JP2015103762A - ガスレーザ増幅システム - Google Patents

ガスレーザ増幅システム Download PDF

Info

Publication number
JP2015103762A
JP2015103762A JP2013245559A JP2013245559A JP2015103762A JP 2015103762 A JP2015103762 A JP 2015103762A JP 2013245559 A JP2013245559 A JP 2013245559A JP 2013245559 A JP2013245559 A JP 2013245559A JP 2015103762 A JP2015103762 A JP 2015103762A
Authority
JP
Japan
Prior art keywords
laser
gas
amplifier
amplification system
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013245559A
Other languages
English (en)
Inventor
陽一 谷野
Yoichi Yano
陽一 谷野
民田 太一郎
Taichiro Tamida
太一郎 民田
西前 順一
Junichi Nishimae
順一 西前
山本 達也
Tatsuya Yamamoto
達也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013245559A priority Critical patent/JP2015103762A/ja
Publication of JP2015103762A publication Critical patent/JP2015103762A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】レーザ光のポインティングにおいて、高い安定性を有するガスレーザ増幅システムを得る。
【解決手段】励起したレーザガスを媒質として用いることで、レーザ光を増幅して出射するガスレーザ増幅システムであって、レーザ光を発振するレーザ発振器と、直列に配置され、レーザガスを励起する4組の放電電極と、を備え、4組の放電電極の各々における放電電極間に形成される放電領域において、レーザガスは、増幅するレーザ光の光軸を横断する向きに流れ、4組の放電電極の各々におけるレーザガスの流れの向きが、伝搬するレーザ光像を基準として、第1方向、第1方向とは反対向きの第2方向、第2方向、第1方向の順になるように配置されるものである。
【選択図】図1

Description

この発明は、放電電極によって励起したレーザガスを用いてレーザ光を増幅するガスレーザ増幅システムに関する。
従来、出力ビームを生成するレーザ発振器と、CO2を含むガス等の利得媒体を有し、出力ビームを増幅して第1の増幅ビームを生成する第1の増幅器と、CO2を含むガスとは異なる組成を有する利得媒体を有し、第1の増幅ビームを増幅して第2の増幅ビームを生成する第2の増幅器と、を備えたガスレーザ増幅装置が知られている(例えば、特許文献1参照)。
特表2009−540607号公報
しかしながら、従来技術には、以下のような課題がある。
近年、レーザ光のハイパワー化に伴い、光路長の長いレーザ増幅システムが求められている。そのため、レーザガス増幅光路中のレーザ光の曲がりによるポインティング変動が、レーザの安定性を求めるうえで無視できなくなっている。
ここで、特許文献1に記載のガスレーザ増幅装置では、増幅されるレーザ光を横断するレーザガス流による温度勾配に起因して、レーザ光の曲がりが発生し、レーザ光のポインティングが不安定になる恐れがあるという問題がある。
この発明は、上記のような課題を解決するためになされたものであり、レーザ光のポインティングにおいて、高い安定性を有するガスレーザ増幅システムを得ることを目的とする。
この発明に係るガスレーザ増幅システムは、励起したレーザガスを媒質として用いることで、レーザ光を増幅して出射するガスレーザ増幅システムであって、レーザ光を発振するレーザ発振器と、直列に配置され、レーザガスを励起する4組の放電電極と、を備え、4組の放電電極の各々における放電電極間に形成される放電領域において、レーザガスは、増幅するレーザ光の光軸を横断する向きに流れ、4組の放電電極の各々におけるレーザガスの流れの向きが、伝搬するレーザ光像を基準として、第1方向、第1方向とは反対向きの第2方向、第2方向、第1方向の順になるように配置されるものである。
この発明に係るガスレーザ増幅システムによれば、4組の放電電極の各々における放電電極間に形成される放電領域において、レーザガスは、増幅するレーザ光の光軸を横断する向きに流れ、4組の放電電極の各々におけるレーザガスの流れの向きが、伝搬するレーザ光像を基準として、第1方向、第1方向とは反対向きの第2方向、第2方向、第1方向の順になるように配置される。
これにより、レーザ光の位置ずれが相殺され、レーザ光のポインティングにおいて、高い安定性を有するガスレーザ増幅システムを得ることができる。
この発明の実施の形態1に係るガスレーザ増幅システムを示す斜視図である。 この発明の実施の形態1に係るガスレーザ増幅システムの前段増幅器を詳細に示す斜視図である。 この発明の実施の形態1に係るガスレーザ増幅システムの第1増幅器および第2増幅器への電力供給方法を示す説明図である。 この発明の実施の形態1に係るガスレーザ増幅システムの一部を示す平面図である。 この発明の実施の形態2に係るガスレーザ増幅システムの一部を示す斜視図である。 この発明の実施の形態2に係るガスレーザ増幅システムの一部を示す平面図である。 この発明の実施の形態3に係るガスレーザ増幅システムの一部を示す平面図である。 この発明の実施の形態4に係るガスレーザ増幅システムの一部を示す斜視図である。 この発明の実施の形態4に係るガスレーザ増幅システムの一部を示す平面図である。 この発明の実施の形態5に係るガスレーザ増幅システムの一部を示す平面図である。 この発明の実施の形態6に係るガスレーザ増幅システムの一部を示す斜視図である。 この発明の実施の形態7に係るガスレーザ増幅システムの一部を示す斜視図である。 この発明の実施の形態8に係るガスレーザ増幅システムの一部を示す斜視図である。 この発明の実施の形態9に係るガスレーザ増幅システムの一部を示す斜視図である。 この発明の実施の形態9に係るガスレーザ増幅システムの一部の変形例を示す斜視図である。
以下、この発明に係るガスレーザ増幅システムの好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。
実施の形態1.
図1は、この発明の実施の形態1に係るガスレーザ増幅システムを示す斜視図である。図1において、このガスレーザ増幅システムは、レーザ発振器91、接続光学系92、93、前段増幅器100a、第1増幅器100b、第2増幅器100cおよびミラー61、62、63、64から構成されている。
図2は、この発明の実施の形態1に係るガスレーザ増幅システムの前段増幅器100aを詳細に示す斜視図である。図2において、前段増幅器100aは、電極基板1、2、3、4、放電電極11、12、13、14、ミラー支持部31、32、ウィンドウ41、42およびミラー51、52、53、54から構成されている。
ここで、図の煩雑さを避けるために、放電電極12、14は、図2には明示していない。実際には、電極基板1に対して放電電極11が付いているのと同様に、電極基板2に対して放電電極12が付いている。また、電極基板3に対して放電電極13が付いているのと同様に、電極基板4に対して放電電極14が付いている。
なお、図2において、理解容易のために、レーザガスGの供給方向と平行な方向をX方向とし、放電方向と平行な方向をY方向とし、レーザ光の光軸と略平行な方向をZ方向とする。
また、電極基板1、2、3、4は、アルミナ等の誘電体で形成されており、その表面上には、金属製の放電電極11、12、13、14が、メタライズやペースト等によりそれぞれ接着されている。放電電極を電極基板で支持する構造を採用することによって、放電機構全体の機械的強度を向上させることができる。
また、図2に示されるように、一対の電極基板1、2は、互いに対向するように設置されている。電極基板1、2の内面には、一対の放電電極11、12がそれぞれ設置されている。放電電極11、12に高周波電源(図示せず)からの交流電圧が印加されると、放電電極間に無声放電(オゾナイザ放電)が発生し、放電領域21が形成される。この放電領域21には、図2に示されるように、レーザガスGが+Xの向きに供給される。
同様に、図2に示されるように、一対の電極基板3、4は、互いに対向するように設置されている。電極基板3、4の内面には、一対の放電電極13、14がそれぞれ設置されている。放電電極13、14に高周波電源(図示せず)からの交流電圧が印加されると、放電電極間に無声放電(オゾナイザ放電)が発生し、放電領域22が形成される。この放電領域22には、図2に示されるように、レーザガスGが−Xの向きに供給される。
ここで、一対の電極基板1、2および一対の電極基板3、4は、レーザ光の光軸に沿って縦列配置されている。放電電極11、12、13、14は、例えば金属部分が4cm×100cm程度の表面を有し、放電領域21、22は、例えば4cm×5cm×100cm程度の直方体形状である。
このとき、無声放電によってレーザガスG中の分子または原子がレーザ上準位に励起されると、光の増幅作用を示すようになる。例えば、レーザガスGとして、CO2分子を含む混合ガスを使用した場合には、CO2分子の振動準位間の遷移により、波長10.6μmのレーザ増幅が可能となる。また、ウィンドウ41、42の透過膜およびミラー51、52、53、54の反射膜の設計によっては、波長9.3μm、9.6μm、10.2μm等、他の波長での増幅も可能である。
この実施の形態1では、レーザガスGとしてCO2を使用した場合を例示するが、他のレーザ媒質、例えばCO、N2、He−Cd、HF、Ar、ArF、KrF、XeCl、XeF等を使用した場合あっても、この発明は適用可能である。
また、このガスレーザ増幅システムは、レーザガスGを外気と遮断するための筐体(図示せず)を備え、筐体内部には、ブロワ、ダクト、熱交換器(ともに図示せず)等が設けられている。ブロワは、筐体内に封入されたレーザガスGを、ダクト内の風洞に沿って循環させる。これにより、放電領域21、22の順に、レーザガスGが矢印方向に沿って供給される。
放電領域21、22を通過したレーザガスGは、熱交換器で冷却され、再びブロワに戻る。放電領域21、22では、レーザガスGは、大気圧よりも低い圧力に維持されており、レーザガスGは、図1の矢印の方向に、空間的に均一な速度分布、例えば100m/s程度の速度で移動する。
このとき、放電領域21へのレーザガスGの供給方向と放電領域22へのレーザガスGの供給方向とが、互いに反対になるように構成することによって、各放電領域21、22の利得分布を重ね合わせた全体利得分布が対称になり、その結果、出力されるレーザビームの対称性を向上させることができる。
また、ウィンドウ41、42およびミラー51、52、53、54は、放電領域21、22を挟んで互いに対向するように配置されている。具体的には、ウィンドウ41およびミラー52、54が、ミラー支持部31を介して筐体に取り付けられ、ウィンドウ42およびミラー51、53が、ミラー支持部32を介して筐体に取り付けられている。
ウィンドウ41、42としては、例えばダイヤモンド基板に無反射コーティングを施したものが用いられる。ウィンドウ41、42は、ガスレーザ増幅システム内と外とのレーザ光の透過を許容し、レーザガスGを外気と遮断する。ミラー51、52、53、54としては、例えば凹面や平面、凸面の全反射鏡が用いられ、ミラー51、52、53、54は、光増幅の経路を構成している。
すなわち、前段増幅器100aにおいては、ウィンドウ41から入射されたレーザ光が、ミラー51、ミラー52、ミラー53、ミラー54によって順次反射され、ウィンドウ42から出射される。つまり、前段増幅器100a内でレーザ光をミラーによって4回折り返し、レーザ光の経路が5つ折りになっている。ここで、レーザ光は、放電領域21、22を通過する際に増幅される。
図1に戻って、第1増幅器100bおよび第2増幅器100cは、互いに同じ構成を有する増幅器である。第1増幅器100bおよび第2増幅器100cは、前段増幅器100aと放電領域の構成が同じなので、放電領域形成のための構成説明は省略する。第1増幅器100bおよび第2増幅器100cに含まれる4つの放電領域の寸法は互いに等しく、供給されるガスの流速も互いに等しい。
一方、第1増幅器100bおよび第2増幅器100cは、前段増幅器100aとウィンドウやミラーの構成が異なる。第1増幅器100bにおいては、ウィンドウ43b、44bが、放電領域を挟んで互いに対向するように配置されている。ウィンドウ43b、44bは、ガスレーザ増幅システム内と外とのレーザ光の透過を許容し、レーザガスGを外気と遮断する。なお、第2増幅器100cにおけるウィンドウ43c、44cも同様である。また、第1増幅器100bおよび第2増幅器100cは、内部に折り返し用のミラーを持たない。
図1に示されるガスレーザ増幅システムにおいては、レーザ発振器91から出射されたパルスレーザ光が、接続光学系92、前段増幅器100a、接続光学系93、第1増幅器100bを通過し、続いてミラー61、62、63、64で反射されて第2増幅器100cを通過し、目標物71に照射される。ここで、パルスレーザ光は、前段増幅器100a、第1増幅器100bおよび第2増幅器100cを通過する際に増幅される。
なお、目標物71は、溶接・切断加工や改質の対象物である場合や、物理的または化学的反応により発光する物質である場合等が考えられる。第2増幅器100cと目標物71との間には、増幅されたレーザ光で目標物71を適切に処理するための光学系(図示せず)が設置されうる。光学系としては、例えばレーザ光を目標物71において集光させるための集光光学系が考えられる。
また、前段増幅器100a、第1増幅器100bおよび第2増幅器100cには、それぞれの放電電極を介して、放電領域に放電電力が供給される。特に、第1増幅器100bおよび第2増幅器100cへの放電電力供給方法について、図3を参照しながら説明する。図3は、この発明の実施の形態1に係るガスレーザ増幅システムの第1増幅器100bおよび第2増幅器100cへの電力供給方法を示す説明図である。
図3において、電源81bから第1増幅器100bの放電領域21b、22bへ、電源81cから第2増幅器100cの放電領域21c、22cへと放電電力が供給される。また、制御装置82が電源81b、81cに接続されている。制御装置82は、レーザ光の出力を制御するために、放電電力を制御する。このとき、制御装置82は、放電領域21b、22b、21c、22cへの放電電力が等しくなるように、電源81c、81bを制御する。
図1に戻って、接続光学系92、93は、それぞれ次に続く増幅器において、最大の増幅パワーが得られるようなビーム径となるように、レーザ光を調整する機能を持つ。ここで、レーザ光のビーム径調整には、レンズや曲率ミラーを用いる。
また、前段増幅器100a、第1増幅器100bおよび第2増幅器100cで増幅するレーザ光は、円偏光としている。このガスレーザ増幅システムにおいては、目標物71や増幅器内の構造物に反射して戻ってくるレーザ光によって、発振器91が損傷する恐れがある。そこで、レーザ光を円偏光とすることで、反射によって戻ってくるレーザ光を、リターダと偏光子との組み合わせによって分離できるので、発振器91が損傷する可能性を減らすことができる。
なお、図1においても、理解容易のために、レーザガスGの供給方向と平行な方向をX方向とし、放電方向と平行な方向をY方向とし、第1増幅器100bおよび第2増幅器100cのレーザ光の光軸と略平行な方向をZ方向とする。この実施の形態1では、第1増幅器100bから出射されたレーザ光は、まずミラー61で−X方向に反射され、ミラー62で+Y方向に反射され、ミラー63で+X方向に反射され、ミラー64で+Z方向に反射される。
また、ウィンドウ43b、44b、44c、43cの有効直径は5cmであり、ミラー61とミラー62との間のレーザ光よりも、ミラー63とミラー64との間のレーザ光のほうが、10cm高くなるように構成される。これに伴い、第2増幅器100cは、第1増幅器100bよりも放電領域が10cm高くなるように、増幅器全体が10cm高く設置されている。
また、ミラー61、62、63、64は、P偏光とS偏光との位相差および反射率差がなく、反射の際に偏光状態が保存される反射膜が施されたミラー(ゼロシフトミラー)としている。すなわち、ミラー61、62が互いに同一のバッチで反射膜を施してあり、ミラー63、64が互いに同一のバッチで反射膜を施してある。
このような構成により、増幅されるレーザ光を横断するレーザガス流による温度勾配に起因するレーザ光の曲がりを相殺することができ、レーザ光のポインティングにおいて、従来技術では不可能な、高い安定性を有するガスレーザ増幅システムを得ることができる。以下、図4を参照しながら、レーザ光の曲がりを相殺する原理について説明する。
図4は、この発明の実施の形態1に係るガスレーザ増幅システムの一部を示す平面図である。図4では、第1増幅器100bおよび第2増幅器100cを抜粋して示している。図4において、一点鎖線は、レーザ光の曲がりを無視した場合の仮想の光軸である。第1増幅器100bから出射されたレーザ光は、まずミラー61で−X方向に反射され、ミラー62で+Y方向に反射され、ミラー63で+X方向に反射され、ミラー64で+Z方向に反射される。
このとき、放電電極間を流れるレーザガスGは、密度勾配を持ち、上流側の密度が高く下流側が低い。そのため、上流側の屈折率が高い屈折率勾配を生じ、レーザガスG中を伝搬するレーザ光は、レーザガス流の上流側へ曲げられる。
第1増幅器100bにおいて、2つの放電領域でレーザ光が順次レーザガス流の上流側へ曲げられた結果、第1増幅器100bの出口において、レーザ光の光軸は、仮想の光軸(一点鎖線)と平行で、位置が異なっている。すなわち、2つの放電領域について、これらの領域に供給される放電電力およびレーザガス流速を等しくしているので、レーザ光の曲がり角は相殺され、位置ずれだけが残る。
また、第1増幅器100bから出力されたレーザ光をミラー61、62、63、64で折り返した結果、第2増幅器100cの入口においては、第1増幅器100bの出口と同じだけずれた位置から、レーザ光が入射する。
また、第2増幅器100cにおいて、2つの放電領域でレーザ光が順次レーザガス流の上流側へ曲げられた結果、第2増幅器100cの出口において、レーザ光の光軸は、仮想の光軸(一点鎖線)と平行で、位置ずれも相殺されている。すなわち、第2増幅器100cにおいても、2つの放電領域について、これらの領域に供給される放電電力およびレーザガス流速を等しくしているので、レーザ光の曲がり角は相殺されている。
また、第1増幅器100bおよび第2増幅器100cを比較しても、同様にレーザ光の曲がりが等しくなっているのでレーザ光の位置ずれが相殺される。このようにして、4つの放電領域を用いて、レーザ光のポインティングずれを完全に相殺している。
この発明の4つの放電領域を用いたレーザ光のポインティングずれ相殺の原理は、レーザ光像の考え方を用いて、より一般的に理解できる。図1に戻って、LFは、レーザ光の断面の像を模式的に表している。第1増幅器100bに入射するときの像を基準として、進行方向に向かって上下左右を、それぞれU、D、L、R(Up、Down、Left、Right)で表す。なお、ミラーでの反射により、像は反転する。
この結果、この発明の実施の形態1に係るガスレーザ増幅システムでは、第1増幅器100bに入射する際に、像は+X方向がR、−X方向がL、+Y方向がD、−Y方向がUとなっている。また、この光像を基準とすると、レーザガスGの流れの向きをレーザ光が伝搬する順に、L、R、R、L、すなわち左、右、右、左(第1方向、第2方向、第2方向、第1方向)となっている。
また、レーザ光の出力を制御するために、第1増幅器100bおよび第2増幅器100cへの放電電力を制御する際も、4つの放電領域への投入電力を等しくすることで、レーザ光のポインティングずれを相殺している。
この実施の形態1の構成により、レーザ光のポインティングずれを相殺することができ、レーザ光のポインティングにおいて、高い安定性を有するガスレーザ増幅システムを得ることができる。また、増幅されるレーザ光の偏光を精度よく維持し、戻り光分離の消光比を高めることができる。
なお、ミラー61、62、63、64として用いたゼロシフトミラーの偏光状態保存は、必ずしも理想的ではなく、S偏光とP偏光との位相差の仕様は、例えば2度以内である。そのため、ゼロシフトミラーといえども、レーザ光の偏光状態を少し変えてしまう。
図1において、ミラー61、62、63、64におけるレーザ光の反射を考えると、レーザ光像LFのU−D方向の偏光成分が、ミラー61、64でS偏光、ミラー63、64でP偏光となっている。一方、レーザ光像LFのR−L方向の偏光成分が、ミラー61、64でP偏光、ミラー63、64でS偏光となっている。このように、U−D方向およびR−L方向の偏光成分の双方について、S偏光での反射およびP偏光での反射を同じ回数(ここでは2回ずつ)とすることで、ミラー固有の位相差を相殺することができる。
また、ミラーのS偏光とP偏光との位相差を決定するのは、ミラー表面に施された高反射コーティングの各層の膜厚である。そのため、同一バッチでコーティングされたミラーの位相差は、例えば1.1度±0.2度というように、小さい範囲の角度にそろいやすい。このことを利用して、レーザ光像LFのU−D方向の偏光成分がS偏光になるミラーとP偏光になるミラーとの対を、同一バッチのコーティングとすることで、精度の高い位相差相殺を可能とする。
また、この実施の形態1では、増幅するレーザ光を円偏光としており、円偏光を精度よく維持して増幅するので、戻り光分離の消光比を高め、寄生発振の少ない、安定した増幅を実現することができる。
また、この実施の形態1では、放電領域および折り返し用のミラーの配置により、上述したレーザ光のポインティングを安定させる効果と、レーザ光の偏光を精度よく維持する効果とを両立している。具体的には、ミラー61、62、63、64による4回の折り返しのうち、2回の折り返しにおいて、第1の入射面と第2の入射面とを垂直にするように、ミラーが配置されている。
また、レーザ光進行方向に長くなる横ガス流型の増幅器を、ガス流方向に並べて配置する構成としたので、構築や改修の容易なガスレーザ増幅システムを得ることができる。また、第1増幅器100bおよび第2増幅器100cに同じものを用いることにより、安価で、かつ構築が容易で、改修のための準備部品の少ないガスレーザ増幅システムを得ることができる。
以上のように、実施の形態1によれば、4組の放電電極の各々における放電電極間に形成される放電領域において、レーザガスは、増幅するレーザ光の光軸を横断する向きに流れ、4組の放電電極の各々におけるレーザガスの流れの向きが、伝搬するレーザ光像を基準として、第1方向、第1方向とは反対向きの第2方向、第2方向、第1方向の順になるように配置される。
これにより、レーザ光の位置ずれが相殺され、レーザ光のポインティングにおいて、高い安定性を有するガスレーザ増幅システムを得ることができる。
なお、上記実施の形態1では、第1増幅器100bおよび第2増幅器100cの2台の放電領域および折り返し用のミラーの配置により、レーザ光のポインティングを安定させる効果と、レーザ光の偏光を精度よく維持する効果とを両立しているが、この構成を前段増幅器100aおよび第1増幅器100bの2台とその間の光学系93とに適用しても、同様の効果を得ることができる。
すなわち、5つ折りの前段増幅器100aにおけるレーザ光の光軸位置ずれは、図4に示した増幅器1台と同様であることから、前段増幅器100aおよび第1増幅器100bの2台でも、レーザ光のポインティングずれを低減することができる。
また、上記実施の形態1では、ミラー62でレーザ光を+Y向きに反射したが、例えばこれを−Y方向としても、同様の効果を得ることができる。また、同一構成の第1増幅器100bおよび第2増幅器100cをガス流方向に並べる構成によって、レーザ光のポインティングを安定させる効果と、レーザ光の偏光を精度よく維持する効果とを両立するための増幅器間ミラー枚数は、4枚が最小であるが、これよりもミラーを多く使っても、同様の効果を得ることができる。
また、上記実施の形態1では、放電領域2つあたり増幅器1台としたが、全体で4つの放電領域を配置する構成において、放電領域1つあたり増幅器1台としてもよい。また、ガスレーザ増幅システム全体の構成は、この実施の形態1に限らず、4つの放電領域により、レーザ光の曲がりを相殺する機構を含んでいれば、ガスレーザ増幅システム全体として、レーザ光のポインティングずれを低減することができる。
さらに、上記実施の形態1では、レーザ光像の上下左右のとり方として、左、右、右、左を例に挙げたが、レーザ光像の上下左右のとり方は任意であり、右、左、左、右でもよいし、上、下、下、上でもよいし、下、上、上、下でもよい。すなわち、第1方向と、第1方向とは反対向きの第2方向とが、第1方向、第2方向、第2方向、第1方向の順になっていればよい。このことは、以下の各実施の形態においても同様である。
実施の形態2.
図5は、この発明の実施の形態2に係るガスレーザ増幅システムの一部を示す斜視図である。図5において、上述した実施の形態1との相違点は、第1増幅器100bと第2増幅器100cとの間の光学系である。第1増幅器100bから出射されたレーザ光は、平面ミラー61、62、63で順次反射されて、第2増幅器100cで増幅される。
図6は、この発明の実施の形態2に係るガスレーザ増幅システムの一部を示す平面図である。図6において、上述した実施の形態1と同様に、レーザ光像を基準として、レーザガスGの流れの向きを、レーザ光が伝搬する順にL、R、R、Lとしているので、レーザ光のポインティングにおいて、従来技術では不可能な、高い安定性を有するガスレーザ増幅システムを得ることができる。
このように、2つの放電領域を含む同一の増幅器2台をガス流方向に並べた構成で、折り返し用の平面ミラーを採用した場合に、最小のミラー枚数でレーザ光の曲がりを相殺している。そのため、ミラー反射でのロスが少なく、平面ミラーのため高信頼のガスレーザ増幅システムを得ることができる。
なお、この実施の形態2では、ミラー固有の偏光による位相差を相殺する機能はなく、レーザ光の偏光の維持は、ミラー61、62、63の性能に頼っている。
実施の形態3.
図7は、この発明の実施の形態3に係るガスレーザ増幅システムの一部を示す平面図である。図7において、上述した実施の形態1との相違点は、第1増幅器100bと第2増幅器100cとの間の光学系である。ミラー61、62は、放物面ミラーであり、焦点距離は、ミラー61とミラー62との間の距離の0.5倍としている。第1増幅器100bをコリメート状態で増幅されたレーザ光は、焦点FPで集光される。
この構成では、ミラー61からミラー62への伝搬において、一旦集光することで、レーザ光像の上下と左右とを入れ替えている。したがって、上述した実施の形態2と同様に、レーザ光像を基準として、レーザガスGの流れの向きを、レーザ光が伝搬する順にL、R、R、Lとしているので、レーザ光のポインティングにおいて、従来技術では不可能な、高い安定性を有するガスレーザ増幅システムを得ることができる。
このように、2つの放電領域を含む同一の増幅器2台をガス流方向に並べる構成における最小のミラー枚数で、レーザ光の曲がりを相殺している。そのため、ミラー反射でのロスが少ないガスレーザ増幅システムを得ることができる。また、焦点FPにスペーシャルフィルタを設置することにより、上記の効果と同時に、コンパクトな構成でビーム品質を向上させることができる。
実施の形態4.
図8は、この発明の実施の形態4に係るガスレーザ増幅システムの一部を示す斜視図である。図9は、この発明の実施の形態4に係るガスレーザ増幅システムの一部を示す平面図である。図8、9においては、第2増幅器101cが第1増幅器100bと鏡像の関係となっている。また、ミラー61、62は、平面ミラーである。
この構成においても、上述した実施の形態2と同様に、レーザ光像を基準として、レーザガスGの流れの向きを、レーザ光が伝搬する順にL、R、R、Lとしているので、レーザ光のポインティングにおいて、従来技術では不可能な、高い安定性を有するガスレーザ増幅システムを得ることができる。
このように、2つの放電領域を含む増幅器2台をガス流方向に並べる構成における最小のミラー枚数で、レーザ光の曲がりを相殺している。そのため、ミラー反射でのロスが少ないガスレーザ増幅システムを得ることができる。また、平面ミラーのみの使用で構成できるので、高信頼のガスレーザ増幅システムを構築することができる。
実施の形態5.
図10は、この発明の実施の形態5に係るガスレーザ増幅システムの一部を示す平面図である。図10において、このガスレーザ増幅システムは、それぞれ1つの放電領域を有する第1増幅器102a、第2増幅器102b、第3増幅器102c、第4増幅器102dを備えている。
この構成においても、4つの放電領域について、レーザ光像を基準として、レーザガスGの流れの向きを、レーザ光が伝搬する順にL、R、R、Lとする配置なので、レーザ光のポインティングにおいて、従来技術では不可能な、高い安定性を有するガスレーザ増幅システムを得ることができる。
実施の形態6.
図11は、この発明の実施の形態6に係るガスレーザ増幅システムの一部を示す斜視図である。図11において、第1増幅器100bおよび第2増幅器100cは、互いに同一の構成を有している。また、ビームの折り返しは、4枚の平面ミラー61、62、63、64による。
この構成では、4つの放電領域について、レーザ光像を基準として、レーザガスGの流れの向きを、レーザ光が伝搬する順にL、R、L、Rとする配置なので、第2増幅器100cから出射するレーザ光は、曲がりを無視した場合と平行であるが、位置がずれることになる。
一方、この実施の形態6の構成によれば、増幅されるレーザ光の偏光を精度よく維持し、戻り光分離の消光比を高めることができるという、上述した実施の形態1と同様の効果を得ることができる。
実施の形態7.
図12は、この発明の実施の形態7に係るガスレーザ増幅システムの一部を示す斜視図である。図12においては、第2増幅器101cが第1増幅器100bと鏡像の関係となっている。また、レーザ光は、2台の増幅器(4つの放電領域)により、折り返しなしで増幅される。
この構成においても、上述した実施の形態2と同様に、レーザ光像を基準として、レーザガスGの流れの向きを、レーザ光が伝搬する順にL、R、R、Lとしているので、レーザ光のポインティングにおいて、従来技術では不可能な、高い安定性を有するガスレーザ増幅システムを得ることができる。
また、折り返し用のミラーがないので、増幅されるレーザ光の偏光を精度よく維持し、戻り光分離の消光比を高めることができるという、上述した実施の形態1と同様の効果を得ることができる。さらに、折り返し用のミラーによる反射ロスを回避し、高い増幅効率を得ることができる。なお、この実施の形態7は、光軸方向に長い設置場所を得られる場合に適した構成である。
実施の形態8.
図13は、この発明の実施の形態8に係るガスレーザ増幅システムの一部を示す斜視図である。図13において、このガスレーザ増幅システムは、4つの放電領域を有する1台の増幅器を備えており、実施の形態7と同様の効果を、1台の増幅器で得る構成となっている。
この構成では、ウィンドウにおけるレーザ光の反射ロスを低減し、高い増幅効率を得ることができる。また、この増幅器を単位とすれば、ガスレーザ増幅システムにおけるレーザ光のポインティングずれを意識することなく、自由度の高いガスレーザ増幅システムを構築することができる。
なお、この実施の形態8では、1台の増幅器が4つの放電領域を有しているが、中央の2つの放電領域を1つに合体し、1台の増幅器が3つの放電領域を有している構成としても、同様の効果を得ることができる。このとき、合体した1つの放電領域が、両端の放電領域に比べて2倍のレーザ光を曲げる効果を持つようにした場合が、最も完全にレーザ光のポインティングずれを相殺することができる。
実施の形態9.
図14は、この発明の実施の形態9に係るガスレーザ増幅システムの一部を示す斜視図である。図14において、第1増幅器100bおよび第2増幅器100cは、互いに2つの放電領域を有する同一の構成であり、これら2台の増幅器を、ガス流方向ではなく放電方向に並べた構成を有している。
この構成では、2枚の折り返し用の平面ミラーで、レーザ光の曲がりを相殺している。そのため、ミラー反射でのロスが少なく、平面ミラーのため高信頼のガスレーザ増幅システムを得ることができる。また、この構成では、少ない設置面積で大出力のレーザ光に増幅することができる。
なお、この発明の実施の形態9に係るガスレーザ増幅システムの一部の変形例を示す斜視図である図15に示されるように、第1増幅器100bおよび第2増幅器100cと、ミラー61、62とをまとめて倒した形で設置した場合であっても、2枚の平面折り返し用のミラーでレーザ光の曲がりを相殺することができる。
1〜4 電極基板、11〜14 放電電極、21、22 放電領域、31、32 ミラー支持部、41〜44 ウィンドウ、51〜54、61〜64 ミラー、71 目標物、81b、81c 電源、82 制御装置、91 発振器、92、93 接続光学系、100a 前段増幅器、100b 第1増幅器、100c 第2増幅器、101c 第2増幅器、102a 第1増幅器、102b 第2増幅器、102c 第3増幅器、102d 第4増幅器、FP 焦点、G レーザガス、L0 レーザ光軸、LF レーザ光像、L、R、U、D レーザ光像における左、右、上、下を表す符号。

Claims (10)

  1. 励起したレーザガスを媒質として用いることで、レーザ光を増幅して出射するガスレーザ増幅システムであって、
    前記レーザ光を発振するレーザ発振器と、
    直列に配置され、前記レーザガスを励起する4組の放電電極と、を備え、
    前記4組の放電電極の各々における放電電極間に形成される放電領域において、前記レーザガスは、増幅する前記レーザ光の光軸を横断する向きに流れ、
    前記4組の放電電極の各々における前記レーザガスの流れの向きが、伝搬するレーザ光像を基準として、第1方向、前記第1方向とは反対向きの第2方向、前記第2方向、前記第1方向の順になるように配置される
    ガスレーザ増幅システム。
  2. 前記4組の放電電極を構成する増幅器であって、それぞれ2組の放電電極を有する2つの増幅器をさらに備えた
    請求項1に記載のガスレーザ増幅システム。
  3. 前記2つの増幅器において、前記レーザガスの流れの向きが、互いに同じ配置である
    請求項2に記載のガスレーザ増幅システム。
  4. 前記2つの増幅器において、前記レーザガスの流れの向きが、互いに鏡像の関係になるように配置されている
    請求項2に記載のガスレーザ増幅システム。
  5. 前記2つの増幅器の間に設けられた複数のミラーを備え、
    前記ミラーによって、前記レーザ光像の左右を反転させる
    請求項3に記載のガスレーザ増幅システム。
  6. 前記2つの増幅器の間に設けられた複数のミラーを備え、
    一方の増幅器から出射したレーザ光像の左右を偶数回反転させて、他方の増幅器に入射させる
    請求項4に記載のガスレーザ増幅システム。
  7. 前記レーザ光が前記4組の放電電極を通過する間、ミラーによる反射を行わない
    請求項1から請求項4までの何れか1項に記載のガスレーザ増幅システム。
  8. 前記2つの増幅器の間に設けられた複数のミラーを備え、
    前記レーザ光を、一方の増幅器に円偏光で入射し、
    前記ミラーによって、前記一方の増幅器から出射されたレーザ光を少なくとも4回折り返し、
    前記ミラーの反射面に、固有の位相シフトを4回折り返す際に、前記レーザ光の曲がりを相殺するように、前記ミラーが配置されている
    請求項1から請求項4までの何れか1項に記載のガスレーザ増幅システム。
  9. 前記レーザ光の4回の折り返しのうち、2回の折り返しにおいて、第1の入射面と第2の入射面とを垂直にするように、ミラーが配置されている
    請求項8に記載のガスレーザ増幅システム。
  10. 前記第1の入射面と前記第2の入射面とが、同一バッチでコーティングされた反射膜を有する
    請求項9に記載のガスレーザ増幅システム。
JP2013245559A 2013-11-28 2013-11-28 ガスレーザ増幅システム Pending JP2015103762A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245559A JP2015103762A (ja) 2013-11-28 2013-11-28 ガスレーザ増幅システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245559A JP2015103762A (ja) 2013-11-28 2013-11-28 ガスレーザ増幅システム

Publications (1)

Publication Number Publication Date
JP2015103762A true JP2015103762A (ja) 2015-06-04

Family

ID=53379216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245559A Pending JP2015103762A (ja) 2013-11-28 2013-11-28 ガスレーザ増幅システム

Country Status (1)

Country Link
JP (1) JP2015103762A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701457B1 (ja) * 2019-05-17 2020-05-27 三菱電機株式会社 ガスレーザ装置
CN111602178A (zh) * 2018-01-11 2020-08-28 三菱电机株式会社 静电电容检测装置及图像读取装置
JPWO2021095099A1 (ja) * 2019-11-11 2021-05-20

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028288A (ja) * 1983-07-27 1985-02-13 Mitsubishi Electric Corp 直交型ガスレ−ザ発振器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028288A (ja) * 1983-07-27 1985-02-13 Mitsubishi Electric Corp 直交型ガスレ−ザ発振器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111602178A (zh) * 2018-01-11 2020-08-28 三菱电机株式会社 静电电容检测装置及图像读取装置
JP6701457B1 (ja) * 2019-05-17 2020-05-27 三菱電機株式会社 ガスレーザ装置
WO2020234944A1 (ja) * 2019-05-17 2020-11-26 三菱電機株式会社 ガスレーザ装置
US11367988B2 (en) 2019-05-17 2022-06-21 Mitsubishi Electric Corporation Gas laser device
JPWO2021095099A1 (ja) * 2019-11-11 2021-05-20
WO2021095099A1 (ja) * 2019-11-11 2021-05-20 三菱電機株式会社 ガスレーザ増幅器、ガスレーザ装置、euv光発生装置およびeuv露光装置
JP7258178B2 (ja) 2019-11-11 2023-04-14 三菱電機株式会社 ガスレーザ増幅器、ガスレーザ装置、euv光発生装置およびeuv露光装置

Similar Documents

Publication Publication Date Title
JP5474576B2 (ja) レーザ光増幅器及びそれを用いたレーザ装置
JP5517434B2 (ja) ガスレーザ装置及びレーザ生成方法
US8958453B2 (en) Gas discharge laser oscillator and gas discharge laser amplifier providing linearly polarized light
CN112805886B (zh) 激光器装置
JP2015103762A (ja) ガスレーザ増幅システム
WO2014119198A1 (ja) レーザ装置及び極端紫外光生成装置
KR102128636B1 (ko) 개선된 시간적 콘트라스트를 갖는 레이저 펄스를 증폭시키기 위한 디바이스
WO2019012642A1 (ja) レーザシステム
US9685756B2 (en) Laser amplifier, laser apparatus, and extreme ultraviolet light generating system
JP2013131724A (ja) レーザ装置
JP3621623B2 (ja) レーザ共振器
JP4907865B2 (ja) 多段増幅型レーザシステム
US20130092849A1 (en) Laser device, laser apparatus, and extreme ultraviolet light generation system
US9954339B2 (en) Laser unit and extreme ultraviolet light generating system
US20170149199A1 (en) Laser device
JP5393725B2 (ja) 多段増幅型レーザシステム
JP2011129826A (ja) 固体レーザ装置
JP2006179600A (ja) 多段増幅型レーザシステム
US20230375847A1 (en) Optical isolator, ultraviolet laser device, and electronic device manufacturing method
JP5110634B2 (ja) レーザ光軸調整装置及びレーザ光軸調整方法
CN109565144A (zh) 激光装置
KR20230119142A (ko) 레이저 빔 증폭 장치
JP6737877B2 (ja) レーザ装置
JP5094764B2 (ja) レーザ装置
JP2003258345A (ja) スラブ型レーザ媒体を用いた高出力レーザ光発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606