JP2015097208A - Organic electronic panel and method for manufacturing the same - Google Patents

Organic electronic panel and method for manufacturing the same Download PDF

Info

Publication number
JP2015097208A
JP2015097208A JP2014250697A JP2014250697A JP2015097208A JP 2015097208 A JP2015097208 A JP 2015097208A JP 2014250697 A JP2014250697 A JP 2014250697A JP 2014250697 A JP2014250697 A JP 2014250697A JP 2015097208 A JP2015097208 A JP 2015097208A
Authority
JP
Japan
Prior art keywords
organic
electrode
electrode lead
organic electronics
functional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014250697A
Other languages
Japanese (ja)
Other versions
JP5943057B2 (en
Inventor
小島 茂
Shigeru Kojima
茂 小島
真昭 村山
Masaaki Murayama
真昭 村山
源田 和男
Kazuo Genda
和男 源田
野島 隆彦
Takahiko Nojima
隆彦 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2014250697A priority Critical patent/JP5943057B2/en
Publication of JP2015097208A publication Critical patent/JP2015097208A/en
Application granted granted Critical
Publication of JP5943057B2 publication Critical patent/JP5943057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing an electrode lead in a small space without deteriorating sealing performance while the conductivity and the adhesiveness thereof are sufficiently maintained, in an organic electronic panel using a flexible substrate.SOLUTION: In an organic electronic panel, an organic electronic element configured so that a pair of electrodes 2, 4 are provided on a supporting substrate 1, and an organic compound layer 3 containing a function layer comprising at least an organic compound is sandwiched by the pair of electrodes, is hermetically sealed by a sealing member 5 covering the organic electronic element, between the supporting substrate and the sealing member while the electrodes and the organic compound layer are held. A joint portion between a pulling portion 2a of each electrode and an electrode lead 7 connected to an outside drive circuit is disposed within an area covered and hermetically sealed by the sealing member, and the electrode lead is removed from the hermetically sealed area.

Description

本発明は有機エレクトロニクス素子の封止方法に関し、なかでも有機エレクトロルミネッセンス素子(有機EL素子)、有機光電変換素子の電極と電極リード(フレキシブルプリント基板)との接続に関する。   The present invention relates to a method for sealing an organic electronic element, and in particular, relates to an organic electroluminescence element (organic EL element), a connection between an electrode of an organic photoelectric conversion element and an electrode lead (flexible printed circuit board).

近年、有機エレクトロニクス素子は、有機物を用いて電気的な動作を行う素子であり、省エネルギー、低価格、柔軟性といった特長を発揮できると期待され、従来のシリコンを主体とした無機半導体に替わる技術として注目されている。   In recent years, organic electronics elements are elements that perform electrical operations using organic substances, and are expected to exhibit features such as energy saving, low cost, and flexibility. As a technology to replace conventional inorganic semiconductors mainly composed of silicon. Attention has been paid.

これらの有機エレクトロニクス素子は、有機物の非常に薄い膜に電極を介して電流を流すことで、発光したり、電流や電圧を制御したり、或いは光を照射することで発電したり、帯電したりする素子である。   These organic electronics elements emit light, control current and voltage, or generate electricity by charging light or charge by passing an electric current through an electrode through a very thin film of organic matter. It is an element to do.

これらのうちの一つである、エレクトロルミネッセンス素子(以下、EL素子ともいう)については、ディスプレイ用途や照明用途などにおいて着目されている。   An electroluminescence element (hereinafter also referred to as an EL element), which is one of these, has attracted attention in display applications and illumination applications.

しかしながら、有機EL素子は水分や酸素に弱く、封止缶、封止板等の封止部材を用いてこれを水分・酸素などから防ぐ必要がある。   However, the organic EL element is vulnerable to moisture and oxygen, and it is necessary to prevent this from moisture and oxygen using a sealing member such as a sealing can and a sealing plate.

また、有機光電変換素子は、前記有機エレクトロルミネッセンス素子と類似した構造を有する有機エレクトロニクス素子であるが、有機エレクトロルミネッセンス素子の発光層を有機化合物の薄膜からなる光電変換層とし、これを電極で挟持した構成を有し、光を照射すると発電する素子である。従って、薄膜の有機光電変換素子を太陽電池として利用すると、小型化、軽量化が容易であるうえ、既存の無機半導体系の太陽電池に比べ、低照度環境や高温環境下でも比較的安定した出力を得られる太陽電池となる。   The organic photoelectric conversion element is an organic electronic element having a structure similar to that of the organic electroluminescence element, but the light emitting layer of the organic electroluminescence element is a photoelectric conversion layer made of a thin film of an organic compound, and this is sandwiched between electrodes. It is an element which has the structure mentioned above and generates electric power when irradiated with light. Therefore, if a thin-film organic photoelectric conversion element is used as a solar cell, it is easy to reduce the size and weight, and the output is relatively stable even in low-light and high-temperature environments compared to existing inorganic semiconductor solar cells. The solar cell can be obtained.

有機光電変換素子においても、有機EL素子と同様に、水分・酸素などの影響で、発電層(光電変換層)中にキャリアトラップを形成し、電荷分離によって発生したキャリアの集電を阻害してしまう。結果としてこれは発電効率の低下をまねくだけでなく、素子寿命低下にも影響を及ぼすようになる。従って、有機光電変換素子においても同様に、水分や酸素などのガス成分に対して、バリア性能を有する封止材料を用いて性能を確保したりすることが検討されている(例えば、特許文献1)。   In the organic photoelectric conversion element, similarly to the organic EL element, carrier traps are formed in the power generation layer (photoelectric conversion layer) due to the influence of moisture, oxygen, etc., thereby preventing the collection of carriers generated by charge separation. End up. As a result, this not only reduces the power generation efficiency, but also affects the device life. Therefore, in the organic photoelectric conversion element, it is similarly studied to secure performance by using a sealing material having barrier performance against gas components such as moisture and oxygen (for example, Patent Document 1). ).

また、一方で、有機EL素子に電力を供給する、もしくは有機光電変換素子から電力を取り出すためには、電極リード(フレキシブルプリント基板)を接続する必要がある。しかしながら、これらの素子において、封止部材の外側に電極リードを接続する場合、電極部材を封止部材の外側まで延長し形成しなければならず電極スペースを余分に取る、また、スペースをとることで、特に透明電極として用いられるITO等の透明導電膜においては、面積あるいは外部へ引き回し長が長くなると、その電気抵抗から、電圧降下を引き起こす等の問題があった。   On the other hand, in order to supply electric power to the organic EL element or to extract electric power from the organic photoelectric conversion element, it is necessary to connect an electrode lead (flexible printed circuit board). However, in these elements, when an electrode lead is connected to the outside of the sealing member, the electrode member must be formed to extend to the outside of the sealing member, so that an extra electrode space is taken and a space is taken up. In particular, in the case of a transparent conductive film such as ITO used as a transparent electrode, there is a problem that, when the area or the length of the conductive film is extended to the outside, a voltage drop is caused due to its electric resistance.

特許文献2(特開2001−291581号公報)には、封止缶を用いて封止する際に、電極リードの接続部と封止缶を重ねる、即ち、基板上の電極と、フレキシブルプリント基板との接続部をガラス基板と封止基板で挟み込むことでスペースを節約することが記載されている。しかしながら、この方法では、可撓性基材を用いた場合に封止に対する対応が難しい、また、高温高湿状態での保存時には封止性能にも問題があることが分かった。   In Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-215881), when a sealing can is used for sealing, the electrode lead connection portion and the sealing can are overlapped, that is, the electrode on the substrate and the flexible printed circuit board. It is described that space is saved by sandwiching the connecting portion between the glass substrate and the sealing substrate. However, with this method, it has been found that when a flexible substrate is used, it is difficult to cope with sealing, and there is a problem in sealing performance when stored in a high temperature and high humidity state.

特開2004−165512号公報JP 2004-165512 A 特開2001−291581号公報JP 2001-215881 A

本発明の目的は、可撓性の基板を用いた有機エレクトロニスク素子の封止において、電極リードを、導電性また接着性を十分保ちながら、封止性能を劣化させることなく省スペースで取り出す方法を提供することにある。   An object of the present invention is a method for taking out an electrode lead in a space-saving manner without deteriorating sealing performance while maintaining sufficient conductivity and adhesiveness in sealing an organic electronic element using a flexible substrate. Is to provide.

本発明の上記課題は以下の手段により達成される。   The above object of the present invention is achieved by the following means.

1.支持基板上に一対の電極と、その間に少なくとも有機化合物からなる機能層を含む有機化合物層を挟持した構成を有する有機エレクトロニクス素子が、これを覆う封止部材によって、前記支持基板との間に、電極および有機化合物層を挟持して、密着封止された有機エレクトロニクスパネルであって、
前記電極の引き出し部と、外部駆動回路に接続する電極リードとの接合部が、前記封止部材によって覆われた密着封止された領域内にあり、前記密着封止された領域から電極リードが取り出され、
前記有機エレクトロニクスパネルが、平面視における前記支持基板上で、前記一対の電極と、その間に少なくとも有機化合物からなる機能層が、一方向に向けて、(1)一方の電極のみの領域、(2)前記一方の電極と前記有機化合物からなる機能層が重なる領域、(3)前記一方の電極と前記有機化合物からなる機能層と他方の電極が重なる領域、(4)前記有機化合物からなる機能層と前記他方の電極が重なる領域、(5)前記他方の電極のみの領域、に順次配置されており、
かつ、前記電極の引き出し部と、外部駆動回路に接続する電極リードとの接合部が、前記(1)から(5)の領域の配置と同一方向であって、(1)及び(5)の外側に配置されている、
ことを特徴とする有機エレクトロニクスパネル。
1. An organic electronics element having a structure in which an organic compound layer including a functional layer made of at least an organic compound is sandwiched between a pair of electrodes on a support substrate, and a sealing member covering the organic electronics element between the support substrate and An organic electronics panel sandwiched between an electrode and an organic compound layer and closely sealed,
The joint between the electrode lead-out portion and the electrode lead connected to the external drive circuit is in the close-sealed region covered by the sealing member, and the electrode lead extends from the close-sealed region. Taken out,
The organic electronics panel has a pair of electrodes and a functional layer made of at least an organic compound therebetween in one direction on the support substrate in a plan view. ) A region where the one electrode and the functional layer made of the organic compound overlap, (3) a region where the one electrode and the functional layer made of the organic compound overlap the other electrode, and (4) a functional layer made of the organic compound. And the region where the other electrode overlaps, (5) the region where only the other electrode is disposed,
In addition, the joint between the electrode lead-out portion and the electrode lead connected to the external drive circuit is in the same direction as the arrangement of the regions (1) to (5), and (1) and (5) Located on the outside,
Organic electronics panel characterized by that.

2.前記機能層が発光層であり、有機エレクトロニクス素子が有機エレクトロルミネッセンス素子であることを特徴とする前記1に記載の有機エレクトロニクスパネル。   2. 2. The organic electronics panel as described in 1 above, wherein the functional layer is a light emitting layer, and the organic electronics element is an organic electroluminescence element.

3.前記機能層が光電変換層であり、有機エレクトロニクス素子が有機光電変換素子であることを特徴とする前記1に記載の有機エレクトロニクスパネル。   3. 2. The organic electronics panel according to 1 above, wherein the functional layer is a photoelectric conversion layer and the organic electronics element is an organic photoelectric conversion element.

4.前記支持基板が可撓性の樹脂基板であることを特徴とする前記1〜3のいずれか1項に記載の有機エレクトロニクスパネル。   4). 4. The organic electronics panel according to any one of items 1 to 3, wherein the support substrate is a flexible resin substrate.

5.支持基板上に一対の電極と、その間に少なくとも有機化合物からなる機能層を含む有機化合物層を挟持した構成を有する有機エレクトロニクス素子を、封止部材によって前記支持基板との間に、電極および有機化合物層を挟持して、密着封止する有機エレクトロニクスパネルの製造方法であって、
前記電極の引き出し部と、外部駆動回路に接続する電極リードとの接合部が、導電性接着剤により接着され、かつ、前記封止部材が、前記接合部を覆って、有機エレクトロニクス素子を密着封止し、
前記有機エレクトロニクスパネルが、平面視における前記支持基板上で、前記一対の電極と、その間に少なくとも有機化合物からなる機能層が、一方向に向けて、(1)一方の電極のみの領域、(2)前記一方の電極と前記有機化合物からなる機能層が重なる領域、(3)前記一方の電極と前記有機化合物からなる機能層と他方の電極が重なる領域、(4)前記有機化合物からなる機能層と前記他方の電極が重なる領域、(5)前記他方の電極のみの領域、に順次配置されており、
かつ、前記電極の引き出し部と、外部駆動回路に接続する電極リードとの接合部が、前記(1)から(5)の領域の配置と同一方向であって、(1)及び(5)の外側に配置されている、
ことを特徴とする有機エレクトロニクスパネルの製造方法。
5). An organic electronic element having a structure in which an organic compound layer including a functional layer made of at least an organic compound is sandwiched between a pair of electrodes on a supporting substrate, and the electrode and the organic compound between the supporting substrate by a sealing member A method for producing an organic electronics panel in which layers are sandwiched and closely sealed,
A joint portion between the electrode lead-out portion and an electrode lead connected to an external drive circuit is adhered by a conductive adhesive, and the sealing member covers the joint portion and tightly seals the organic electronics element. Stop,
The organic electronics panel has a pair of electrodes and a functional layer made of at least an organic compound therebetween in one direction on the support substrate in a plan view. ) A region where the one electrode and the functional layer made of the organic compound overlap, (3) a region where the one electrode and the functional layer made of the organic compound overlap the other electrode, and (4) a functional layer made of the organic compound. And the region where the other electrode overlaps, (5) the region where only the other electrode is disposed,
In addition, the joint between the electrode lead-out portion and the electrode lead connected to the external drive circuit is in the same direction as the arrangement of the regions (1) to (5), and (1) and (5) Located on the outside,
A method for producing an organic electronics panel.

6.前記機能層が発光層であり、有機エレクトロニクス素子が有機エレクトロルミネッセンス素子であることを特徴とする前記5に記載の有機エレクトロニクスパネルの製造方法。   6). 6. The method for producing an organic electronics panel as described in 5 above, wherein the functional layer is a light emitting layer and the organic electronics element is an organic electroluminescence element.

7.前記機能層が光電変換層であり、有機エレクトロニクス素子が有機光電変換素子であることを特徴とする前記5に記載の有機エレクトロニクスパネルの製造方法。   7). 6. The method for producing an organic electronics panel as described in 5 above, wherein the functional layer is a photoelectric conversion layer, and the organic electronics element is an organic photoelectric conversion element.

8.前記支持基板が可撓性の樹脂基板であることを特徴とする前記5〜7のいずれか1項に記載の有機エレクトロニクスパネルの製造方法。   8). 8. The method of manufacturing an organic electronics panel according to any one of 5 to 7, wherein the support substrate is a flexible resin substrate.

9.前記5に記載の有機エレクトロニクスパネルの製造方法であって、前記導電性接着剤の接着時の温度が140℃以下であることを特徴とする有機エレクトロニクスパネルの製造方法。   9. 6. The method for producing an organic electronics panel according to 5, wherein a temperature at the time of adhesion of the conductive adhesive is 140 ° C. or less.

10.前記5に記載の有機エレクトロニクスパネルの製造方法であって、前記導電性接着剤の接着時に接合部の両側から加熱することを特徴とする有機エレクトロニクスパネルの製造方法。   10. 6. The method of manufacturing an organic electronics panel according to 5, wherein heating is performed from both sides of the joint portion when the conductive adhesive is bonded.

11.前記5に記載の有機エレクトロニクスパネルの製造方法であって、
前記導電性接着剤の含水率が100ppm以下であり、且つ、前記電極リードの含水率が100ppm以下であることを特徴とする有機エレクトロニクスパネルの製造方法。
11. 6. The method for producing an organic electronics panel according to 5 above,
A method for producing an organic electronics panel, wherein the conductive adhesive has a moisture content of 100 ppm or less, and the electrode lead has a moisture content of 100 ppm or less.

本発明により、電極リードと電極との接続、またそのための接着性を十分保つことのできる堅固な封止構造を持ち、有機エレクトロルミネッセンス(EL)素子や有機光電変換素子の性能を劣化させることなく電極リードを取り出すことのできる有機エレクトロニクスパネルの製造方法および有機エレクトロニクスパネルが得られる。   According to the present invention, it has a solid sealing structure capable of sufficiently maintaining the connection between the electrode lead and the electrode, and the adhesiveness therefor, without deteriorating the performance of the organic electroluminescence (EL) element or the organic photoelectric conversion element. An organic electronics panel manufacturing method and an organic electronics panel from which electrode leads can be taken out are obtained.

本発明に係る有機エレクトロニクスパネルの密着封止の断面構成模式図であ る。FIG. 2 is a schematic cross-sectional configuration diagram of close-contact sealing of an organic electronics panel according to the present invention. 従来の有機エレクトロニクスパネルの封止構造を示す断面構成模式図である 。It is a cross-sectional structure schematic diagram which shows the sealing structure of the conventional organic electronics panel. テント状の故障について示す模式図である。It is a schematic diagram shown about a tent-like failure. 本発明の有機エレクトロニクスパネルの製造について実施形態を示す断面構 成模式図である。FIG. 3 is a schematic cross-sectional configuration diagram showing an embodiment of the manufacture of the organic electronics panel of the present invention. 実施例で作成した有機エレクトロニクスパネルの封止構造を示す断面構成模 式図である。It is a cross-sectional structure schematic diagram which shows the sealing structure of the organic electronics panel created in the Example. 比較例の有機エレクトロニクスパネルに用いた封止部材(封止缶)の外観を 示す概略斜視図である。It is a schematic perspective view which shows the external appearance of the sealing member (sealing can) used for the organic electronics panel of the comparative example. 本発明に係る有機エレクトロニクスパネルの密着封止の平面構成模式図であ る。FIG. 2 is a schematic plan view of the close-contact sealing of the organic electronics panel according to the present invention. プッシュプルゲージを用いた剥離テストの方法の模式図である。It is a schematic diagram of the method of the peeling test using a push pull gauge.

以下、本発明を実施するための形態について詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail.

本発明者らは、可撓性基板において、封止性能を満足しながら、電極リードを省スペースで取り出すことについて鋭意検討を行った。   The present inventors diligently studied to take out electrode leads in a space-saving manner while satisfying sealing performance in a flexible substrate.

その結果、密着封止(固体封止)タイプの封止を用い、固体封止中(内)から電極リードを取り出すことで、十分な封止性能を保ちつつ、電極リードを取り付けられることが分かった。   As a result, it can be seen that the electrode lead can be attached while maintaining sufficient sealing performance by taking out the electrode lead from the inside (inside) of the solid sealing using a close sealing (solid sealing) type sealing. It was.

さらに、中空方式では有機ELの発光部分、もしくは有機光電変換素子の発電部分と、中空封止の接着部の距離をある程度とらないと製造が困難であるが、接着剤で中空部がなく密着封止された固体封止であれば有機ELの発光部、または有機光電変換素子の発電部も封止されているので、発光部もしくは発電部の近傍にて電極リードを接着することができ、このため、抵抗値が高い透明導電膜による電極等の電極引き出し部またこれによって引き回される配線を短くすることができ、有機エレクトロルミネッセンス(EL)パネルとしての駆動電圧を下げたり、有機光電変換パネルとしての電圧や形状因子ffを向上させることが出来る。   Furthermore, in the hollow method, it is difficult to manufacture unless the distance between the light emitting part of the organic EL or the power generating part of the organic photoelectric conversion element and the adhesive part of the hollow seal is set to some extent. Since the light emitting part of the organic EL or the power generation part of the organic photoelectric conversion element is sealed if the solid sealing is stopped, the electrode lead can be adhered in the vicinity of the light emitting part or the power generation part. Therefore, an electrode lead portion such as an electrode made of a transparent conductive film having a high resistance value or a wiring routed thereby can be shortened, and a driving voltage as an organic electroluminescence (EL) panel can be reduced, or an organic photoelectric conversion panel The voltage and the shape factor ff can be improved.

さらに、このような構成にすることで、省スペースと十分な封止性能に加えて、長期保存時の素子の作動安定性が向上することが見出された。この理由については定かではないが、少なくとも電極リードの接続部が密着封止内部領域に保護されることにより電極接続部が良好に保たれるものと推定している。   Further, it has been found that such a configuration improves the operational stability of the element during long-term storage, in addition to saving space and sufficient sealing performance. The reason for this is not clear, but it is presumed that at least the electrode lead connecting portion is protected by the close-sealed inner region, so that the electrode connecting portion can be maintained well.

本発明の好ましい実施形態について以下図を用いて説明する。   A preferred embodiment of the present invention will be described below with reference to the drawings.

まずは、有機エレクトロニクスパネルについて説明する。   First, the organic electronics panel will be described.

図1は本発明に係る、支持基板上に形成された一対の電極と、その間に少なくとも発光層(有機EL素子の場合)また光電変換層(光電変換素子の場合)等の機能層を含む有機化合物層を挟持した構成を有する有機エレクトロニクス素子およびこれを覆う封止部材によって密着封止(固体封止)された有機エレクトロニクスパネルを示した断面構成模式図である。   FIG. 1 shows an organic material including a pair of electrodes formed on a supporting substrate and a functional layer such as at least a light emitting layer (in the case of an organic EL element) or a photoelectric conversion layer (in the case of a photoelectric conversion element) between them. It is the cross-sectional structure schematic diagram which showed the organic electronics panel which carried out contact | adherence sealing (solid sealing) with the organic electronics element which has the structure which pinched | interposed the compound layer, and the sealing member which covers this.

図において、支持基板である可撓性の樹脂基板1上には、例えば第一電極として、ITOからなる陽極2、さらに発光層等の機能層を含む有機化合物層3が、さらにその上に例えばアルミニウム等からなる第二電極である陰極4が積層されて有機EL素子もしくは有機光電変換素子である有機エレクトロニクス素子を形成している。   In the figure, on a flexible resin substrate 1 which is a support substrate, for example, an anode 2 made of ITO as a first electrode, and further an organic compound layer 3 including a functional layer such as a light emitting layer is further formed thereon, for example, A cathode 4 which is a second electrode made of aluminum or the like is laminated to form an organic electronics element which is an organic EL element or an organic photoelectric conversion element.

有機エレクトロニクス素子が形成された樹脂基板1は封止部材5により密着封止されている。即ち、封止用接着剤6によって封止部材5が、有機エレクトロニクス素子および樹脂基板に密着して、全面これを覆うことで有機エレクトロニクス素子を外部空間から封止、隔離している(密着封止)。ここで、各電極は(ここでは陽極のみ示すが)、電極引き出し部2aにおいて、フレキシブルプリント基板上に形成された外部駆動回路との接続のために電極リード(フレキシブルプリント基板)7と導電性接着剤8によって密着・接合(接続)され、その接合部は、密着封止された内部領域にあって接合部も封止された形で接続され、電極リードは密着封止された領域から外部に取り出されている。   The resin substrate 1 on which the organic electronics element is formed is tightly sealed by a sealing member 5. That is, the sealing member 5 is in close contact with the organic electronics element and the resin substrate by the sealing adhesive 6 and covers the entire surface to seal and isolate the organic electronics element from the external space (adhesion sealing). ). Here, each electrode (only the anode is shown here) is electrically bonded to the electrode lead (flexible printed circuit board) 7 for connection with an external drive circuit formed on the flexible printed circuit board in the electrode lead-out portion 2a. The adhesive 8 is tightly bonded and bonded (connected), and the bonded portion is in the tightly sealed internal region and the bonded portion is also sealed and connected, and the electrode lead is connected from the tightly sealed region to the outside. It has been taken out.

因みに、密着封止は固体封止ともいい、有機エレクトロニクス素子が形成された基板と封止部材との間に、空間を残さないよう、空隙部を全て、樹脂(封止用接着剤)で覆って有機エレクトロニクス素子、即ち有機化合物層を封止するものである。   By the way, close-contact sealing is also called solid sealing, and all the gaps are covered with resin (sealing adhesive) so as not to leave a space between the substrate on which the organic electronics element is formed and the sealing member. Thus, an organic electronic element, that is, an organic compound layer is sealed.

図7に、本発明に係る有機エレクトロニクスパネルの別の一形態について封止構造及びその配置を平面構成模式図で示した。   In FIG. 7, the sealing structure and its arrangement | positioning were shown with the plane structure schematic diagram about another form of the organic electronics panel which concerns on this invention.

基板1上に陽極2とその取り出し電極2a、導電性接着剤8と電極リード7が平面図でその配置を示した。有機化合物層3、陰極4についても示し、陰極側取り出し電極(ITO)4aについても配置を示した。   The arrangement of the anode 2 and its extraction electrode 2a, the conductive adhesive 8 and the electrode lead 7 on the substrate 1 is shown in plan view. The organic compound layer 3 and the cathode 4 are also shown, and the arrangement of the cathode side extraction electrode (ITO) 4a is also shown.

固体封止のための接着剤層6については、この平面図の構成の上に例えば塗布等によって重層され、さらに封止部材5が重ね合わされて、電極リードと取り出し電極の接合部を、密着封止された内部領域とになるよう封止される(図では省略されている)。   The adhesive layer 6 for solid sealing is layered by, for example, coating on the configuration of this plan view, and further the sealing member 5 is overlaid so that the joint between the electrode lead and the extraction electrode is tightly sealed. It is sealed so as to be a stopped internal region (omitted in the figure).

これらの封止方法をとることで、電極リード全体が、封止用接着剤により固定されるので、電極リードが電極引き出し部との接合部のみでなく、封止用接着剤によっても固定され、接着面積が大きくとれることから、従来の封止缶により、電極リードと電極引き出し部の接着部分を押さえて接着・固定する方法よりも、電極リード部分を全体として固定するので、剥がれやゆるみがなく、しっかりとした固定が可能である。また電極引き出し部を封止部材外に迄取りだして形成しなければならないといったことがなく、電極面積をコンパクトに設計でき、特にITO等の透明導電膜を用いた電極の場合に利点が発生する。透明導電膜のサイズが大きくなると、また透明電極等で引き回される配線が長くなると、透明導電膜は一般的に電気抵抗値が大きいため電圧降下が大きくなり駆動電圧の上昇などを起こしやすい。電圧降下等への対応としてニッケル等の金属層を設ける方法もあるが、プロセスが複雑になり、コストも増加してしまう。   By taking these sealing methods, the entire electrode lead is fixed by the sealing adhesive, so that the electrode lead is fixed not only by the joint with the electrode lead-out part, but also by the sealing adhesive, Because the adhesion area can be increased, the electrode lead part is fixed as a whole rather than the method of attaching and fixing the electrode lead and electrode lead-out part by pressing the adhesion part between the electrode lead and the electrode lead-out part with a conventional sealing can, so there is no peeling or loosening Can be firmly fixed. In addition, the electrode lead-out portion does not have to be formed out of the sealing member, and the electrode area can be designed compactly. This is advantageous particularly in the case of an electrode using a transparent conductive film such as ITO. When the size of the transparent conductive film is increased and the wiring routed by the transparent electrode or the like is increased, the transparent conductive film generally has a large electric resistance value, so that the voltage drop is large and the drive voltage is likely to increase. Although there is a method of providing a metal layer such as nickel as a countermeasure against a voltage drop or the like, the process becomes complicated and the cost increases.

図2に従来の封止構造について説明する。   A conventional sealing structure will be described with reference to FIG.

図2(a)は、特開2001−291581号公報(特許文献1)に記載された封止缶を用いた封止構造の断面構成模式図である。封止部材(封止缶)5を用いて封止する際に、電極リード7の接続部と封止部材5をまた電極の引き出し部2aを重ねることで封止する。即ち、基板上の陽極2(電極引き出し部2a)と、電極リード7(フレキシブルプリント基板)との接合部を基板と封止部材5(封止缶)で挟み込むことでスペースを節約して電極引き出し部2aおよび電極リード7の配置を行うものである。図において、電極リード7は封止部材5(封止缶)と電極引き出し部との間に挟み込まれる形で導電性接着剤8により接着される。なお、封止部材は封止用接着剤6により電極リード7と接着される。封止部材(封止缶)は中空構造であるため、電極リードは封止缶の周囲部分で押さえられているのみであり、中空構造であるため電極リードとの接着部分を余り大きくできない。そのために接着面積が大きくとれず、樹脂基板の場合には堅固な固定が出来ない。また、封止部材に可撓性の材料を用いたときはさらにパネル全体が可撓性を持つため、ずれ応力等が発生したとき、剥離が起きやすい。また高温高湿状態での保存時には剥がれやすく封止性能に問題がでてしまう。   Fig.2 (a) is a cross-sectional schematic diagram of the sealing structure using the sealing can described in Unexamined-Japanese-Patent No. 2001-215881 (patent document 1). When sealing using the sealing member (sealing can) 5, the connection part of the electrode lead 7 and the sealing member 5 are sealed by overlapping the electrode lead-out part 2a. That is, a space between the anode 2 (electrode lead portion 2a) on the substrate and the electrode lead 7 (flexible printed circuit board) is sandwiched between the substrate and the sealing member 5 (sealing can) to save space. The portion 2a and the electrode lead 7 are arranged. In the figure, an electrode lead 7 is bonded by a conductive adhesive 8 in a form sandwiched between a sealing member 5 (sealing can) and an electrode lead-out portion. The sealing member is bonded to the electrode lead 7 with a sealing adhesive 6. Since the sealing member (sealing can) has a hollow structure, the electrode lead is only pressed by the peripheral portion of the sealing can, and since it has a hollow structure, the adhesion portion with the electrode lead cannot be made too large. For this reason, the bonding area cannot be increased, and the resin substrate cannot be firmly fixed. Further, when a flexible material is used for the sealing member, the entire panel is further flexible, and therefore, peeling easily occurs when a shift stress or the like is generated. In addition, when stored in a high-temperature and high-humidity state, it easily peels off, causing a problem in sealing performance.

また、本発明においては、支持基板(また封止部材)として、可撓性の樹脂基板を用いることが好ましい、支持基板もしくは封止部材に可撓性材料を用いることで、図3に示したようなテント状の故障についてもこれを防ぐことが出来、これにより電極リードの接着をより強固にできる。   In the present invention, it is preferable to use a flexible resin substrate as the support substrate (or sealing member). As shown in FIG. 3, a flexible material is used for the support substrate or the sealing member. Such a tent-like failure can also be prevented, whereby the adhesion of the electrode leads can be made stronger.

支持基板1′と封止部材5が可撓性ではない部材を用いて、封止内部からFPC(フレキシブルプリント基板)の様な電極リードを取り出す場合、電極リード近傍にテント状の故障(T)ができやすいという問題があった。これが発生すると、製造時の歩留まりを低下させてしまうことになる。このために、封止用接着剤6の厚みをましたり、電極リードの厚みを薄くしたり、形状に工夫をする必要があった。このようなことをすると、シール性の低下や、コスト増加をといったデメリットが生じてしまう。   When an electrode lead such as an FPC (flexible printed circuit board) is taken out from the inside of the seal using a member whose support substrate 1 'and the sealing member 5 are not flexible, a tent-like failure (T) in the vicinity of the electrode lead There was a problem that it was easy to do. If this occurs, the manufacturing yield will be reduced. For this reason, it is necessary to increase the thickness of the sealing adhesive 6, reduce the thickness of the electrode lead, or devise the shape. If such a thing is done, demerits, such as a sealing performance fall and cost increase, will arise.

これに対し、可撓性材料を支持基板1′もしくは封止部材5に用いた場合は、封止部材5が基板上に設置されたFPCの様な凹凸物に追随するので、前述のテント状の故障(T)が生じにくくなる。封止用接着剤6の厚さも薄くすることができ、封止性能も向上させることが出来る。   On the other hand, when a flexible material is used for the support substrate 1 ′ or the sealing member 5, the sealing member 5 follows an unevenness like an FPC installed on the substrate, so that the tent shape described above is used. (T) is less likely to occur. The thickness of the sealing adhesive 6 can also be reduced, and the sealing performance can be improved.

また、中空構造では有機EL素子の発光部分もしくは有機光電変換素子の発電部分と、封止缶と電極リードとの接着部の距離をある程度とらないと製造が困難であり、スペースを節約して電極あるいは電極リードを配置しているとはいえ電極面積がどうしても大きくなったり、電極引き出し部が長くなったりする。   In addition, the hollow structure is difficult to manufacture unless the distance between the light emitting portion of the organic EL element or the power generating portion of the organic photoelectric conversion element and the bonding portion between the sealing can and the electrode lead is limited, and the space is saved. Or although an electrode lead is arrange | positioned, an electrode area becomes large inevitably, or an electrode extraction part becomes long.

従来の封止構造の別の例として、封止部材外に電極引き出し部2aを形成した別の例を図2(b)に示した。   As another example of the conventional sealing structure, another example in which the electrode lead portion 2a is formed outside the sealing member is shown in FIG.

この場合は電極引き出し部2aを、電極リード即ちフレキシブルプリント基板との接続のため、大きくとる必要があるのでさらにスペースが節約できず、電極引き出し部の面積が大きくなることで電圧降下等の問題が大きくなる。   In this case, it is necessary to make the electrode lead-out portion 2a large for connection with an electrode lead, that is, a flexible printed circuit board, so that it is not possible to save further space. growing.

以上、図2、3においては、一方の電極についてのみ説明したが、もう一方の電極(図において陰極4)についても、例えば図2、3においては示されていない方向から電極リードが取り出されているが、ここでは図示されていない。陰極についても前記と同様のことがいえる。   2 and 3, only one electrode has been described. However, for the other electrode (cathode 4 in the figure), for example, the electrode lead is taken out from a direction not shown in FIGS. It is not shown here. The same can be said for the cathode.

従って、本発明は、前記電極の引き出し部と外部駆動回路を接続する電極リードとの接続部が、封止部材によって密着封止された領域内にあり、前記密着(固体)封止部から電極リードが取り出されることによって、省スペースで有機エレクトロニクス素子の性能を損なうことなく、特に、封止部材に可撓性の樹脂基板を用いたとき、曲げやずれに対して強い優れた封止方法である。   Therefore, in the present invention, the connection portion between the electrode lead portion and the electrode lead connecting the external drive circuit is in the region tightly sealed by the sealing member, and the electrode from the close (solid) sealing portion is By taking out the lead, space-saving and without impairing the performance of the organic electronics element, especially when a flexible resin substrate is used for the sealing member, it is an excellent sealing method that is strong against bending and displacement is there.

次に、本発明の有機エレクトロニクスパネルの製造方法について説明する。   Next, the manufacturing method of the organic electronics panel of this invention is demonstrated.

図4は、電極リードと有機エレクトロニクス素子の電極引き出し部の接続部に着目した本発明の有機エレクトロニクスパネルの製造についてその実施形態を示す断面構成模式図である。   FIG. 4 is a cross-sectional schematic diagram showing an embodiment of the manufacture of the organic electronics panel of the present invention focusing on the connection between the electrode lead and the electrode lead-out portion of the organic electronics element.

まず、樹脂基板上1に、ITOからなる陽極2および有機エレクトロニクス素子駆動用ITO引き出し電極2a、その上に、例えば、正孔輸送層、発光層、電子輸送層(以上個々に図示せず)等からなる有機エレクトロニクス素子を構成する有機化合物層3、および陰極4を順次積層して、図1に示す様に有機エレクトロニクス素子を樹脂基板1上に形成する(図4(a))。ここで、陽極2は、駆動用ITO引き出し電極2aが接続されるように形成される。これらの形成は、ITOをスパッタリング、蒸着等により可撓性の樹脂基板1上全面に形成後所望のパターンにエッチングして形成することができる。あるいは予め所望のレジストパターンを形成した上にITOを蒸着し、レジストパターンをリフトオフすることでも形成できる。さらに、所望のパターンが開口された金属マスク等を用いて直接ITOをスパッタリング、蒸着等により形成することもできる。   First, an anode 2 made of ITO and an ITO lead electrode 2a for driving an organic electronics element are formed on a resin substrate 1, and, for example, a hole transport layer, a light emitting layer, an electron transport layer (not individually shown above), etc. The organic compound layer 3 and the cathode 4 constituting the organic electronic element composed of the above are sequentially laminated to form the organic electronic element on the resin substrate 1 as shown in FIG. 1 (FIG. 4A). Here, the anode 2 is formed so that the driving ITO lead electrode 2a is connected. These can be formed by forming ITO on the entire surface of the flexible resin substrate 1 by sputtering, vapor deposition or the like and then etching it into a desired pattern. Alternatively, a desired resist pattern can be formed in advance, and ITO can be deposited, and the resist pattern can be lifted off. Furthermore, ITO can be directly formed by sputtering, vapor deposition or the like using a metal mask or the like in which a desired pattern is opened.

また、有機化合物層3、および陰極4についても、マトリックス状に画素を形成するようにパターニングしても良い、また、照明用等の用途では全面に一様に形成しても良い。   Further, the organic compound layer 3 and the cathode 4 may be patterned so as to form pixels in a matrix shape, or may be uniformly formed on the entire surface in applications such as illumination.

陰極4についても図に示してないが電極引き出し部を電極リード(駆動用回路あるいはフレキシブルプリント基板)と接続するよう形成する。   The cathode 4 is also formed so as to be connected to the electrode lead (driving circuit or flexible printed board) although not shown in the drawing.

次に、導電性接着剤8として、異方導電性フィルムを用い、樹脂基板1上のITO電極引き出し部2aに仮接着させる。その後、電極リード7(フレキシブルプリント基板)と、その接合部を位置合わせして、両者を接着させる。この接着は異方導電性フィルムの圧着条件で行うことが好ましい。異方性導電性フィルムを用いて例えば圧力0.1〜10MPa、また、80〜180℃程度の温度で数秒から数分間熱圧着することで電気的に接続することが出来る。   Next, an anisotropic conductive film is used as the conductive adhesive 8 and is temporarily bonded to the ITO electrode lead-out portion 2 a on the resin substrate 1. Thereafter, the electrode lead 7 (flexible printed circuit board) and its joint are aligned and bonded together. This adhesion is preferably performed under the pressure bonding conditions of the anisotropic conductive film. Electrical connection can be achieved by thermocompression bonding for several seconds to several minutes at a pressure of 0.1 to 10 MPa and a temperature of about 80 to 180 ° C. using an anisotropic conductive film.

但し、導電性接着剤の接着時の温度は、140℃以下であることが好ましく、この温度以下であるほうが、導電性が良好にたもたれ、駆動電圧の上昇も少ない。この効果の理由については定かではないが、電極リードに用いる部材、樹脂基板、ITO等の透明電極の線膨張係数がそれぞれことなるため、室温から極端に異なる温度で接着すると各部材に応力が発生し、直後の導通不良や、長期保存時の抵抗上昇につながるものと推定している。   However, the temperature at the time of adhesion of the conductive adhesive is preferably 140 ° C. or lower, and when the temperature is lower than this temperature, the conductivity is better and the drive voltage is less increased. The reason for this effect is not clear, but because the linear expansion coefficients of transparent electrodes such as members used for electrode leads, resin substrates, and ITO differ, stress occurs in each member when bonded at a temperature extremely different from room temperature. In addition, it is estimated that this leads to poor conduction immediately afterwards and an increase in resistance during long-term storage.

また、導電性接着剤8を用いた引き出し電極と電極リードとの接着時には、支持基板および封止部材の両側から加熱することから均一に硬化されることから好ましい。   In addition, when the lead electrode and the electrode lead using the conductive adhesive 8 are bonded, it is preferable because they are uniformly cured because they are heated from both sides of the support substrate and the sealing member.

加熱手段としては特に選ばないが、圧力が印加できるものであれば、熱プレート、またオーブン等、また圧着ロールを用いるラミネーター等でも良い。一般的には、ACF圧着機やボンダー等が用いられる。   A heating means is not particularly selected, but a heat plate, an oven, or a laminator using a pressure roll may be used as long as pressure can be applied. Generally, an ACF crimping machine or a bonder is used.

たとえば、市販のACF圧着機を用いて、試料台をも加熱し、圧着硬化させることが好ましい。電極リードと樹脂基板側の両方が同じ温度である必要はないが、前記の温度範囲であればよい。両側から加熱し、導電性接着剤と、例えば基板側との温度差(温度勾配)を少なくすることで、導電性接着剤の硬化が均一となり接合がより強固になり、剥がれ等がより起こりにくくなる。   For example, it is preferable to heat and compress the sample stage using a commercially available ACF crimping machine. It is not necessary for both the electrode lead and the resin substrate side to be at the same temperature, but it may be within the above temperature range. By heating from both sides and reducing the temperature difference (temperature gradient) between the conductive adhesive and, for example, the substrate side, the conductive adhesive is hardened uniformly, bonding becomes stronger, and peeling is less likely to occur. Become.

異方性導電性フィルムとしては、導電性粒子例えば金属核そのもの、例えば、金、ニッケル、また銀、(また樹脂核に例えば金メッキしたもの等)をバインダに分散したものであり、バインダとしては熱可塑性樹脂や、熱硬化性樹脂が使われており、中でも熱硬化性樹脂、特にエポキシ樹脂を用いたものが好ましい。また同様な構成の導電性ペーストを用いても良い。フィラーとしてニッケルファイバー(繊維状)を配向させた異方性導電性フィルム等も使用できる。   As an anisotropic conductive film, conductive particles, for example, metal nuclei themselves, such as gold, nickel, and silver (also, for example, resin nuclei plated with gold, etc.) are dispersed in a binder. Plastic resins and thermosetting resins are used, and among them, thermosetting resins, particularly those using epoxy resins are preferable. A conductive paste having a similar structure may be used. An anisotropic conductive film in which nickel fibers (fibrous) are oriented can be used as a filler.

異方導電性フィルムを樹脂基板と熱圧着すると、導電性粒子によって厚み方向の電気的接続が取られ、同時にバインダ樹脂により機械的接合が取られる。バインダ樹脂としては、エポキシ樹脂、フェノール樹脂等の熱硬化樹脂、ポリアミドイミド等の熱可塑性樹脂等が挙げられるが、樹脂の流動性、接続信頼性、コスト、ポットライフ等の観点からフィルム状のエポキシ樹脂が好適である。導電粒子としては、ニッケル、銅、銀等の金属、アクリル樹脂、スチレン樹脂等のプラスチック粒子の表面にニッケル、金等の金属メッキ膜が被覆された複合粒子等が挙げられる。特に接続信頼性の点で粒子自体が柔軟で復元性のあるプラスチック粒子の表面にニッケル、金等の金属メッキ膜が被覆された複合粒子が好適である。なお、導電粒子径は、通常3〜5μmである。   When the anisotropic conductive film is thermocompression bonded to the resin substrate, electrical connection in the thickness direction is taken by the conductive particles, and at the same time, mechanical bonding is taken by the binder resin. Examples of the binder resin include thermosetting resins such as epoxy resins and phenolic resins, and thermoplastic resins such as polyamideimide. From the viewpoint of resin fluidity, connection reliability, cost, pot life, and the like, film-like epoxy is used. Resins are preferred. Examples of the conductive particles include metal particles such as nickel, copper and silver, and composite particles in which the surface of plastic particles such as acrylic resin and styrene resin is coated with a metal plating film such as nickel and gold. In particular, in terms of connection reliability, composite particles in which the particles themselves are flexible and have a restorable plastic particle are coated with a metal plating film such as nickel or gold. The conductive particle diameter is usually 3 to 5 μm.

また、導電性接着剤としては異方導電性フィルム等のほか、導電性ペースト等の流動性材料、例えば銀ペースト等を用いても良い。電極引き出し部上に導電性ペーストを使用して、印刷等で形成することもできる。   As the conductive adhesive, in addition to an anisotropic conductive film, a fluid material such as a conductive paste, for example, a silver paste or the like may be used. It can also be formed by printing or the like using a conductive paste on the electrode lead portion.

図2、3においては図示していないが、陰極金属層についても同様に形成された引き出し電極とフレキシブルプリント基板等の電極リードとを同様に接続する。   Although not shown in FIGS. 2 and 3, the lead electrode formed in the same manner for the cathode metal layer and the electrode lead such as a flexible printed board are similarly connected.

電極リード7は駆動用回路との接続をはかるもので、導電体で形成される。本発明で用いることの出来る電極リードとしては、抵抗値が低く薄膜に出来る部材であれば特に制限はなく、アルミニウム箔、また圧延銅箔、銀箔、金箔等が利用できる。例えば、絶縁性のポリイミドフィルムに圧延銅箔等をつけた銅張ポリイミドフィルムなどが好ましく利用できる。さらに、銅張ポリイミドフィルムをパターニング、切り抜き加工などをして駆動回路を実装したフレキシブルプリント基板(FPC)などとすることができる。   The electrode lead 7 is connected to the driving circuit and is formed of a conductor. The electrode lead that can be used in the present invention is not particularly limited as long as it has a low resistance value and can be made into a thin film, and aluminum foil, rolled copper foil, silver foil, gold foil, and the like can be used. For example, a copper-clad polyimide film obtained by attaching a rolled copper foil or the like to an insulating polyimide film can be preferably used. Further, a flexible printed circuit board (FPC) on which a drive circuit is mounted by patterning or cutting a copper-clad polyimide film can be used.

また、接着時に、前記導電性接着剤、且つ、前記電極リードの含水率は、100ppm以下であることが好ましい。水の混入をこのレベル以下に抑えることで、接着を強固にすると同時に、低含水率の状態で硬化させることで硬化した膜の水の浸透性を低く抑えることが出来好ましい。   Moreover, it is preferable that the moisture content of the said conductive adhesive and the said electrode lead is 100 ppm or less at the time of adhesion | attachment. By suppressing the mixing of water below this level, the adhesion is strengthened, and at the same time, the water permeability of the cured film can be kept low by curing at a low water content.

含水率は、いかなる方法により測定しても構わないが、例えば容量法水分計(カールフィッシャ−)、赤外水分計、マイクロ波透過型水分計、加熱乾燥重量法、GC/MS、IR、DSC(示差走査熱量計)、TDS(昇温脱離分析)が挙げられる。また、精密水分計AVM−3000型(オムニテック社製)等を用い、水分の蒸発によっておこる圧力上昇から水分を測定でき、フィルムまた固形フィルム等の水分率の測定を行うことが出来る。   The moisture content may be measured by any method. For example, a volumetric moisture meter (Karl Fischer), an infrared moisture meter, a microwave transmission moisture meter, a heat-dry weight method, GC / MS, IR, DSC (Differential scanning calorimeter) and TDS (temperature programmed desorption analysis). Further, using a precision moisture meter AVM-3000 (Omnitech) or the like, moisture can be measured from a pressure increase caused by evaporation of moisture, and moisture content of a film or solid film can be measured.

電極リードと電極引き出し部の接合後、次いで、密着封止(固体封止)を行う。封止部材5(封止基板)としては、例えば、50μm厚のPET(ポリエチレンテレフタレート)にアルミ箔(30μm厚)をラミネートしたものを用いる。これを封止部材5として、アルミニウム面(あるいはこれに対向する樹脂基板1または両方の面)に封止用接着剤6(例えば、熱硬化接着剤(エポキシ系接着剤))を予め配置しておき、樹脂基板1と封止部材5を位置合わせ後、両者を圧着して(0.1〜3MPa)、温度80〜180℃で密着・接合(接着)して、密着封止(固体封止)する。   After joining the electrode lead and the electrode lead-out portion, next, close sealing (solid sealing) is performed. As the sealing member 5 (sealing substrate), for example, a 50 μm thick PET (polyethylene terephthalate) laminated with an aluminum foil (30 μm thick) is used. With this as a sealing member 5, a sealing adhesive 6 (for example, a thermosetting adhesive (epoxy adhesive)) is disposed in advance on the aluminum surface (or the resin substrate 1 or both surfaces facing the aluminum surface). Then, after aligning the resin substrate 1 and the sealing member 5, both are pressure-bonded (0.1 to 3 MPa), and are adhered and bonded (adhered) at a temperature of 80 to 180 ° C. )

この接合(接着)には、紫外線硬化樹脂も用いることできる。紫外線硬化樹脂を用いるときは、光照射が必要なほか、有機エレクトロニクス素子は、紫外線が照射されると損傷するので、紫外線硬化樹脂を使用する場合は紫外線照射を出来るだけ少なくする必要がある。封止用接着剤としては、熱硬化性樹脂を用いることが好ましい。エポキシ系樹脂、アクリル系樹脂、シリコーン樹脂など、各種公知のものを使用することができる。   An ultraviolet curable resin can also be used for this joining (adhesion). When an ultraviolet curable resin is used, light irradiation is required, and the organic electronics element is damaged when irradiated with ultraviolet rays. Therefore, when using an ultraviolet curable resin, it is necessary to reduce the ultraviolet irradiation as much as possible. As the sealing adhesive, a thermosetting resin is preferably used. Various known materials such as epoxy resins, acrylic resins, and silicone resins can be used.

特に、耐湿性、耐水性に優れ、硬化時の収縮が少ないエポキシ系熱硬化型接着性樹脂を用いることが好ましい。   In particular, it is preferable to use an epoxy thermosetting adhesive resin that is excellent in moisture resistance and water resistance and has little shrinkage during curing.

図4(b)に封止用部材5に封止用接着剤6を配置したところを示す。   FIG. 4B shows a state where the sealing adhesive 6 is disposed on the sealing member 5.

熱硬化性樹脂(接着剤)は、例えばディスペンサを使用して封止部材5(アルミ箔をラミネートしたPET)の出来ればアルミニウム面に沿って均一に塗布し、しかる後、封止基板を、電引き出し部と電極リードとの接合部位を覆って、例えば、有機エレクトロニクス素子を形成した樹脂基板上に密着・配置して、圧着(例えば、圧力0.5MPa)し、仮接着する。この際中に空気(空洞)が残らないよう注意して仮接着する。圧着ロールあるいはプレス機を用いても良い。仮接着された有機エレクトロニクスパネルを、例えば、ホットプレート上に載置し加熱し(例えば、温度120℃、30分)熱硬化接着剤を熱硬化させることで、有機EL素子有機エレクトロニクス素子を密着封止(固体封止)して有機エレクトロニクスパネルを作成する。電極引き出し部とこれに接続する電極リードは、硬化した封止用接着剤によって、封止部材と、素子基板との間に固定されるので、十分強固に電極リード部またフレキシブル回路基板を固定できる。   The thermosetting resin (adhesive) is applied evenly along the aluminum surface, if possible, for example, using a dispenser to form the sealing member 5 (PET laminated with aluminum foil). Covering the joint portion between the lead portion and the electrode lead, for example, closely contacting and arranging on the resin substrate on which the organic electronics element is formed, pressure bonding (for example, pressure 0.5 MPa), and temporary bonding. At this time, take care not to leave any air (cavities) in it. A pressure roll or a press may be used. The temporarily bonded organic electronics panel is placed on, for example, a hot plate and heated (for example, at a temperature of 120 ° C. for 30 minutes) to thermally cure the thermosetting adhesive, thereby closely sealing the organic EL element and the organic electronics element. Stop (solid sealing) to create an organic electronics panel. Since the electrode lead portion and the electrode lead connected to the electrode lead portion are fixed between the sealing member and the element substrate by the cured sealing adhesive, the electrode lead portion and the flexible circuit board can be fixed sufficiently firmly. .

接着剤の種類また量、そして面積等によって加熱また圧着時間は変わるが0.1〜3MPaの圧力で仮接着、また80〜180℃の温度で、熱硬化時間は5秒〜10分間の範囲で選べばよい。   The heating or pressure bonding time varies depending on the type, amount, and area of the adhesive, but temporary bonding is performed at a pressure of 0.1 to 3 MPa, and the thermosetting time is within a range of 5 seconds to 10 minutes at a temperature of 80 to 180 ° C. Just choose.

加熱した圧着ロールを用いると圧着(仮接着)と加熱が同時にでき、且つ内部の空隙も同時に排除でき好ましい。   The use of a heated crimping roll is preferred because it allows simultaneous crimping (temporary bonding) and heating, and eliminates internal voids at the same time.

また、接着層の形成方法としては、材料に応じて、ディスペンサを用いたり、ロールコート、スピンコート、スクリーン印刷法、スプレーコートなどのコーティング法、印刷法を用いることができる。   In addition, as a method for forming the adhesive layer, a dispenser, a coating method such as roll coating, spin coating, screen printing, or spray coating, or a printing method can be used depending on the material.

図4(c)に密着封止後の有機エレクトロニクスパネルを断面構成図で模式的に示す。   FIG. 4C schematically shows a cross-sectional configuration diagram of the organic electronics panel after close-sealing.

固体封止は以上のように封止基板と有機EL素子有機エレクトロニクス素子基板との間に空間がなく硬化した樹脂で覆う形態であり、シール材密着構造であり、電極リードも封止樹脂中に固定され密着(固体)封止された部分から電極リードが取り出される構成となる。   Solid sealing is a form in which there is no space between the sealing substrate and the organic EL element organic electronics element substrate as described above, and is covered with a cured resin, and has a sealing material adhesion structure, and the electrode lead is also in the sealing resin. The electrode lead is taken out from the fixed and solid (solid) sealed portion.

固体封止は、電極リードと電極との接続において接着(接合)強度を十分保つことのできる堅固な封止構造であり、かつ、有機エレクトロニクス素子性能を劣化させることなく電極リードを取り出すことができる有機エレクトロニクスパネルの製造方法において好ましい。   Solid sealing is a solid sealing structure that can maintain sufficient adhesion (bonding) strength in the connection between the electrode lead and the electrode, and the electrode lead can be taken out without degrading the performance of the organic electronics element. It is preferable in the manufacturing method of an organic electronics panel.

また、以上封止について述べたが、前記の電極リードの導電性接着剤を用いた電極引き出し部との接合(接続)について、仮接着(例えば、0.1〜2MPaの圧力)したのち、封止部材を接着する際に同時に行っても良く、一度で電極リードと封止部材の接着を行うことができる。   Further, the sealing has been described above, but the bonding (connection) of the electrode lead to the electrode lead portion using the conductive adhesive is temporarily bonded (for example, a pressure of 0.1 to 2 MPa), and then sealed. It may be performed at the same time when the stopper member is adhered, and the electrode lead and the sealing member can be adhered at a time.

次に、本発明で使用される他の構成要素について説明する。   Next, other components used in the present invention will be described.

本発明の実施に当たって、各構成成分の材料は特に限定されない。すなわち、支持基板、封止部材、また有機エレクトロニクス素子において第一電極(陽極)、有機化合物層、第二電極(陰極)、異方導電性フィルム、接着剤等は、各種公知のものを使用できる。   In carrying out the present invention, the material of each component is not particularly limited. That is, in the support substrate, the sealing member, and the organic electronic element, various known materials can be used as the first electrode (anode), the organic compound layer, the second electrode (cathode), the anisotropic conductive film, the adhesive, and the like. .

本発明の有機エレクトロニクスパネルにおいて、支持基板としては、樹脂(プラスチック)基板が、シート状あるいはフィルム状のものが使用できる。特に、発光に対して高い透過性を有するポリエステル、ポリメタクリレート、ポリカーボネート等の透明プラスチック等が好適である。   In the organic electronics panel of the present invention, as the support substrate, a resin (plastic) substrate having a sheet shape or a film shape can be used. In particular, transparent plastics such as polyester, polymethacrylate, and polycarbonate having high transparency to light emission are suitable.

また、これらの樹脂基板に、酸化アルミニウム、酸化ケイ素、窒化ケイ素等のガスバリア層を1nm〜数百nm積層したガスバリアフィルムを用いることが好ましい。ガスバリア層は、樹脂基板の両面若しくは片面にプラズマCVD法、スパッタリング、蒸着等により形成することもできる。樹脂基板乃至フィルムとしては、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3cm/(m・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下のものであることが好ましい。 Moreover, it is preferable to use the gas barrier film which laminated | stacked 1 nm-several hundred nm of gas barrier layers, such as aluminum oxide, a silicon oxide, and silicon nitride, on these resin substrates. The gas barrier layer can also be formed on both surfaces or one surface of the resin substrate by plasma CVD, sputtering, vapor deposition, or the like. As the resin substrate or film, the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less, and it conforms to JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by the method is preferably 1 × 10 −3 g / (m 2 · 24 h) or less. .

また、封止部材としては、ステンレス、アルミニウム、マグネシウム合金等の金属、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ナイロン、ポリ塩化ビニル等のプラスチック、およびこれらの複合物、ガラス等が挙げられ、必要に応じて、特に樹脂フィルムの場合には、樹脂基板と同様、アルミニウム、酸化アルミニウム、酸化ケイ素、窒化ケイ素等のガスバリア層を積層したものを用いることができる。ガスバリア層は、封止部材成形前に封止部材の両面若しくは片面にスパッタリング、蒸着等により形成することもできるし、封止後に封止部材の両面若しくは片面に同様な方法で形成してもよい。これについても、酸素透過度が1×10−3cm/(m・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下のものであることが好ましい。 In addition, examples of the sealing member include metals such as stainless steel, aluminum, and magnesium alloys, polyethylene terephthalate, polycarbonate, polystyrene, nylon, plastics such as polyvinyl chloride, and composites thereof, glass, and the like. In particular, in the case of a resin film, a layer in which a gas barrier layer such as aluminum, aluminum oxide, silicon oxide, or silicon nitride is laminated can be used in the same manner as the resin substrate. The gas barrier layer can be formed by sputtering, vapor deposition or the like on both surfaces or one surface of the sealing member before molding the sealing member, or may be formed on both surfaces or one surface of the sealing member after sealing by a similar method. . Also about this, oxygen permeability is 1 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less, water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 X10 −3 g / (m 2 · 24 h) or less is preferable.

封止部材としては、アルミニウム等の金属箔をラミネートしたフィルム等でも良い。金属箔の片面にポリマーフィルムを積層する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法および共押出しラミネーション法も使用できるがドライラミネート方式が好ましい。   The sealing member may be a film laminated with a metal foil such as aluminum. As a method for laminating the polymer film on one side of the metal foil, a generally used laminating machine can be used. As the adhesive, polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening | curing agent together as needed. A hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.

また、金属箔をスパッタや蒸着等で形成したり、導電性ペースト等の流動性電極材料から形成する場合は、逆にポリマーフィルムを基材としてこれに金属箔を成膜する方法で作成してもよい。   If the metal foil is formed by sputtering or vapor deposition, or is formed from a fluid electrode material such as a conductive paste, it is created by using a polymer film as a base material and forming the metal foil on this. Also good.

次いで、有機EL素子について説明する。   Next, the organic EL element will be described.

《有機EL素子》
有機EL素子は、電極間に単数又は複数の有機化合物層を積層した構造であり、例えば、陽極層/正孔注入・輸送層/発光層/電子注入・輸送層/陰極層等、各種の有機化合物からなる機能層が必要に応じ積層された構成をもつ。最も単純には、陽極層/発光層/陰極層からなる構造を有する。
<< Organic EL element >>
An organic EL element has a structure in which one or a plurality of organic compound layers are laminated between electrodes. For example, various organic compounds such as an anode layer / hole injection / transport layer / light emitting layer / electron injection / transport layer / cathode layer, etc. It has a configuration in which functional layers made of a compound are laminated as necessary. Most simply, it has a structure comprising an anode layer / a light emitting layer / a cathode layer.

正孔注入・輸送層に用いられる有機化合物材料としては、フタロシアニン誘導体、ヘテロ環アゾール類、芳香族三級アミン類、ポリビニルカルバゾール、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT:PSS)などに代表される導電性高分子等の高分子材料が用いられる。   Examples of organic compound materials used for the hole injection / transport layer include phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylene dioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like. A polymer material such as a conductive polymer is used.

また、発光層に用いられる、例えば、4,4′−ジカルバゾリルビフェニル、1,3−ジカルバゾリルベンゼン等のカルバゾール系発光材料、(ジ)アザカルバゾール類、1,3,5−トリピレニルベンゼンなどのピレン系発光材料に代表される低分子発光材料、ポリフェニレンビニレン類、ポリフルオレン類、ポリビニルカルバゾール類などに代表される高分子発光材料などが挙げられる。これらのうちで、発光材料としては分子量10000以下の低分子系発光材料が好ましく用いられる。   Further, for example, carbazole-based light-emitting materials such as 4,4′-dicarbazolylbiphenyl and 1,3-dicarbazolylbenzene used in the light-emitting layer, (di) azacarbazoles, 1,3,5- Examples thereof include low-molecular light-emitting materials typified by pyrene-based light-emitting materials such as tripyrenylbenzene, polymer light-emitting materials typified by polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles, and the like. Of these, a low molecular weight light emitting material having a molecular weight of 10,000 or less is preferably used as the light emitting material.

また発光層中、発光材料には、好ましくは0.1〜20質量%程度のドーパントが含まれてもよく、ドーパントとしては、ペリレン誘導体、ピレン誘導体等公知の蛍光色素、また、りん光色素、例えば、トリス(2−フェニルピリジン)イリジウム、ビス(2−フェニルピリジン)(アセチルアセトナート)イリジウム、ビス(2,4−ジフルオロフェニルピリジン)(ピコリナート)イリジウム、などに代表されるオルトメタル化イリジウム錯体等の錯体化合物がある。   In the light emitting layer, the light emitting material may preferably contain about 0.1 to 20% by mass of a dopant. Examples of the dopant include known fluorescent dyes such as perylene derivatives and pyrene derivatives, phosphorescent dyes, For example, ortho-metalated iridium complexes represented by tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, and the like And complex compounds.

電子注入・輸送層材料としては、8−ヒドロキシキノリナートリチウム、ビス(8−ヒドロキシキノリナート)亜鉛等の金属錯体化合物もしくは以下に挙げられる含窒素五員環誘導体がある。即ち、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5−ビス(1−フェニル)−1,3,4−オキサゾール、2,5−ビス(1−フェニル)−1,3,4−チアゾール、2,5−ビス(1−フェニル)−1,3,4−オキサジアゾール、2−(4′−tert−ブチルフェニル)−5−(4″−ビフェニル)1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、1,4−ビス[2−(5−フェニルオキサジアゾリル)]ベンゼン、1,4−ビス[2−(5−フェニルオキサジアゾリル)−4−tert−ブチルベンゼン]、2−(4′−tert−ブチルフェニル)−5−(4″−ビフェニル)−1,3,4−チアジアゾール、2,5−ビス(1−ナフチル)−1,3,4−チアジアゾール、1,4−ビス[2−(5−フェニルチアジアゾリル)]ベンゼン、2−(4′−tert−ブチルフェニル)−5−(4″−ビフェニル)−1,3,4−トリアゾール、2,5−ビス(1−ナフチル)−1,3,4−トリアゾール、1,4−ビス[2−(5−フェニルトリアゾリル)]ベンゼン等が挙げられる。   Examples of the electron injection / transport layer material include metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinate) zinc, and nitrogen-containing five-membered ring derivatives listed below. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred. Specifically, 2,5-bis (1-phenyl) -1,3,4-oxazole, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1 -Phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) 1,3,4-oxadiazole, 2,5-bis ( 1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyloxadiazolyl) -4-tert-butylbenzene], 2- (4'-tert-butylphenyl) -5- (4 "-biphenyl) -1,3,4-thiadiazole, 2,5-bis (1-naphthyl) -1 , 3,4-thiadiazole, 1,4-bis [2- (5-phenyl) Asiazolyl)] benzene, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-triazole, 2,5-bis (1-naphthyl) -1,3,4 -Triazole, 1,4-bis [2- (5-phenyltriazolyl)] benzene and the like.

これら発光層、また各機能層に用いられる有機化合物材料として、分子中にビニル基等の重合反応性基を有する材料を用い、製膜後に架橋・重合膜を形成させて各機能層を形成してもよい。   As the organic compound material used for these light emitting layers and each functional layer, a material having a polymerization reactive group such as a vinyl group in the molecule is used, and a cross-linked / polymerized film is formed after film formation to form each functional layer. May be.

因みに陽極層に使用される導電性材料としては、4eVより大きな仕事関数をもつものが適しており、銀、金、白金、パラジウム等及びそれらの合金、酸化スズ、酸化インジウム、ITO等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。   Incidentally, as the conductive material used for the anode layer, those having a work function larger than 4 eV are suitable, and metal oxides such as silver, gold, platinum, palladium and their alloys, tin oxide, indium oxide, ITO, etc. Furthermore, organic conductive resins such as polythiophene and polypyrrole are used.

また、陰極層に使用される導電性物質としては、4eVより小さな仕事関数をもつものが適しており、マグネシウム、アルミニウム等。合金としては、マグネシウム/銀、リチウム/アルミニウム等が代表例として挙げられる。   Further, as the conductive material used for the cathode layer, those having a work function smaller than 4 eV are suitable, such as magnesium and aluminum. Typical examples of the alloy include magnesium / silver and lithium / aluminum.

以上の各機能層が前記基板上に形成され、封止部材により封止され有機ELパネルを構成する。   Each functional layer described above is formed on the substrate and sealed with a sealing member to constitute an organic EL panel.

上記各機能層は、真空蒸着法、またスパッタ法等の乾式法により形成されてもよく、また塗布、印刷法等の湿式法で成膜されてもよい。   Each functional layer may be formed by a vacuum method, a dry method such as a sputtering method, or may be formed by a wet method such as coating or printing.

次に、有機光電変換素子について説明するが、以下の形態に限定されるものではない。   Next, although an organic photoelectric conversion element is demonstrated, it is not limited to the following forms.

《有機光電変換素子》
本発明で用いることのできる有機光電変換素子としては特に制限がなく、陽極と陰極と、両者に挟まれた光電変換層が少なくとも1層以上あり、光を照射すると電流を発生する素子であればよい。
<< Organic photoelectric conversion element >>
There is no restriction | limiting in particular as an organic photoelectric conversion element which can be used by this invention, If it is an element which has an anode and a cathode and at least 1 or more photoelectric conversion layer pinched | interposed between both and generates an electric current when irradiated with light Good.

光電変換層の構成としては、有機半導体材料を積層した構成であれば特に限定されないが、例えば、p型半導体材料とn型半導体材料を積層したヘテロジャンクション型や、p型、n型両方の半導体材料を混合し、ミクロ相分離構造を有した所謂バルクヘテロジャンクション型を挙げることができる。内部量子効率向上の観点から、電荷分離効率に優れる構成が好ましく、バルクヘテロジャンクション型の構造が本願においてより好ましい。   The configuration of the photoelectric conversion layer is not particularly limited as long as it is a configuration in which an organic semiconductor material is stacked. For example, a heterojunction type in which a p-type semiconductor material and an n-type semiconductor material are stacked, or both a p-type and an n-type semiconductor are used. A so-called bulk heterojunction type in which materials are mixed and have a microphase separation structure can be given. From the viewpoint of improving internal quantum efficiency, a configuration excellent in charge separation efficiency is preferable, and a bulk heterojunction structure is more preferable in the present application.

また、本発明の有機光電変換素子を太陽電池として用いる場合には、太陽光スペクトルに最適な吸収特性を有する有機半導体材料を用いることが好ましく、効率、意匠性の観点からより黒い外観である有機光電変換素子であることが好ましい。   In addition, when the organic photoelectric conversion element of the present invention is used as a solar cell, it is preferable to use an organic semiconductor material having an absorption characteristic optimal for the sunlight spectrum, and an organic material having a blacker appearance from the viewpoint of efficiency and designability. A photoelectric conversion element is preferable.

《有機光電変換素子の構成》
本発明を適用した有機光電変換素子は、支持体の一方面上に、透明電極、光電変換層及び対電極が順次積層されている。
<< Configuration of organic photoelectric conversion element >>
In the organic photoelectric conversion element to which the present invention is applied, a transparent electrode, a photoelectric conversion layer, and a counter electrode are sequentially laminated on one surface of a support.

また、これに限られず、例えば透明電極や対電極と光電変換層との間に正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、電極バッファー層、或いは平滑化層等の他の層を有して有機光電変換素子が構成されてもよい。また、正孔ブロック能を有する電子輸送層、電子ブロック能を有する正孔輸送層であっでもよい。これらの中でも、バルクヘテロジャンクション型の光電変換層を有する有機光電変換素子においては、光電変換層と陽極(通常、透明電極側)との中間には正孔輸送層及び/または電子ブロック層を、光電変換層と陰極(通常、対電極側)との中間には電子輸送層及び/または正孔ブロック層を形成することで、バルクヘテロジャンクション型の光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。   In addition, the present invention is not limited thereto, and for example, a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, an electrode buffer layer, a smoothing layer, or the like between the transparent electrode or the counter electrode and the photoelectric conversion layer. The organic photoelectric conversion element may be configured with the above layer. Further, it may be an electron transport layer having a hole blocking ability or a hole transport layer having an electron blocking ability. Among these, in an organic photoelectric conversion element having a bulk heterojunction type photoelectric conversion layer, a hole transport layer and / or an electron block layer are provided between the photoelectric conversion layer and the anode (usually the transparent electrode side), By forming an electron transport layer and / or a hole blocking layer between the conversion layer and the cathode (usually the counter electrode side), the charges generated in the bulk heterojunction photoelectric conversion layer can be taken out more efficiently. Therefore, it is preferable to have these layers.

これら正孔輸送層、電子輸送層等の有機材料としては前記有機EL素子において用いられるものと同様のものが用いられる。   As the organic materials such as the hole transport layer and the electron transport layer, the same materials as those used in the organic EL element can be used.

(i)陽極/正孔輸送層/電子ブロック層/光電変換層/正孔ブロック層/電子輸送層/陰極
(ii)陽極/電子ブロック能を有する正孔輸送層/光電変換層/正孔ブロック能を有する電子輸送層/陰極バッファー層/陰極
(iii)陽極/陽極バッファー層/正孔輸送層/電子ブロック層/光電変換層/正孔ブロック層/電子輸送層/陰極
(iv)陽極/陽極バッファー層/正孔輸送層/電子ブロック層/光電変換層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極
上記のように、有機光電変換素子は各層を重ね合わせて基板上に重層され構成される。有機光電変換素子においても、上記各機能層は、真空蒸着法、またスパッタ法等の乾式法、また塗布、印刷法等の湿式法等、種々の公知の方法により成膜することができる。
(I) Anode / hole transport layer / electron block layer / photoelectric conversion layer / hole block layer / electron transport layer / cathode (ii) Anode / hole transport layer having electron blocking ability / photoelectric conversion layer / hole block Electron transport layer / cathode buffer layer / cathode (iii) anode / anode buffer layer / hole transport layer / electron block layer / photoelectric conversion layer / hole block layer / electron transport layer / cathode (iv) anode / anode Buffer layer / Hole transport layer / Electron block layer / Photoelectric conversion layer / Hole block layer / Electron transport layer / Cathode buffer layer / cathode As described above, the organic photoelectric conversion elements are stacked on the substrate by overlapping each layer. Composed. Also in the organic photoelectric conversion element, each functional layer can be formed by various known methods such as a vacuum deposition method, a dry method such as a sputtering method, and a wet method such as a coating method and a printing method.

以上の有機光電変換素子についても各機能層が前記基板上に形成され、封止部材により封止され有機エレクトロニクスパネルを構成する。   Also in the organic photoelectric conversion element described above, each functional layer is formed on the substrate and sealed with a sealing member to constitute an organic electronics panel.

以下実施例により本発明を説明するが本発明はこれにより限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

実施例1
《有機ELパネル101(本発明)の作製》
〈ガスバリア性の可撓性フィルムの作製〉
可撓性フィルムとして、厚み100μmのポリエチレンナフタレートフィルム(帝人・デュポン社製フィルム、以下、PENと略記する)の全面に、特開2004−68143号に記載の構成からなる大気圧プラズマ放電処理装置を用いて、SiOxからなる無機物のガスバリア膜(厚み500nm)を形成し、酸素透過度0.001cm/(m・24h・atm)以下、水蒸気透過度0.001g/(m・24h)以下のガスバリア性の可撓性フィルムを作製した。
Example 1
<< Production of Organic EL Panel 101 (Invention) >>
<Production of gas barrier flexible film>
As a flexible film, an atmospheric pressure plasma discharge treatment apparatus having a structure described in Japanese Patent Application Laid-Open No. 2004-68143 is formed on the entire surface of a polyethylene naphthalate film having a thickness of 100 μm (a film made by Teijin DuPont, hereinafter abbreviated as PEN). Is used to form an inorganic gas barrier film (thickness 500 nm) made of SiOx, oxygen permeability is 0.001 cm 3 / (m 2 · 24 h · atm) or less, water vapor permeability is 0.001 g / (m 2 · 24 h) The following gas barrier flexible films were prepared.

〈第1電極層の形成〉
準備したガスバリア性の可撓性フィルム上に厚さ120nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは発光面積が50mm平方、取り出し電極部も含むパターンとした。
<Formation of first electrode layer>
A 120 nm thick ITO (indium tin oxide) film was formed on the prepared gas barrier flexible film by sputtering and patterned by photolithography to form a first electrode layer. The pattern was a pattern having a light emitting area of 50 mm square and including an extraction electrode portion.

〈正孔輸送層の形成〉
準備した第1電極層が形成されたガスバリア性の可撓性フィルムの第1電極層の上に、以下に示す正孔輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚みが50nmになるように塗布した。
<Formation of hole transport layer>
On the first electrode layer of the gas barrier flexible film on which the prepared first electrode layer is formed, the following hole transport layer forming coating solution is applied by an extrusion coater, and then dried to form holes. A transport layer was formed. The coating liquid for forming the hole transport layer was applied so that the thickness after drying was 50 nm.

正孔輸送層形成用塗布液を塗布する前に、ガスバリア性の可撓性フィルムの洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。 Before applying the hole transport layer forming coating solution, the cleaning surface modification treatment of the gas barrier flexible film is performed using a low pressure mercury lamp with a wavelength of 184.9 nm, irradiation intensity of 15 mW / cm 2 , distance of 10 mm. It carried out in. The charge removal treatment was performed using a static eliminator with weak X-rays.

(塗布条件)
塗布工程は大気中、25℃相対湿度50%の環境で行った。
(Application conditions)
The coating process was performed in the atmosphere at 25 ° C. and a relative humidity of 50%.

(正孔輸送層形成用塗布液の準備)
導電性高分子であるPEDOT/PSS(poly(3,4−ethylenedioxythiophene)−poly(styrenesulfonate))(Baytron P4083、H.C.Starck製)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
(Preparation of coating solution for hole transport layer formation)
A solution obtained by diluting a conductive polymer PEDOT / PSS (poly (3,4-ethylenedithiothione) -poly (styrenesulphonate)) (Baytron P4083, manufactured by HC Starck) with pure water at 65% and methanol at 5%. It was prepared as a coating liquid for forming a hole transport layer.

(乾燥及び加熱処理条件)
正孔輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
(Drying and heat treatment conditions)
After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film forming surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment. The back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.

〈発光層の形成〉
引き続き、正孔輸送層迄を形成したガスバリア性の可撓性フィルムの正孔輸送層の上に、以下に示す白色発光層形成用塗布液を押出し塗布機で塗布した後、乾燥し発光層を形成した。白色発光層形成用塗布液は乾燥後の厚みが40nmになるように塗布した。
<Formation of light emitting layer>
Subsequently, on the hole transport layer of the gas barrier flexible film formed up to the hole transport layer, the following white light emitting layer forming coating solution was applied by an extrusion coater, and then dried to form the light emitting layer. Formed. The white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.

(白色発光層形成用塗布液の準備)
ホスト材のH−Aを1.0gと、ドーパント材D−Aを100mg、ドーパント材D−Bを0.2mg、ドーパント材D−Cを0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
(Preparation of white light emitting layer forming coating solution)
The host material HA is 1.0 g, the dopant material DA is 100 mg, the dopant material DB is 0.2 mg, the dopant material DC is 0.2 mg, and dissolved in 100 g of toluene to form a white light emitting layer. It was prepared as a coating solution.

Figure 2015097208
Figure 2015097208

(塗布条件)
塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
(Application conditions)
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min.

(乾燥及び加熱処理条件)
白色発光層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
(Drying and heat treatment conditions)
After applying the white light emitting layer forming coating solution, the solvent was removed at a height of 100 mm toward the film forming surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., followed by a temperature of 130 ° C. A heat treatment was performed to form a light emitting layer.

〈電子輸送層の形成〉
引き続き、発光層迄を形成したのち、以下に示す電子輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し電子輸送層を形成した。電子輸送層形成用塗布液は乾燥後の厚みが30nmになるように塗布した。
<Formation of electron transport layer>
Subsequently, after forming the light emitting layer, the following coating liquid for forming an electron transport layer was applied by an extrusion coater and then dried to form an electron transport layer. The coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.

(塗布条件)
塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
(Application conditions)
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.

(電子輸送層形成用塗布液)
電子輸送層はE−Aを2,2,3,3−テトラフルオロ−1−プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
(Coating liquid for electron transport layer formation)
The electron transport layer was prepared by dissolving EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.

Figure 2015097208
Figure 2015097208

(乾燥及び加熱処理条件)
電子輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で温度200℃で加熱処理を行い、電子輸送層を形成した。
(Drying and heat treatment conditions)
After applying the coating solution for forming the electron transport layer, the solvent is removed at a height of 100 mm toward the film forming surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 60 ° C. Then, heat treatment was performed at a temperature of 200 ° C. to form an electron transport layer.

(電子注入層の形成)
引き続き、形成された電子輸送層の上に電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10−4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
(Formation of electron injection layer)
Subsequently, an electron injection layer was formed on the formed electron transport layer. First, the substrate was put into a decompression chamber and decompressed to 5 × 10 −4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.

(第2電極の形成)
引き続き、形成された電子注入層の上に第1電極の上に取り出し電極になる部分を除き、形成された電子注入層の上に5×10−4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
(Formation of second electrode)
Subsequently, as a second electrode forming material under a vacuum of 5 × 10 −4 Pa on the formed electron injection layer, except for the portion that becomes the extraction electrode on the first electrode on the formed electron injection layer. Using aluminum, a mask pattern was formed by vapor deposition so as to have an extraction electrode so that the emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.

(裁断)
第2電極まで形成したガスバリア性の可撓性フィルムを、再び窒素雰囲気に移動した。
(Cutting)
The gas barrier flexible film formed up to the second electrode was moved again to the nitrogen atmosphere.

ガスバリア性の可撓性フィルムを規定の大きさに裁断し、有機EL素子を作製した。   The gas barrier flexible film was cut into a prescribed size to produce an organic EL device.

(電極リード接続)
作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
(Electrode lead connection)
An anisotropic conductive film DP3232S9 manufactured by Sony Chemical & Information Device Co., Ltd. was used for the produced organic EL element, and a flexible printed circuit board (base film: polyimide 12.5 μm, rolled copper foil 18 μm, coverlay: polyimide 12.5 μm, surface Treated NiAu plating).

圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒基板電極引き出し部に上記異方性導電フィルム及び(フレキシブルプリント基板)の電極リードを図5(a)のような形態になるように重ね電極リード側からこの条件で加温、加圧して接着した。   Crimping conditions: temperature 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), pressure 2 MPa, 10 seconds The electrode lead of the anisotropic conductive film and (flexible printed circuit board) on the substrate electrode lead-out part It was heated and pressurized under these conditions from the stacked electrode lead side so as to be in the form as shown in (a).

(封止)
電極リード(フレキシブルプリント基板)を接続した有機EL素子を、市販のロールラミネート装置を用いて封止部材を接着し、有機ELパネル101を製作した。
(Sealing)
A sealing member was bonded to the organic EL element to which the electrode lead (flexible printed circuit board) was connected using a commercially available roll laminating apparatus, and the organic EL panel 101 was manufactured.

なお、封止部材として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)ものを用いた。   In addition, as a sealing member, a 30 μm thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), a polyethylene terephthalate (PET) film (12 μm thick) with an adhesive for dry lamination (two-component reaction type urethane adhesive). The laminate used (adhesive layer thickness 1.5 μm) was used.

アルミニウム面に熱硬化性接着剤を、ディスペンサを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布した。   A thermosetting adhesive was uniformly applied to the aluminum surface with a thickness of 20 μm along the adhesive surface (shiny surface) of the aluminum foil using a dispenser.

熱硬化接着剤としては以下のエポキシ系接着剤を用いた。   The following epoxy adhesives were used as the thermosetting adhesive.

ビスフェノールAジグリシジルエーテル(DGEBA)
ジシアンジアミド(DICY)
エポキシアダクト系硬化促進剤
しかる後、図5(a)のような形態になるよう、封止基板を、取り出し電極がおよび電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて厚着条件、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した(図5(a))。
Bisphenol A diglycidyl ether (DGEBA)
Dicyandiamide (DICY)
Epoxy adduct-based curing accelerator After that, the sealing substrate is closely attached and arranged so that the take-out electrode and the electrode lead joint are covered, so that the form as shown in FIG. It was used to seal tightly, with a thick deposition condition, a pressure roll temperature of 120 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / min (FIG. 5A).

〈有機ELパネル102(本発明)の作製〉
101の作製と同様に有機EL素子を作製し、電極リードを接続させた。但し、図5(b)の形態になるように封止を行い、有機ELパネル102を作製した。基板また封止部材のサイズを小さくして電極リードと電極引き出し部との接続部が丁度覆われるサイズとした。
<Production of Organic EL Panel 102 (Invention)>
An organic EL element was produced in the same manner as in the production of 101, and electrode leads were connected. However, the organic EL panel 102 was manufactured by sealing so as to be in the form of FIG. The size of the substrate or the sealing member was made small so that the connection portion between the electrode lead and the electrode lead-out portion was just covered.

〈有機ELパネル103(比較例)の作製〉
101の作製と同じように有機EL素子を作製し、電極リードを接続した。但し、図6のような形状をした、ガラス板(1mm厚)にサンドブラスト処理によって、中央部に0.5mmのくぼみを設けた封止部材(ガラス)を用いて、図5(c)の様に封止部材5と電極引き出し部2aとの間に電極リードを挟むように貼り付け封止を行った。接着剤は前記と同じ熱接着剤を用い同条件で圧着硬化させた。
<Production of Organic EL Panel 103 (Comparative Example)>
An organic EL element was produced in the same manner as in the production of 101, and electrode leads were connected. However, as shown in FIG. 5C, a sealing member (glass) provided with a 0.5 mm depression in the center by sandblasting a glass plate (1 mm thick) shaped as shown in FIG. Then, the electrode lead was sandwiched between the sealing member 5 and the electrode lead portion 2a for sealing. The adhesive was cured by pressure bonding under the same conditions using the same thermal adhesive as described above.

《有機ELパネルの評価》
以上で作成したこれらのパネルを、60℃90%RHに300時間保管し保管前の状態と比較を行った。
<< Evaluation of organic EL panel >>
These panels prepared above were stored at 60 ° C. and 90% RH for 300 hours and compared with the state before storage.

(黒点の評価方法)
試料に1mA/cmの電流を印加し発光させ、100倍のマイクロスコープ(株式会社モリテックス製MS−804、レンズMP−ZE25−200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方に切り抜き、目視で観察を行い、黒点の状況を調べた。
(Spot evaluation method)
A current of 1 mA / cm 2 was applied to the sample to emit light, and a part of the panel was magnified with a 100 × microscope (Mortex Co., Ltd. MS-804, lens MP-ZE25-200), and photographing was performed. The photographed image was cut out in a 2 mm square and visually observed to examine the situation of black spots.

A: 0時間から300時間まで、劣化が認められない
B: 0時間から300時間まで、わずかに劣化が認められる
C: 0時間から300時間まで、劣化が認められるが実技上問題ないレベル
D: 0時間から300時間まで、大きく劣化が認められ実技上問題のあるレベル
(剥離テスト)
市販のプッシュプルゲージを用いて、電極リードの剥離試験を行った。有機ELパネルを固定し、図8に示す様に、電極リードを90度の角度まで剥離にて引き剥がし、プッシュプルゲージ10にてその際の静止剥離強度を測定した。0時間と300時間の比較を行った。60℃90%RHに300時間保管した後の剥離強度と保管前の剥離強度の比を%で表した。
A: No degradation is observed from 0 to 300 hours B: Slight degradation is observed from 0 to 300 hours C: Degradation is observed from 0 to 300 hours, but there is no practical problem D: From 0 hours to 300 hours, a level with significant deterioration and practical problems (peeling test)
An electrode lead peel test was performed using a commercially available push-pull gauge. The organic EL panel was fixed, and as shown in FIG. 8, the electrode lead was peeled off to an angle of 90 degrees, and the static peel strength at that time was measured with a push-pull gauge 10. A comparison was made between 0 hour and 300 hours. The ratio between the peel strength after storage at 60 ° C. and 90% RH for 300 hours and the peel strength before storage in%.

(駆動電圧(0時間))
作成直後に、株式会社エーディーシー製直流電圧・電流源/モニタR6243にて、3mA/cmの電流を流してそれぞれ電圧を測定した。有機ELパネル101の電圧を100%として、相対値を表に示す。
(Drive voltage (0 hour))
Immediately after the creation, a current of 3 mA / cm 2 was passed through DC voltage / current source / monitor R6243 manufactured by ADC Co., Ltd., and the voltage was measured. The relative values are shown in the table, assuming that the voltage of the organic EL panel 101 is 100%.

(駆動電圧経時変化)
株式会社エーディーシー製直流電圧・電流源/モニタR6243にて、3mA/cmの電流を流してその際の電圧を測定した。0時間の値と300時間の値を測定した。
(Driving voltage change with time)
A DC current and a current source / monitor R6243 manufactured by ADC Co., Ltd. were used to flow a current of 3 mA / cm 2 and the voltage at that time was measured. The 0 hour value and the 300 hour value were measured.

Figure 2015097208
Figure 2015097208

実施例2
有機ELパネル101と同様に有機ELパネル201〜208を作成した。ただし、実施例1において導電性接着剤の接着・硬化温度、また接着剤を表2のように変更して作成を行った。
Example 2
Organic EL panels 201 to 208 were prepared in the same manner as the organic EL panel 101. However, in Example 1, the adhesive / curing temperature of the conductive adhesive and the adhesive were changed as shown in Table 2 to prepare.

ACFとしては、実施例1と同じソニーケミカル&インフォメーションデバイス株式会社DP3232S9を用いた。また、圧着条件は実施例1と同様にして、圧着温度のみ表2に記載の温度に従って行った。なお、パネル207、208については基板側からも加熱した。   As the ACF, the same Sony Chemical & Information Device Corporation DP3232S9 as in Example 1 was used. The pressure bonding conditions were the same as in Example 1, and only the pressure bonding temperature was performed according to the temperature described in Table 2. Panels 207 and 208 were also heated from the substrate side.

また接着剤として銀ペーストを用いたものは、藤倉化成株式会社製ドータイトFEA−685を銀ペーストとして用い、銀ペースト(接着剤)をITOにディスペンサを用いて塗布したのち、電極リードを0.05MPaの圧力で圧着し、オーブンで15分間、表2に記載の温度で加熱し接着した。   Also, the one using a silver paste as an adhesive uses Dotite FEA-685 manufactured by Fujikura Kasei Co., Ltd. as a silver paste, and after applying the silver paste (adhesive) to ITO using a dispenser, the electrode lead is 0.05 MPa. And then bonded by heating in an oven for 15 minutes at the temperature shown in Table 2.

各パネルの導電性接着剤による電極リードの接着条件を以下に示す。   The adhesion conditions of the electrode lead by the conductive adhesive of each panel are shown below.

Figure 2015097208
Figure 2015097208

製作した有機ELパネル201〜208について、60℃90%RHに、300時間保管しその前後の特性の変化を実施例と同様に調べた。剥離テスト駆動電圧経時変化はいずれも0時間即ち作成直後を100とした相対値で示した。   The manufactured organic EL panels 201 to 208 were stored at 60 ° C. and 90% RH for 300 hours, and the change in characteristics before and after that was examined in the same manner as in the example. All changes in the peel test drive voltage with time were shown as relative values with the time being 0 hours, i.e., 100 immediately after production.

Figure 2015097208
Figure 2015097208

中でも導電性接着剤の加熱温度が140℃以下のもの、また基板側からも加熱したもの(即ち、接合部の両側から加熱したもの)がよい。   Among them, the conductive adhesive having a heating temperature of 140 ° C. or lower, or the one heated from the substrate side (that is, the one heated from both sides of the joint) is preferable.

実施例3
次に、有機ELパネル207と同様に有機ELパネル301〜307を作成した。ただし、導電性接着剤を真空乾燥(真空乾燥の時間を変化)、電極リードを窒素雰囲気下で加熱乾燥(時間変化)し、表の条件に調整したのち行った。
Example 3
Next, organic EL panels 301 to 307 were prepared in the same manner as the organic EL panel 207. However, the conductive adhesive was vacuum-dried (changes the vacuum drying time), and the electrode lead was heated and dried (changed in time) in a nitrogen atmosphere, and adjusted to the conditions shown in the table.

前記実施例1と同様の圧着条件(治具温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒)で電極リード(フレキシブルプリント基板)を接続し接続した。封止は、実施例1と同様に、市販のロールラミネート装置を用いて同様の条件で封止部材を接着した。表4に導電性接着剤の含水率および電極リードの含水率を示す。電極リードについては、実質的にはフレキシブルプリント基板のベースフィルムであるポリイミドフィルムの含水率である。   The electrode lead (flexible printed circuit board) was connected and connected under the same crimping conditions as in Example 1 (jig temperature 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), pressure 2 MPa, 10 seconds). . For sealing, as in Example 1, a sealing member was bonded under the same conditions using a commercially available roll laminator. Table 4 shows the moisture content of the conductive adhesive and the moisture content of the electrode lead. About an electrode lead, it is the moisture content of the polyimide film which is a base film of a flexible printed circuit board substantially.

含水率の測定は、それぞれ導電性接着剤、また電極リードについて、ガスクロマトグラフ質量分析装置(アジレント・テクノロジー株式会社製 6890GC/5973MSD)を用いて水分量の測定を行った。   The water content was measured for each of the conductive adhesive and the electrode lead using a gas chromatograph mass spectrometer (6890GC / 5973MSD manufactured by Agilent Technologies).

以下にそれぞれの含水率を示した。   Each moisture content is shown below.

Figure 2015097208
Figure 2015097208

製作した有機ELパネル301〜307を60℃、90%RHに、500時間保管しその前後の特性の変化を調べた。黒点の状況、剥離テストおよび駆動電圧経時変化について実施例1と同様に但し500時間保管したのち評価した。結果を表5に示す。   The manufactured organic EL panels 301 to 307 were stored at 60 ° C. and 90% RH for 500 hours, and the change in characteristics before and after that was examined. The situation of black spots, peel test and drive voltage aging were evaluated in the same manner as in Example 1 except that the samples were stored for 500 hours. The results are shown in Table 5.

Figure 2015097208
Figure 2015097208

導電性接着剤、また電極リードについて、含水率が100ppm以下のものがなかでも良いことが分かる。   It can be seen that the conductive adhesive and electrode lead may have a water content of 100 ppm or less.

実施例4
《有機光電変換パネルSP−401(本発明)の作成》
〈ガスバリア性の可撓性フィルムの作製〉
可撓性フィルムとして、厚み100μmのポリエチレンナフタレートフィルム(帝人・デュポン社製フィルム、以下、PENと略記する)の全面に、特開2004−68143号に記載の構成からなる大気圧プラズマ放電処理装置を用いて、連続して可撓性フィルム上に、SiOxからなる無機物のガスバリア膜(厚み500nm)を形成し、酸素透過度0.001cm/(m・24h・atm)以下、水蒸気透過度0.001g/(m・24h)以下のガスバリア性の可撓性フィルムを作製した。
Example 4
<< Creation of Organic Photoelectric Conversion Panel SP-401 (Invention) >>
<Production of gas barrier flexible film>
As a flexible film, an atmospheric pressure plasma discharge treatment apparatus having a structure described in Japanese Patent Application Laid-Open No. 2004-68143 is formed on the entire surface of a polyethylene naphthalate film having a thickness of 100 μm (a film made by Teijin DuPont, hereinafter abbreviated as PEN). Is used to continuously form an inorganic gas barrier film (thickness 500 nm) made of SiOx on a flexible film, with an oxygen permeability of 0.001 cm 3 / (m 2 · 24 h · atm) or less, and a water vapor permeability. A gas barrier flexible film of 0.001 g / (m 2 · 24 h) or less was produced.

〈第1電極層の形成〉
準備したガスバリア性の可撓性フィルム上に厚さ120nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
<Formation of first electrode layer>
A 120 nm thick ITO (indium tin oxide) film was formed on the prepared gas barrier flexible film by sputtering and patterned by photolithography to form a first electrode layer. The pattern was such that the light emission area was 50 mm square.

〈正孔輸送層の形成〉
正孔輸送層形成用塗布液を塗布する前に、ガスバリア性の可撓性フィルムの洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。
<Formation of hole transport layer>
Before applying the hole transport layer forming coating solution, the cleaning surface modification treatment of the gas barrier flexible film is performed using a low pressure mercury lamp with a wavelength of 184.9 nm, irradiation intensity of 15 mW / cm 2 , distance of 10 mm. It carried out in. The charge removal treatment was performed using a static eliminator with weak X-rays.

次に、準備した第1電極層が形成されたガスバリア性の可撓性フィルムの第1電極層の上に、導電性高分子であるPEDOT/PSS(poly(3,4−ethylenedioxythiophene)−poly(styrenesulfonate))(Baytron P4083、H.C.Starck製)を30nmの乾燥膜厚となるように塗布した後、130℃で加熱乾燥した。なお、塗布工程は大気中、25℃相対湿度50%の環境で行った。   Next, PEDOT / PSS (poly (3,4-ethylenedioxythiophene) -poly (polyethylene) is a conductive polymer on the first electrode layer of the gas barrier flexible film on which the prepared first electrode layer is formed. (Styrenesulfate)) (Baytron P4083, manufactured by HC Starck) was applied to a dry film thickness of 30 nm, and then dried by heating at 130 ° C. The coating process was performed in the atmosphere at 25 ° C. and a relative humidity of 50%.

〈光電変換層の形成〉
これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を140℃で3分間加熱処理した。
<Formation of photoelectric conversion layer>
After this, the substrate was brought into the glove box and worked under a nitrogen atmosphere. First, the substrate was heat-treated at 140 ° C. for 3 minutes in a nitrogen atmosphere.

次に、光電変換層用塗布液として、P3HT(プレクストロニクス製:レジオレギュラーポリ−3−ヘキシルチオフェン)(Mw=52000、高分子p型半導体材料)とPCBM(Mw=911、低分子n型半導体材料)(フロンティアカーボン:6,6−フェニル−C61−ブチリックアシッドメチルエステル)を3.0質量%になるように1:1で混合した液を調製し、フィルターでろ過しながら膜厚150nmになるように塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、光電変換層を形成した。   Next, P3HT (manufactured by Plextronics: regioregular poly-3-hexylthiophene) (Mw = 52000, high-molecular p-type semiconductor material) and PCBM (Mw = 911, low-molecular n-type semiconductor) are used as the coating liquid for the photoelectric conversion layer. Material) (Frontier carbon: 6,6-phenyl-C61-butyric acid methyl ester) was mixed at a ratio of 1: 1 so as to be 3.0% by mass, and the film thickness was 150 nm while being filtered with a filter. After the coating was performed, the solvent was removed at a height of 100 mm toward the film forming surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., followed by heat treatment at a temperature of 130 ° C. A photoelectric conversion layer was formed.

〈電子輸送層の形成〉
E−Bを10mg量りとり、TFPO(2,2,3,3−テトラフルオロ−1−プロパノール):ブタノール=1:1の混合溶媒0.5mlに溶解させた液を調製し、膜厚20nmになるように塗布を行い、乾燥して電子輸送層を成膜した。
<Formation of electron transport layer>
Weigh 10 mg of E-B and prepare a solution dissolved in 0.5 ml of a mixed solvent of TFPO (2,2,3,3-tetrafluoro-1-propanol): butanol = 1: 1 to a film thickness of 20 nm. Application was performed as described above, and drying was performed to form an electron transport layer.

Figure 2015097208
Figure 2015097208

(塗布条件)
塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
(Application conditions)
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.

(乾燥及び加熱処理条件)
電子輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部において温度180℃で加熱処理を行い、電子輸送層を形成した。
(Drying and heat treatment conditions)
After applying the coating solution for forming the electron transport layer, the solvent is removed at a height of 100 mm toward the film forming surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 60 ° C. Then, heat treatment was performed at a temperature of 180 ° C. to form an electron transport layer.

(第2電極の形成)
引き続き、形成された電子注入層の上に第1電極の上に取り出し電極になる部分を除き、形成された電子注入層の上に5×10−4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
(Formation of second electrode)
Subsequently, as a second electrode forming material under a vacuum of 5 × 10 −4 Pa on the formed electron injection layer, except for the portion that becomes the extraction electrode on the first electrode on the formed electron injection layer. Using aluminum, a mask pattern was formed by vapor deposition so as to have an extraction electrode so that the emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.

(裁断)
第2電極まで形成したガスバリア性の可撓性フィルムを、再び窒素雰囲気に移動した。
(Cutting)
The gas barrier flexible film formed up to the second electrode was moved again to the nitrogen atmosphere.

ガスバリア性の可撓性フィルムを規定の大きさに裁断し、有機光電変換素子を作製した。   The gas barrier flexible film was cut into a prescribed size to produce an organic photoelectric conversion element.

(電極リード接続)
作製した有機光電変換素子に、ソニーケミカル&インフォメーションデバイス株式会社製異方性導電フィルムDP3232S9を用いて、電極リード(圧延銅箔18μm付きポリイミドフィルム(12.5μm))を接続した。
(Electrode lead connection)
An electrode lead (polyimide film (12.5 μm) with rolled copper foil (12.5 μm)) was connected to the produced organic photoelectric conversion element using an anisotropic conductive film DP3232S9 manufactured by Sony Chemical & Information Device Co., Ltd.

圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒、電極リード側からこの条件で加温、加圧して接着した。なお、このとき図5(a)のような形態になるように圧着を行った。   Crimping conditions: temperature 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), pressure 2 MPa, 10 seconds, heated and pressurized under these conditions from the electrode lead side and bonded. At this time, the pressure bonding was performed so as to have a form as shown in FIG.

(封止)
電極リードを接続した有機EL素子を、市販のロールラミネート装置を用いて封止部材を接着し、有機光電変換パネルSP−401を製作した。
(Sealing)
A sealing member was bonded to the organic EL element to which the electrode lead was connected using a commercially available roll laminating apparatus to produce an organic photoelectric conversion panel SP-401.

なお、封止部材として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)ものを用いた。   In addition, as a sealing member, a 30 μm thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), a polyethylene terephthalate (PET) film (12 μm thick) with an adhesive for dry lamination (two-component reaction type urethane adhesive). The laminate used (adhesive layer thickness 1.5 μm) was used.

アルミニウム面に熱硬化性接着剤を、ディスペンサを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布した。   A thermosetting adhesive was uniformly applied to the aluminum surface with a thickness of 20 μm along the adhesive surface (shiny surface) of the aluminum foil using a dispenser.

熱硬化接着剤としては以下のエポキシ系接着剤を用いた。   The following epoxy adhesives were used as the thermosetting adhesive.

ビスフェノールAジグリシジルエーテル(DGEBA)
ジシアンジアミド(DICY)
エポキシアダクト系硬化促進剤
しかる後、図5(a)のような形態になるよう、封止基板を、取り出し電極がおよび電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて厚着条件、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した(図5(a))。
Bisphenol A diglycidyl ether (DGEBA)
Dicyandiamide (DICY)
Epoxy adduct-based curing accelerator After that, the sealing substrate is closely attached and arranged so that the take-out electrode and the electrode lead joint are covered, so that the form as shown in FIG. It was used to seal tightly, with a thick deposition condition, a pressure roll temperature of 120 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / min (FIG. 5A).

《有機光電変換パネルSP−402(本発明)の作成》
SP−401の作製と同様に有機光電変換素子を作製し、電極リードを接続させた。但し、図5(b)の形態になるように封止を行い、有機光電変換パネルSP−402を作製した。基板また封止部材のサイズを小さくして電極リードと電極引き出し部との接続部が丁度覆われるサイズとした。
<< Creation of Organic Photoelectric Conversion Panel SP-402 (Invention) >>
The organic photoelectric conversion element was produced similarly to preparation of SP-401, and the electrode lead was connected. However, it sealed so that it might become a form of FIG.5 (b), and produced organic photoelectric conversion panel SP-402. The size of the substrate or the sealing member was made small so that the connection portion between the electrode lead and the electrode lead-out portion was just covered.

《有機光電変換パネルSP−403(比較例)の作成》
SP−401の作製と同じように有機光電変換素子を作製し、電極リードを接続した。但し、図6のような形状をした、ガラス板(1mm厚)にサンドブラスト処理によって、中央部に0.5mmのくぼみを設けた封止部材(ガラス)を用いて、図5(c)の様に封止部材5と電極引き出し部2aとの間に電極リードを挟むように貼り付け封止を行った。接着剤は前記と同じ熱接着剤を用い同条件で圧着硬化させた。
<< Creation of Organic Photoelectric Conversion Panel SP-403 (Comparative Example) >>
An organic photoelectric conversion element was prepared in the same manner as SP-401, and electrode leads were connected. However, as shown in FIG. 5C, a sealing member (glass) provided with a 0.5 mm depression in the center by sandblasting a glass plate (1 mm thick) shaped as shown in FIG. Then, the electrode lead was sandwiched between the sealing member 5 and the electrode lead portion 2a for sealing. The adhesive was cured by pressure bonding under the same conditions using the same thermal adhesive as described above.

《有機光電変換パネルの評価》
以上で作成したこれらのパネルを、60℃90%RHに300時間保管し保管前の状態と比較を行った。
<< Evaluation of organic photoelectric conversion panel >>
These panels prepared above were stored at 60 ° C. and 90% RH for 300 hours and compared with the state before storage.

(光電変換効率の保持率)
作製した有機光電変換パネルについて、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、IV特性を測定し、下記式1に従って受光部それぞれについて保持率(%)を算出した。
(Retention rate of photoelectric conversion efficiency)
About the produced organic photoelectric conversion panel, the light of 100 mW / cm 2 intensity of a solar simulator (AM1.5G filter) is irradiated, the IV characteristic is measured, and the retention rate (%) is calculated for each light receiving part according to the following formula 1. did.

(式1)
保持率(%)=60℃90%RH経時保存後の短絡電流密度/経時保存前の短絡電流密度×100
(剥離テスト)
市販のプッシュプルゲージを用いて、電極リードの剥離試験を行った。有機光電変換パネルを固定し、図8に示す様に、電極リードを90度の角度まで剥離にて引き剥がし、プッシュプルゲージ10にて電極リードを90度の角度まで剥離にて引き剥がし、その際の静止剥離強度を測定した。0時間(経時保存前)と300時間の比較を行った。60℃90%RHに300時間保管した後の剥離強度と保管前の剥離強度の比を%で表した。
(Formula 1)
Retention rate (%) = 60 ° C. and 90% RH short-circuit current density after storage over time / short-circuit current density before storage over time × 100
(Peel test)
An electrode lead peel test was performed using a commercially available push-pull gauge. The organic photoelectric conversion panel is fixed, and as shown in FIG. 8, the electrode lead is peeled off to an angle of 90 degrees, and the electrode lead is peeled off to an angle of 90 degrees with the push-pull gauge 10, The static peel strength was measured. Comparison was made between 0 hour (before storage with time) and 300 hours. The ratio between the peel strength after storage at 60 ° C. and 90% RH for 300 hours and the peel strength before storage in%.

Figure 2015097208
Figure 2015097208

製作した有機光電変換パネルSP−401〜SP−403について、60℃90%RHに、300時間保管しその前後の特性の変化を調べた。本発明の方法によるものが、保持率また剥離テストの結果いずれも良好であり、有機光電変換パネルにおいても有機ELパネル同様に良好な封止性能を示す。   The produced organic photoelectric conversion panels SP-401 to SP-403 were stored at 60 ° C. and 90% RH for 300 hours, and changes in characteristics before and after the storage were examined. According to the method of the present invention, both the retention rate and the peel test result are good, and the organic photoelectric conversion panel shows a good sealing performance like the organic EL panel.

1 樹脂基板
1′ 支持基板
2 陽極
3 有機化合物層
4 陰極
5 封止部材
6 封止用接着剤
7 電極リード
8 導電性接着剤
DESCRIPTION OF SYMBOLS 1 Resin substrate 1 'Support substrate 2 Anode 3 Organic compound layer 4 Cathode 5 Sealing member 6 Sealing adhesive 7 Electrode lead 8 Conductive adhesive

Claims (11)

支持基板上に一対の電極と、その間に少なくとも有機化合物からなる機能層を含む有機化合物層を挟持した構成を有する有機エレクトロニクス素子が、これを覆う封止部材によって、前記支持基板との間に、電極および有機化合物層を挟持して、密着封止された有機エレクトロニクスパネルであって、
前記電極の引き出し部と、外部駆動回路に接続する電極リードとの接合部が、前記封止部材によって覆われた密着封止された領域内にあり、前記密着封止された領域から電極リードが取り出され、
前記有機エレクトロニクスパネルが、平面視における前記支持基板上で、前記一対の電極と、その間に少なくとも有機化合物からなる機能層が、一方向に向けて、(1)一方の電極のみの領域、(2)前記一方の電極と前記有機化合物からなる機能層が重なる領域、(3)前記一方の電極と前記有機化合物からなる機能層と他方の電極が重なる領域、(4)前記有機化合物からなる機能層と前記他方の電極が重なる領域、(5)前記他方の電極のみの領域、に順次配置されており、
かつ、前記電極の引き出し部と、外部駆動回路に接続する電極リードとの接合部が、前記(1)から(5)の領域の配置と同一方向であって、(1)及び(5)の外側に配置されている、
ことを特徴とする有機エレクトロニクスパネル。
An organic electronics element having a structure in which an organic compound layer including a functional layer made of at least an organic compound is sandwiched between a pair of electrodes on a support substrate, and a sealing member covering the organic electronics element between the support substrate and An organic electronics panel sandwiched between an electrode and an organic compound layer and closely sealed,
The joint between the electrode lead-out portion and the electrode lead connected to the external drive circuit is in the close-sealed region covered by the sealing member, and the electrode lead extends from the close-sealed region. Taken out,
The organic electronics panel has a pair of electrodes and a functional layer made of at least an organic compound therebetween in one direction on the support substrate in a plan view. ) A region where the one electrode and the functional layer made of the organic compound overlap, (3) a region where the one electrode and the functional layer made of the organic compound overlap the other electrode, and (4) a functional layer made of the organic compound. And the region where the other electrode overlaps, (5) the region where only the other electrode is disposed,
In addition, the joint between the electrode lead-out portion and the electrode lead connected to the external drive circuit is in the same direction as the arrangement of the regions (1) to (5), and (1) and (5) Located on the outside,
Organic electronics panel characterized by that.
前記機能層が発光層であり、有機エレクトロニクス素子が有機エレクトロルミネッセンス素子であることを特徴とする請求項1に記載の有機エレクトロニクスパネル。   2. The organic electronics panel according to claim 1, wherein the functional layer is a light emitting layer, and the organic electronics element is an organic electroluminescence element. 前記機能層が光電変換層であり、有機エレクトロニクス素子が有機光電変換素子であることを特徴とする請求項1に記載の有機エレクトロニクスパネル。   2. The organic electronics panel according to claim 1, wherein the functional layer is a photoelectric conversion layer, and the organic electronics element is an organic photoelectric conversion element. 前記支持基板が可撓性の樹脂基板であることを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロニクスパネル。   The organic electronics panel according to claim 1, wherein the support substrate is a flexible resin substrate. 支持基板上に一対の電極と、その間に少なくとも有機化合物からなる機能層を含む有機化合物層を挟持した構成を有する有機エレクトロニクス素子を、封止部材によって前記支持基板との間に、電極および有機化合物層を挟持して、密着封止する有機エレクトロニクスパネルの製造方法であって、
前記電極の引き出し部と、外部駆動回路に接続する電極リードとの接合部が、導電性接着剤により接着され、かつ、前記封止部材が、前記接合部を覆って、有機エレクトロニクス素子を密着封止し、
前記有機エレクトロニクスパネルが、平面視における前記支持基板上で、前記一対の電極と、その間に少なくとも有機化合物からなる機能層が、一方向に向けて、(1)一方の電極のみの領域、(2)前記一方の電極と前記有機化合物からなる機能層が重なる領域、(3)前記一方の電極と前記有機化合物からなる機能層と他方の電極が重なる領域、(4)前記有機化合物からなる機能層と前記他方の電極が重なる領域、(5)前記他方の電極のみの領域、に順次配置されており、
かつ、前記電極の引き出し部と、外部駆動回路に接続する電極リードとの接合部が、前記(1)から(5)の領域の配置と同一方向であって、(1)及び(5)の外側に配置されている、
ことを特徴とする有機エレクトロニクスパネルの製造方法。
An organic electronic element having a structure in which an organic compound layer including a functional layer made of at least an organic compound is sandwiched between a pair of electrodes on a supporting substrate, and the electrode and the organic compound between the supporting substrate by a sealing member A method for producing an organic electronics panel in which layers are sandwiched and closely sealed,
A joint portion between the electrode lead-out portion and an electrode lead connected to an external drive circuit is adhered by a conductive adhesive, and the sealing member covers the joint portion and tightly seals the organic electronics element. Stop,
The organic electronics panel has a pair of electrodes and a functional layer made of at least an organic compound therebetween in one direction on the support substrate in a plan view. ) A region where the one electrode and the functional layer made of the organic compound overlap, (3) a region where the one electrode and the functional layer made of the organic compound overlap the other electrode, and (4) a functional layer made of the organic compound. And the region where the other electrode overlaps, (5) the region where only the other electrode is disposed,
In addition, the joint between the electrode lead-out portion and the electrode lead connected to the external drive circuit is in the same direction as the arrangement of the regions (1) to (5), and (1) and (5) Located on the outside,
A method for producing an organic electronics panel.
前記機能層が発光層であり、有機エレクトロニクス素子が有機エレクトロルミネッセンス素子であることを特徴とする請求項5に記載の有機エレクトロニクスパネルの製造方法。   6. The method of manufacturing an organic electronics panel according to claim 5, wherein the functional layer is a light emitting layer, and the organic electronics element is an organic electroluminescence element. 前記機能層が光電変換層であり、有機エレクトロニクス素子が有機光電変換素子であることを特徴とする請求項5に記載の有機エレクトロニクスパネルの製造方法。   6. The method of manufacturing an organic electronics panel according to claim 5, wherein the functional layer is a photoelectric conversion layer and the organic electronics element is an organic photoelectric conversion element. 前記支持基板が可撓性の樹脂基板であることを特徴とする請求項5〜7のいずれか1項に記載の有機エレクトロニクスパネルの製造方法。   The method for manufacturing an organic electronics panel according to claim 5, wherein the support substrate is a flexible resin substrate. 請求項5に記載の有機エレクトロニクスパネルの製造方法であって、前記導電性接着剤の接着時の温度が140℃以下であることを特徴とする有機エレクトロニクスパネルの製造方法。   6. The method of manufacturing an organic electronics panel according to claim 5, wherein a temperature at the time of adhesion of the conductive adhesive is 140 ° C. or less. 請求項5に記載の有機エレクトロニクスパネルの製造方法であって、前記導電性接着剤の接着時に接合部の両側から加熱することを特徴とする有機エレクトロニクスパネルの製造方法。   6. The method of manufacturing an organic electronics panel according to claim 5, wherein heating is performed from both sides of the joint portion when the conductive adhesive is bonded. 請求項5に記載の有機エレクトロニクスパネルの製造方法であって、
前記導電性接着剤の含水率が100ppm以下であり、且つ、前記電極リードの含水率が100ppm以下であることを特徴とする有機エレクトロニクスパネルの製造方法。
It is a manufacturing method of the organic electronics panel according to claim 5,
A method for producing an organic electronics panel, wherein the conductive adhesive has a moisture content of 100 ppm or less, and the electrode lead has a moisture content of 100 ppm or less.
JP2014250697A 2009-06-25 2014-12-11 Organic electronics panel and manufacturing method thereof Expired - Fee Related JP5943057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250697A JP5943057B2 (en) 2009-06-25 2014-12-11 Organic electronics panel and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009150885 2009-06-25
JP2009150885 2009-06-25
JP2009279223 2009-12-09
JP2009279223 2009-12-09
JP2014250697A JP5943057B2 (en) 2009-06-25 2014-12-11 Organic electronics panel and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011519736A Division JPWO2010150648A1 (en) 2009-06-25 2010-06-08 Organic electronics panel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015097208A true JP2015097208A (en) 2015-05-21
JP5943057B2 JP5943057B2 (en) 2016-06-29

Family

ID=43386419

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011519736A Pending JPWO2010150648A1 (en) 2009-06-25 2010-06-08 Organic electronics panel and manufacturing method thereof
JP2014250697A Expired - Fee Related JP5943057B2 (en) 2009-06-25 2014-12-11 Organic electronics panel and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011519736A Pending JPWO2010150648A1 (en) 2009-06-25 2010-06-08 Organic electronics panel and manufacturing method thereof

Country Status (2)

Country Link
JP (2) JPWO2010150648A1 (en)
WO (1) WO2010150648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605393A (en) * 2016-02-10 2018-09-28 柯尼卡美能达株式会社 Organic el light-emitting apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842088B2 (en) * 2011-02-21 2016-01-13 パナソニックIpマネジメント株式会社 Organic EL device and method for manufacturing organic EL device
JP5310962B1 (en) * 2011-09-05 2013-10-09 コニカミノルタ株式会社 Organic EL lighting device and method of manufacturing the same
JP5999831B2 (en) * 2012-02-16 2016-09-28 凸版印刷株式会社 Organic thin-film solar cell element
JP2015523741A (en) * 2012-08-01 2015-08-13 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Organic optoelectronic device having electrode buffer layer and manufacturing method thereof
JP2014112515A (en) * 2012-11-06 2014-06-19 Nitto Denko Corp Organic el element
WO2014162447A1 (en) * 2013-04-01 2014-10-09 パイオニア株式会社 Joining structure and light-emitting device
WO2014162446A1 (en) * 2013-04-01 2014-10-09 パイオニア株式会社 Joining structure and light-emitting device
WO2014199673A1 (en) 2013-06-11 2014-12-18 シャープ株式会社 Organic electroluminescent display apparatus
JP2015154049A (en) * 2014-02-19 2015-08-24 三菱化学株式会社 Thin film solar cell module
JP2016100314A (en) * 2014-11-26 2016-05-30 パイオニア株式会社 Light emitting device
JP6501180B2 (en) * 2015-01-27 2019-04-17 パナソニックIpマネジメント株式会社 Light emitting device and flexible wiring board
JP6504438B2 (en) * 2015-01-27 2019-04-24 パナソニックIpマネジメント株式会社 Light emitting device and flexible wiring board
JP6228624B2 (en) * 2016-03-31 2017-11-08 パイオニア株式会社 Organic electroluminescence device
CN110088929B (en) * 2016-09-27 2022-06-28 伊努鲁有限公司 Contacting of optoelectronic components
JP7411426B2 (en) 2020-01-27 2024-01-11 パイオニア株式会社 light emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883919A (en) * 1994-09-13 1996-03-26 Kanegafuchi Chem Ind Co Ltd Solar cell module and manufacture thereof
JPH11307249A (en) * 1998-04-20 1999-11-05 Hokuriku Electric Ind Co Ltd Organic electroluminescent element and its manufacture
JP2001176633A (en) * 1999-12-17 2001-06-29 Hitachi Chem Co Ltd Thermocompression bonding device for anisotropic conducting film connection
JP2002175877A (en) * 2000-09-27 2002-06-21 Seiko Epson Corp Organic electroluminescence device, manufacturing method of the organic electroluminescence device, and electronic equipment
JP2002373777A (en) * 2001-06-18 2002-12-26 Toppan Printing Co Ltd Organic electroluminescent element and its manufacturing method
JP2007258053A (en) * 2006-03-24 2007-10-04 Konica Minolta Holdings Inc Manufacturing method of organic electroluminescent panel
JP2008010211A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Organic electroluminescent light-emitting device and organic electroluminescent lighting system
WO2008120513A1 (en) * 2007-03-29 2008-10-09 Citizen Holdings Co., Ltd. Electrode terminal connecting structure of multilayer substrate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204256A (en) * 1998-01-07 1999-07-30 Fuji Electric Co Ltd Organic thin film light-emitting element, its manufacture and manufacturing device
JP4752087B2 (en) * 2000-03-22 2011-08-17 カシオ計算機株式会社 Electroluminescent device
JP2002352953A (en) * 2001-05-29 2002-12-06 Alps Electric Co Ltd El light-emitting device
JP2004096047A (en) * 2002-09-04 2004-03-25 Seiko Epson Corp Method for connecting substrate, connection structure of substrate, thermocompression bonding device, manufacturing method for electro-optical device, electro-optical device, and electronic apparatus
JP2006310729A (en) * 2005-03-28 2006-11-09 Dainippon Printing Co Ltd Organic thin film solar cell
JP4305425B2 (en) * 2005-07-20 2009-07-29 セイコーエプソン株式会社 Electronic devices and electronic equipment
JP5276772B2 (en) * 2005-09-22 2013-08-28 東北パイオニア株式会社 Self-luminous unit
JP2007220402A (en) * 2006-02-15 2007-08-30 Konica Minolta Holdings Inc Method of encapsulating organic electroluminescent element and organic electroluminescent element
JP2008218306A (en) * 2007-03-07 2008-09-18 Pioneer Electronic Corp Optical device
JP2009081122A (en) * 2007-09-06 2009-04-16 Fujifilm Corp Method of manufacturing organic el device sealed with gas barrier film and organic el device sealed with gas barrier film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883919A (en) * 1994-09-13 1996-03-26 Kanegafuchi Chem Ind Co Ltd Solar cell module and manufacture thereof
JPH11307249A (en) * 1998-04-20 1999-11-05 Hokuriku Electric Ind Co Ltd Organic electroluminescent element and its manufacture
JP2001176633A (en) * 1999-12-17 2001-06-29 Hitachi Chem Co Ltd Thermocompression bonding device for anisotropic conducting film connection
JP2002175877A (en) * 2000-09-27 2002-06-21 Seiko Epson Corp Organic electroluminescence device, manufacturing method of the organic electroluminescence device, and electronic equipment
JP2002373777A (en) * 2001-06-18 2002-12-26 Toppan Printing Co Ltd Organic electroluminescent element and its manufacturing method
JP2007258053A (en) * 2006-03-24 2007-10-04 Konica Minolta Holdings Inc Manufacturing method of organic electroluminescent panel
JP2008010211A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Organic electroluminescent light-emitting device and organic electroluminescent lighting system
WO2008120513A1 (en) * 2007-03-29 2008-10-09 Citizen Holdings Co., Ltd. Electrode terminal connecting structure of multilayer substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605393A (en) * 2016-02-10 2018-09-28 柯尼卡美能达株式会社 Organic el light-emitting apparatus
JPWO2017138179A1 (en) * 2016-02-10 2018-12-06 コニカミノルタ株式会社 Organic electroluminescence light emitting device
CN108605393B (en) * 2016-02-10 2021-10-08 默克专利有限公司 Organic electroluminescent device

Also Published As

Publication number Publication date
JPWO2010150648A1 (en) 2012-12-10
JP5943057B2 (en) 2016-06-29
WO2010150648A1 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
JP5943057B2 (en) Organic electronics panel and manufacturing method thereof
WO2011070951A1 (en) Organic electronics panel and method of manufacturing same
US8445899B2 (en) Organic electronic panel and method for manufacturing organic electronic panel
JP4600284B2 (en) Transparent conductive laminate, manufacturing method thereof, and device using transparent conductive laminate
JP5410000B2 (en) Organic electro-optical device and manufacturing method thereof
KR101445044B1 (en) Organic light emitting device comprising flexible substrate and method for preparing thereof
JP5312949B2 (en) Laminated electrode for electroactive device and method for producing the same
US20040121508A1 (en) Large organic devices and methods of fabricating large organic devices
JP2002543563A (en) Flexible organic electronic device with improved resistance to degradation by oxygen and moisture
KR20120111944A (en) Organic electronic device and method for producing the same
WO2011114882A1 (en) Organic electroluminescent panel and production method for organic electroluminescent panel
JP4797285B2 (en) Organic electroluminescence device and method for producing the same
WO2011158874A1 (en) Organic thin film solar cell
WO2008023626A1 (en) Organic electroluminescent device and method for manufacturing the same
JP5772819B2 (en) Manufacturing method of organic electroluminescence panel and organic electroluminescence panel manufactured by the manufacturing method
JP5532887B2 (en) Organic electronics panel
JP2012129229A (en) Organic electronics panel manufacturing method
JP5960047B2 (en) Organic electroluminescence device and method for manufacturing the same
JP2011155154A (en) Transparent conductive film and method of manufacturing the same, and organic thin-film solar cell
US20100044738A1 (en) Preparation of organic light emitting diodes by a vapour deposition method combined with vacuum lamination
JP2011054947A (en) Electrode buffering material for photoelectric conversion element, and photoelectric conversion element using the same
WO2011096308A1 (en) Method for producing organic electroluminescence panel
JP2015162409A (en) Organic semiconductor element and manufacturing method of the same
WO2017164683A1 (en) Organic solar cell and method for manufacturing same
JPWO2011099362A1 (en) Method for manufacturing organic electroluminescence panel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5943057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees