JP2015099133A - Measurement method and measurement device for thickness - Google Patents
Measurement method and measurement device for thickness Download PDFInfo
- Publication number
- JP2015099133A JP2015099133A JP2013240117A JP2013240117A JP2015099133A JP 2015099133 A JP2015099133 A JP 2015099133A JP 2013240117 A JP2013240117 A JP 2013240117A JP 2013240117 A JP2013240117 A JP 2013240117A JP 2015099133 A JP2015099133 A JP 2015099133A
- Authority
- JP
- Japan
- Prior art keywords
- light
- medium
- refractive index
- test
- test object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、厚みの計測方法および計測装置に関する。 The present invention relates to a thickness measuring method and measuring apparatus.
レンズの厚みは光学性能に影響するため、レンズの厚みを計測する技術が必要である。一般的に、レンズの厚みは探針を利用した接触計測によって計測される。接触計測は精度が低く、さらに、レンズを傷つける可能性がある。したがって、レンズの厚みを非破壊で高精度に計測する技術が必要である。 Since the lens thickness affects the optical performance, a technique for measuring the lens thickness is required. In general, the lens thickness is measured by contact measurement using a probe. Contact measurement is inaccurate and may damage the lens. Therefore, there is a need for a technique for measuring the lens thickness with high accuracy in a nondestructive manner.
特許文献1は、2枚の透明板の間に被検物を配置した状態で、透明板と被検物との間隙を低コヒーレンス干渉計によって計測し、その計測値と2枚の透明板同士の間隙とから被検物の厚みを算出する方法を提案している。特許文献2は、被検物を2種類の媒質に浸し、透明板同士の間の光路長を2種類の媒質それぞれにおいて低コヒーレンス干渉計によって計測し、その計測値と透明板同士の実距離とから、被検物の厚みを計測する方法を提案している。 In Patent Document 1, a gap between the transparent plate and the test object is measured with a low coherence interferometer in a state where the test object is arranged between the two transparent plates, and the measured value and the gap between the two transparent plates are measured. The method of calculating the thickness of the test object from the above is proposed. In Patent Document 2, a test object is immersed in two types of media, and the optical path length between the transparent plates is measured with a low coherence interferometer in each of the two types of media, and the measured value and the actual distance between the transparent plates are calculated. Therefore, a method for measuring the thickness of the test object is proposed.
特許文献1に開示された方法では、被検物が曲面を有するレンズ等の場合、被検物のパワーや反射面の曲率の影響で小さな干渉信号しか得られず、計測精度が低くなる。特許文献2に開示された方法では、2枚の透明板間における4種類の光路長と2種類の実距離との合計6つの計測値の計測誤差が混入するため、計測精度が低下する。 In the method disclosed in Patent Document 1, when the test object is a lens having a curved surface, only a small interference signal can be obtained due to the influence of the power of the test object and the curvature of the reflecting surface, and the measurement accuracy is lowered. In the method disclosed in Patent Document 2, measurement errors of a total of six measurement values of four types of optical path lengths and two types of actual distances between two transparent plates are mixed, so that measurement accuracy is lowered.
本発明は、被検物の厚みを非破壊で高精度に計測することができる計測方法および計測装置を提供することを例示的な目的とする。 An object of the present invention is to provide a measurement method and a measurement apparatus that can measure the thickness of a test object with high accuracy in a nondestructive manner.
本発明の計測方法は、光源からの光を被検光と参照光に分割し、前記被検光を被検物に入射させ、前記被検物を透過した前記被検光と前記参照光とを干渉させる干渉計測によって前記被検物の厚みを計測する厚み計測方法であって、特定の波長において前記被検物の群屈折率と等しい群屈折率を有する媒質を前記被検光と前記参照光の光路上に配置し、前記被検物および前記媒質を透過した被検光と前記媒質を透過した参照光とを干渉させた干渉光を計測し、前記被検光と前記参照光の位相差の波長依存性に基づいて前記特定の波長を決定し、前記特定の波長に対応する前記媒質の群屈折率を前記特定の波長に対応する前記被検物の群屈折率として算出する群屈折率計測ステップと、前記被検物の光路長を計測する光路長計測ステップと、前記特定の波長に対応する前記被検物の群屈折率と前記特定の波長に対応する前記被検物の光路長とに基づいて、前記被検物の厚みを算出する算出ステップと、を含むことを特徴としている。 The measurement method of the present invention divides light from a light source into test light and reference light, causes the test light to enter the test object, and transmits the test light and the reference light transmitted through the test object. A thickness measurement method for measuring the thickness of the test object by interferometry that causes interference between the test light and the reference with a medium having a group refractive index equal to the group refractive index of the test object at a specific wavelength. An interference light that is disposed on the optical path of the light and causes the test light that has passed through the test object and the medium to interfere with the reference light that has passed through the medium is measured, and the level of the test light and the reference light is measured. Group refraction that determines the specific wavelength based on the wavelength dependence of the phase difference and calculates the group refractive index of the medium corresponding to the specific wavelength as the group refractive index of the test object corresponding to the specific wavelength A rate measuring step, an optical path length measuring step for measuring the optical path length of the test object, Calculating a thickness of the test object based on a group refractive index of the test object corresponding to a specific wavelength and an optical path length of the test object corresponding to the specific wavelength. It is characterized by.
本発明の屈折率計測装置は、光源と、前記光源からの光を被検光と参照光に分割し、前記被検光を被検物に入射させ、前記被検物を透過した被検光と前記参照光を干渉させる干渉光学系と、前記被検光と前記参照光の干渉光を検出する検出手段と、前記被検物の光路長を計測する光路長計測手段と、前記検出手段から出力される干渉信号を用いて前記被検物の屈折率を演算し、前記被検物の屈折率と前記被検物の光路長を用いて前記被検物の厚みを演算する演算手段とを有する厚み計測装置であって、前記被検物は、特定の波長において前記被検物の群屈折率と等しい群屈折率を有する媒質中に配置されており、前記干渉光学系は、前記被検物および前記媒質を透過した被検光と前記媒質を透過した参照光とを干渉させる光学系であり、前記演算手段は、前記被検光と前記参照光の位相差の波長依存性に基づいて前記特定の波長を決定し、前記特定の波長に対応する前記媒質の群屈折率を前記特定の波長に対応する前記被検物の群屈折率として算出し、前記特定の波長に対応する前記被検物の群屈折率と前記特定の波長に対応する前記被検物の光路長とを用いて前記被検物の厚みを算出することを特徴としている。 The refractive index measuring apparatus of the present invention includes a light source, test light that divides light from the light source into test light and reference light, causes the test light to enter the test object, and transmits the test object. An interference optical system that causes interference between the test light and the reference light, a detection unit that detects interference light between the test light and the reference light, an optical path length measurement unit that measures an optical path length of the test object, and the detection unit A calculating means for calculating a refractive index of the test object using an output interference signal, and calculating a thickness of the test object using a refractive index of the test object and an optical path length of the test object; The test object is disposed in a medium having a group refractive index equal to a group refractive index of the test object at a specific wavelength, and the interference optical system includes the test object An optical system that causes the test light transmitted through the object and the medium to interfere with the reference light transmitted through the medium, The calculating means determines the specific wavelength based on the wavelength dependence of the phase difference between the test light and the reference light, and corresponds the group refractive index of the medium corresponding to the specific wavelength to the specific wavelength. Calculating the group refractive index of the test object, and using the group refractive index of the test object corresponding to the specific wavelength and the optical path length of the test object corresponding to the specific wavelength It is characterized by calculating the thickness of an object.
本発明によれば、被検物の厚みを非破壊で高精度に計測することができる計測方法および計測装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the measuring method and measuring apparatus which can measure the thickness of a to-be-tested object with high accuracy nondestructively can be provided.
以下、添付図面を参照して、本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
図1は、本発明の実施例1の計測装置のブロック図である。本実施例の計測装置は、マッハ・ツェンダー干渉計で構成されている。計測装置は、光源10、干渉光学系、媒質と被検物を収納可能な容器60、検出器90、コンピュータ100を有し、被検物80の厚みを計測する。
FIG. 1 is a block diagram of the measuring apparatus according to the first embodiment of the present invention. The measuring apparatus of the present embodiment is composed of a Mach-Zehnder interferometer. The measurement apparatus includes a
本実施例では、特定の波長において被検物の群屈折率と等しい群屈折率を有する媒質(例えば、オイル)に被検物を浸すことで、特定の波長における被検物の群屈折率を高精度に計測する。そして、特定の波長における被検物の群屈折率と被検物の光路長とを結びつけることで高精度に被検物の厚みを計測することができる。被検物はレンズや平板などの屈折型光学素子である。 In this example, the group refractive index of a test object at a specific wavelength is obtained by immersing the test object in a medium (for example, oil) having a group refractive index equal to that of the test object at a specific wavelength. Measure with high accuracy. The thickness of the test object can be measured with high accuracy by combining the group refractive index of the test object at a specific wavelength and the optical path length of the test object. The test object is a refractive optical element such as a lens or a flat plate.
なお、屈折率には、光の等位相面の移動速度である位相速度vp(λ)に関する位相屈折率Np(λ)と、光のエネルギーの移動速度(波束の移動速度)vg(λ)に関する群屈折率Ng(λ)があり、後述する数式2によって相互に変換することができる。 The refractive index includes a phase refractive index N p (λ) with respect to a phase velocity v p (λ) that is a moving velocity of the equiphase surface of light, and a light energy moving velocity (wave packet moving velocity) v g ( There is a group refractive index N g (λ) with respect to λ), which can be converted to each other according to Equation 2 described below.
光源10は、複数の波長の光を射出する光源(例えば、スーパーコンティニューム光源)である。干渉光学系は、光源10からの光を、被検物を透過しない光(参照光)と被検物を透過する光(被検光)に分割し、参照光と被検光を重ね合わせて干渉させ、その干渉光を検出器90に導光する。干渉光学系は、ビームスプリッタ20、21、ミラー30、31、40、41、50、51を有する。
The
ビームスプリッタ20、21は、例えば、キューブビームスプリッタで構成される。ビームスプリッタ20は、界面(接合面)20aにおいて、光源10からの光の一部を透過すると同時に残りを反射する。本実施例では、界面20aを透過した光が参照光、界面20aで反射した光が被検光である。ビームスプリッタ21は、界面21aにおいて、参照光の一部を反射し、被検光の一部を透過する。この結果、参照光と被検光が干渉して干渉光を形成し、干渉光は検出器90に射出される。
The
容器60は、媒質70と被検物80を収容している。容器内における参照光の光路長と被検光の光路長は、被検物80が容器内に配置されていない状態で一致するのが好ましい。したがって、容器60の側面(例えば、ガラス)は厚みおよび屈折率が均一で、かつ、容器60の両側面が平行であるのが望ましい。容器60は温度調整機構(温度制御手段)を備えており、媒質70の温度の昇降や媒質70の温度分布を制御することができる。
The
媒質70の屈折率は、不図示の媒質屈折率計測手段によって計測される。媒質屈折率計測手段は、例えば、媒質の温度を計測する温度計測手段と、計測した温度を媒質の屈折率に換算するコンピュータから構成される。媒質屈折率計測手段は、屈折率および形状が既知のガラスプリズム(基準被検物)の透過波面を計測する波面計測センサ(波面計測手段)と、透過波面とガラスプリズムの屈折率および形状から媒質の屈折率を算出するコンピュータから構成してもよい。媒質屈折率計測手段は、位相屈折率を計測してもよいし、群屈折率を計測してもよい。媒質屈折率計測手段によって位相屈折率を計測した場合は、後述する数式2の関係によって群屈折率を算出することができる。
The refractive index of the
ミラー40、41は、例えば、プリズム型ミラーである。ミラー50、51は、例えば、コーナーキューブリフレクターである。ミラー51は、図1の矢印の方向の駆動機構を有する。ミラー51の駆動機構は、例えば、駆動レンジの大きいステージと駆動分解能の高いピエゾステージから構成されている。ミラー51の駆動量は、不図示の測長器(例えば、レーザ変位計やエンコーダ)によって計測される。ミラー51の駆動は、コンピュータ100によって制御されている。参照光と被検光の光路長差は、ミラー51の駆動機構(調整部)によって調整することができる。
The
検出器90は、ビームスプリッタ21からの干渉光を分光し、干渉光強度を波長(周波数)の関数として検出する分光器などから構成されている。
The
コンピュータ100はCPUなどから構成されており、検出器90から出力される干渉信号に基づいて被検物80の屈折率や光路長を演算し、被検物80の厚みを演算する演算手段としての機能やミラー51の駆動量を制御する制御手段としての機能を備える。
The
干渉光学系は、被検物80が容器内に配置されていない状態で、参照光と被検光の光路長が等しくなるように調整されている。調整方法は次のとおりである。
The interference optical system is adjusted so that the optical path lengths of the reference light and the test light are equal in a state where the
図1の計測装置において、被検物80が容器内に配置されていない状態で参照光と被検光の干渉信号が計測される。このとき、参照光と被検光の位相差φ0(λ)および干渉強度Iφ0(λ)は数式1で表される。
In the measurement apparatus of FIG. 1, the interference signal between the reference light and the test light is measured in a state where the
ただし、λは空気中の波長、Δ0は参照光と被検光の光路長の差、I0は参照光の強度と被検光の強度の和、γは可視度(ビジビリティ)である。数式1より、Δ0がゼロでないときは、干渉強度I0(λ)は振動関数となる。したがって、参照光と被検光の光路長を等しくするためには、干渉信号が振動関数とならない位置にミラー51を駆動すればよい。このとき、Δ0がゼロになる。
Where λ is the wavelength in the air, Δ 0 is the difference in optical path length between the reference light and the test light, I 0 is the sum of the reference light intensity and the test light intensity, and γ is the visibility (visibility). From Equation 1, when Δ 0 is not zero, the interference intensity I 0 (λ) is a vibration function. Therefore, in order to make the optical path lengths of the reference light and the test light equal, the
ここでは、被検光と参照光の光路長が等しくなるように調整される場合(Δ0=0)について説明したが、現在のミラー51の位置がΔ0=0からどれだけシフトしているかが分かれば、被検光と参照光の光路長を等しくする必要はない。被検光と参照光の光路長が等しくなる位置(Δ0=0)からのミラー51の駆動量は不図示の測長器(例えば、レーザ測長器やエンコーダ)によって計測することができる。
Here, the case where the optical path lengths of the test light and the reference light are adjusted to be equal (Δ 0 = 0) has been described, but how much the current position of the
図2は、被検物80の厚みを算出する算出手順を示すフローチャートであり、「S」は、Step(ステップ)の略である。
FIG. 2 is a flowchart showing a calculation procedure for calculating the thickness of the
まず、特定の波長において被検物の群屈折率と等しい群屈折率を有する媒質70が、容器60内に満たされる(S10)。このとき、媒質70と被検物80は、被検光が被検物80と媒質70を透過し、参照光が媒質70を透過するように配置される。
First, a medium 70 having a group refractive index equal to the group refractive index of the test object at a specific wavelength is filled in the container 60 (S10). At this time, the medium 70 and the
一般に、オイルの紫外吸収帯は硝材の紫外吸収帯よりも可視光に近いため、可視光領域の屈折率分散曲線の傾きは、オイルの方が硝材よりも急である。図3(a)は、被検物と媒質それぞれの位相屈折率分散曲線を示す図である。図3(b)は、被検物と媒質それぞれの群屈折率分散曲線を示す図である。位相屈折率n(λ)と群屈折率ng(λ)の関係は、数式2で表される。 In general, since the ultraviolet absorption band of oil is closer to visible light than the ultraviolet absorption band of glass material, the slope of the refractive index dispersion curve in the visible light region is steeper for oil than for glass material. FIG. 3A is a diagram showing phase refractive index dispersion curves of the test object and the medium. FIG. 3B is a diagram illustrating group refractive index dispersion curves of the test object and the medium. The relationship between the phase refractive index n (λ) and the group refractive index n g (λ) is expressed by Equation 2.
被検物の群屈折率と媒質の群屈折率は、図3(b)の交差している点で等しくなる。図3(b)の交差している点の波長λ0が、特定の波長に相当する。高い位相屈折率を有する被検物と低い位相屈折率を有する媒質の組み合わせにおいて、群屈折率マッチングという状態が得られる。尚、媒質は被検物の表面における屈折の効果を低減する役割も担っている。 The group refractive index of the test object and the group refractive index of the medium are equal at the point where they intersect in FIG. The wavelength λ 0 at the intersecting point in FIG. 3B corresponds to a specific wavelength. In a combination of a test object having a high phase refractive index and a medium having a low phase refractive index, a state called group refractive index matching is obtained. The medium also plays a role of reducing the effect of refraction on the surface of the test object.
次に、参照光と被検光の位相差の波長依存性から特定の波長λ0が計測される(S20)。図1の検出器90で計測されるスペクトル領域の干渉信号は図4(a)のようになる。被検光と参照光の位相差φ(λ)および干渉強度I(λ)は数式3で表される。
Next, a specific wavelength λ 0 is measured from the wavelength dependence of the phase difference between the reference light and the test light (S20). The interference signal in the spectral region measured by the
ただし、nsample(λ)は被検物の位相屈折率、nmedium(λ)は媒質の位相屈折率、Lは被検物の中心部の幾何学厚みである。図4(a)および数式3からわかるとおり、干渉信号は、位相差φ(λ)の波長依存性を反映した振動関数となる。尚、本実施例における屈折率は、空気に対する相対屈折率を意味する。 Here, n sample (λ) is the phase refractive index of the test object, n medium (λ) is the phase refractive index of the medium, and L is the geometric thickness of the center of the test object. As can be seen from FIG. 4A and Equation 3, the interference signal is a vibration function reflecting the wavelength dependence of the phase difference φ (λ). In addition, the refractive index in a present Example means the relative refractive index with respect to air.
図4(a)のλ0は、位相差φ(λ)が極値をとる波長を示している。位相差φ(λ)の波長に関する傾き、つまり位相差の微分dφ(λ)/dλは、数式4で表される。 In FIG. 4A, λ 0 indicates a wavelength at which the phase difference φ (λ) takes an extreme value. The inclination of the phase difference φ (λ) with respect to the wavelength, that is, the differential dφ (λ) / dλ of the phase difference is expressed by Equation 4.
ただし、ng sample(λ)は被検物の群屈折率、ng medium(λ)は媒質の群屈折率である。位相差φ(λ)が極値をとる波長λ0とは、数式4の位相差の微分dφ(λ)/dλがゼロとなる波長である。言い換えると、波長λ0は、被検物の群屈折率ng sample(λ)と媒質の群屈折率ng medium(λ)が等しくなる波長(特定の波長)である。数式5は、特定の波長λ0における被検物の群屈折率と媒質の群屈折率の関係を表す。図4(a)の干渉信号の振動周期が長くなる領域の頂点(極値)を計測することで、特定の波長λ0を決定できる(S20)。 However, ng sample (λ) is the group refractive index of the test object, and ng medium (λ) is the group refractive index of the medium. The wavelength λ 0 at which the phase difference φ (λ) takes an extreme value is a wavelength at which the differential dφ (λ) / dλ of the phase difference in Equation 4 is zero. In other words, the wavelength λ 0 is a wavelength (specific wavelength) at which the group refractive index ng sample (λ) of the test object is equal to the group refractive index ng medium (λ) of the medium . Formula 5 represents the relationship between the group refractive index of the test object and the group refractive index of the medium at a specific wavelength λ 0 . The specific wavelength λ 0 can be determined by measuring the apex (extreme value) of the region where the vibration period of the interference signal in FIG. 4A is long (S20).
次に、媒質70の群屈折率ng medium(λ)が計測される(S30)。本実施例では、媒質の温度を計測する温度計測手段と、計測した温度を媒質の屈折率に換算するコンピュータ100から構成される媒質屈折率計測手段を有しているものとする。ある基準温度T0における媒質70の位相屈折率n0 medium(λ)と、媒質70の屈折率の温度係数dnmedium(λ)/dTを既知として、温度の計測値Tと結びつけて数式6のように媒質70の群屈折率ng medium(λ)が算出される。
Next, the group refractive index ng medium (λ) of the medium 70 is measured (S30). In the present embodiment, it is assumed that there is a medium refractive index measuring means constituted by a temperature measuring means for measuring the temperature of the medium and a
S20において計測された特定の波長λ0に対応する媒質70の群屈折率ng medium(λ0)が数式6の関係に基づいて算出される(S40)。数式5に示したとおり、S40において算出された特定の波長λ0に対応する媒質70の群屈折率ng medium(λ0)は、特定の波長λ0における被検物80の群屈折率ng sample(λ0)と等しい。
The group refractive index ng medium (λ 0 ) of the medium 70 corresponding to the specific wavelength λ 0 measured in S20 is calculated based on the relationship of Equation 6 (S40). As shown in Equation 5, the group refractive index n g medium (λ 0 ) of the medium 70 corresponding to the specific wavelength λ 0 calculated in S40 is the group refractive index n of the
このように、数式5を用いた被検物の群屈折率計測方法は、被検物の群屈折率が媒質の群屈折率を介して計測されるため、被検物の厚みLに依存しない。したがって、被検物の厚みLが未知でも被検物の群屈折率が計測できる。 As described above, the method for measuring the group refractive index of the test object using Equation 5 does not depend on the thickness L of the test object because the group refractive index of the test object is measured via the group refractive index of the medium. . Therefore, the group refractive index of the test object can be measured even if the thickness L of the test object is unknown.
なお、媒質70の温度の計測値Tと基準温度T0の温度差が小さい場合は、特定の温度における波長ごとの屈折率のデータを示すルックアップデーブルを用いてもよい。 Incidentally, when the temperature difference between the measured value T and the reference temperature T 0 of the temperature of the medium 70 is small, it may be using a look-up data table showing the data of the refractive index of each wavelength at a particular temperature.
次に、媒質70を容器60内に配置しない状態で、特定の波長に対応する被検物80の光路長が計測される(S50)。媒質70を容器60内に配置しないときの参照光と被検光の位相差φempty(λ)、位相差の微分dφempty(λ)/dλは、数式7のように表される。位相差φempty(λ)の極値における関係式は数式8で表される。λは空気中の波長なので、空気の屈折率は波長に組み込まれている。ここでは、空気の位相屈折率は空気の群屈折率と等しいと仮定している。
Next, the optical path length of the
位相差φempty(λ)の極値の波長は、Δ0の値によって変化する。位相差φempty(λ)の極値の波長が、特定の波長λ0に一致するように、Δ0が調整される。本実施例では、極値の波長が特定の波長λ0に一致したときのΔ0=(ng sample(λ0)−1)Lを被検物80の光路長と定義している。図4(b)は、極値の波長が特定の波長λ0に一致したときの干渉信号である。
Wavelength extreme retardation φ empty (λ) is varied by delta 0 value. Δ 0 is adjusted so that the wavelength of the extreme value of the phase difference φ empty (λ) matches the specific wavelength λ 0 . In the present embodiment, Δ 0 = ( ng sample (λ 0 ) −1) L when the extreme wavelength coincides with a specific wavelength λ 0 is defined as the optical path length of the
最後に、特定の波長に対応する被検物の群屈折率と特定の波長に対応する被検物の光路長を用いて被検物80の厚みLを算出する(S60)。厚みLは数式9で表される。
Finally, the thickness L of the
本実施例では、被検物の群屈折率と媒質の群屈折率が等しくなる特定の波長λ0において、媒質の群屈折率を経由して被検物の群屈折率が計測される。媒質の群屈折率は高精度に計測されるため、被検物の群屈折率も高精度に計測される。高精度に計測された被検物の群屈折率と被検物の光路長とが、特定の波長λ0において結びつけられることで、被検物の厚みも高精度に算出される。 In this embodiment, the group refractive index of the test object is measured via the group refractive index of the medium at a specific wavelength λ 0 where the group refractive index of the test object and the group refractive index of the medium are equal. Since the group refractive index of the medium is measured with high accuracy, the group refractive index of the test object is also measured with high accuracy. By combining the group refractive index of the test object measured with high accuracy and the optical path length of the test object at the specific wavelength λ 0 , the thickness of the test object is also calculated with high accuracy.
本実施例では、振動する干渉信号から特定の波長λ0を計測した。その代わりに、特定の波長の計測方法は、位相シフト法を用いて参照光と被検光の位相差を計測し、その位相差の極値を直接求める方法でもよい。 In this example, a specific wavelength λ 0 was measured from the oscillating interference signal. Instead, the specific wavelength measurement method may be a method in which the phase difference between the reference light and the test light is measured using the phase shift method, and the extreme value of the phase difference is directly obtained.
本実施例では、特定の波長λ0を計測した後に、特定の波長λ0における被検物の光路長を計測した。その代わりに、被検物の光路長計測を行った後に、特定の波長λ0を計測する方法でもよい。まず、媒質70が容器60内に配置されていない状態で、被検物80が配置される。Δ0の変化に対する位相差φempty(λ)の極値の変化を計測することで、被検物80の光路長が波長の関数(数式8)として計測される。次に、媒質70が容器60に満たされ、特定の波長λ0が計測される。波長の関数である被検物80の光路長(数式8)に特定の波長λ0を代入することで、特定の波長に対応する被検物80の光路長が計測される。
In this embodiment, after measuring the particular wavelength lambda 0, it was measured light path length of the object at a particular wavelength lambda 0. Instead, a method of measuring the specific wavelength λ 0 after measuring the optical path length of the test object may be used. First, the
本実施例では、容器60内を空(空気)にして被検物の光路長を計測している。空気の代わりに、媒質70の屈折率と異なる屈折率を有する媒質(例えば、水)を用いて被検物の光路長が計測されてもよい。
In this embodiment, the inside of the
本実施例では、複数の波長の光を射出する光源10として、スーパーコンティニューム光源を用いた。その代わりに、スーパールミネッセントダイオード(SLD)やハロゲンランプ、短パルスレーザ等が使われてもよい。連続スペクトル光源の代わりに、マルチライン発振ガスレーザのような、離散スペクトル光源が用いられてもよい。
In this embodiment, a super continuum light source is used as the
本実施例では、複数の波長における干渉光を検出器90で分光している。その代わりに、波長掃引方法が使用可能である。波長掃引方法は、例えば、複数の波長の光を射出する光源の直後に分光器を配置して疑似単色光を射出し、その波長の干渉信号をフォトダイオード等の検出器で計測する。そして、波長掃引方法は、この各波長の干渉計測を波長走査しながら行う。複数の波長の光を射出する光源と分光器との組み合わせの代わりに、波長可変ダイオードレーザのような波長掃引光源が用いられてもよい。
In this embodiment, interference light at a plurality of wavelengths is dispersed by the
波長掃引方法は、ヘテロダイン干渉法と組み合わせることが可能である。ヘテロダイン干渉法は、音響光学素子等で参照光と被検光の間に周波数差を発生させて計測する時間的な位相シフト法である。 The wavelength sweeping method can be combined with heterodyne interferometry. The heterodyne interferometry is a temporal phase shift method in which a frequency difference is generated between the reference light and the test light by an acoustooptic device or the like and measured.
媒質70の温度分布は、媒質70の屈折率分布と等価である。媒質70の屈折率分布は、算出する被検物の屈折率に誤差を与える。したがって、媒質70の温度分布が発生しないように温度調整機構(温度調整手段)で制御するのが望ましい。媒質70の屈折率分布による誤差は、屈折率分布の量がわかれば補正できる。そのため、媒質70の屈折率分布を計測するための波面計測装置(波面計測手段)が備わっていると、より望ましい。 The temperature distribution of the medium 70 is equivalent to the refractive index distribution of the medium 70. The refractive index distribution of the medium 70 gives an error to the calculated refractive index of the test object. Therefore, it is desirable to control by the temperature adjustment mechanism (temperature adjustment means) so that the temperature distribution of the medium 70 does not occur. An error due to the refractive index distribution of the medium 70 can be corrected if the amount of the refractive index distribution is known. Therefore, it is more desirable that a wavefront measuring device (wavefront measuring means) for measuring the refractive index distribution of the medium 70 is provided.
本実施例では、被検物80が容器60に配置されていない状態で、被検光と参照光の光路長が等しくなる(Δ0=0)ようにミラー51が調整される。その代わりに、現在の位置がΔ0=0からどれだけシフトしているかが分かればよい。つまり、現在のΔ0の値が特定できれば良い。その場合、参照光と被検光の位相差φ(λ)が、数式3の代わりに数式10のような位相差Φ(λ)に置き換えられればよい。
In this embodiment, the
本実施例では、マッハ・ツェンダー干渉計の構成をとっているが、代わりにマイケルソン干渉計の構成でもよい。また、本実施例では、位相差や屈折率を波長の関数として算出しているが、代わりに周波数の関数として算出してもよい。 In this embodiment, a Mach-Zehnder interferometer is used, but a Michelson interferometer may be used instead. Further, in this embodiment, the phase difference and the refractive index are calculated as a function of wavelength, but may be calculated as a function of frequency instead.
図5は、本発明の実施例2の計測装置のブロック図である。媒質70の屈折率を計測する干渉計が実施例の1の計測装置に追加されている。本実施例では、被検物の光路長を波長の関数として計測した後に、特定の波長λ0を計測し、特定の波長λ0における光路長を算出する。被検物は正のパワーを持つレンズである。実施例1と同様の構成については、同一の符号を付して説明する。 FIG. 5 is a block diagram of the measuring apparatus according to the second embodiment of the present invention. An interferometer that measures the refractive index of the medium 70 is added to the measurement apparatus according to the first embodiment. In this embodiment, after measuring the optical path length of the test object as a function of wavelength, the specific wavelength λ 0 is measured, and the optical path length at the specific wavelength λ 0 is calculated. The test object is a lens with positive power. The same configurations as those in the first embodiment will be described with the same reference numerals.
光源10から射出された光は、ビームスプリッタ22で透過光と反射光に分割される。透過光は、被検物80の厚みを計測するための干渉光学系へ進み、反射光は、媒質70の屈折率を計測するための干渉光学系へと導かれる。反射光は、ビームスプリッタ23でさらに透過光(媒質参照光)と反射光(媒質被検光)に分割される。
The light emitted from the
ビームスプリッタ23で反射した媒質被検光は、ミラー42、52で反射した後に、容器60の側面および媒質70を透過し、ミラー33で反射されてビームスプリッタ24に至る。ビームスプリッタ23を透過した媒質参照光は、ミラー32、43、53で反射した後に、補償板61を透過してビームスプリッタ24へ至る。ビームスプリッタ24へ至った媒質参照光と媒質被検光は、干渉して干渉光を形成し、分光器等で構成される検出器91で検出される。検出器91で検出された信号は、コンピュータ100に送られる。
The medium test light reflected by the
補償板61は、容器60の側面による屈折率分散の影響を補正する役割を担い、容器60の側面と同一材質かつ同一厚み(=容器60の側面の厚み×2)で構成される。補償板61は、容器60内が空のとき、媒質参照光と媒質被検光の各波長のそれぞれの光路長差を等しくする効果を有する。
The compensation plate 61 plays a role of correcting the influence of refractive index dispersion due to the side surface of the
ミラー53は、ミラー51と同様の駆動機構を有しており、図5の矢印の方向に駆動する。ミラー53の駆動は、コンピュータ100で制御される。
The
本実施例の被検物80の厚み算出手順は、次のとおりである。
The procedure for calculating the thickness of the
まず、被検光路上に被検物80が配置される。Δ0が変化したときの位相差φempty(λ)の極値の波長の変化を計測することで、被検物80の光路長が波長の関数(数式8)として計測される。特定の波長において被検物の群屈折率と等しい群屈折率を有する媒質が参照光と被検光の光路上に配置される。次に、参照光と被検光の位相差の波長依存性から特定の波長が計測される。実施例1では、参照光と被検光の干渉信号から特定の波長を計測した。本実施例では、参照光と被検光の位相差を計測してから特定の波長を計測する。数式3で表される位相差φ(λ)は、次のような位相シフト法で算出される。
First, the
ミラー51を微小量ずつ駆動させながら干渉信号が取得される。ミラー51の位相シフト量(=駆動量×2π/λ)がδk(k=0,1,・・・M−1)のときの干渉強度Ik(λ)は数式11で表される。
An interference signal is acquired while driving the
位相差φ(λ)は、最小二乗法のアルゴリズムを用いて、数式12で算出される。位相差φ(λ)の算出精度を高める指針は、位相シフト量δkをできるだけ小さくし、駆動ステップ数Mをできるだけ大きくすることである。算出された位相差φ(λ)は2πで畳み込まれている。したがって、2πの位相飛びをつなぎ合わせる作業(アンラッピング)が必要である。 The phase difference φ (λ) is calculated by Equation 12 using a least square algorithm. Guidelines to enhance the accuracy of calculation of phase difference phi (lambda) is to minimize the phase shift amount [delta] k, is to maximize the number of drive steps M. The calculated phase difference φ (λ) is convolved with 2π. Therefore, an operation (unwrapping) for connecting 2π phase jumps is necessary.
数式12で算出された位相差φ(λ)の極値に対応する波長から、特定の波長λ0が計測される。位相差φ(λ)の微分dφ(λ)/dλがゼロとなる波長が、特定の波長λ0である。 A specific wavelength λ 0 is measured from the wavelength corresponding to the extreme value of the phase difference φ (λ) calculated by Expression 12. The wavelength at which the differential dφ (λ) / dλ of the phase difference φ (λ) is zero is the specific wavelength λ 0 .
位相差φ(λ)は離散データなので、位相差の微分dφ(λ)/dλとして各波長データ間における変化の割合が算出される。一般的に、データの微分量を算出する作業は、ノイズの影響を増幅する。ノイズの影響を低減するためには、元データをスムージングしてから微分量が算出されればよい。もしくは、微分データ自身がスムージングされればよい。 Since the phase difference φ (λ) is discrete data, the rate of change between the respective wavelength data is calculated as the differential phase difference dφ (λ) / dλ. In general, the operation of calculating the differential amount of data amplifies the influence of noise. In order to reduce the influence of noise, the derivative amount may be calculated after smoothing the original data. Alternatively, the differential data itself may be smoothed.
次に、媒質の群屈折率ng medium(λ)が計測される。媒質参照光と媒質被検光の位相差φmedium(λ)と位相差の微分dφmedium(λ)/dλは、数式13で表される。 Next, the group refractive index ng medium (λ) of the medium is measured. The phase difference φ medium (λ) between the medium reference light and the medium test light and the differential dφ medium (λ) / dλ of the phase difference are expressed by Equation 13.
ただし、Δは媒質70が容器60内に配置されていないときの媒質参照光と媒質被検光の光路長差、Ltankは容器60の側面間の距離(媒質被検光の媒質70内の光路長)であり、既知の量である。位相差φ(λ)の計測方法と同様に、ミラー53の駆動を用いた位相シフト法により、媒質参照光と媒質被検光の位相差φmedium(λ)が計測される。数式13を式変形すると媒質の群屈折率ng medium(λ)が求まる。
Where Δ is the optical path length difference between the medium reference light and the medium test light when the medium 70 is not arranged in the
数式5のとおり、特定の波長λ0に対応する媒質の群屈折率ng medium(λ0)は特定の波長λ0における被検物の群屈折率ng sample(λ0)と等しい。波長の関数である被検物80の光路長(数式8)に特定の波長λ0を代入して、特定の波長に対応する被検物の光路長Δ0が算出される。最後に、特定の波長λ0における被検物80の群屈折率と光路長を対応付けることで、数式9により被検物80の厚みLが算出される。
As Equation 5, the group index n g medium (λ 0) of a medium corresponding to a particular wavelength lambda 0 is equal to the group index n g sample of the test object (lambda 0) at a particular wavelength lambda 0. By substituting a specific wavelength λ 0 for the optical path length (Equation 8) of the
図6は、本発明の実施例3の計測装置のブロック図である。波面が2次元センサを用いて計測される。媒質の屈折率を計測するために、屈折率および形状が既知のガラスプリズム(基準被検物)が媒質中の被検光束上に配置されている。実施例1、実施例2と同様の構成については、同一の符号を付して説明する。 FIG. 6 is a block diagram of the measuring apparatus according to the third embodiment of the present invention. The wavefront is measured using a two-dimensional sensor. In order to measure the refractive index of the medium, a glass prism (reference test object) having a known refractive index and shape is arranged on the test light beam in the medium. The same configurations as those in the first and second embodiments will be described with the same reference numerals.
光源10から射出した光は、分光器95で分光され、疑似単色光となってピンホール110に入射する。ピンホール110へ入射させる疑似単色光の波長は、コンピュータ100で制御される。ピンホール110を透過して発散光となった光は、コリメータレンズ120で平行光にコリメートされる。コリメート光は、ビームスプリッタ25で透過光(参照光)と反射光(被検光)に分割される。
The light emitted from the
ビームスプリッタ25を透過した参照光は、容器60内の媒質70を透過した後、ミラー31で反射してビームスプリッタ26へ至る。ミラー31は、図6の矢印方向の駆動機構を有し、コンピュータ100で制御される。
The reference light transmitted through the
ビームスプリッタ25で反射された被検光は、ミラー30で反射して、媒質70と被検物80とガラスプリズム130を収容している容器60に入射する。被検光の一部の光は媒質70および被検物80を透過する。被検光の一部の光は媒質70およびガラスプリズム130を透過する。被検光の残りの光は媒質70のみを透過する。容器60を透過したそれぞれの光は、ビームスプリッタ26において参照光と干渉して干渉光を形成し、結像レンズ121を介して検出器92(例えば、CCDやCMOSセンサ)で検出される。検出器92で検出された干渉信号は、コンピュータ100に送られる。検出器92は、結像レンズ121に関して、被検物80およびガラスプリズム130の位置と共役位置に配置されている。
The test light reflected by the
媒質70の位相屈折率は、ガラスプリズム130を透過した波面の計測によって算出される。ガラスプリズム130を透過した光と参照光の干渉縞が密になりすぎないように、ガラスプリズムは、媒質70の位相屈折率とほぼ等しい位相屈折率を有するものが好ましい。
The phase refractive index of the medium 70 is calculated by measuring the wavefront transmitted through the
被検光と参照光の光路長は、被検物80およびガラスプリズム130が被検光路上に配置されていない状態で、等しくなるように調整されている。
The optical path lengths of the test light and the reference light are adjusted to be equal in a state where the
本実施例の被検物80の厚み算出手順は、次のとおりである。
The procedure for calculating the thickness of the
まず、特定の波長において被検物の群屈折率と等しい群屈折率を有する媒質が参照光と被検光の光路上に配置される。次に、分光器95による波長走査と、ミラー31の駆動機構を用いた位相シフト法により、被検光と参照光の位相差φ(λ)および媒質70の屈折率nmedium(λ)が計測される。位相差の波長依存性(φ(λ)もしくはdφ(λ)/dλ)から、特定の波長が算出される。媒質70の位相屈折率nmedium(λ)から、数式2を用いて、媒質70の群屈折率ng medium(λ)が計測される。特定の波長に対応する媒質70の群屈折率が被検物80の群屈折率ng sample(λ0)として算出される。容器60から媒質70が取り出され、特定の波長に対応する被検物の光路長が計測される。最後に、特定の波長における被検物80の群屈折率と光路長を用いて被検物80の厚みLが算出される。
First, a medium having a group refractive index equal to the group refractive index of the test object at a specific wavelength is disposed on the optical path of the reference light and the test light. Next, the phase difference φ (λ) between the test light and the reference light and the refractive index n medium (λ) of the medium 70 are measured by wavelength scanning by the
以上説明したように、本発明の各実施例の計測装置によれば、被検物の厚みを非破壊で高精度に計測することができる。 As described above, according to the measuring apparatus of each embodiment of the present invention, the thickness of the test object can be measured with high accuracy without destruction.
10 光源
70 媒質
80 被検物
100 コンピュータ(算出手段)
DESCRIPTION OF
Claims (16)
特定の波長において前記被検物の群屈折率と等しい群屈折率を有する媒質を前記被検光と前記参照光の光路上に配置し、前記被検物および前記媒質を透過した被検光と前記媒質を透過した参照光とを干渉させた干渉光を計測し、前記被検光と前記参照光の位相差の波長依存性に基づいて前記特定の波長を決定し、前記特定の波長に対応する前記媒質の群屈折率を前記特定の波長に対応する前記被検物の群屈折率として算出する群屈折率計測ステップと、
前記被検物の光路長を計測する光路長計測ステップと、
前記特定の波長に対応する前記被検物の群屈折率と前記特定の波長に対応する前記被検物の光路長とに基づいて、前記被検物の厚みを算出する算出ステップと、
を含むことを特徴とする厚み計測方法。 The light from the light source is divided into the test light and the reference light, the test light is incident on the test object, and the test light transmitted through the test object is interfered with the reference light by the interference measurement. A thickness measurement method for measuring the thickness of a test object,
A medium having a group refractive index equal to the group refractive index of the test object at a specific wavelength is disposed on an optical path of the test light and the reference light, and the test light transmitted through the test object and the medium; Measures interference light that interferes with the reference light transmitted through the medium, determines the specific wavelength based on the wavelength dependence of the phase difference between the test light and the reference light, and corresponds to the specific wavelength A group refractive index measurement step of calculating the group refractive index of the medium as the group refractive index of the test object corresponding to the specific wavelength;
An optical path length measuring step for measuring an optical path length of the test object; and
A calculation step of calculating the thickness of the test object based on the group refractive index of the test object corresponding to the specific wavelength and the optical path length of the test object corresponding to the specific wavelength;
The thickness measuring method characterized by including.
前記被検物は、特定の波長において前記被検物の群屈折率と等しい群屈折率を有する媒質中に配置されており、
前記干渉光学系は、前記被検物および前記媒質を透過した被検光と前記媒質を透過した参照光とを干渉させる光学系であり、
前記演算手段は、前記被検光と前記参照光の位相差の波長依存性に基づいて前記特定の波長を決定し、前記特定の波長に対応する前記媒質の群屈折率を前記特定の波長に対応する前記被検物の群屈折率として算出し、前記特定の波長に対応する前記被検物の群屈折率と前記特定の波長に対応する前記被検物の光路長とを用いて前記被検物の厚みを算出することを特徴とする厚み計測装置。 A light source and interference optics that divides light from the light source into test light and reference light, causes the test light to enter the test object, and causes the test light transmitted through the test object to interfere with the reference light System, detection means for detecting interference light between the test light and the reference light, optical path length measurement means for measuring the optical path length of the test object, and the interference signal output from the detection means A thickness measuring apparatus that calculates a refractive index of a test object, and has a calculation unit that calculates the thickness of the test object using the refractive index of the test object and the optical path length of the test object,
The test object is disposed in a medium having a group refractive index equal to the group refractive index of the test object at a specific wavelength;
The interference optical system is an optical system that causes the test light transmitted through the test object and the medium to interfere with the reference light transmitted through the medium,
The calculation means determines the specific wavelength based on the wavelength dependence of the phase difference between the test light and the reference light, and sets the group refractive index of the medium corresponding to the specific wavelength to the specific wavelength. Calculated as the group refractive index of the corresponding test object, and using the group refractive index of the test object corresponding to the specific wavelength and the optical path length of the test object corresponding to the specific wavelength A thickness measuring apparatus for calculating a thickness of a specimen.
前記演算手段は、前記温度計測手段により計測された前記媒質の温度を前記媒質の屈折率に換算することによって前記媒質の群屈折率を算出することを特徴とする請求項9乃至11のいずれか1項に記載の厚み計測装置。 Temperature measuring means for measuring the temperature of the medium;
The said calculating means calculates the group refractive index of the said medium by converting the temperature of the said medium measured by the said temperature measuring means into the refractive index of the said medium. Item 1. The thickness measuring apparatus according to item 1.
前記媒質中に配置された前記基準被検物に入射させた光の透過波面を計測する波面計測手段を有し、
前記演算手段は、前記基準被検物の屈折率および形状と前記基準被検物の透過波面に基づいて、前記媒質の群屈折率を算出することを特徴とする請求項9乃至11のいずれか1項に記載の屈折率計測装置。 A reference specimen with a known refractive index and shape; and
Having wavefront measuring means for measuring a transmitted wavefront of light incident on the reference specimen placed in the medium;
The calculation means calculates the group refractive index of the medium based on the refractive index and shape of the reference specimen and the transmitted wavefront of the reference specimen. The refractive index measuring device according to item 1.
前記媒質被検光と前記媒質参照光の干渉光を検出する検出手段を有し、
前記演算手段は、前記媒質参照光と前記媒質被検光の位相差に基づいて前記媒質の群屈折率を算出することを特徴とする請求項9乃至11のいずれか1項に記載の屈折率計測装置。 An interference optical system that splits light from the light source into medium test light and medium reference light, causes the medium test light to enter the medium, and causes the medium test light transmitted through the medium to interfere with the medium reference light When,
Detecting means for detecting interference light between the medium test light and the medium reference light;
12. The refractive index according to claim 9, wherein the calculation unit calculates a group refractive index of the medium based on a phase difference between the medium reference light and the medium test light. Measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013240117A JP2015099133A (en) | 2013-11-20 | 2013-11-20 | Measurement method and measurement device for thickness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013240117A JP2015099133A (en) | 2013-11-20 | 2013-11-20 | Measurement method and measurement device for thickness |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015099133A true JP2015099133A (en) | 2015-05-28 |
Family
ID=53375821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013240117A Pending JP2015099133A (en) | 2013-11-20 | 2013-11-20 | Measurement method and measurement device for thickness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015099133A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016109670A (en) * | 2014-12-08 | 2016-06-20 | キヤノン株式会社 | Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method |
JP2018004442A (en) * | 2016-07-01 | 2018-01-11 | 株式会社溝尻光学工業所 | Shape measurement method and shape measurement device of transparent plate |
JP2018169295A (en) * | 2017-03-30 | 2018-11-01 | 株式会社東京精密 | Liquid level height measuring device, liquid injecting device having liquid level height measuring device, and method for measuring liquid level height using level height measuring device |
JP2022071123A (en) * | 2017-03-30 | 2022-05-13 | 株式会社東京精密 | Liquid level height measurement device, and liquid level height measurement method |
KR102649602B1 (en) * | 2022-11-29 | 2024-03-20 | (주)힉스컴퍼니 | Device and method for enhancing quality of interference pattern in transmission interferometer |
-
2013
- 2013-11-20 JP JP2013240117A patent/JP2015099133A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016109670A (en) * | 2014-12-08 | 2016-06-20 | キヤノン株式会社 | Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method |
JP2018004442A (en) * | 2016-07-01 | 2018-01-11 | 株式会社溝尻光学工業所 | Shape measurement method and shape measurement device of transparent plate |
JP2018169295A (en) * | 2017-03-30 | 2018-11-01 | 株式会社東京精密 | Liquid level height measuring device, liquid injecting device having liquid level height measuring device, and method for measuring liquid level height using level height measuring device |
JP2021105623A (en) * | 2017-03-30 | 2021-07-26 | 株式会社東京精密 | Liquid level height measurement device, and liquid level height measurement method |
JP2022071123A (en) * | 2017-03-30 | 2022-05-13 | 株式会社東京精密 | Liquid level height measurement device, and liquid level height measurement method |
JP7102635B2 (en) | 2017-03-30 | 2022-07-19 | 株式会社東京精密 | Liquid level height measuring device and liquid level height measuring method |
KR102649602B1 (en) * | 2022-11-29 | 2024-03-20 | (주)힉스컴퍼니 | Device and method for enhancing quality of interference pattern in transmission interferometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6157240B2 (en) | Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method | |
JP4912504B1 (en) | Refractive index measurement method and measurement apparatus | |
JP6167117B2 (en) | Optical sensor | |
JP5226078B2 (en) | Interferometer device and method of operating the same | |
JP2017003434A (en) | Method of measuring refractive index, measuring device, and method of manufacturing optical element | |
CN103954589B (en) | The precision measurement apparatus of a kind of optical material specific refractory power and method | |
JP2015099133A (en) | Measurement method and measurement device for thickness | |
WO2013091584A1 (en) | Method and device for detecting defects in substrate | |
JP2015105850A (en) | Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element | |
JP5724133B2 (en) | Structure measuring method and structure measuring apparatus | |
JP6157241B2 (en) | Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method | |
JP6207383B2 (en) | Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method | |
JP4208069B2 (en) | Refractive index and thickness measuring apparatus and measuring method | |
JP2017198613A (en) | Refractive index measurement method, refractive index measurement device, and optical element manufacturing method | |
JP5704897B2 (en) | Interference measurement method and interference measurement apparatus | |
JP6700699B2 (en) | Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method | |
JP2018004409A (en) | Refractive index measurement method, refractive index measurement device, and method of manufacturing optical element | |
KR101108693B1 (en) | Refractive index measurement device based on white light interferometry and method thereof | |
JP2015010920A (en) | Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method | |
JP5894464B2 (en) | Measuring device | |
JP5177566B2 (en) | Refractive index measuring method and refractive index measuring apparatus | |
JP2015210241A (en) | Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element | |
Lehmann et al. | Fiber optic interferometric sensor based on mechanical oscillation | |
JP2009236554A (en) | Method, apparatus, and system for evaluation and calibration of dual-wavelength laser interferometer | |
JP2016109595A (en) | Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method |