,14Rと材料導入口16との距離は、材料導入口16から供給された蒸発材料が不均一に放出用ノズル13に導入されないためのものである。また前後のノズル列14F,14Rで両端部の放出用ノズル13は、幅:Wsの基板12の両縁部に対応する位置に配置されている。   The front and rear nozzle rows 14F and 14R are arranged with a predetermined distance from the material introduction port 16, and are further arranged with a nozzle row interval Lp in the moving direction of the substrate 12. The distance between the front and rear nozzle rows 14F and 14R and the material introduction port 16 is that the evaporation material supplied from the material introduction port 16 is not introduced into the discharge nozzle 13 in a non-uniform manner. Further, the discharge nozzles 13 at both ends of the front and rear nozzle rows 14F and 14R are arranged at positions corresponding to both edges of the substrate 12 having a width: Ws.

マニホールド11は、材料導入口16から導入された蒸発材料が均一に拡散可能な内部空間を有し、前後長さLm、幅Wm、高さHmの直方体に形成され、基板対向面11aには、基板12からの輻射熱を遮る冷却板(図示せず)が設置され、左右側面および前後側面に、蒸発材料の付着を防止する加熱ヒータ(図示せず)が設けられている。そして、ノズル口15に対して基板12が所定の蒸着距離Sをあけて移動される。18はマニホールド11の前側面に設けられた圧力検出用ポート、19はマニホールド11の後側面に設けられた蒸着レート検出用ポートである。   The manifold 11 has an internal space in which the evaporation material introduced from the material introduction port 16 can be uniformly diffused, and is formed in a rectangular parallelepiped having a longitudinal length Lm, a width Wm, and a height Hm. Cooling plates (not shown) that block radiant heat from the substrate 12 are installed, and heaters (not shown) that prevent the evaporation material from adhering are provided on the left and right side surfaces and the front and rear side surfaces. Then, the substrate 12 is moved with a predetermined deposition distance S with respect to the nozzle port 15. Reference numeral 18 denotes a pressure detection port provided on the front side surface of the manifold 11, and 19 denotes a vapor deposition rate detection port provided on the rear side surface of the manifold 11.

放出用ノズル13は、図2に示すように、マニホールド11の基板対向面11aに円筒状のノズル本体13aが立設され、ノズル本体13aの先端面に、オリフィスを形成するためにノズル口15を有する端板13bが取り付けられている。   As shown in FIG. 2, the discharge nozzle 13 has a cylindrical nozzle body 13a erected on the substrate facing surface 11a of the manifold 11, and a nozzle port 15 is formed on the tip surface of the nozzle body 13a to form an orifice. The end plate 13b which has is attached.

各ノズル列14F,14Rにおける前記放出用ノズル13のノズルピッチPは、ノズル口15の口径:D’(mm)とすると、下記の(1)式を満足するように構成されている。   The nozzle pitch P of the discharge nozzles 13 in each of the nozzle rows 14F and 14R is configured to satisfy the following formula (1) when the diameter of the nozzle port 15 is D ′ (mm).

D’<P<1.11×S …(1)式
すなわち、インライン式のマニホールド11の放出用ノズル13配置が、図3(a)に示すように、任意の基板幅をもつ被蒸着基板12に対して(理論上)無限個数の列を成し、全ての放出用ノズル13からの噴出流量が一定であると仮定するとき、この被蒸着基板12の膜厚均一性は放出用ノズル13のノズルピッチPに依存する。図3(b)に示すように、被蒸着基板12に対する放出用ノズル13の配列直上の膜厚分布は、放出用ノズル13の直上に蒸着される積算膜厚が最も厚く、隣接する放出用ノズル13との中間点(1/2P)の直上が最も薄くなる。なお、ここでD’<Pであることから、スリット状のノズル口は含まない。そして、図4(a)に示すように、ノズルピッチPが小さいと、最大膜厚と最小膜厚との膜厚差が小さくなり、図4(b)に示すように、ノズルピッチPが大きいと、最大膜厚と最小膜厚との膜厚差が大きくなる。膜厚均一性は、最大膜厚:dmax、最小膜厚:dminとした場合、下記の(2)式で表される。
D ′ <P <1.11 × S (1) That is, the arrangement of the discharge nozzle 13 of the inline manifold 11 is as shown in FIG. (Theoretically) forming an infinite number of rows and assuming that the ejection flow rate from all the discharge nozzles 13 is constant, the film thickness uniformity of the deposition target substrate 12 is that of the discharge nozzles 13. Depends on the nozzle pitch P. As shown in FIG. 3B, the film thickness distribution immediately above the arrangement of the discharge nozzles 13 with respect to the deposition target substrate 12 is the thickest integrated film thickness deposited immediately above the discharge nozzles 13, and adjacent discharge nozzles. 13 is the thinnest immediately above the midpoint (1 / 2P) with respect to 13. In addition, since it is D '<P here, a slit-shaped nozzle port is not included. As shown in FIG. 4A, when the nozzle pitch P is small, the difference in film thickness between the maximum film thickness and the minimum film thickness is small, and as shown in FIG. 4B, the nozzle pitch P is large. And the film thickness difference between the maximum film thickness and the minimum film thickness becomes large. The film thickness uniformity is expressed by the following equation (2) when the maximum film thickness: dmax and the minimum film thickness: dmin.

膜厚均一性=[(dmax−dmin)/(dmax+dmin)]×100(%)
…(2)式
Film thickness uniformity = [(dmax−dmin) / (dmax + dmin)] × 100 (%)
... (2) formula

このように膜厚均一性は、最大膜厚と最小膜厚に依存するため、ノズルピッチPに依存する。そして、この膜厚均一性を±5%以内とすることで製品の品質を保持することができる。   Thus, since the film thickness uniformity depends on the maximum film thickness and the minimum film thickness, it depends on the nozzle pitch P. The product quality can be maintained by keeping the film thickness uniformity within ± 5%.

図5は、放出用ノズル13の個数を無制限、すべての放出用ノズル13から同一量の蒸着材料を放出した場合、蒸着距離Sで、膜厚均一性が±5%未満となるノズルピッチPの最大値を、シミュレーションにより表したグラフを示す。   FIG. 5 shows an example in which the number of discharge nozzles 13 is unlimited, and when the same amount of vapor deposition material is discharged from all the discharge nozzles 13, the film thickness uniformity is less than ± 5% at the vapor deposition distance S. The graph which represented the maximum value by simulation is shown.

図5によれば、(1)式に示すように、ノズルピッチPを、D‘を超えて蒸着距離Sの1.11倍未満とすることにより、膜厚均一性を、製品として実用性のある±5%以内とすることができる。   According to FIG. 5, as shown in the equation (1), by setting the nozzle pitch P to be greater than D ′ and less than 1.11 times the deposition distance S, the film thickness uniformity is practical as a product. It can be within a certain ± 5%.

ここで、ノズルピッチPは小さいほど膜厚の均一性は向上されるが、材料の利用効率が低下する。このため、P≦D‘となる連続状、すなわちスリット状の放出用ノズル13は含まない。また各ノズル列14F,14Rでは、機械構造上、ノズルピッチPは、20mm以下は望ましくない。なお、後述する実施例2のように、ノズル列14F,14Rの放出用ノズル13を千鳥配置とした場合、被蒸着基板12を正面視で見た場合、限りなく0に接近させることができ、これにより膜厚均一性と材料の利用効率を両立させることができる。   Here, as the nozzle pitch P is smaller, the uniformity of the film thickness is improved, but the material utilization efficiency is lowered. For this reason, the continuous, ie, slit-shaped discharge nozzles 13 satisfying P ≦ D ′ are not included. In each of the nozzle rows 14F and 14R, the nozzle pitch P is not desirably 20 mm or less because of the mechanical structure. When the discharge nozzles 13 of the nozzle rows 14F and 14R are arranged in a staggered manner as in Example 2 to be described later, when the deposition target substrate 12 is viewed from the front, it can be brought close to 0 as much as possible. This makes it possible to achieve both film thickness uniformity and material utilization efficiency.

このように、ノズルピッチPが小さいほど、膜厚の均一性は向上するが、材料の利用効率が低下する。膜厚の均一性を±5%以内の近傍とするのであれば、ノズルピッチPは広くして材料の利用効率を高めることができる。   Thus, the smaller the nozzle pitch P, the better the film thickness uniformity, but the material utilization efficiency decreases. If the uniformity of the film thickness is in the vicinity of ± 5%, the nozzle pitch P can be widened to increase the material utilization efficiency.

ここで、放出用ノズル13を、ノズル本体13aの内径:D(mm)、ノズル長さ:L(mm)、ノズル口15の口径:D’(mm)とした場合、下記(3)式を満足するように構成されている。   Here, when the discharge nozzle 13 has an inner diameter of the nozzle body 13a: D (mm), a nozzle length: L (mm), and a diameter of the nozzle port 15: D ′ (mm), the following equation (3) is obtained. It is configured to satisfy.

L≧9×Dの場合、D’≦2.7×D2/L
L<9×Dの場合、D’≦D/3 …(3)式
上記(3)式は、有機EL膜を形成する有機材料に対して得られる。上記(3)式を満たす場合[図6(L≧9×Dの場合)でLD’/D2が0を超え2.7以下の領域、または図7(L<9×Dの場合)でD’/Dが0を超え1/3以下の領域]において、各放出用ノズル13のノズル口15から基板12に放出される蒸発材料は、cosθ則に従う、すなわちcosθ曲線に近似される。この場合、放出用ノズル13のノズル口15から放出された蒸発材料は、基板12の表面(被蒸着面)に十分な広がりを持って蒸着されるので、膜厚の均一性を高めることができる。
When L ≧ 9 × D, D ′ ≦ 2.7 × D 2 / L
In the case of L <9 × D, D ′ ≦ D / 3 (3) Equation (3) is obtained for the organic material forming the organic EL film. When the above equation (3) is satisfied [FIG. 6 (when L ≧ 9 × D), LD ′ / D 2 is greater than 0 and less than or equal to 2.7, or FIG. 7 (when L <9 × D) In the region where D ′ / D is greater than 0 and equal to or less than 1/3], the evaporation material discharged from the nozzle port 15 of each discharge nozzle 13 to the substrate 12 follows the cos n θ rule, ie, approximates the cos n θ curve. Is done. In this case, the evaporation material discharged from the nozzle port 15 of the discharge nozzle 13 is deposited with a sufficient spread on the surface (deposition surface) of the substrate 12, so that the uniformity of the film thickness can be improved. .

図6に示すように、L≧9×Dの場合、D’×L/D2が0を超え2.7以下の領域では、n値は約4.00〜4.25である。また図7に示すように、L<9×Dの場合、D’/Dが0を超え1/3以下の領域では、n値は約4.05〜4.25である。cosθ則でn値が小さいほど、蒸発材料は基板12の表面に広がって蒸着し、膜厚の均一性が高められる。さらに最適には、n値が約4.05〜4.10が好ましく、この場合、図6に示すL≧9×Dの場合、D’×L/D2が1.1を超え1.8の領域であり、図7に示すL<9×Dの場合、D’/Dが0を超え0.18の領域である。 As shown in FIG. 6, when L ≧ 9 × D, the n value is about 4.00 to 4.25 in the region where D ′ × L / D 2 exceeds 0 and is equal to or less than 2.7. As shown in FIG. 7, when L <9 × D, the n value is about 4.05 to 4.25 in the region where D ′ / D is greater than 0 and equal to or less than 1/3. As the value of n in the cos n θ rule is smaller, the evaporation material spreads on the surface of the substrate 12 and is deposited, and the uniformity of the film thickness is improved. More preferably, the n value is preferably about 4.05 to 4.10. In this case, when L ≧ 9 × D shown in FIG. 6, D ′ × L / D 2 exceeds 1.1 and is 1.8. In the case of L <9 × D shown in FIG. 7, D ′ / D exceeds 0 and is 0.18.

ここで、図6に示すように、L≧9×Dの場合、D’×L/D2が2.7を超えると、または図7に示すように、L<9×Dの場合、D’/Dが1/3を超えると、各放出用ノズル13のノズル口15から基板12に放出される蒸発材料は、cosnθ則に従わず、基板12に均一に蒸着されない。その結果、基板12のノズル口15に対向する部分の膜厚が過度に厚くなり、均一性が阻害されることになる。なお、ここでノズル口15の口径D’は、加工精度の観点から、たとえば1mm以上に設定される。 Here, as shown in FIG. 6, if L ≧ 9 × D, if D ′ × L / D 2 exceeds 2.7, or if L <9 × D, as shown in FIG. When '/ D exceeds 1/3, the evaporation material discharged from the nozzle port 15 of each discharge nozzle 13 to the substrate 12 does not follow the cos n θ rule and is not uniformly deposited on the substrate 12. As a result, the thickness of the portion of the substrate 12 facing the nozzle opening 15 becomes excessively thick, and the uniformity is hindered. Here, the diameter D ′ of the nozzle port 15 is set to, for example, 1 mm or more from the viewpoint of processing accuracy.

上記実施例1によれば、基板12の移動方向の前方および後方に、所定のノズルピッチPで放出用ノズル13を配置したノズル列14F,14Rを設け、各放出用ノズル13を、基板12の移動方向に対向して配置することにより、蒸着速度を向上させることができる。これにより、ノズル口15の口径を小さくし、放出流路のコンダクタンスが小さくなったとしても、複数列配置にすることで所定の蒸着レートを確保することができる。   According to the first embodiment, the nozzle rows 14F and 14R in which the discharge nozzles 13 are arranged at a predetermined nozzle pitch P are provided in front and rear in the movement direction of the substrate 12, and each discharge nozzle 13 is connected to the substrate 12 by a predetermined pitch P. By disposing it so as to face the moving direction, the deposition rate can be improved. Thereby, even if the diameter of the nozzle port 15 is reduced and the conductance of the discharge channel is reduced, a predetermined vapor deposition rate can be ensured by arranging in a plurality of rows.

また、各ノズル列14F,14Rにおける放出用ノズル13のノズルピッチPを、ノズル口15の口径D’を超えて蒸着距離Sの1.11倍未満とすることにより、膜厚均一性を、製品として必要な±5%以内とすることができる。   Further, by setting the nozzle pitch P of the discharge nozzles 13 in each of the nozzle rows 14F and 14R to be less than 1.11 times the deposition distance S beyond the diameter D ′ of the nozzle port 15, the film thickness uniformity can be improved. As necessary, it can be within ± 5%.

さらに、各放出用ノズル13において、L≧9×Dの場合に、D’≦2.7×D2/Lが満足され、L<9×Dの場合に、D’≦D/3が満足された放出用ノズルを使用することにより、ノズル口15から放出される蒸発材料の拡散状態が、cosnθ則に従って均一になり、被着膜厚の均一性を向上させることができる。 Further, in each discharge nozzle 13, D ′ ≦ 2.7 × D 2 / L is satisfied when L ≧ 9 × D, and D ′ ≦ D / 3 is satisfied when L <9 × D. By using the discharge nozzle thus formed, the diffusion state of the evaporation material discharged from the nozzle port 15 becomes uniform according to the cos n θ rule, and the uniformity of the film thickness can be improved.

[実施例2]
図8,図9は、真空蒸着装置用マニホールドの実施例2を示している。この実施例2では、実施例1と同一部材には同一符号を付して、説明を省略する。
[Example 2]
8 and 9 show a second embodiment of a manifold for a vacuum vapor deposition apparatus. In the second embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

単一のマニホールド11の基板12の対向面に、ノズル口15を有する複数の放出用ノズル13が幅方向に所定のノズルピッチPで突設されたノズル列14F,14Rが、基板12の移動方向の前方および後方にそれぞれ設けられている。これら前方および後方のノズル列14F,14Rの放出用ノズル13は、前方のノズル列14Fの放出用ノズル13に対して後方のノズル列14Fの放出用ノズル13が、1/2P位置ずれした千鳥位置に配置されている。   Nozzle rows 14F and 14R in which a plurality of discharge nozzles 13 having nozzle openings 15 project at a predetermined nozzle pitch P in the width direction on the opposing surface of the substrate 12 of the single manifold 11 are the movement direction of the substrate 12 Are provided at the front and the rear, respectively. The discharge nozzles 13 of the front and rear nozzle rows 14F and 14R are staggered positions in which the discharge nozzles 13 of the rear nozzle row 14F are displaced by 1 / 2P relative to the discharge nozzles 13 of the front nozzle row 14F. Is arranged.

放出用ノズル13の構成は、実施例1と同様である。
図9は、実施例2において、通常時の幅:Wsの基板12に対して、狭い幅Wnの基板12sを成膜する時の使用状態を示す。このような場合、ノズル列14F,14Rの端部の放出用ノズル13Eから放出される蒸発材料が無駄に放出されるため、図9(c)に示すように、端部の放出用ノズル13Eに閉鎖プラグ21を装着し、蒸発材料を放出しないで蒸着を行う。
The configuration of the discharge nozzle 13 is the same as that of the first embodiment.
FIG. 9 shows a use state when a substrate 12s having a narrow width Wn is formed on the substrate 12 having a normal width Ws in Example 2. In such a case, since the evaporation material discharged from the discharge nozzles 13E at the ends of the nozzle rows 14F and 14R is discharged wastefully, the discharge nozzles 13E at the ends are discharged as shown in FIG. 9C. The closure plug 21 is attached, and vapor deposition is performed without releasing the evaporation material.

この実施例2では、前方のノズル列14Fの放出用ノズル13の設置数に対して、後方のノズル列14Fの放出用ノズル13が1個少ない。たとえば図9(a)に示すように、センターラインCLを基準として基板12sを移動させる場合には、放出用ノズル13の設置数が多い前方のノズル列14Fで両端側の放出用ノズル13Eに閉鎖プラグ21を装着し、蒸発材料を放出させないで、蒸着を行う。またサイドラインSLを基準として基板12sを移動させる場合には、前方のノズル列14FでサイドラインSLと反対側の2個の放出用ノズル13Eと、後方のノズル列14FでサイドラインSLと反対側の1個の放出用ノズル13Eに閉鎖プラグ21を装着し、蒸発材料を放出させないで、蒸着を行う。これにより、幅の狭い基板12sを蒸着する場合であっても、無駄な蒸発材料の放出を無くして、蒸着材料の利用効率を向上させることができる。もちろん、この閉鎖プラグ21を実施例1の放出用ノズル13に装着することもできる。   In the second embodiment, the number of discharge nozzles 13 in the rear nozzle row 14F is one less than the number of discharge nozzles 13 in the front nozzle row 14F. For example, as shown in FIG. 9A, when the substrate 12s is moved with respect to the center line CL, the discharge nozzles 13E on the both ends are closed by the front nozzle row 14F where the number of the discharge nozzles 13 is large. The plug 21 is attached, and vapor deposition is performed without releasing the evaporation material. When the substrate 12s is moved with reference to the side line SL, the two nozzles 13E for discharge on the opposite side to the side line SL in the front nozzle row 14F and the side opposite to the side line SL in the rear nozzle row 14F are used. The closing plug 21 is attached to one of the discharge nozzles 13E, and vapor deposition is performed without discharging the evaporation material. Thereby, even when the substrate 12s having a narrow width is vapor-deposited, useless evaporation material can be eliminated and the utilization efficiency of the vapor-deposition material can be improved. Of course, the closing plug 21 can be attached to the discharge nozzle 13 of the first embodiment.

上記実施例2によれば、基板12の移動方向の前方および後方に、所定のノズルピッチPで放出用ノズル13を配置したノズル列14F,14Rを設け、各放出用ノズル13を、幅方向に位置ずれした千鳥状に配置することにより、放出用ノズル13を互いに近接させることなく多くのノズル口15を設けることができる。これにより、ノズル口15と基板12との蒸着距離を短くすることができ、かつ被着膜厚の均一性を保持できて材料の利用効率を向上させることができる。   According to the second embodiment, the nozzle rows 14F and 14R in which the discharge nozzles 13 are arranged at a predetermined nozzle pitch P are provided in front and rear in the movement direction of the substrate 12, and each discharge nozzle 13 is arranged in the width direction. By disposing the nozzles 15 in a staggered position, a large number of nozzle openings 15 can be provided without bringing the discharge nozzles 13 close to each other. Thereby, the vapor deposition distance between the nozzle port 15 and the substrate 12 can be shortened, and the uniformity of the deposited film thickness can be maintained, so that the utilization efficiency of the material can be improved.

また、幅の狭い基板12sを蒸着する場合には、ノズル列14F,14Rの端部側の放出用ノズル13Eに閉鎖プラグ21を装着することで、蒸発材料の無駄な放出を無くして、蒸発材料の利用効率を向上させることができる。   Further, when vapor-depositing a substrate 12s having a narrow width, by attaching a closing plug 21 to the discharge nozzle 13E on the end side of the nozzle rows 14F and 14R, wasteful evaporation of the evaporation material is eliminated, and the evaporation material The utilization efficiency can be improved.

[実施例3]
図10は、真空蒸着装置用マニホールドの実施例3を示す。先の実施例1,2と同一部材には同一符号を付して説明を省略する。
[Example 3]
FIG. 10 shows Example 3 of a manifold for a vacuum evaporation apparatus. The same members as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.

このマニホールド11の基板対向面11aに、前方および後方のノズル列14F,14Rを配置するとともに、これらノズル列14F,14Rをそれぞれ前後2列14Ff,14Frとしたものである。そして、各前列14Ffの放出用ノズル13は、後列14Frの放出用ノズル13に対して、基板12の移動方向に1/2Pずらして千鳥位置に配置されている。   The front and rear nozzle rows 14F and 14R are arranged on the substrate facing surface 11a of the manifold 11, and the nozzle rows 14F and 14R are formed as two front and rear rows 14Ff and 14Fr, respectively. The discharge nozzles 13 of each front row 14Ff are arranged at a staggered position with a shift of 1 / 2P in the movement direction of the substrate 12 with respect to the discharge nozzles 13 of the rear row 14Fr.

上記実施例3によれば、実施例1および実施例2と同様の作用効果を奏することができる。   According to the said Example 3, there can exist an effect similar to Example 1 and Example 2. FIG.

11 マニホールド
11a 基板対向面
12 基板(被蒸着基材)
13 放出用ノズル
13a ノズル本体
13b 端板
14F 前方のノズル列
14R 後方のノズル列
15 ノズル口
16 材料導入口
17 材料導入管
18 圧力検出ポート
19 蒸着レート検出用ポート
21 閉鎖プラグ
Lp ノズル列ピッチ
D ノズル本体の内径
D’ ノズル口の口径
L ノズル本体の長さ
11 Manifold 11a Substrate facing surface 12 Substrate (deposition base material)
13 Nozzle for discharge 13a Nozzle body 13b End plate 14F Front nozzle row 14R Rear nozzle row 15 Nozzle port 16 Material introduction port 17 Material introduction tube 18 Pressure detection port 19 Deposition rate detection port 21 Closed plug Lp Nozzle row pitch D Nozzle Inner diameter D 'Nozzle port diameter L Nozzle body length

Claims (5)

一定速度で移動される被蒸着基材に対向して配置され、対向面に設けられた複数のノズル口から蒸着材料を放出して、被蒸着基材の表面に被着させるインライン式の真空蒸着装置用マニホールドであって、
単一のマニホールドの被蒸着基材の対向面に、前記ノズル口を有する複数の放出用ノズルを、被蒸着基材の幅方向に所定のノズルピッチをあけて突設したノズル列を設けるとともに、当該ノズル列を被蒸着基材の移動方向に所定間隔をあけて複数列配置し、
被蒸着基材の移動方向の前方のノズル列の放出用ノズル及び後方のノズル列の放出用ノズルを、被蒸着基材の移動方向に対向して配置した
ことを特徴とする真空蒸着装置用マニホールド。
In-line vacuum deposition that is placed opposite the substrate to be deposited that is moved at a constant speed, and that deposits the deposition material on the surface of the substrate to be deposited by discharging the deposition material from a plurality of nozzle openings provided on the opposing surface. A manifold for the device,
A plurality of discharge nozzles having the nozzle ports are provided on the opposite surface of the substrate to be vapor-deposited of a single manifold, and a nozzle row is provided with a predetermined nozzle pitch protruding in the width direction of the vapor-deposited substrate, A plurality of the nozzle rows are arranged at predetermined intervals in the moving direction of the substrate to be deposited,
A manifold for a vacuum vapor deposition apparatus, characterized in that a discharge nozzle of a nozzle row in front of a deposition substrate in a moving direction and a discharge nozzle of a nozzle row in the rear are arranged facing the movement direction of the deposition substrate. .
一定速度で移動される被蒸着基材に対向して配置され、対向面に設けられた複数のノズル口から蒸着材料を放出して、被蒸着基材の表面に被着させるインライン式の真空蒸着装置用マニホールドであって、
単一のマニホールドの被蒸着基材の対向面に、ノズル口を有する複数の放出用ノズルを、被蒸着基材の幅方向に所定のノズルピッチをあけて突設したノズル列を設けるとともに、当該ノズル列を被蒸着基材の移動方向に所定間隔をあけて複数列配置し、
被蒸着基材の移動方向の前方のノズル列の放出用ノズルに対して、後方のノズル列の放出用ノズル位置を、ノズルピッチの1/2ずらした千鳥位置に配置した
ことを特徴とする真空蒸着装置用マニホールド。
In-line vacuum deposition that is placed opposite the substrate to be deposited that is moved at a constant speed, and that deposits the deposition material on the surface of the substrate to be deposited by discharging the deposition material from a plurality of nozzle openings provided on the opposing surface. A manifold for the device,
A plurality of discharge nozzles having nozzle openings are provided on the opposite surface of the substrate to be vapor-deposited of a single manifold, and a nozzle row is provided with a predetermined nozzle pitch projecting in the width direction of the vapor-deposited substrate. A plurality of nozzle rows are arranged at predetermined intervals in the moving direction of the substrate to be deposited,
The vacuum is characterized in that the discharge nozzle position of the rear nozzle row is arranged at a staggered position shifted by 1/2 of the nozzle pitch with respect to the discharge nozzle of the front nozzle row in the moving direction of the substrate to be deposited. Manifold for vapor deposition equipment.
各ノズル列における放出用ノズルのノズルピッチ:P、ノズル口の口径:D’、ノズル口と被蒸着基材との蒸着距離:Sとすると、
D’<P<1.11×Sとした
ことを特徴とする請求項1または2記載の真空蒸着装置用マニホールド。
Assuming that the nozzle pitch of the discharge nozzle in each nozzle row is P, the diameter of the nozzle port is D ′, and the deposition distance between the nozzle port and the substrate to be deposited is S,
The manifold for a vacuum evaporation apparatus according to claim 1, wherein D ′ <P <1.11 × S.
放出用ノズルは、ノズル内径:D(mm)、ノズル長さ:L(mm)、ノズル口の口径:D’(mm)とすると、
L≧9×Dの場合に、D’≦2.7×D2/Lを満足し、
L<9×Dの場合に、D’≦D/3を満足する
ことを特徴とする請求項1乃至3のいずれかに記載の真空蒸着装置用マニホールド。
The discharge nozzle has a nozzle inner diameter: D (mm), a nozzle length: L (mm), and a nozzle opening diameter: D ′ (mm).
When L ≧ 9 × D, D ′ ≦ 2.7 × D 2 / L is satisfied,
4. The vacuum deposition apparatus manifold according to claim 1, wherein D ′ ≦ D / 3 is satisfied when L <9 × D. 5.
被蒸着基材の幅に対応して、複数のノズル列のうちの少なくとも1つのノズル列で、端部側の放出用ノズルのノズル口を閉鎖する閉鎖プラグを取り付けた
ことを特徴とする請求項1乃至4のいずれかに記載の真空蒸着装置用マニホールド。
The closure plug for closing the nozzle port of the discharge nozzle on the end side is attached to at least one of the plurality of nozzle rows corresponding to the width of the substrate to be deposited. The manifold for vacuum evaporation apparatus in any one of 1-4.
JP2014173380A 2013-10-24 2014-08-28 Manifold for vacuum deposition equipment Active JP6671095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014173380A JP6671095B2 (en) 2013-10-24 2014-08-28 Manifold for vacuum deposition equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013220694 2013-10-24
JP2013220694 2013-10-24
JP2014173380A JP6671095B2 (en) 2013-10-24 2014-08-28 Manifold for vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JP2015108185A true JP2015108185A (en) 2015-06-11
JP6671095B2 JP6671095B2 (en) 2020-03-25

Family

ID=53078963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014173380A Active JP6671095B2 (en) 2013-10-24 2014-08-28 Manifold for vacuum deposition equipment

Country Status (4)

Country Link
JP (1) JP6671095B2 (en)
KR (1) KR102192500B1 (en)
CN (1) CN104561903B (en)
TW (1) TWI661067B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018314A1 (en) * 2015-07-28 2017-02-02 シャープ株式会社 Vapor deposition source, vapor deposition apparatus and method for producing vapor-deposited film
JP2020153019A (en) * 2020-06-25 2020-09-24 キヤノントッキ株式会社 Vapor deposition apparatus and evaporation source
WO2021040011A1 (en) 2019-08-30 2021-03-04 国立大学法人筑波大学 Fruit-bearing plant exhibiting high temperature resistance, high yield, and parthenocarpy
WO2022002349A1 (en) * 2020-06-29 2022-01-06 Applied Materials, Inc. Nozzle assembly, evaporation source, deposition system and method for depositing an evaporated material onto a substrate
WO2022026061A1 (en) * 2020-07-31 2022-02-03 Applied Materials, Inc. Evaporation source, vapor deposition apparatus, and method for coating a substrate in a vacuum chamber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367988B1 (en) * 2017-07-31 2022-02-28 삼성디스플레이 주식회사 Apparatus and method for manufacturing a display apparatus
CN108570645B (en) * 2017-11-30 2023-09-29 上海微电子装备(集团)股份有限公司 Vacuum evaporation device, evaporation head thereof and vacuum evaporation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225725A (en) * 2005-02-18 2006-08-31 Hitachi Zosen Corp Vapor deposition apparatus
JP2010270363A (en) * 2009-05-21 2010-12-02 Ulvac Japan Ltd Vacuum deposition device
WO2013125598A1 (en) * 2012-02-23 2013-08-29 旭硝子株式会社 Device and method for producing fluorine-containing organosilicon compound thin film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI252706B (en) * 2002-09-05 2006-04-01 Sanyo Electric Co Manufacturing method of organic electroluminescent display device
JP4380319B2 (en) 2002-12-19 2009-12-09 ソニー株式会社 Vapor deposition apparatus and organic electroluminescence element manufacturing method
TWI263690B (en) * 2004-01-06 2006-10-11 Ind Tech Res Inst Evaporation coating apparatus
JP4476019B2 (en) * 2004-05-20 2010-06-09 東北パイオニア株式会社 Deposition source, vacuum film formation apparatus, organic EL element manufacturing method
JP4894193B2 (en) * 2005-08-09 2012-03-14 ソニー株式会社 Vapor deposition apparatus and display device manufacturing system
JP4768584B2 (en) * 2006-11-16 2011-09-07 財団法人山形県産業技術振興機構 Evaporation source and vacuum deposition apparatus using the same
JP2008274322A (en) * 2007-04-26 2008-11-13 Sony Corp Vapor deposition apparatus
WO2009034916A1 (en) * 2007-09-10 2009-03-19 Ulvac, Inc. Vapor emission device, organic thin-film vapor deposition apparatus and method of organic thin-film vapor deposition
CN201751427U (en) * 2010-03-25 2011-02-23 彩虹显示器件股份有限公司 Linear evaporation source
TW201250024A (en) * 2011-03-03 2012-12-16 Tokyo Electron Ltd Vapor-deposition device, vapor-deposition method
JP5492120B2 (en) * 2011-03-08 2014-05-14 株式会社日立ハイテクノロジーズ Evaporation source and vapor deposition equipment
CN103429783A (en) * 2011-03-18 2013-12-04 东京毅力科创株式会社 Film forming apparatus, film forming method, method for manufacturing organic light emitting element, and organic light emitting element
JP6021377B2 (en) * 2012-03-28 2016-11-09 日立造船株式会社 Vacuum deposition apparatus and crucible exchange method in vacuum deposition apparatus
JP2013211138A (en) * 2012-03-30 2013-10-10 Hitachi High-Technologies Corp Evaporation source and vacuum deposition device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225725A (en) * 2005-02-18 2006-08-31 Hitachi Zosen Corp Vapor deposition apparatus
JP2010270363A (en) * 2009-05-21 2010-12-02 Ulvac Japan Ltd Vacuum deposition device
WO2013125598A1 (en) * 2012-02-23 2013-08-29 旭硝子株式会社 Device and method for producing fluorine-containing organosilicon compound thin film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018314A1 (en) * 2015-07-28 2017-02-02 シャープ株式会社 Vapor deposition source, vapor deposition apparatus and method for producing vapor-deposited film
JPWO2017018314A1 (en) * 2015-07-28 2018-04-05 シャープ株式会社 Vapor deposition source, vapor deposition apparatus and vapor deposition film manufacturing method
WO2021040011A1 (en) 2019-08-30 2021-03-04 国立大学法人筑波大学 Fruit-bearing plant exhibiting high temperature resistance, high yield, and parthenocarpy
JP2020153019A (en) * 2020-06-25 2020-09-24 キヤノントッキ株式会社 Vapor deposition apparatus and evaporation source
WO2022002349A1 (en) * 2020-06-29 2022-01-06 Applied Materials, Inc. Nozzle assembly, evaporation source, deposition system and method for depositing an evaporated material onto a substrate
CN115768916A (en) * 2020-06-29 2023-03-07 应用材料公司 Nozzle assembly, evaporation source and deposition system and method for depositing evaporated material onto a substrate
WO2022026061A1 (en) * 2020-07-31 2022-02-03 Applied Materials, Inc. Evaporation source, vapor deposition apparatus, and method for coating a substrate in a vacuum chamber
TWI788910B (en) * 2020-07-31 2023-01-01 美商應用材料股份有限公司 Evaporation source, vapor deposition apparatus, and method for coating a substrate in a vacuum chamber

Also Published As

Publication number Publication date
TW201516166A (en) 2015-05-01
TWI661067B (en) 2019-06-01
JP6671095B2 (en) 2020-03-25
CN104561903A (en) 2015-04-29
KR102192500B1 (en) 2020-12-17
KR20150048620A (en) 2015-05-07
CN104561903B (en) 2019-01-15

Similar Documents

Publication Publication Date Title
JP2015108185A (en) Manifold for vacuum evaporation system
TWI386498B (en) Evaporation source and vacuum evaporator using the same
KR101192951B1 (en) Vacuum vapor deposition apparatus
KR101941305B1 (en) Deposition apparatus and deposition method
KR20140119654A (en) Single Point Linear Evaporation Source System
TWI395828B (en) A molecule supply source for use in thin-film forming
KR102180359B1 (en) Vacuum evaporation apparatus
CN103966554A (en) Vacuum evaporation device and vacuum evaporation method
JP5400653B2 (en) Vacuum deposition equipment
KR101976674B1 (en) Injector for vacuum vapour deposition system
KR102661888B1 (en) Heating apparatus, evaporation source and vapor deposition apparatus
KR20110021683A (en) Process and device for producing stoichiometric gradient layers and layer system
US20140216577A1 (en) Gas release device for coating process
KR20160034740A (en) Crucible for evaporation source and evaporation source including the same
US10597770B2 (en) Vapor deposition source, vapor deposition apparatus and method for producing vapor-deposited film
KR102235367B1 (en) A Linear Type Evaporator with a Slit Nozzle
KR20160007930A (en) Linear source keeping thin film uniformity
CN113166925B (en) Vapor source for depositing vaporized material, nozzle for vapor source, vacuum deposition system, and method for depositing vaporized material
KR20150034452A (en) A Linear Type Evaporator with a Mixing Zone
JP6931599B2 (en) Thin-film deposition equipment and thin-film deposition method
JP2010126753A (en) Vapor deposition apparatus and method for manufacturing organic light-emission apparatus
KR102235339B1 (en) A Linear Type Evaporator for Large Area Substrates
IT201900019181A1 (en) DISTRIBUTOR TUBE FOR COOLING METALLIC TAPES
JP7473892B2 (en) Evaporation source
JP6562946B2 (en) Gas distribution device for vacuum chamber with gas guide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181126

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200303

R150 Certificate of patent or registration of utility model

Ref document number: 6671095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250