JP2018169295A - Liquid level height measuring device, liquid injecting device having liquid level height measuring device, and method for measuring liquid level height using level height measuring device - Google Patents

Liquid level height measuring device, liquid injecting device having liquid level height measuring device, and method for measuring liquid level height using level height measuring device Download PDF

Info

Publication number
JP2018169295A
JP2018169295A JP2017066936A JP2017066936A JP2018169295A JP 2018169295 A JP2018169295 A JP 2018169295A JP 2017066936 A JP2017066936 A JP 2017066936A JP 2017066936 A JP2017066936 A JP 2017066936A JP 2018169295 A JP2018169295 A JP 2018169295A
Authority
JP
Japan
Prior art keywords
liquid level
container
liquid
laser
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017066936A
Other languages
Japanese (ja)
Other versions
JP6878086B2 (en
Inventor
祥希 大野
Yoshiki Ono
祥希 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2017066936A priority Critical patent/JP6878086B2/en
Publication of JP2018169295A publication Critical patent/JP2018169295A/en
Priority to JP2021073083A priority patent/JP2021105623A/en
Application granted granted Critical
Publication of JP6878086B2 publication Critical patent/JP6878086B2/en
Priority to JP2022032404A priority patent/JP7102635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

To contactlessly measure a change of liquid level in a transparent container with high accuracy without being affected by an environment or enable a change of liquid level in a transparent container to be measured contactlessly when there is difficulty bringing a sensor into direct contact with a liquid level because of the presence of a narrow part in a measurement path.SOLUTION: A liquid level height measuring device 50 measures a liquid level height in a container 30 by a change from a reference height. A length measuring instrument with laser interferometer 100 includes a laser light source, a beam splitter and a laser detector, and is capable of radiating a laser beam. A reflector 18 reflects the laser beam radiated from the length measuring instrument with laser interferometer at the underside of the container. The length measuring instrument with laser interferometer finds a liquid level height, as a change from the reference height, from a difference between the reference optical path length Lof the laser beam radiated from the laser light source and reflected from the reflector when the liquid level height in the container is at reference height and an optical path length Lx at the time the liquid level height is changed, and the refractive index of a liquid 34 under measurement that is included in the container during measurement.SELECTED DRAWING: Figure 2

Description

本発明は、容器内の液面高さを測定する測定装置、該液面高さ測定装置を有する液注入装置、およびそれを用いた液面高さ測定方法に係り、特に狭隘部を介して容器内の液面高さを測定する場合に好適な、液面高さ測定装置、該液面高さ測定装置を有する液注入装置、およびそれを用いた液面高さ測定方法に関する。   The present invention relates to a measuring apparatus for measuring the liquid level in a container, a liquid injection apparatus having the liquid level measuring apparatus, and a liquid level measuring method using the measuring apparatus, particularly through a narrow part. The present invention relates to a liquid level measuring device suitable for measuring the liquid level in a container, a liquid injection device having the liquid level measuring device, and a liquid level measuring method using the same.

容器内の液体の液面又は液量を非接触で測定する方法として、超音波を用いて測定する方法が提案されている。例えば特許文献1では、容器底部に取り付けた超音波トランスジューサにより液面を検出する際に、容器底部の板厚による誤差を無くすため、周波数を変化させながら超音波トランスジューサをバースト駆動し、容器の底部を介して液面に向けて超音波を発射している。これにより板厚固有周波数を特定し、液面検知用駆動周波数での液面反射波の受信信号に基づく容器の液面高さ算出の際に、板厚分を補正する。   As a method for measuring the liquid level or amount of liquid in a container in a non-contact manner, a method using ultrasonic waves has been proposed. For example, in Patent Document 1, when detecting the liquid level with an ultrasonic transducer attached to the bottom of the container, in order to eliminate an error due to the thickness of the bottom of the container, the ultrasonic transducer is driven in bursts while changing the frequency, and the bottom of the container Ultrasonic waves are emitted toward the liquid surface via Thus, the plate thickness natural frequency is specified, and the plate thickness is corrected when calculating the liquid level of the container based on the received signal of the liquid level reflected wave at the liquid level detection driving frequency.

また特許文献2では、親検体から子検体へ分注する際に、ポンプの先端部の分注チップが装着される部分の先端部と分注チップ間に、超音波を発振・受信する振動子を設け、振動子から超音波が発信されたのちに超音波が分注チップに伝搬し、分注チップ内に吸引された液体試料の液面を経由して分注チップに伝わり、振動子に戻って受信されるまでの、発信から受信までの時間経過から、信号処理回路が液体試料の液面高さを計測している。   Further, in Patent Document 2, when dispensing from a parent sample to a child sample, a vibrator that oscillates and receives ultrasonic waves between the distal end portion of the portion where the dispensing tip of the pump is mounted and the dispensing tip. After the ultrasonic wave is transmitted from the vibrator, the ultrasonic wave propagates to the dispensing tip, and is transmitted to the dispensing tip via the liquid surface of the liquid sample sucked into the dispensing tip. The signal processing circuit measures the liquid level of the liquid sample from the time elapsed from transmission to reception until it is received back.

他方で、レーザ光を用いて容器内の液面を計測することも行われており、例えば特許文献3では、レーザ式液面計で光軸合わせや測定距離の校正を容易にするため、レーザ距離計が微動回転機構により、左右や前後にレーザ光を調整され、校正体位置をレーザ距離計による距離測定と反射高強度の変化から検出している。そして既知の値と検出値を比較して距離構成している。また特許文献4では、非接触で高さを計測するため、泡表面にレーザ光を照射し、その反射光を集光して入射光と反射光の位相差を算出し、泡の高さを検出している。   On the other hand, the liquid level in the container is also measured using laser light. For example, in Patent Document 3, a laser-type liquid level meter is used to facilitate optical axis alignment and calibration of the measurement distance. The distance meter adjusts the laser beam left and right and back and forth by a fine movement rotation mechanism, and detects the position of the calibration body from the distance measurement by the laser distance meter and the change in the reflected high intensity. The distance is constructed by comparing the known value with the detected value. In Patent Document 4, in order to measure the height without contact, the bubble surface is irradiated with laser light, the reflected light is collected, the phase difference between the incident light and the reflected light is calculated, and the height of the bubble is calculated. Detected.

特開2011−2326号公報JP 2011-2326 A 特開平10−232239号公報JP-A-10-232239 特開2014−145756号公報JP 2014-145756 A 特開2001−249042号公報JP 2001-249042 A

上記特許文献1や特許文献2に記載のように、従来容器内の液面の高さを、超音波の伝播時間を利用して測定する方法が用いられている。その際、超音波は液面で反射するので、超音波の伝播時間に基づきセンサと液面間の距離を算出している。しかしながらこの超音波を利用した液面測定方法では以下の解決すべき課題がある。一つは精度であり他の一つは測定範囲である。精度に関しては、液面測定には超音波の伝播時間および音速値が必要であるが、音速は周囲温度のような雰囲気の状況により大きく変化する。市販されている超音波を用いたセンサの測定精度は1mm程度になっており、汎用の超音波センサでは、精密な測定には不向きである。また測定範囲に関しては、超音波センサから発信される超音波はある程度の広がりを有している。すなわち、発信信号のスポット径の絞り込みに限界がある。一般的に使用される超音波センサでは数十mmの広がりがあり、正確にどの位置を計測しているのかが判別できない恐れがある。   As described in Patent Document 1 and Patent Document 2, a method of measuring the height of the liquid level in a conventional container using the propagation time of ultrasonic waves is used. At that time, since the ultrasonic wave is reflected by the liquid surface, the distance between the sensor and the liquid surface is calculated based on the propagation time of the ultrasonic wave. However, the liquid level measurement method using ultrasonic waves has the following problems to be solved. One is accuracy and the other is measurement range. Regarding accuracy, the ultrasonic wave propagation time and sound velocity value are required for liquid level measurement, but the sound velocity varies greatly depending on the ambient conditions such as ambient temperature. The measurement accuracy of commercially available sensors using ultrasonic waves is about 1 mm, and general-purpose ultrasonic sensors are not suitable for precise measurement. Regarding the measurement range, the ultrasonic wave transmitted from the ultrasonic sensor has a certain extent. That is, there is a limit to narrowing down the spot diameter of the transmission signal. A generally used ultrasonic sensor has a spread of several tens of millimeters, and it may not be possible to determine exactly which position is being measured.

一方、レーザを使用した上記特許文献3や特許文献4に記載の液面検出装置では、雰囲気温度や発信信号のスポット径の問題は回避できる利点がある。しかしながら、特許文献3に記載のものでは容器内の液面上にレーザ光を反射させるものを配置する必要があり、そのような空間的ゆとりのないまたはそのような邪魔物を配置することが許されない場合には、使用することが困難である。さらに特許文献4に記載の液面計測装置では、容器にレーザ発信源を取り付けているので、容器の振動等の外乱の影響を受けやすい。   On the other hand, in the liquid level detection apparatus described in Patent Document 3 and Patent Document 4 using a laser, there is an advantage that problems of the ambient temperature and the spot diameter of the transmission signal can be avoided. However, in the device described in Patent Document 3, it is necessary to arrange a device that reflects the laser light on the liquid level in the container, and it is allowed to arrange such an obstacle without such a space. If not, it is difficult to use. Furthermore, in the liquid level measuring device described in Patent Document 4, since the laser transmission source is attached to the container, it is easily affected by disturbances such as vibration of the container.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は透明な容器内の液面の変化を環境に左右されずに、非接触で正確に測定することにある。本発明の他の目的は、測定経路に狭隘部があって液面に直接センサを接触させることが困難な透明または不透明な容器内の液面の変化を非接触で測定可能にすることである。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to accurately measure a change in the liquid level in a transparent container without contact with the environment. Another object of the present invention is to enable non-contact measurement of a change in liquid level in a transparent or opaque container in which there is a narrow portion in the measurement path and it is difficult to directly contact the sensor with the liquid level. .

上記目的を達成する本発明の特徴は、液体の液面高さ測定装置が容器内の液面高さを基準高さからの変化で測定するものであって、レーザ光源、ビームスプリッタ及びレーザ検出器を有し、レーザ光を照射可能なレーザ干渉測長器と、このレーザ干渉測長器から照射されたレーザ光を前記容器の下方において反射する反射材とを備えることにある。そして、前記レーザ干渉測長器は、前記容器内の液面高さが基準高さにあるときの、前記レーザ光源から照射され前記反射材により反射されたレーザ光の基準光路長と液面高さを変化させた測定時の光路長の差及び測定時に前記容器に含まれる被測定液体の屈折率から、基準高さからの変化として、液面高さを求めることを特徴とする。   A feature of the present invention that achieves the above object is that a liquid level measurement device for measuring the liquid level in a container changes from a reference height, and includes a laser light source, a beam splitter, and laser detection. And a laser interference length measuring device capable of irradiating laser light, and a reflecting material that reflects the laser light emitted from the laser interference length measuring device below the container. Then, the laser interferometer measures the reference optical path length and the liquid level of the laser light irradiated from the laser light source and reflected by the reflecting material when the liquid level in the container is at the reference height. The liquid surface height is obtained as a change from the reference height from the difference in the optical path length during measurement with varying height and the refractive index of the liquid to be measured contained in the container during measurement.

上記特徴において、前記容器は透明容器であり、前記反射材は透明容器の底部外面に近接して配置されていてもよく、前記容器はレーザ光が透過しない不透明容器であり、前記反射材は前記容器内部の底面に容器と一体または別体で設けられていてもよい。また前記屈折率を予め格納する記憶手段を備え、予め格納される前記屈折率のデータは、前記容器または異なる容器の基準高さ位置から高さが既知の所定高さ位置まで前記液体を注入して前記レーザ干渉測長器が測定したものであるのが好ましい。屈折率は、テーブルまたは式として記憶することもできる。   In the above feature, the container may be a transparent container, the reflective material may be disposed in proximity to the outer surface of the bottom of the transparent container, the container is an opaque container that does not transmit laser light, and the reflective material is the The bottom surface inside the container may be provided integrally with or separately from the container. The apparatus further comprises storage means for storing the refractive index in advance, and the stored refractive index data is obtained by injecting the liquid from a reference height position of the container or a different container to a predetermined height position where the height is known. The laser interferometer is preferably measured by the laser interferometer. The refractive index can also be stored as a table or a formula.

上記目的を達成する本発明の他の特徴は、液注入装置が、上記何れかの液面高さ測定装置と、前記容器に液体を注入する液注入手段と、前記液面高さ測定装置の測定値に基づいて前記液注入手段の注入路の開閉を制御する制御手段を備えることにある。   Another feature of the present invention that achieves the above object is that the liquid injection device includes any one of the liquid level height measurement devices, a liquid injection unit that injects a liquid into the container, and the liquid level height measurement device. It is provided with the control means which controls opening and closing of the injection path of the liquid injection means based on the measured value.

さらに上記目的を達成する本発明の他の特徴は、既知の高さだけ液体が注入された容器の底部に配設した反射材に液面高さ測定装置が有するレーザ干渉測長器からレーザ光を照射し、前記反射材から反射した反射光を前記レーザ干渉測長器が計測するステップと、前記容器に前記液体を追加注入して同様に、前記容器の底部に配設した反射材にレーザ干渉測長器からレーザ光を照射し、前記反射材から反射した反射光を前記レーザ干渉測長器が計測するステップと、2つの測定結果の差で得られた光路長の差を前記液体の屈折率から前記容器内の液面変化量として演算するステップを含むことにある。そしてこの特徴において、前記屈折率を容器近傍に配置した温度センサの検出値に基づいて得るようにしてもよい。   Furthermore, another feature of the present invention that achieves the above object is to provide a laser beam from a laser interferometer that the liquid level measuring device has on a reflector disposed at the bottom of a container into which a liquid is injected by a known height. And the laser interferometer measures the reflected light reflected from the reflecting material, and injects the liquid into the container and similarly applies a laser to the reflecting material disposed at the bottom of the container. The step of irradiating laser light from the interference length measuring device and measuring the reflected light reflected from the reflector by the laser interference length measuring device and the difference in optical path length obtained by the difference between the two measurement results There is a step of calculating from the refractive index as the amount of change in the liquid level in the container. In this feature, the refractive index may be obtained based on a detection value of a temperature sensor disposed in the vicinity of the container.

本発明によれば、容器下方にレーザ光の反射体を配置したので、測定経路に狭隘部を有する容器であっても、液面上方から放射されたレーザ光が通過できるだけの空間さえ確保されていれば、反射体からのレーザ光の反射により液面の変化を測定可能になり、環境に左右されずに容器内の液面の変化や液量の変化を、非接触で正確に測定できる。また、測定経路に狭隘部があって液面に直接センサを接触させることが困難な場合であっても、透明または不透明容器内の液面の変化や液量の変化を非接触で測定可能になる。   According to the present invention, since the laser light reflector is disposed below the container, even a container having a narrow portion in the measurement path can secure even a space through which the laser light emitted from above the liquid surface can pass. Then, the change in the liquid level can be measured by the reflection of the laser light from the reflector, and the change in the liquid level and the change in the liquid amount in the container can be accurately measured in a non-contact manner regardless of the environment. In addition, even if there is a narrow part in the measurement path and it is difficult to directly contact the sensor with the liquid level, it is possible to measure changes in liquid level and liquid volume in a transparent or opaque container without contact. Become.

本発明に係る液面高さ測定装置を用いた測定例を示す部分断面図である。It is a fragmentary sectional view which shows the example of a measurement using the liquid level height measuring apparatus which concerns on this invention. 本発明の測定原理を説明する模式図である。It is a schematic diagram explaining the measurement principle of this invention. 本発明に係るレーザ測長器の測長原理を説明する図である。It is a figure explaining the length measurement principle of the laser length measuring device which concerns on this invention. 図3で観測された波形の変化を説明する図である。It is a figure explaining the change of the waveform observed in FIG. 容器内の液体の物性に応じた補正方法を説明する図である。It is a figure explaining the correction method according to the physical property of the liquid in a container. 容器内の液体物性値の一例を示すグラフである。It is a graph which shows an example of the liquid physical property value in a container. 本発明に係る液面高さ測定の他の実施例を示す部分断面図である。It is a fragmentary sectional view showing other examples of liquid level height measurement concerning the present invention. 本発明に係る液面高さ測定のさらに他の実施例を示す部分断面図である。It is a fragmentary sectional view which shows the further another Example of the liquid level height measurement which concerns on this invention. 本発明に係る液面測定のさらに他の実施例を示す部分断面図である。It is a fragmentary sectional view showing other examples of liquid level measurement concerning the present invention. 本発明の液面高さ方法の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the liquid level method of this invention.

以下、本発明に係る液面高さ測定装置の一実施例を、図面を用いて説明する。図1は、本発明に係る液面高さ測定装置50の一実施例の断面図を示す。シリンジやアンプルのような薬品が収容される透明の容器30の底面側であって容器30の外表面には、鏡面が形成された反射材18が取り付けられている。また、反射材18は、容器30の外表面に直接取り付けられるのではなく、後述するように、容器30の外表面付近に近接配置されても良い。   Hereinafter, an embodiment of a liquid level measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of one embodiment of a liquid level measuring device 50 according to the present invention. A reflective material 18 having a mirror surface is attached to the outer surface of the container 30 on the bottom surface side of the transparent container 30 in which a medicine such as a syringe or ampoule is accommodated. Further, the reflective material 18 is not directly attached to the outer surface of the container 30 but may be disposed close to the outer surface of the container 30 as will be described later.

容器30には、図示しないポンプのような送液手段により液供給源40から液注入手段42に薬品等の液体が送液45されている。液注入手段42は容器30の狭隘部を形成する開口部32に開口しており、容器30内に所定量の液体34が注入されるよう、送液手段が有する弁手段を、図示しない制御手段が制御する。   The container 30 is supplied with a liquid 45 such as a chemical from the liquid supply source 40 to the liquid injection means 42 by a liquid supply means such as a pump (not shown). The liquid injection means 42 opens to the opening 32 that forms the narrow portion of the container 30, and a valve means that the liquid supply means has so as to inject a predetermined amount of liquid 34 into the container 30 is a control means (not shown). Control.

容器30内の液体34の量を計測するため、容器30の外部にはレーザ干渉測長器100が配設されている。レーザ干渉測長器100は、容器30の開口部32に向けてレーザ光24を出射し、出射されたレーザ光24は容器30の底面の外表面に取り付けた反射材18で反射し、レーザ干渉測長器100の受光部へ戻る。   In order to measure the amount of the liquid 34 in the container 30, a laser interference length measuring device 100 is disposed outside the container 30. The laser interference length measuring device 100 emits laser light 24 toward the opening 32 of the container 30, and the emitted laser light 24 is reflected by the reflecting material 18 attached to the outer surface of the bottom surface of the container 30, thereby causing laser interference. Return to the light receiving unit of the length measuring device 100.

このレーザ戻り光を受光部が検出して、容器30内の液体34の液面高さを検出する。その際、容器30の近傍または容器内に配置された温度センサ60で液体34の温度を検出または近似することにより、本液面高さ測定装置50が備える図示しない制御装置が含む記憶手段に記憶した液体34の屈折率カーブまたは屈折率データ(あるいは、屈折率テーブルまたは式)を用いて、温度センサ60が測定した温度での液体34の屈折率νから、容器30内の液体34の液面高さを求めている。なお、後述するように液体の屈折率νは温度に対して比較的鈍感であるので、この温度センサ60は必ずしも必要ではない。   The light receiving unit detects this laser return light and detects the liquid level of the liquid 34 in the container 30. At this time, the temperature of the liquid 34 is detected or approximated by the temperature sensor 60 disposed in the vicinity of or in the container 30, and stored in a storage means included in a control device (not shown) included in the liquid level measuring device 50. From the refractive index ν of the liquid 34 at the temperature measured by the temperature sensor 60 using the refractive index curve or refractive index data (or refractive index table or equation) of the liquid 34, the liquid level of the liquid 34 in the container 30 is obtained. Looking for height. As will be described later, since the refractive index ν of the liquid is relatively insensitive to temperature, the temperature sensor 60 is not necessarily required.

以上が本実施例による測定の概要であるが、その詳細を、図2以下を用いて説明する。図2は、図1に示した液面高さ測定装置50の実施例の模式図である。容器30の内部容積部の高さがLであり、液面高さ測定装置50を用いて液面測定する際の基準となる液面高さ(初期高さ)がLである。 The above is the outline of the measurement according to the present embodiment. The details will be described with reference to FIG. FIG. 2 is a schematic diagram of an embodiment of the liquid level measuring device 50 shown in FIG. The height of the interior volume of the container 30 is L 1, liquid level which is a reference in measuring the liquid level using a liquid level measuring device 50 (initial height) is L 0.

液注入手段42を用いて液体34を容器30内に注入したときに液面Lsが上昇した途中の状態における、容器30内の液体34の液面高さがLxであり、計測値として得られる液面高さはLである。   When the liquid 34 is injected into the container 30 using the liquid injection means 42, the liquid level of the liquid 34 in the container 30 in the middle of the rise of the liquid level Ls is Lx, which is obtained as a measurement value. The liquid level is L.

すなわち、本液面高さ測定は、レーザ干渉測長器100を用いて初期液面高さLからの液面高さの変化量L、すなわち相対液面高さ(Lx−L)を液面高さLとして計測するものであり、絶対液面高さLxを必要とする場合には、初期液面高さLを容器30内に液体が無い状態として求める必要がある。 That is, this liquid level height measurement uses the laser interferometer 100 to measure the change L in the liquid level height from the initial liquid level height L 0 , that is, the relative liquid level height (Lx−L 0 ). is intended to measure the liquid level L, a when requiring absolute liquid surface height Lx, it is necessary to determine the initial liquid level height L 0 as the state liquid is not in the container 30.

図3及び図4を用いて、液面Lsの高さ変化を測定するレーザ干渉測長器100の原理を説明する。図3は、レーザ干渉測長器100の構成を示す図であり、図4はレーザ干渉測長器100で発生するレーザ出射光(照射光)及び反射光の波形を示す図である。   The principle of the laser interferometer 100 for measuring the change in the height of the liquid level Ls will be described with reference to FIGS. FIG. 3 is a diagram showing a configuration of the laser interference length measuring device 100, and FIG. 4 is a diagram showing waveforms of laser emission light (irradiation light) and reflected light generated by the laser interference length measuring device 100.

レーザ光を発生するレーザ光源10からハーフミラーであるビームスプリッタ12に、波長589nmの黄色のレーザ光またはレーザビーム20が照射される。ビームスプリッタ12に入射して2方向に分けられたレーザ光は、一方が、レーザ干渉測長器100の筐体19内に配置された固定反射鏡14にレーザ光(参照光)26として照射された後、固定反射鏡14で反射しビームスプリッタ12を経由して、同じくレーザ干渉測長器100の筐体19内に配置された検出器16に入射する。   A yellow laser beam or a laser beam 20 having a wavelength of 589 nm is irradiated from a laser light source 10 that generates laser light to a beam splitter 12 that is a half mirror. One of the laser beams incident on the beam splitter 12 and divided in two directions is irradiated as a laser beam (reference beam) 26 to the fixed reflecting mirror 14 disposed in the housing 19 of the laser interference length measuring device 100. After that, the light is reflected by the fixed reflecting mirror 14, passes through the beam splitter 12, and enters the detector 16 which is also disposed in the housing 19 of the laser interference length measuring device 100.

一方、ビームスプリッタ12で分けられたレーザ光の他方は、容器30の底部に設けた鏡面を有する反射材18へ測定光24として照射され、反射材18で反射したのちビームスプリッタ12で固定反射鏡14からの反射光26と一緒になり、検出光22として検出器16に入射する。   On the other hand, the other of the laser beams divided by the beam splitter 12 is irradiated as the measurement light 24 to the reflecting material 18 having a mirror surface provided at the bottom of the container 30, reflected by the reflecting material 18, and then fixed by the beam splitter 12. Together with the reflected light 26 from 14, it enters the detector 16 as detection light 22.

ここで、容器30内には液体34が入れられており、液体34は大気と屈折率νが異なるため、レーザ光(測定光)24が空間の同一位置にある反射材18で反射して戻るにもかかわらず、レーザ光の経路長さLと屈折率νの積で表される光路長は、レーザ光24の経路における液体34部分の長さ、すなわち容器30内の液体34の液面高さLxで変化する。 Here, since the liquid 34 is put in the container 30 and the liquid 34 has a refractive index ν different from that of the atmosphere, the laser light (measurement light) 24 is reflected by the reflecting material 18 at the same position in the space and returned. Nevertheless, the optical path length represented by the product of the laser beam path length L 1 and the refractive index ν is the length of the liquid 34 portion in the laser beam 24 path, that is, the liquid level of the liquid 34 in the container 30. It changes with height Lx.

レーザ干渉測長器100と容器30間の隙間を無視して、図2を参照すると、レーザ干渉測長器100から反射材18の反射面までの距離はLであり、液面高さ測定における初期高さは反射材18の反射面からLである。 Ignore the gap between the laser interferometer length measuring machine 100 and the container 30, with reference to FIG. 2, the distance from the laser interferometer length measuring machine 100 to the reflecting surface of the reflector 18 is L 1, the liquid level measurement initial height at is L 0 from the reflecting surface of the reflector 18.

この時レーザ干渉測長器100から出射され、反射材18で反射してレーザ干渉測長器100に戻ったレーザ光(#20+#24+#22)の光路長Aは、A=2×{(気柱分)+(液柱分)}=2×{(L−L)+2×L×ν}となる。 At this time, the optical path length A of the laser light (# 20 + # 24 + # 22) emitted from the laser interference length measuring device 100, reflected by the reflector 18 and returned to the laser interference length measuring device 100 is A = 2 × {( Air column) + (liquid column)} = 2 × {(L 1 −L 0 ) + 2 × L 0 × ν}.

ここで、νは屈折率である。一方、液面高さがLxまで上昇したときの光路長Bは同様に、B=2×{(気柱分)+(液柱分)}=2×{(L−Lx)+2×Lx×ν}=2×{(L−L−L)+2×(L+L)×ν}である。ここで空気の屈折率は1としている。したがって、光路長差(A−B)は、A−B=2L(ν−1)となり、液面高さLは、L=(A−B)/2(ν−1)で求められる。 Here, ν is a refractive index. On the other hand, the optical path length B when the liquid level rises to Lx is similarly B = 2 × {(air column portion) + (liquid column portion)} = 2 × {(L 1 −Lx) + 2 × Lx. × ν} = 2 × {(L 1 −L−L 0 ) + 2 × (L + L 0 ) × ν}. Here, the refractive index of air is 1. Therefore, the optical path length difference (A−B) is A−B = 2L (ν−1), and the liquid level height L is obtained by L = (A−B) / 2 (ν−1).

すなわち、レーザ光は同じ物理的位置(反射板18)で反射するものの、図3内の(a)〜(d)で示したように、液面高さLxの変化により反射材の位置18a〜18dが見かけ上移動して距離が長くなった、または波長が短くなったように挙動する。   That is, although the laser light is reflected at the same physical position (reflecting plate 18), as shown by (a) to (d) in FIG. 18d appears to move and behaves like a longer distance or shorter wavelength.

反射材18の見かけの位置が18(a)〜(d)に移動したときの、対応する液面高さLxでの各レーザ光26、24、22の波形の例を、図4に示す。最上段Rが固定反射鏡14からのレーザ光(参照光)26の波形であり、中段Mが反射材18からのレーザ光(測定光)24の波形であり、最下段がそれら2つの波形R、Mの合成光22の波形である。液面高さLxが変化し、ある位置に達すると、ビームスプリッタ12で一緒になるレーザ光(参照光)26とレーザ光(測定光)24の位相が一致し、合成光22の波形は光源10から出射された元の波形と同じ傾向の波形となる((a)の状態)。   FIG. 4 shows an example of the waveform of each laser beam 26, 24, 22 at the corresponding liquid level height Lx when the apparent position of the reflector 18 has moved to 18 (a) to (d). The uppermost stage R is the waveform of the laser light (reference light) 26 from the fixed reflecting mirror 14, the middle stage M is the waveform of the laser light (measurement light) 24 from the reflector 18, and the lowermost stage is the two waveforms R. , M is the waveform of the combined light 22. When the liquid level height Lx changes and reaches a certain position, the phases of the laser beam (reference beam) 26 and the laser beam (measurement beam) 24 that come together in the beam splitter 12 match, and the waveform of the synthesized beam 22 is a light source 10 has the same tendency as the original waveform emitted from 10 (state (a)).

液面高さLxが増大したある点で、レーザ光(参照光)26とレーザ光(測定光)24の位相が90°異なってビームスプリッタ12に戻され、合成光22の波形は(a)の状態の波形よりは小さいが同様の傾向の波形となる((b)の状態)。   At a certain point where the liquid level height Lx is increased, the phases of the laser beam (reference beam) 26 and the laser beam (measurement beam) 24 differ by 90 ° and are returned to the beam splitter 12, and the waveform of the combined beam 22 is (a) Although the waveform is smaller than the waveform in the state (2), the waveform has the same tendency (state (b)).

さらに液面高さLxが増大してレーザ光(参照光)26とレーザ光(測定光)24の位相が180°逆転すると、合成光22の波形は0となる((c)の状態)。さらに液面高さLxが増大すると、レーザ光(参照光)26とレーザ光(測定光)24の位相が90°異なってビームスプリッタ12に戻され、合成光22の波形は(b)の波形と同様の傾向の波形となる((d)の状態)。これが出射光20の波長の長さに応じた光路長の変化ごとに生じる。したがって、液面高さLxが変化してレーザ干渉測長器100の検出器16が到達する測定波の波数を計測するとともに、波形を観察して出射光と同傾向(出射光が正弦波であれば正弦波のこと)または波形が0となる波形を見出すことにより、出射光の波長の1/2程度までの分解能で光路長、すなわち液面高さLを計測できる。   When the liquid level height Lx further increases and the phase of the laser beam (reference beam) 26 and the laser beam (measurement beam) 24 is reversed by 180 °, the waveform of the combined beam 22 becomes 0 (state (c)). When the liquid level height Lx further increases, the phases of the laser beam (reference beam) 26 and the laser beam (measurement beam) 24 differ by 90 ° and are returned to the beam splitter 12, and the waveform of the synthesized beam 22 is the waveform of (b). The waveform has the same tendency as in (state (d)). This occurs every time the optical path length changes according to the wavelength length of the outgoing light 20. Therefore, the liquid level height Lx changes to measure the wave number of the measurement wave that the detector 16 of the laser interference length measuring device 100 reaches, and the waveform is observed to have the same tendency as the outgoing light (the outgoing light is a sine wave). If it is a sine wave) or a waveform whose waveform is zero, the optical path length, that is, the liquid level height L can be measured with a resolution up to about ½ of the wavelength of the emitted light.

次に、上記液面測定における重要因子である屈折率νについて図5、図6により説明する。本液面測定では屈折率νが既知である必要があるので、屈折率νのデータを予め準備する。図5は屈折率ν測定の様子を示す図であり、図6は屈折率νの温度変化の一例を示すグラフである。図6は、波長λ=589.3nmの黄色のレーザ光を水に照射する場合の屈折率νの温度変化を示す図である。   Next, the refractive index ν, which is an important factor in the liquid level measurement, will be described with reference to FIGS. In this liquid level measurement, since the refractive index ν needs to be known, data of the refractive index ν is prepared in advance. FIG. 5 is a diagram showing how the refractive index ν is measured, and FIG. 6 is a graph showing an example of a temperature change of the refractive index ν. FIG. 6 is a diagram showing a temperature change of the refractive index ν when irradiating water with yellow laser light having a wavelength λ = 589.3 nm.

20℃の温度変化で屈折率νは0.002程度(0.0075%/℃程度)変化しているのが分かる。したがって、精度の高い液面計測が要求された場合には被測定液体34の液温を一定にするが、液面高さを恒温室雰囲気等で測定する通常測定であれば、屈折率νはほぼ一定とみなせる。   It can be seen that the refractive index ν changes by about 0.002 (about 0.0075% / ° C.) with a temperature change of 20 ° C. Accordingly, when high-accuracy liquid level measurement is required, the liquid temperature of the liquid to be measured 34 is kept constant. However, in the case of normal measurement in which the liquid level height is measured in a temperature-controlled room atmosphere, the refractive index ν is It can be regarded as almost constant.

屈折率νの測定は、図2に示した一般の液面高さLの測定において、液面高さの初期値Lを0とした場合に相当する。また、容器30の所定高さ(測定高さ)Lxも既知とする。測定の誤差をできるだけ少なくするため、この所定高さLxは満液状態とするのが望ましく、Lx=Lである。 The measurement of the refractive index ν corresponds to the case where the initial value L 0 of the liquid level height is set to 0 in the measurement of the general liquid level height L shown in FIG. The predetermined height (measured height) Lx of the container 30 is also known. To minimize the error of measurement, the predetermined height Lx is desirably to a full liquid state, it is Lx = L 1.

初めに、底部外表面に反射材18が取り付けられた透明容器30の空容器に、液注入口32を利用してレーザ光を照射し、反射材18からの反射光をレーザ干渉測長器100の検出器16が受光し、光路長の初期データAを取得する。次に、被測定液体34を容器30に満液となるまで注入する。そして同様に液注入口32を利用してレーザ光を反射材18に照射し、反射材18からの反射光をレーザ干渉測長器100の検出器が受光し、光路長の測定データBを得る。光路長が屈折率νと液面高さLの積であるから、ν=(A−B)/2L+1で求められる。 First, a laser beam is irradiated to the empty container of the transparent container 30 having the reflecting material 18 attached to the outer surface of the bottom using the liquid injection port 32, and the reflected light from the reflecting material 18 is irradiated with the laser interference length measuring device 100. The detector 16 receives the light and acquires the initial data A of the optical path length. Next, the liquid to be measured 34 is poured into the container 30 until it is full. Similarly, laser light is applied to the reflector 18 using the liquid injection port 32, and the detector of the laser interference length measuring device 100 receives the reflected light from the reflector 18 to obtain measurement data B of the optical path length. . Since the optical path length is the product of the refractive index ν and the liquid level height L, it can be obtained by ν = (A−B) / 2L 1 +1.

容器30内の液体34の液温を変化させて屈折率νを求めることにより、屈折率νの温度校正曲線が得られ、それをレーザ干渉測長器100が備える記憶手段に記憶させる。これにより、液面測定時の液体34の液温が分かれば、屈折率νが容易に得られる。なお上記したように水のような液体の場合には、屈折率νの温度依存性は小さいので、測定室を恒温室等にすることにより温度の影響を無視できるようにすることができる。   By calculating the refractive index ν by changing the liquid temperature of the liquid 34 in the container 30, a temperature calibration curve of the refractive index ν is obtained and stored in the storage means included in the laser interference length measuring device 100. Thereby, if the liquid temperature of the liquid 34 at the time of liquid level measurement is known, the refractive index ν can be easily obtained. As described above, in the case of a liquid such as water, the temperature dependence of the refractive index ν is small, so that the influence of temperature can be ignored by setting the measurement chamber to a constant temperature room or the like.

次に本液面高さ測定方法を応用した他の実施例を、図7〜図9を用いて説明する。図7は、液面測定対象液体が、各種燃料のような可燃性液体の場合である。可燃性液体であってもレーザ光は透過する場合である。   Next, another embodiment to which the present liquid level height measuring method is applied will be described with reference to FIGS. FIG. 7 shows a case where the liquid level measurement target liquid is a flammable liquid such as various fuels. This is a case where the laser light is transmitted even if it is a flammable liquid.

可燃性液体は一般的に揮発性の高い液体が多く、液面高さを監視することは事故防止の観点から重要視されている。液面高さ測定に従来使用される超音波センサは、センサ部が電気基板で構成されているので、長期の使用により腐食等が起こり、電気火花が発生する可能性を否定できない。   Inflammable liquids are generally highly volatile liquids, and monitoring the liquid level is regarded as important from the viewpoint of preventing accidents. In an ultrasonic sensor conventionally used for measuring the liquid level, since the sensor part is composed of an electric substrate, it cannot be denied that corrosion may occur due to long-term use and an electric spark may occur.

もし電気火花が発生すると、最悪の場合、可燃性液体に引火して爆発が生じる。そこで、本実施例では、干渉計部に一切の電気的な装置を用いないレーザ干渉測長器を用いている。その場合、以下に説明するようにレーザ干渉測長器を容器近傍に配置しても良いし、より引火事故等を避け得るように容器から離れた位置にレーザ干渉測長器を配置しそこから光ファイバで測定部へレーザ光を導くようにしてもよい。   If an electrical spark occurs, in the worst case, it will ignite the flammable liquid and cause an explosion. Therefore, in this embodiment, a laser interferometer that does not use any electrical device for the interferometer section is used. In that case, the laser interference length measuring device may be disposed near the container as described below, or the laser interference length measuring device is disposed at a position away from the container so as to avoid a flaming accident. Laser light may be guided to the measurement unit with an optical fiber.

すなわち、容器30に含まれる液体34が可燃物のため、容器30はもはや透明ではなくレーザ光を透過しない金属容器である。そのため、反射材17は容器30の底面内側に設けられている。なお容器30の内側に反射材17を設ける場合には、容器30と一体であっても良いし、別体に製作した反射材(鏡)17を容器30の内部に接着等で取り付けるようにしてもよい。これにより、従来超音波測定器を使用できなかった液体の場合であっても、高精度に液面高さを測定できる。   That is, since the liquid 34 contained in the container 30 is combustible, the container 30 is a metal container that is no longer transparent and does not transmit laser light. Therefore, the reflecting material 17 is provided inside the bottom surface of the container 30. When the reflecting material 17 is provided inside the container 30, the reflecting material 17 may be integrated with the container 30, or the reflecting material (mirror) 17 manufactured separately may be attached to the inside of the container 30 by adhesion or the like. Also good. Thereby, even if it is the case of the liquid which could not use an ultrasonic measuring device conventionally, a liquid level height can be measured with high precision.

図8は、透明な容器30内の液体34の液面高さLを測定する場合に、容器30の底面の外部に反射材18を直接取り付けるのではなく、容器30が載置される載置台38上面に反射材18を設ける場合である。載置台38上面の反射材18と容器30の間に隙間があってもなくても、本液面高さ測定ではその隙間の影響はキャンセルされるので、ともに高精度に液面高さLを測定できる。   FIG. 8 shows a mounting table on which the container 30 is mounted instead of directly attaching the reflective material 18 to the outside of the bottom surface of the container 30 when measuring the liquid level height L of the liquid 34 in the transparent container 30. This is a case where the reflective material 18 is provided on the upper surface of 38. Even if there is a gap between the reflector 18 and the container 30 on the top surface of the mounting table 38, the influence of the gap is canceled in the liquid level height measurement. It can be measured.

本実施例の場合には、各容器30に反射材18を取り付ける必要がなく、大量に液面高さLを測定する場合に有利である。また、載置台38の上面を透明ガラスとし、そのガラス内部またはガラスの下方に反射材18を取り付ければ、容器30の交換により反射材18を傷付けたり汚したりする恐れが低減し、作業効率が向上する。   In the case of the present embodiment, it is not necessary to attach the reflective material 18 to each container 30, which is advantageous when measuring the liquid level height L in large quantities. Moreover, if the upper surface of the mounting table 38 is made of transparent glass and the reflective material 18 is attached inside or below the glass, the risk of the reflective material 18 being damaged or soiled by replacing the container 30 is reduced, and work efficiency is improved. To do.

図9は、アンプルに薬液を注入する場合等の、大量生産品への応用を示す図である。空の容器30がベルトコンベア等で液体注入位置に運ばれる。液体注入位置では、液供給源40から図示しないポンプ等の送液手段で液注入手段42へ液体34が送液45され、図示しない弁等の制御手段により注入路の開閉が制御されることにより、容器30への液体34の注入が制御されるようになっている。初めに空の容器30が液体注入位置に運ばれてくると、レーザ干渉測長器100から容器30の下方に配設された反射材18へレーザ光24が照射される。この時、反射材18は図8に示したのと同様に載置台38側に取り付けられている。   FIG. 9 is a diagram showing an application to a mass-produced product such as a case where a chemical solution is injected into an ampoule. An empty container 30 is carried to the liquid injection position by a belt conveyor or the like. At the liquid injection position, the liquid 34 is supplied from the liquid supply source 40 to the liquid injection means 42 by a liquid supply means such as a pump (not shown), and the opening and closing of the injection path is controlled by a control means such as a valve (not shown). The injection of the liquid 34 into the container 30 is controlled. When the empty container 30 is first transported to the liquid injection position, the laser beam 24 is irradiated from the laser interference length measuring instrument 100 to the reflector 18 disposed below the container 30. At this time, the reflector 18 is attached to the mounting table 38 side as shown in FIG.

容器30を透過して反射材18で反射したレーザ光24は、レーザ干渉測長器100へ入射して検出器16で受光され、液面測定の初期値データの元となる光路長を計測する。次に、図示しない制御手段を制御して液注入手段42から液体34を注入する。注入を継続しながらレーザ干渉測長器100で光路長の変化を継続計測し所定長さになったら、液面高さLが所定高さになっていると判断し、制御手段が液注入を停止する。 The laser beam 24 transmitted through the container 30 and reflected by the reflector 18 enters the laser interference length measuring device 100 and is received by the detector 16 to measure the optical path length that is the basis of the initial value data of the liquid level measurement. . Next, the liquid 34 is injected from the liquid injection means 42 by controlling a control means (not shown). Once injected continuously measure changes in optical path length in the laser interferometer length measuring machine 100 while continuing reaches a predetermined length, determines that the liquid level L D is set to a predetermined height, the control means liquid injection To stop.

液注入が完了したら、ベルトコンベアを駆動して次の空の容器30を液体注入位置に載置する。以下同様の手順を繰り返す。本実施例によれば、高精度でかつ効率的に空の容器内へ所定量の液体を注入することができる。   When the liquid injection is completed, the belt conveyor is driven and the next empty container 30 is placed at the liquid injection position. The same procedure is repeated thereafter. According to the present embodiment, it is possible to inject a predetermined amount of liquid into an empty container with high accuracy and efficiency.

次に、容器30内の液体34の液面高さLを測定する手順を、図10のフローチャートを用いて説明する。なお本測定の前に、使用する液体34の温度と照射するレーザ光の波長における、液体34の屈折率νを予め求めておく。校正に用いるマスタ容器として、測定対象の容器30と同じまたは別の容器30を準備する。   Next, the procedure for measuring the liquid level height L of the liquid 34 in the container 30 will be described with reference to the flowchart of FIG. Prior to this measurement, the refractive index ν of the liquid 34 at the temperature of the liquid 34 to be used and the wavelength of the laser beam to be irradiated is obtained in advance. As a master container used for calibration, a container 30 that is the same as or different from the container 30 to be measured is prepared.

マスタ(容器)の内部容積部の全高さを深さゲージ等で計測する。深さゲージが挿入できないような狭隘部しか有しない場合には、重量法等の他の方法を用いて高さを測定する。ここでは、深さゲージを使用する場合について説明する。   The total height of the internal volume of the master (container) is measured with a depth gauge or the like. If there is only a narrow part where the depth gauge cannot be inserted, the height is measured using another method such as a gravimetric method. Here, a case where a depth gauge is used will be described.

ステップS110で、レーザ干渉測長器100を用いてマスタが空の状態とマスタに所定液面高さまで液体34を注入した場合について液面高さLを測定する。マスタが液体を充満できる場合には液体を充満して計測することにより、図5に示すように、より正確な高さ計測が可能になる。   In step S110, the liquid level height L is measured using the laser interferometer 100 when the master is empty and the liquid 34 is injected into the master up to a predetermined liquid level. When the master can be filled with the liquid, the liquid can be filled and measured, thereby enabling more accurate height measurement as shown in FIG.

ここで、高さ計測に用いる深さゲージが、液面Lsに対して垂直方向から傾いていると、垂直からずれた分だけ液面高さLの校正値に誤差を含むことになる。そこで、ステップS120で深さゲージの挿入方向と位置の芯ずれを検出する。   Here, if the depth gauge used for height measurement is inclined from the vertical direction with respect to the liquid level Ls, an error is included in the calibration value of the liquid level height L by an amount deviated from the vertical direction. Accordingly, in step S120, misalignment between the insertion direction and position of the depth gauge is detected.

この芯ずれの検出はレーザ光を反射材18に照射してその戻り光が照射光と一致する方向を真の方向とし、この真の方向に対する深さゲージの挿入方向の傾きで検出される。検出された深さゲージの挿入位置の芯ずれに基づいて、ステップS130で深さゲージの傾きをキャンセルする方向に深さゲージを傾けて挿入位置を補正する。次いで、深さゲージを正規方向から挿入してマスタを再測定する(ステップS140)。   This misalignment is detected by irradiating the reflection material 18 with laser light and setting the direction in which the return light coincides with the irradiated light as the true direction, and detecting the inclination of the insertion direction of the depth gauge with respect to the true direction. Based on the detected misalignment of the insertion position of the depth gauge, the insertion position is corrected by tilting the depth gauge in a direction to cancel the inclination of the depth gauge in step S130. Next, the depth gauge is inserted from the normal direction and the master is measured again (step S140).

マスタを用いた校正が完了したので、実際の測定対象であるワーク(容器)30について測定を開始する(ステップS150)。すなわち、ワーク30に対してレーザ干渉測長器100からレーザ光を照射して初期状態及び液体充填状態を測定する。   Since the calibration using the master is completed, measurement is started for the workpiece (container) 30 that is the actual measurement target (step S150). That is, the workpiece 30 is irradiated with laser light from the laser interferometer 100 to measure the initial state and the liquid filling state.

その後、レーザ干渉測長器100のレーザ照射光がワーク30の軸線からずれている芯ずれ量を検出する(ステップS160)。芯ずれ量が分かったので、この量だけレーザ干渉測長器100を用いたワーク30の液面高さLの測定結果を補正する(ステップS170)。ステップS180に進み、さらに測定対象のワークがあればステップS150に戻る。   Thereafter, the amount of misalignment in which the laser irradiation light of the laser interference length measuring device 100 is deviated from the axis of the workpiece 30 is detected (step S160). Since the misalignment amount is known, the measurement result of the liquid level height L of the workpiece 30 using the laser interference length measuring device 100 is corrected by this amount (step S170). The process proceeds to step S180, and if there is a workpiece to be measured, the process returns to step S150.

上記本発明の各実施例によれば、超音波液面測定では困難な液面高さ測定であっても、レーザ光を用いることにより非接触で液面測定が可能になる。すなわち、液面高さ位置をレーザ照射光の広がりまでに絞った計測が可能になり、サブミクロン領域の液面高さを測定できる。またレーザ照射光の照射通路が確保されていればよいので、液面高さ測定用の通路を液注入口以上に広げる必要はない。   According to each embodiment of the present invention, even when the liquid level is difficult to measure by ultrasonic liquid level measurement, the liquid level can be measured in a non-contact manner by using laser light. That is, the liquid level height position can be measured until the laser irradiation light spreads, and the liquid level height in the submicron region can be measured. Further, since the irradiation path for the laser irradiation light only needs to be secured, it is not necessary to extend the liquid level height measurement path beyond the liquid injection port.

さらに、容器の液注入口とは別に測定用通路を確保する場合であっても、レーザ照射光の直径程度であればよく、数mm以下とすることが可能となり、キャピラリー内の液面高さの測定などに好適になる。   Furthermore, even when a measurement passage is secured separately from the liquid injection port of the container, it may be about the diameter of the laser irradiation light and can be several mm or less, and the liquid level in the capillary It becomes suitable for the measurement etc.

また上述したように、本発明の各実施例によれば、計測対象の液体は、レーザ光が液体内を部分的にであっても透過した後、反射材で反射して光源側に戻って来るものであればよく、着色した液体でも計測可能な場合がある。そのため液体が燃料等の可燃物であっても計測手段が電気基板を有するものではないので火花放電の恐れがなく、高価になる特別な防爆等の手段の必要性が低減する。   Further, as described above, according to each embodiment of the present invention, the liquid to be measured passes through the liquid even if partially inside the liquid, and then reflects off the reflecting material and returns to the light source side. It may be anything that comes, and even colored liquids may be measurable. Therefore, even if the liquid is a combustible material such as fuel, the measuring means does not have an electric substrate, so there is no fear of spark discharge, and the need for special means such as explosion proofing that is expensive is reduced.

また通常、高さ測定の分解能は使用するレーザ光の半波長程度であるので、例えば593nmのレーザ光を用いれば約300nmまで理論上可能であるが、レーザ干渉測長器を使用しているので、レーザ干渉測長器の測定精度で制約される。しかしながらそれでも数μm程度の精度で測定することが可能になる。なお本実施例によれば、レーザ干渉測長器が有する演算手段を用いて内挿処理することにより、サブミクロンもしくは数十nm程度まで分解能を向上できる。   Also, since the resolution of height measurement is usually about half the wavelength of the laser beam used, it is theoretically possible to use a laser beam of 593 nm, for example, up to about 300 nm, but since a laser interferometer is used. Limited by the measurement accuracy of the laser interferometer. However, it is still possible to measure with an accuracy of about several μm. According to the present embodiment, the resolution can be improved to submicron or about several tens of nanometers by performing the interpolation process using the arithmetic means included in the laser interferometer.

したがって、液滴の高さや表面張力等の計測も可能になる。なお上記実施例では黄色のレーザ光で波長593nmの場合を説明したが、レーザ光の波長はこれに限るものではなく、405、445、460、473、532、635、650nm等の種々の色のレーザ光を使用できる。   Therefore, it is possible to measure the height and surface tension of the droplet. In the above embodiment, the case where the wavelength of the laser beam is 593 nm is described with the yellow laser beam, but the wavelength of the laser beam is not limited to this, and various colors such as 405, 445, 460, 473, 532, 635, and 650 nm are used. Laser light can be used.

10…(レーザ)光源、12…ビームスプリッタ(ハーフミラー)、14…固定反射鏡、16…検出器、17、18…反射材、18a〜18d…仮想反射材位置、19…筐体、20…レーザ光(出射光)、22…検出光(合成光)、24、24x…レーザ光(測定光)、26…レーザ光(参照光)、30…(透明)容器、30b…(非透明)容器、32…開口部(液注入口)、34…(被測定)液体、34b…可燃性液体、38…載置台、40…液供給源、42…液注入手段、45…送液、50…液面高さ測定装置、60…温度センサ、100…レーザ干渉測長器、L…基準液面高さ、L…規定液面高さ、Lx…測定時液面高さ DESCRIPTION OF SYMBOLS 10 ... (Laser) light source, 12 ... Beam splitter (half mirror), 14 ... Fixed reflector, 16 ... Detector, 17, 18 ... Reflector, 18a-18d ... Virtual reflector position, 19 ... Housing, 20 ... Laser light (emitted light), 22 ... detection light (synthetic light), 24, 24x ... laser light (measurement light), 26 ... laser light (reference light), 30 ... (transparent) container, 30b ... (non-transparent) container , 32 ... opening (liquid injection port), 34 ... (measuring) liquid, 34 b ... flammable liquid, 38 ... mounting table, 40 ... liquid supply source, 42 ... liquid injection means, 45 ... liquid feeding, 50 ... liquid Surface height measuring device, 60 ... temperature sensor, 100 ... laser interference length measuring device, L 0 ... reference liquid level height, L D ... specified liquid level height, Lx ... liquid level height during measurement

Claims (7)

液体の容器内の液面高さを基準高さからの変化で測定する液面高さ測定装置であって、
レーザ光源、ビームスプリッタ及びレーザ検出器を有し、レーザ光を照射可能なレーザ干渉測長器と、
このレーザ干渉測長器から照射されたレーザ光を前記容器の下方において反射する反射材と、を備え、
前記レーザ干渉測長器は、前記容器内の液面高さが基準高さにあるときの、前記レーザ光源から照射され前記反射材により反射されたレーザ光の基準光路長と液面高さを変化させた測定時の光路長の差及び測定時に前記容器に含まれる被測定液体の屈折率から、基準高さからの変化として、液面高さを求めるものであることを特徴とする液面高さ測定装置。
A liquid level measuring device for measuring a liquid level in a liquid container by a change from a reference height,
A laser interferometer having a laser light source, a beam splitter and a laser detector, and capable of emitting laser light;
A reflective material that reflects the laser light emitted from the laser interferometer in the lower part of the container,
The laser interferometer measures the reference optical path length and liquid level height of the laser light irradiated from the laser light source and reflected by the reflector when the liquid level in the container is at a reference height. The liquid surface is characterized in that the liquid surface height is obtained as a change from the reference height from the difference in optical path length during measurement and the refractive index of the liquid to be measured contained in the container during measurement. Height measuring device.
前記容器は透明容器であり、前記反射材は透明容器の底部外面に近接して配置されていることを特徴とする請求項1に記載の液面高さ測定装置。   The liquid level measuring apparatus according to claim 1, wherein the container is a transparent container, and the reflecting material is disposed in proximity to the outer surface of the bottom of the transparent container. 前記容器はレーザ光が透過しない不透明容器であり、前記反射材は前記容器内部の底面に容器と一体または別体で設けられていることを特徴とする請求項1に記載の液面高さ測定装置。   2. The liquid level height measurement according to claim 1, wherein the container is an opaque container that does not transmit laser light, and the reflector is provided on the bottom surface of the container integrally or separately from the container. apparatus. 前記屈折率を予め格納する記憶手段を備え、
予め格納される前記屈折率のデータは、前記容器の基準高さ位置から高さが既知の所定高さ位置まで前記液体を注入して前記レーザ干渉測長器が測定したものであることを特徴とする請求項1または2に記載の液面高さ測定装置。
Storage means for storing the refractive index in advance;
The refractive index data stored in advance is measured by the laser interferometer to inject the liquid from a reference height position of the container to a predetermined height position where the height is known. The liquid level height measuring apparatus according to claim 1 or 2.
請求項1から4の何れか1項に記載の液面高さ測定装置と、前記容器に液体を注入する液注入手段と、前記液面高さ測定装置の測定値に基づいて前記液注入手段の注入路の開閉を制御する制御手段を備えたことを特徴とする液注入装置。   The liquid level measuring device according to any one of claims 1 to 4, a liquid injecting unit for injecting a liquid into the container, and the liquid injecting unit based on a measurement value of the liquid level measuring device. A liquid injection apparatus comprising control means for controlling opening and closing of the injection path. 既知の高さだけ液体が注入された容器の底部に配設した反射材に液面高さ測定装置が有するレーザ干渉測長器からレーザ光を照射し、前記反射材から反射した反射光を前記レーザ干渉測長器が計測するステップと、
前記容器に前記液体を追加注入して同様に、前記容器の底部に配設した反射材にレーザ干渉測長器からレーザ光を照射し、前記反射材から反射した反射光を前記レーザ干渉測長器が計測するステップと、
2つの測定結果の差で得られた光路長の差を前記液体の屈折率から前記容器内の液面変化量として演算するステップと、
を含むことを特徴とする液面高さ測定装置を用いた液面高さ測定方法。
A laser beam is irradiated from a laser interference length measuring device included in a liquid surface height measuring device to a reflecting material disposed at the bottom of a container into which a liquid is injected by a known height, and the reflected light reflected from the reflecting material is A step of measuring by the laser interferometer,
Similarly, the liquid is additionally injected into the container, and similarly, a laser beam is irradiated from a laser interference length measuring device to the reflecting material disposed at the bottom of the container, and the reflected light reflected from the reflecting material is reflected by the laser interference length measuring method. Steps that the instrument measures,
Calculating the difference in optical path length obtained by the difference between the two measurement results as the liquid level change amount in the container from the refractive index of the liquid;
The liquid level height measuring method using the liquid level height measuring apparatus characterized by including.
前記屈折率を容器近傍に配置した温度センサの検出値に基づいて得ることを特徴とする請求項6に記載の液面高さ測定装置を用いた液面高さ測定方法。   The liquid level height measuring method using the liquid level height measuring device according to claim 6, wherein the refractive index is obtained based on a detection value of a temperature sensor arranged in the vicinity of the container.
JP2017066936A 2017-03-30 2017-03-30 A liquid level measuring device, a liquid injection device having the liquid level measuring device, and a liquid level measuring method using the liquid level measuring device. Active JP6878086B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017066936A JP6878086B2 (en) 2017-03-30 2017-03-30 A liquid level measuring device, a liquid injection device having the liquid level measuring device, and a liquid level measuring method using the liquid level measuring device.
JP2021073083A JP2021105623A (en) 2017-03-30 2021-04-23 Liquid level height measurement device, and liquid level height measurement method
JP2022032404A JP7102635B2 (en) 2017-03-30 2022-03-03 Liquid level height measuring device and liquid level height measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066936A JP6878086B2 (en) 2017-03-30 2017-03-30 A liquid level measuring device, a liquid injection device having the liquid level measuring device, and a liquid level measuring method using the liquid level measuring device.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021073083A Division JP2021105623A (en) 2017-03-30 2021-04-23 Liquid level height measurement device, and liquid level height measurement method

Publications (2)

Publication Number Publication Date
JP2018169295A true JP2018169295A (en) 2018-11-01
JP6878086B2 JP6878086B2 (en) 2021-05-26

Family

ID=64017871

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017066936A Active JP6878086B2 (en) 2017-03-30 2017-03-30 A liquid level measuring device, a liquid injection device having the liquid level measuring device, and a liquid level measuring method using the liquid level measuring device.
JP2021073083A Pending JP2021105623A (en) 2017-03-30 2021-04-23 Liquid level height measurement device, and liquid level height measurement method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021073083A Pending JP2021105623A (en) 2017-03-30 2021-04-23 Liquid level height measurement device, and liquid level height measurement method

Country Status (1)

Country Link
JP (2) JP6878086B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380594A (en) * 2020-04-03 2020-07-07 华中科技大学 Acousto-optic synchronous type salt cavern gas storage liquid level measurement method and system
CN111504949A (en) * 2020-05-11 2020-08-07 西南大学 Fluid identification device based on interference method
CN115791702A (en) * 2022-12-14 2023-03-14 华侨大学 Liquid refractive index measuring device and drainage measuring method based on Michelson interferometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143269A (en) * 1982-02-22 1983-08-25 Nippon Tectron Co Ltd Method and device for controlling descending of pipette in automatic biochemical analysis device
JPH08338849A (en) * 1995-04-11 1996-12-24 Precision Syst Sci Kk Method for detecting suction of liquid and dispenser being controlled by the method
JP2002176087A (en) * 2000-12-06 2002-06-21 Hamamatsu Photonics Kk Thickness-measuring device method therefor using the same and wet-etching device
KR101252396B1 (en) * 2011-11-16 2013-04-12 공주대학교 산학협력단 Noncontact optical interferometric evaporation measurement apparatus
JP2015099133A (en) * 2013-11-20 2015-05-28 キヤノン株式会社 Measurement method and measurement device for thickness
WO2016025278A2 (en) * 2014-08-12 2016-02-18 Luedemann Hans-Christian Interferometric measurement of liquid volumes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280625A (en) * 1994-04-04 1995-10-27 Opt:Kk Electro-optical level indicator
JP2001004170A (en) * 1999-06-18 2001-01-12 Fujitsu General Ltd Dehumidifier
JP2015032800A (en) * 2013-08-07 2015-02-16 キヤノン株式会社 Lithographic apparatus and article manufacturing method
JP2017007358A (en) * 2015-06-16 2017-01-12 トヨタ自動車株式会社 Fuel tank structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143269A (en) * 1982-02-22 1983-08-25 Nippon Tectron Co Ltd Method and device for controlling descending of pipette in automatic biochemical analysis device
JPH08338849A (en) * 1995-04-11 1996-12-24 Precision Syst Sci Kk Method for detecting suction of liquid and dispenser being controlled by the method
JP2002176087A (en) * 2000-12-06 2002-06-21 Hamamatsu Photonics Kk Thickness-measuring device method therefor using the same and wet-etching device
KR101252396B1 (en) * 2011-11-16 2013-04-12 공주대학교 산학협력단 Noncontact optical interferometric evaporation measurement apparatus
JP2015099133A (en) * 2013-11-20 2015-05-28 キヤノン株式会社 Measurement method and measurement device for thickness
WO2016025278A2 (en) * 2014-08-12 2016-02-18 Luedemann Hans-Christian Interferometric measurement of liquid volumes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380594A (en) * 2020-04-03 2020-07-07 华中科技大学 Acousto-optic synchronous type salt cavern gas storage liquid level measurement method and system
CN111380594B (en) * 2020-04-03 2021-03-26 华中科技大学 Acousto-optic synchronous type salt cavern gas storage liquid level measurement method and system
CN111504949A (en) * 2020-05-11 2020-08-07 西南大学 Fluid identification device based on interference method
CN115791702A (en) * 2022-12-14 2023-03-14 华侨大学 Liquid refractive index measuring device and drainage measuring method based on Michelson interferometer

Also Published As

Publication number Publication date
JP2021105623A (en) 2021-07-26
JP6878086B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP2021105623A (en) Liquid level height measurement device, and liquid level height measurement method
US9638790B2 (en) System for calibrating a distance measuring device
US20060072868A1 (en) Pressure sensor
US6583860B2 (en) Range finder
ATE467815T1 (en) ELECTRO-OPTICAL RANGE FINDER
US20130215435A1 (en) Measuring unit, measuring system and method for determining a relative position and relative orientation
JP2017003434A (en) Method of measuring refractive index, measuring device, and method of manufacturing optical element
JPH01502296A (en) Laser interferometric distance meter that measures length using an interferometer method
JP6576542B2 (en) 3D shape measuring device, 3D shape measuring probe
JP7102635B2 (en) Liquid level height measuring device and liquid level height measuring method
JP2004516488A (en) Apparatus and method for measuring injection quantity of injection mechanism
CN110823123A (en) OCT measurement
JP2015099133A (en) Measurement method and measurement device for thickness
JP6331587B2 (en) Three-dimensional coordinate measuring apparatus and method, and calibration apparatus
CN105548052A (en) Testing cavity with continuously adjustable length applied to cavity ring-down spectroscope technology
JP2001208595A (en) Liquid level-measuring device
WO2015049346A1 (en) Device for absolute optical measurement of a liquid level in a container
US20100033734A1 (en) Vehicle frame deformation measurement apparatus and method
SE460382B (en) PROCEDURES TO PROVIDE AN ACTIVE DISCRIMINATION BETWEEN TWO OPTICAL ROADS AND DEVICE ADAPTED FOR THE PERFORMANCE OF THE PROCEDURE
CN113432625A (en) Calibration system and calibration method of hydrostatic level
KR20070015267A (en) Light displacement measuring apparatus
US20070163671A1 (en) Method and device for non-contacting monitoring of a filling state
CN107687808A (en) A kind of sub-aperture stitching Aspheric interferometer
CN101013088A (en) Tiled periodic metal film sensors
KR100781576B1 (en) Methods for sensing inclination and devices using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6878086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250