JP2015090284A - キャリブレーション装置、キャリブレーション方法、及び、キャリブレーションプログラム - Google Patents

キャリブレーション装置、キャリブレーション方法、及び、キャリブレーションプログラム Download PDF

Info

Publication number
JP2015090284A
JP2015090284A JP2013229312A JP2013229312A JP2015090284A JP 2015090284 A JP2015090284 A JP 2015090284A JP 2013229312 A JP2013229312 A JP 2013229312A JP 2013229312 A JP2013229312 A JP 2013229312A JP 2015090284 A JP2015090284 A JP 2015090284A
Authority
JP
Japan
Prior art keywords
signal wave
measurement point
measurement
coordinate value
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013229312A
Other languages
English (en)
Inventor
雅之 小倉
Masayuki Ogura
雅之 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2013229312A priority Critical patent/JP2015090284A/ja
Publication of JP2015090284A publication Critical patent/JP2015090284A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】対象物体の座標を計測する位置計測システムにおいて、座標値が不明である計測ポイントに関するキャリブレーションを効率的に行うことを可能とする。【解決手段】キャリブレーション装置4は、座標系に配置された複数の計測ポイントのうちの少なくともいずれかと対象物体との距離、及び、当該計測ポイントの座標値を基に、対象物体の座標値を計測する位置計測システム5における、座標値が不明である第一の前記計測ポイントに設置され、信号波を送信あるいは受信する第一の信号波送受信部41−aと、座標値が判明している1以上の第二の前記計測ポイントに設置され、前記信号波を送信あるいは受信する第二の信号波送受信部41−1乃至3と、信号波が前記第一及び第二の信号波送受信部の間を伝搬するのに要する時間、及び、第二の計測ポイントの座標値を基に、第一の計測ポイントの座標値を算出する算出部40と、を備える。【選択図】 図10

Description

本願発明は、複数の計測ポイントのうちの少なくともいずれかと対象物体との距離、及び、当該計測ポイントが位置する座標が示す値を基に、当該対象物体が位置する座標を計測する位置計測システムにおける、当該計測ポイントが位置する座標が示す値を算出するキャリブレーション装置等に関する。
超音波等の信号波を使用して、対象物体が位置する座標を計測する位置計測システムは、一般的に、超音波発信器が取り付けられた対象物体から発信された超音波を、所定の計測ポイントに設置された複数の超音波受信器で受信することにより、対象物体が位置する座標を計測する。
この際、位置計測システムは、対象物体から発信された超音波が超音波受信器に伝搬するのに要した時間から、各超音波受信器と対象物体との直線距離を算出する。そして、位置計測システムは、各計測ポイントが位置する座標を中心とする、半径が対象物体との直線距離である複数の球面上における交点が位置する座標を算出することによって、対象物体が位置する座標を計測する。
この場合、各計測ポイントが位置する座標が示す値が不正確である場合、位置計測システムが計測した、対象物体が位置する座標も不正確となる。したがって、通常、各計測ポイントが位置する座標を正確に計測する処理であるキャリブレーションが行われる。
このキャリブレーションに関連する技術として、特許文献1には、位置計測システムが計測対象とする最大範囲を特定したのち、その最大範囲を特定する特定点に発振器ユニットを設置して、全ての特定点の位置を計測することによりキャリブレーションを行うようにしたシステムが開示されている。
特開2013-124939号公報
例えば、位置計測システムが計測対象とする空間領域を拡大する場合、拡大した空間領域に配置された対象物体が位置する座標(即ち、当該空間領域を表す座標系における座標位置)を計測するためには、超音波受信器を追加設置しなければならない場合がある。この際、追加設置した超音波受信器が位置する正確な座標が不明であるため、当該超音波受信器についてキャリブレーションを行う必要がある。
この場合、複数の超音波発信器を搭載したキャリブレーション装置を個別に準備して、キャリブレーション装置を所定の場所に置いたのち、追加設置した超音波受信器についてキャリブレーションを行うことが考えられる。この場合、専用のキャリブレーション装置を準備して、所定の場所におかれたキャリブレーション装置に搭載された複数の超音波発信器が位置する座標を計測しておく必要があり、効率的であるとは言えない。また、特許文献1に開示された技術は、追加設置などの理由により、座標が示す値が不明確である超音波受信器に関するキャリブレーションを効率的に行う課題を解決するためのものではない。
本願発明の主たる目的は、この課題を解決した、キャリブレーション装置、キャリブレーション方法、及び、キャリブレーションプログラムを提供することである。
本願発明に係るキャリブレーション装置は、座標系に配置された複数の計測ポイントのうちの少なくともいずれかと対象物体との距離、及び、当該計測ポイントが位置する座標値を基に、前記対象物体が位置する座標値を計測する位置計測システムにおける、座標値が不明である第一の前記計測ポイントに設置され、信号波を送信あるいは受信する第一の信号波送受信手段と、座標値が判明している1以上の第二の前記計測ポイントに設置され、前記信号波を送信あるいは受信する第二の信号波送受信手段と、前記信号波が前記第一及び第二の信号波送受信手段の間を伝搬するのに要する時間、及び、前記第二の計測ポイントが位置する座標値を基に、前記第一の計測ポイントが位置する座標値を算出する算出手段と、を備えることを特徴とする。
上記目的を達成する他の見地において、本願発明のキャリブレーション方法は、情報処理装置によって、座標系に配置された複数の計測ポイントのうちの少なくともいずれかと対象物体との距離、及び、当該計測ポイントが位置する座標値を基に、前記対象物体が位置する座標値を計測する位置計測システムにおける、座標値が不明である第一の前記計測ポイントにおいて、信号波を送信あるいは受信し、座標値が判明している1以上の第二の前記計測ポイントにおいて、前記信号波を送信あるいは受信し、前記信号波が前記第一及び第二の計測ポイントの間を伝搬するのに要する時間、及び、前記第二の計測ポイントが位置する座標値を基に、前記第一の計測ポイントが位置する座標値を算出することを特徴とする。
また、上記目的を達成する更なる見地において、本願発明に係るキャリブレーションプログラムは、座標系に配置された複数の計測ポイントのうちの少なくともいずれかと対象物体との距離、及び、当該計測ポイントが位置する座標値を基に、前記対象物体が位置する座標値を計測する位置計測システムにおける、座標値が不明である第一の前記計測ポイントにおいて、信号波を送信あるいは受信する第一の信号波送受信処理と、座標値が判明している1以上の第二の前記計測ポイントにおいて、前記信号波を送信あるいは受信する第二の信号波送受信処理と、前記信号波が前記第一及び第二の計測ポイントの間を伝搬するのに要する時間、及び、前記第二の計測ポイントが位置する座標値を基に、前記第一の計測ポイントが位置する座標値を算出する算出処理と、をコンピュータに実行させることを特徴とする。
更に、本発明は、係る情報読取プログラム(コンピュータプログラム)が格納された、コンピュータ読み取り可能な、不揮発性の記憶媒体によっても実現可能である。
本願発明は、計測ポイントと対象物体との間の距離、及び、計測ポイントが位置する座標を基に対象物体が位置する座標を計測する位置計測システムにおいて、座標が不明である計測ポイントに関するキャリブレーションを効率的に行うことを可能とする。
本願発明の第1の実施形態に係るキャリブレーション装置の構成を示すブロック図である。 本願発明の第1の実施形態に係るキャリブレーション装置の動作を示すフローチャートである。 本願発明の第1の実施形態に係る超音波送受信部の構成を示すブロック図である。 本願発明の第1の実施形態において、計測ポイントのZ座標を算出する際の超音波が伝搬する伝搬経路を例示する立体図である。 本願発明の第1の実施形態において、計測ポイントのX座標及びY座標を算出する際の超音波が伝搬する伝搬経路を例示する立体図である。 本願発明の第1の実施形態において、計測ポイントのX座標及びY座標を算出する際の超音波が伝搬する伝搬経路を例示する平面図である。 本願発明の第1の実施形態において、XY平面における計測ポイント間の位置関係を例示する図である。 本願発明の第1の実施形態における、逐次計算法による計測ポイントのX座標及びY座標の算出例を示す図である。 専用のキャリブレーションユニットを用いて、計測ポイントに関するキャリブレーションを行う方法を例示する立体図である。 本願発明の第2の実施形態に係るキャリブレーション装置の構成を示すブロック図である。 本願発明の各実施形態のキャリブレーション装置を実行可能な情報処理装置の構成を示すブロック図である。
以下、本願発明の実施の形態について図面を参照して詳細に説明する。
<第1の実施形態>
図1は第1の実施形態のキャリブレーション装置1の構成を概念的に示すブロック図である。本実施形態のキャリブレーション装置1は、対象物体が位置する座標を計測する位置計測システム2の中に備えられている。キャリブレーション装置1は、算出部10、超音波送受信部11−1乃至3、超音波送受信部11−a乃至c、及び、通信ネットワーク12を備えている。
算出部10は、電子回路の場合もあれば、コンピュータプログラムとそのコンピュータプログラムに従って動作するプロセッサによって実現される場合もある。超音波送受信部11−1乃至3、及び、超音波送受信部11−a乃至cは、電子回路、あるいは、コンピュータプログラムとそのコンピュータプログラムに従って動作するプロセッサによって制御される、超音波を送受信する機能を有する電子デバイスである。
超音波送受信部11−1乃至3、及び、超音波送受信部11−a乃至cは、位置計測システム2が対象物体が位置する座標を計測する際に、対象物体に取り付けられた超音波発信器から送信された超音波を受信する。位置計測システム2は、超音波が、対象物体から各超音波送受信部に伝搬するのに要した時間から、対象物体と各超音波送受信部との間の直線距離を算出し、算出した各直線距離と、各超音波送受信部が位置する座標が示す値を基に、対象物体が位置する座標を計測する。
超音波送受信部11−1の構成を示すブロック図を図3に例示する。超音波送受信部11−2乃至3、及び、超音波送受信部11−a乃至cも、超音波送受信部11−1と同様の構成である。超音波送受信部11−1は、超音波受信素子110、増幅回路111、検出回路112、超音波発信素子113、駆動回路114、発振回路115、及び、同期回路116を備えている。
超音波受信素子110は、超音波によって発生する気圧の変化を電気信号へ変換する。増幅回路111は、超音波受信素子110によって変換された電気信号を増幅する。検出回路112は、増幅回路111によって増幅された電気信号を検出する。超音波送受信部11−1は、超音波受信素子110、増幅回路111、及び、検出回路112により、超音波受信機能を実現する。
超音波発信素子113は、電気信号を気圧の変化へ変換する。駆動回路114は、超音波発信素子113を駆動する。発振回路115は、駆動回路114に超音波振動を発生させる。超音波送受信部11−1は、超音波発信素子113、駆動回路114、及び、発振回路115により、超音波送信機能を実現する。
同期回路116は、図1に示した通信ネットワーク12を介して、超音波送受信部11−2乃至3、及び、超音波送受信部11−a乃至cと通信可能に接続され、それらの超音波送受信部との間で同期信号を送受信する。尚、通信ネットワーク12は、有線通信ネットワークの場合もあれば無線通信ネットワークの場合もある。
超音波送受信部11−1乃至3は、それぞれ、位置計測システム2における計測ポイント20−1乃至3に設置されている。計測ポイント20−1乃至3が位置する3次元空間座標P1、P2、及び、P3は、それぞれ、(X1、Y1、Z1)、(X2、Y2、Z2)、(X3、Y3、Z3)であり、その値は既知である。超音波送受信部11−a乃至cは、新たに追加設置された超音波送受信部であり、それぞれ、位置計測システム2における計測ポイント20−a乃至cに設置されている。計測ポイント20−a乃至cが位置する3次元空間座標Pa、Pb、及び、Pcは、それぞれ、(Xa、Ya、Za)、(Xb、Yb、Zb)、(Xc、Yc、Zc)であり、その値は不明である。したがって、キャリブレーション装置1は、計測ポイント20−a乃至cについて、キャリブレーションを実施する。
キャリブレーション装置1が計測ポイント20−aが位置するZ座標(Z座標値)Zaを算出する際に、計測ポイント20−aに設置された超音波送受信部11−aから送信された超音波が伝搬する搬経路を例示する立体図を図4に示す。
超音波送受信部11−aは、位置計測システム1における床面に垂直または略垂直に超音波を送信し、超音波が床面にて反射した反射波を受信する。超音波送受信部11−aは、超音波を送信してからその反射波を受信するまでに要した伝搬時間Taを計測し、Taが示す値を算出部10へ入力する。超音波送受信部11−b乃至cも、超音波送受信部11−aと同様の処理を行い、それぞれ、伝搬時間Tb及びTcが示す値を算出部10へ入力する。
キャリブレーション装置1が計測ポイント20−aが位置するX座標(X座標値)Xa及びY座標(Y座標値)Yaを算出する際に、超音波送受信部11−1乃至3から超音波送受信部11−aに送信された超音波が伝搬する伝搬経路を例示する立体図を図5に示す。
超音波送受信部11−1乃至3は、それぞれ、超音波送受信部11−aに対して、同期信号を通信ネットワーク12を介して送信するとともに、床面に対して超音波を送信する。超音波送受信部11−aは、超音波送受信部11−1乃至3から同期信号を受信するとともに、超音波送受信部11−1乃至3からそれぞれ送信された超音波が床面にて反射した反射波を受信する。超音波送受信部11−aは、超音波送受信部11−1乃至3のそれぞれについて、反射波を受信した時刻と同期信号を受信した時刻との差分である伝搬時間T1a、T2a、及び、T3aを計測し、T1a、T2a、及び、T3aが示す値を算出部10へ入力する。超音波送受信部11−bも超音波送受信部11−aと同様の処理を行い、超音波送受信部11−1乃至3のそれぞれについて、反射波を受信した時刻と同期信号を受信した時刻との差分である伝搬時間T1b、T2b、及び、T3bが示す値を算出部10へ入力する。超音波送受信部11−cも超音波送受信部11−a乃至bと同様の処理を行い、超音波送受信部11−1乃至3のそれぞれについて、反射波を受信した時刻と同期信号を受信した時刻との差分である伝搬時間T1c、T2c、及び、T3cが示す値を算出部10へ入力する。
算出部10は、超音波送受信部11−aから入力された、伝搬時間Taが示す値を基に、計測ポイント20−aが位置するZ座標Zaを算出する。
摂氏温度がt(度)である場合、超音波が大気中を伝搬する速度(音速)c(メートル/秒)は、式1により求められる。

Figure 2015090284
・・・・・・(式1)
算出部10は、図4に示す立体図から、Zaを、式2を使用して算出する。

Figure 2015090284
・・・・・・(式2)
算出部10は、計測ポイント20−b乃至cが位置するZ座標Zb及びZcについても、それぞれ、Tb及びTcが示す値から、Zaと同様に算出する。
算出部10は、超音波送受信部11−aから入力された、伝搬時間T1a、T2a、及び、T3aが示す値を基に、計測ポイント20−aが位置するX座標Xa、及び、Y座標Yaを算出する。
図5において、計測ポイント20−1と計測ポイント20−aとを包含し、かつ、床面に垂直な断面における、超音波送受信部11−1から超音波送受信部11−aに超音波が伝搬する伝搬経路を例示する平面図を図6に示す。
図6においてL1aは、超音波送受信部11−1から超音波送受信部11−aに超音波が伝搬する伝搬経路の距離となる。算出部10は、L1aを、式3を使用して算出する。

Figure 2015090284
・・・・・・(式3)
図6において、R1aは、超音波送受信部11−1から超音波送受信部11−aに超音波が伝搬する伝搬経路に関するXY平面上の距離である。算出部10は、R1aを、式4を使用して算出する。

Figure 2015090284
・・・・・・(式4)
算出部10は、超音波送受信部11−2乃至3から超音波送受信部11−aに超音波が伝搬する伝搬経路の距離であるL2a及びL3aを、T2a及びT3aを基に、L1aと同様に算出する。算出部10は、超音波送受信部11−2乃至3から超音波送受信部11−aに超音波が伝搬する伝搬経路に関するXY平面上の距離であるR2a及びR3aを、それぞれ、L2a及びL3aを基に、式5及び式6を使用して算出する。

Figure 2015090284
・・・・・・(式5)

Figure 2015090284
・・・・・・(式6)
XY平面における計測ポイント20−1乃至3、及び、計測ポイント20−aに関する位置関係を図7に例示する。図7に示す通り、計測ポイント20−aが位置する座標は、
計測ポイント20−1が位置する座標を中心とする半径がR1aである円、計測ポイント20−2が位置する座標を中心とする半径がR2aである円、及び、計測ポイント20−3が位置する座標を中心とする半径がR3aである円の交点となる。すなわち、算出部10は、式7乃至9による連立方程式を解くことにより、計測ポイント20−aが位置するX座標Xa、及び、Y座標Yaを算出する。

Figure 2015090284
・・・・・・(式7)

Figure 2015090284
・・・・・・(式8)

Figure 2015090284
・・・・・・(式9)
算出部10が値を求める変数は、Xa及びYaの2つであり、算出部10は、式7乃至9のいずれか2つにより、Xa及びYaが示す値を求めることができる。算出部10は、また、式7乃至9を全て使用して、最小二乗法と合わせた反復による逐次計算法(ニュートン法)により、Xa及びYaが示す値を求めてもよい。逐次計算法において、Xa及びYaの初期値をX0及びY0とし、XY平面における座標(Xa,Ya)と座標(X0,Y0)との間の距離R0と式7乃至9により決定されるR1a乃至R3aとの差分をΔR1a乃至ΔR3aとし、XaとX0との差分をΔXとし、YaとY0との差分をΔYとする。ΔRia(iは1乃至3の整数)、R0、Xi、Yi、ΔX、及び、ΔYの間には、式10乃至12の関係がある。

Figure 2015090284
・・・・・・(式10)

Figure 2015090284
・・・・・・(式11)

Figure 2015090284
・・・・・・(式12)
算出部10は、X0及びY0に所定の値を設定し、式7乃至12に基づき逐次計算を行うことにより、Xa及びYaが示す値を算出する。
例えば、計測ポイント20−1乃至3が位置する座標が、それぞれ、P1=(0.00,0.00,3.00)、P2=(2.00,0.00,3.00)、P3=(0.00,2.00,2.98)(座標に関する単位は、いずれもメートルとする)であり、室温が25度である場合、Ta=0.01735(秒)となる。算出部10は、Ta、及び、式1乃至2を使用して、Zaが示す値3.01(メートル)を算出する。
上述の場合、T1a=0.01915(秒)、T2a=0.01827(秒)、T3a=0.01825(秒)となる。算出部10は、式3乃至6を使用して、R1a=2.8230303(メートル)、R2a=1.9871588(メートル)、R3a=2.0155148(メートル)であることを算出する。
上述した場合において、算出部10が、R1a乃至R3aが示す値と式7乃至12に基づき、逐次計算法により、Xa及びYaが示す値を算出した結果を図8に示す。逐次計算法による計測ポイントが位置するX座標及びY座標の算出結果200においては、算出部10は、X0及びY0に100.00を設定し、6回逐次計算を実行した結果、Xa=2.01(メートル)、Ya=1.98(メートル)であることを算出する。
算出部11は、計測ポイント20−bが位置する座標についても、計測ポイント20−aが位置する座標と同様に算出する。この際、算出部11は、計測ポイント20−1乃至3、及び、計測ポイント20−aのうちのいずれか3つの計測ポイントが位置する座標が示す値を基に算出する。算出部11が計測ポイント20−aが位置する座標が示す値を使用する場合、超音波送受信部11−aは、超音波送受信部11−1乃至3と同様に動作する。さらに、算出部11は、計測ポイント20−cが位置する座標についても、計測ポイント20−a乃至bが位置する座標と同様に算出する。この際、算出部11は、計測ポイント20−1乃至3、及び、計測ポイント20−a乃至bのうちのいずれか3つの計測ポイントが位置する座標が示す値を基に算出する。算出部11が計測ポイント20−bが位置する座標が示す値を使用する場合、超音波送受信部11−bは、超音波送受信部11−1乃至3と同様に動作する。
次に図2のフローチャートを参照して、本実施形態に係るキャリブレーション装置1の動作(処理)について詳細に説明する。
超音波送受信部11−aは、床面に垂直または略垂直に超音波を送信し、その超音波が床面にて反射した反射波を受信し、送信してから受信するまでの時間Taを、算出部10へ入力する(ステップS101)。算出部10は、Taが示す値を基に、超音波送受信部11−aが設置された計測ポイントが位置するZ座標Zaが示す値を算出する(ステップS102)。
キャリブレーション装置1は、整数iが示す値を1乃至3に順次設定して、ステップS103からステップS108に係るループ処理を実行する(ステップS103)。超音波送受信部11−iは、超音波送受信部11−aに対して同期信号を送信するとともに、床面に対して超音波を送信する(ステップS104)。超音波送受信部11−aは、超音波送受信部11−iから同期信号を受信するとともに、超音波送受信部11−iから送信された超音波が床面にて反射した反射波を受信する(ステップS105)。超音波送受信部11−aは、超音波送受信部11−iから超音波が伝搬するのに要した時間Tiaを算出して、算出部10へ入力する(ステップS106)。算出部10は、Tiaが示す値を基に、超音波送受信部11−iと超音波送受信部11−aとの平面距離Riaを算出する(ステップS107)。
iが示す値が3未満である場合、処理は、整数iに1を加算してステップS103に戻り、iが示す値が3である場合、処理は、ステップS109へ進む(ステップS108)。算出部10は、超音波送受信部11−1乃至3が設置された計測ポイントが位置する座標が示す値と、平面距離R1a乃至R3aが示す値を基に、超音波送受信部11−aが設置された計測ポイントが位置するX座標Xa及びY座標Yaが示す値を算出し(ステップS109)、全体の処理は終了する。
尚、上述した実施形態では、 説明の便宜上から、キャリブレーション装置1が、計測ポイント20−aが位置する座標を、3個の計測ポイント20−1乃至3が位置する座標から算出する場合について説明した。しかしながら、上述した実施形態を例に説明した本発明は、キャリブレーション装置1が計測ポイント20−aが位置する座標を算出する際に参照する座標が3個の場合には限定されない。
即ち、キャリブレーション装置1は、既に座標が示す値が判明している4個以上の計測ポイントが位置する座標から、目的の計測ポイントが位置する座標を算出してもよい。より具体的には、例えば、キャリブレーション装置1は、目的の計測ポイントからの距離が所定の基準値以内に位置する、座標が示す値が既知である計測ポイントを検出する。そして、キャリブレーション装置1は、検出された計測ポイントの個数が示す回数分、上述したステップS103からステップ108に係るループ処理を繰り返して実行し、目的の計測ポイントが位置する座標を、より正確に算出してもよい。
本実施形態に係るキャリブレーション装置1は、計測ポイントと対象物体との間の距離、及び、計測ポイントが位置する座標を基に対象物体が位置する座標を計測する位置計測システム2において、座標が不明である計測ポイントに関するキャリブレーションを効率的に行うことができる。その理由は、算出部10が、座標が判明している計測ポイントに設置された超音波送受信部11−1乃至3と、座標が不明である計測ポイントに設置された超音波送受信部11−a乃至cとの間を超音波が伝搬する時間を基に、超音波送受信部11−a乃至cが位置する座標を算出するからである。
位置計測システム2が、対象物体が位置する座標を正確に計測するためには、座標が示す値が不明である計測ポイント20−a乃至cが位置する座標について、キャリブレーションを行う必要がある。超音波送受信部20−1乃至3、及び、超音波送受信部20−a乃至cが、本実施形態のような超音波送信機能を備えていない場合に、計測ポイント20−a乃至cに関するキャリブレーションを行う方法を例示する立体図を図9に示す。
図9に示す通り、計測ポイント20−a乃至cに関するキャリブレーションは、専用キャリブレーションユニット3を使用して行われる。専用キャリブレーションユニット3は、超音波発信器30乃至33を備えており、計測ポイント20−a乃至cに対して、超音波を発信する。尚、図9に示す例では、専用キャリブレーションユニット3は、4つの超音波発信器を備えているが、計測ポイント20−a乃至cが位置する3次元座標が示す値を算出するためには、3つ以上の超音波発信器を備えればよい。専用キャリブレーションユニット3は、超音波が超音波発信器30乃至33から計測ポイント20−a乃至cに伝搬するのに要した時間から、超音波発信器30乃至33と計測ポイント20−a乃至cとの距離を算出したのち、超音波発信器30乃至33が位置する座標を基に、計測ポイント20−a乃至cが位置する座標を算出する。
一般的に、音波の特性として、音波発振器から3次元空間に音波が発信される際に、音波のエネルギー密度は、音波発振器を中心とした球体の表面積に比例して発散される。すなわち、音波発振器からの距離の2乗に比例して音波のエネルギーが減衰する「発散減衰」が発生する。また、大気中を音波が伝搬する際に、大気中に存在する分子の回転飽和現象及び振動飽和に起因する「吸収減衰」が発生する。したがって、専用キャリブレーションユニット3は、計測ポイント20−a乃至cから所定の距離以内に配置される必要がある。例えば、計測ポイント20−aと計測ポイント20−bとが、ある程度離れている場合、図9に示す通り、計測ポイント20−a及びbが位置する座標をそれぞれ算出する際に、専用キャリブレーションユニット3を置く場所を移動させる必要がある。専用キャリブレーションユニット3を置く場所を移動させた場合、その都度、超音波発信器30乃至33が位置する座標を計測する作業が発生することになる。したがって、図9に示すキャリブレーションを行う方法は、あまり効率的ではない。
これに対して、本実施形態では、超音波送受信部20−1乃至3、及び、超音波送受信部20−a乃至cが超音波送受信機能を備えているため、キャリブレーション装置1は、計測ポイント20―1乃至3と計測ポイント20−a乃至cとの間の距離を算出することができる。そして、キャリブレーション装置1は、既に判明している超音波送受信部20−1乃至3が位置する座標が示す値を使用して、計測ポイント20−a乃至cが位置する座標が示す値を算出できるため、キャリブレーションを効率的に行うことができる。
また、キャリブレーション装置1は、計測ポイント20−aが位置する座標を算出した後、計測ポイント20−bが位置する座標を算出する際に、計測ポイント20−aが位置する座標が示す値を使用することができる。キャリブレーション装置1は、さらにそののち、計測ポイント20−cが位置する座標を算出する際に、計測ポイント20−a乃至bが位置する座標が示す値を使用することができる。すなわち、キャリブレーション装置1は、座標が示す値が不明である計測ポイントが位置する座標を算出した後、当該計測ポイントが位置する座標が示す値を使用して、連鎖的に座標が示す値が不明である計測ポイントが位置する座標を算出する。したがって、例えば、位置計測システム2が計測対象とする空間領域が拡大され、計測ポイントの数を大幅に増加させるような場合でも、キャリブレーション装置1は、新規に設置された計測ポイントに関するキャリブレーションを効率的に実行することができる。
さらに、キャリブレーション装置1は、超音波送受信部11−a乃至cが床面に垂直または略垂直に超音波を反射させることにより、計測ポイント20−a乃至cが位置するZ座標が示す値を算出する。したがって、キャリブレーション装置1は、式7乃至9による連立方程式において、Z座標に係る要素を排除できるため、算出部10が実行する演算を簡素化することができる。尚、超音波送受信部11−a乃至cが、床面同様、何れかの壁面に対して垂直または略垂直に超音波を反射させることにより、キャリブレーション装置1が、X座標あるいはY座標が示す値を算出してもよい。あるいは、超音波送受信部11−a乃至cが床面あるいは側面に垂直または略垂直に超音波を反射させる機能を備えずに、キャリブレーション装置1は、計測ポイント20−a乃至cが位置するZ座標についても、計測ポイント20−1乃至3が位置する座標が示す値から算出する場合もある。
また、キャリブレーション装置1は、超音波送受信部11−1乃至3から送信された超音波が床面を反射したのち超音波送受信部11−a乃至cに伝搬するまでの伝搬経路の距離を算出する。超音波送受信部11−1乃至3が、床面における反射を利用せずに直線的に超音波送受信部11−a乃至cに送信した場合、いずれかの超音波送受信部が、超音波が伝搬する際に障害物となる可能性がある。したがって、キャリブレーション装置1は、いずれかの超音波送受信部が、超音波が伝搬する際に障害物となる問題を回避することができる。
尚、本実施形態に係るキャリブレーション装置1は、超音波送受信部11−1乃至3から超音波送受信部11−a乃至cに送信された超音波が伝搬するのに要した時間を計測しているが、その逆に、超音波送受信部11−a乃至cから超音波送受信部11−1乃至3に送信された超音波が伝搬するのに要した時間を計測してもよい。
また、本実施形態に係るキャリブレーション装置1は、計測ポイント20−aが位置するX座標及びY座標が示す値を、逐次計算法を使用して式7乃至9による連立方程式を解くことにより算出しているが、別の数学的手法を用いてX座標及びY座標が示す値を算出してもよい。
尚、本実施形態に係るキャリブレーション装置1は、計測ポイント20−1乃至3と計測ポイント20−a乃至cとの間の距離を計測する際に超音波を使用しているが、例えば赤外線等の超音波以外の信号波を使用してもよい。
また、位置測定システム2における対象物体が、直線レールの上を動く場合など所定の直線の上に限定して存在する場合は、対象物体が位置する座標は1次元で示されるため、計測ポイントが位置する座標も1次元で示すことが可能である。位置測定システム2における対象物体が、所定の平面の上に限定して存在する場合は、対象物体が位置する座標は2次元で示されるため、計測ポイントが位置する座標も2次元で示すことが可能である。
<第2の実施形態>
図10は第2の実施形態のキャリブレーション装置4の構成を概念的に示すブロック図である。
本実施形態のキャリブレーション装置4は、第一の信号波送受信部41−a、第二の信号波送受信部41−1乃至3、及び、算出部40を備えている。
第一の信号波送受信部41−aは、座標系に配置された複数の計測ポイントのうちの少なくともいずれかと対象物体との距離、及び、当該計測ポイントが位置する座標値を基に、対象物体が位置する座標値を計測する位置計測システム5における、座標値が不明である第一の前記計測ポイントに設置され、信号波を送信あるいは受信する。
第二の信号波送受信部41−1乃至3は、座標値が判明している1以上、例えば3つの第二の計測ポイントにそれぞれ設置され、信号波を送信あるいは受信する。
算出部40は、信号波が第一の信号波送受信部41−a及び第二の信号波送受信部41−1乃至3の間を伝搬するのに要する時間、及び、第二の計測ポイントが位置する座標値を基に、第一の計測ポイントが位置する座標値を算出する。
本実施形態に係るキャリブレーション装置4は、計測ポイントと対象物体との間の距離、及び、計測ポイントが位置する座標を基に対象物体が位置する座標を計測する位置計測システム5において、座標が不明である計測ポイントに関するキャリブレーションを効率的に行うことができる。その理由は、算出部40が、座標が判明している計測ポイントに設置された超音波送受信部41−1乃至3と、座標が不明である計測ポイントに設置された超音波送受信部41−aとの間を超音波が伝搬する時間を基に、超音波送受信部41−aが位置する座標を算出するからである。
<ハードウェア構成例>
上述した各実施形態において図1、及び、図10に示した各部は、ソフトウェアプログラムの機能(処理)単位(ソフトウェアモジュール)と捉えることができる。但し、これらの図面に示した各部の区分けは、説明の便宜上の構成であり、実装に際しては、様々な構成が想定され得る。この場合のハードウェア環境の一例を、図11を参照して説明する。
図11は、本発明の模範的な実施形態に係るキャリブレーション装置を実行可能な情報処理装置900(コンピュータ)の構成を例示的に説明する図である。即ち、図11は、図1、及び、図10に示したキャリブレーション装置を実現可能なコンピュータ(情報処理装置)の構成であって、上述した実施形態における各機能を実現可能なハードウェア環境を表す。
図11に示した情報処理装置900は、CPU901(Central_Processing_Unit)、ROM902(Read_Only_Memory)、RAM903(Random_Access_Memory)、ハードディスク904(記憶装置)、外部装置との通信インタフェース905(Interface:以降、「I/F」と称する)、CD−ROM(Compact_Disc_Read_Only_Memory)等の記憶媒体907に格納されたデータを読み書き可能なリーダライタ908、及び、入出力インタフェース909を備え、これらの構成がバス906(通信線)を介して接続された一般的なコンピュータである。
そして、上述した実施形態を例に説明した本発明は、図11に示した情報処理装置900に対して、その実施形態の説明において参照したブロック構成図(図1、及び、図10)或いはフローチャート(図2)の機能を実現可能なコンピュータプログラムを供給した後、そのコンピュータプログラムを、当該ハードウェアのCPU901に読み出して解釈し実行することによって達成される。また、当該装置内に供給されたコンピュータプログラムは、読み書き可能な揮発性の記憶メモリ(RAM903)またはハードディスク904等の不揮発性の記憶デバイスに格納すれば良い。
また、前記の場合において、当該ハードウェア内へのコンピュータプログラムの供給方法は、CD−ROM等の各種記憶媒体907を介して当該装置内にインストールする方法や、インターネット等の通信回線を介して外部よりダウンロードする方法等のように、現在では一般的な手順を採用することができる。そして、このような場合において、本発明は、係るコンピュータプログラムを構成するコード或いは、そのコードが格納された記憶媒体907によって構成されると捉えることができる。
以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
1 キャリブレーション装置
2 位置計測システム
3 専用キャリブレーションユニット
4 キャリブレーション装置
5 位置計測システム
10 算出部
11−1乃至3 超音波送受信部
11−a乃至c 超音波送受信部
110 超音波受信素子
111 増幅回路
112 検出回路
113 超音波発信素子
114 駆動回路
115 発振回路
116 同期回路
12 通信ネットワーク
20−1乃至3 計測ポイント
20−a乃至c 計測ポイント
30乃至33 超音波発信器
40 算出部
41−a 第一の信号波送受信部
41−1乃至3 第二の信号波送受信部
200 逐次計算法による計測ポイントが位置するX座標及びY座標の算出結果
900 情報処理装置
901 CPU
902 ROM
903 RAM
904 ハードディスク
905 通信インタフェース
906 バス
907 記憶媒体
908 リーダライタ
909 入出力インタフェース

Claims (10)

  1. 座標系に配置された複数の計測ポイントのうちの少なくともいずれかと対象物体との距離、及び、当該計測ポイントが位置する座標値を基に、前記対象物体が位置する座標値を計測する位置計測システムにおける、座標値が不明である第一の前記計測ポイントに設置され、信号波を送信あるいは受信する第一の信号波送受信手段と、
    座標値が判明している1以上の第二の前記計測ポイントに設置され、前記信号波を送信あるいは受信する第二の信号波送受信手段と、
    前記信号波が前記第一及び第二の信号波送受信手段の間を伝搬するのに要する時間、及び、前記第二の計測ポイントが位置する座標値を基に、前記第一の計測ポイントが位置する座標値を算出する算出手段と、
    を備えるキャリブレーション装置。
  2. 前記算出手段は、複数の前記第一の計測ポイントのいずれかが位置する座標値を算出した後、当該第一の計測ポイントを前記第二の計測ポイントの1つとみなして、当該第一の計測ポイントを除く前記第一の計測ポイントが位置する座標値を算出する、
    請求項1に記載のキャリブレーション装置。
  3. 前記第一の信号波送受信手段は、前記位置計測システムが有する、前記対象物体を取り囲む面のうちの少なくともいずれかに垂直または略垂直に前記信号波を送信したのち、前記信号波が前記面にて反射した反射波を受信し、
    前記算出手段は、前記第一の信号波送受信手段が前記信号波を送信してから、前記反射波を受信するまでの時間を基に、1乃至3次元のいずれかで示される、前記第一の計測ポイントが位置する座標値に関する、少なくともいずれかの要素が示す値を算出する、
    請求項1または2に記載のキャリブレーション装置。
  4. 前記第一及び第二の信号波送受信手段は、前記信号波を発信する場合、前記位置計測システムが有する、前記対象物体を取り囲む面のうちの少なくともいずれかに向けて前記信号波を送信し、前記信号波を受信する場合、他の前記信号波送受信手段から送信されたのち、前記信号波が前記面にて反射した反射波を受信する、
    請求項1乃至3のいずれかに記載のキャリブレーション装置。
  5. 情報処理装置によって、
    座標系に配置された複数の計測ポイントのうちの少なくともいずれかと対象物体との距離、及び、当該計測ポイントが位置する座標値を基に、前記対象物体が位置する座標値を計測する位置計測システムにおける、座標値が不明である第一の前記計測ポイントにおいて、信号波を送信あるいは受信し、
    座標値が判明している1以上の第二の前記計測ポイントにおいて、前記信号波を送信あるいは受信し、
    前記信号波が前記第一及び第二の計測ポイントの間を伝搬するのに要する時間、及び、前記第二の計測ポイントが位置する座標値を基に、前記第一の計測ポイントが位置する座標値を算出する、
    キャリブレーション方法。
  6. 複数の前記第一の計測ポイントのいずれかが位置する座標値を算出した後、当該第一の計測ポイントを前記第二の計測ポイントの1つとみなして、当該第一の計測ポイントを除く前記第一の計測ポイントが位置する座標値を算出する、
    請求項5に記載のキャリブレーション方法。
  7. 前記第一の計測ポイントから、前記位置計測システムが有する、前記対象物体を取り囲む面のうちの少なくともいずれかに垂直または略垂直に前記信号波を送信したのち、前記第一の計測ポイントにおいて、前記信号波が前記面にて反射した反射波を受信し、
    前記信号波を送信してから、前記反射波を受信するまでの時間を基に、1乃至3次元のいずれかで示される、前記第一の計測ポイントが位置する座標値に関する、少なくともいずれかの要素が示す値を算出する、
    請求項5または6に記載のキャリブレーション方法。
  8. 座標系に配置された複数の計測ポイントのうちの少なくともいずれかと対象物体との距離、及び、当該計測ポイントが位置する座標値を基に、前記対象物体が位置する座標値を計測する位置計測システムにおける、座標値が不明である第一の前記計測ポイントにおいて、信号波を送信あるいは受信する第一の信号波送受信処理と、
    座標値が判明している1以上の第二の前記計測ポイントにおいて、前記信号波を送信あるいは受信する第二の信号波送受信処理と、
    前記信号波が前記第一及び第二の計測ポイントの間を伝搬するのに要する時間、及び、前記第二の計測ポイントが位置する座標値を基に、前記第一の計測ポイントが位置する座標値を算出する算出処理と、
    をコンピュータに実行させるキャリブレーションプログラム。
  9. 複数の前記第一の計測ポイントのいずれかが位置する座標値を算出した後、当該第一の計測ポイントを前記第二の計測ポイントの1つとみなして、当該第一の計測ポイントを除く前記第一の計測ポイントが位置する座標値を算出する前記算出処理、
    をコンピュータに実行させる請求項8に記載のキャリブレーションプログラム。
  10. 前記位置計測システムが有する前記対象物体を取り囲む面のうちの少なくともいずれかに垂直または略垂直に前記信号波を送信したのち、前記信号波が前記面にて反射した反射波を受信する前記第一の信号波送受信処理と、
    前記第一の信号波送受信処理が前記信号波を送信してから、前記反射波を受信するまでの時間を基に、1乃至3次元のいずれかで示される、前記第一の計測ポイントが位置する座標値に関する、少なくともいずれかの要素が示す値を算出する前記算出処理と、
    をコンピュータに実行させる請求項8または9に記載のキャリブレーションプログラム。
JP2013229312A 2013-11-05 2013-11-05 キャリブレーション装置、キャリブレーション方法、及び、キャリブレーションプログラム Pending JP2015090284A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229312A JP2015090284A (ja) 2013-11-05 2013-11-05 キャリブレーション装置、キャリブレーション方法、及び、キャリブレーションプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229312A JP2015090284A (ja) 2013-11-05 2013-11-05 キャリブレーション装置、キャリブレーション方法、及び、キャリブレーションプログラム

Publications (1)

Publication Number Publication Date
JP2015090284A true JP2015090284A (ja) 2015-05-11

Family

ID=53193887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229312A Pending JP2015090284A (ja) 2013-11-05 2013-11-05 キャリブレーション装置、キャリブレーション方法、及び、キャリブレーションプログラム

Country Status (1)

Country Link
JP (1) JP2015090284A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507754A (ja) * 2017-02-02 2020-03-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 複数の超音波変換器を校正するための方法およびこの方法を実行するための装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333318A (ja) * 1994-06-07 1995-12-22 Tech Res & Dev Inst Of Japan Def Agency 線状曳航体の3次元水中姿勢計測装置
JP2002077976A (ja) * 2000-09-05 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> 位置検出方法、位置検出システムおよび移動局
JP2006138732A (ja) * 2004-11-12 2006-06-01 Hitachi Ltd 無線位置検出方法
JP2007155523A (ja) * 2005-12-06 2007-06-21 Hitachi Ulsi Systems Co Ltd 位置検出方法、および位置検出システム
JP2007248362A (ja) * 2006-03-17 2007-09-27 Hitachi Ltd 端末測位システム及び位置測定方法
JP2009216474A (ja) * 2008-03-08 2009-09-24 Brother Ind Ltd 移動局測位システム
JP2013003047A (ja) * 2011-06-20 2013-01-07 Yokosuka Telecom Research Park:Kk 被災者救助支援システム、情報処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333318A (ja) * 1994-06-07 1995-12-22 Tech Res & Dev Inst Of Japan Def Agency 線状曳航体の3次元水中姿勢計測装置
JP2002077976A (ja) * 2000-09-05 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> 位置検出方法、位置検出システムおよび移動局
JP2006138732A (ja) * 2004-11-12 2006-06-01 Hitachi Ltd 無線位置検出方法
JP2007155523A (ja) * 2005-12-06 2007-06-21 Hitachi Ulsi Systems Co Ltd 位置検出方法、および位置検出システム
JP2007248362A (ja) * 2006-03-17 2007-09-27 Hitachi Ltd 端末測位システム及び位置測定方法
JP2009216474A (ja) * 2008-03-08 2009-09-24 Brother Ind Ltd 移動局測位システム
JP2013003047A (ja) * 2011-06-20 2013-01-07 Yokosuka Telecom Research Park:Kk 被災者救助支援システム、情報処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507754A (ja) * 2017-02-02 2020-03-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 複数の超音波変換器を校正するための方法およびこの方法を実行するための装置
US11320524B2 (en) 2017-02-02 2022-05-03 Robert Bosch Gmbh Method for calibrating ultrasonic transducers and system for carrying out the method

Similar Documents

Publication Publication Date Title
US8509819B2 (en) Information processing apparatus and correction method
US8089827B2 (en) Method for localizing remote devices, using acoustical and electromagnetic waves
KR100939640B1 (ko) 다중 주파수의 음원을 이용한 위치인식방법 및위치인식시스템
JP6955144B2 (ja) 無線機器の設置位置決定装置、無線機器の設置位置決定方法及び無線機器の設置位置決定プログラム
JP2009198454A (ja) 位置検知システム、位置検知サーバおよび端末
JP4997637B2 (ja) 位置推定システム及びプログラム
JP2016534352A (ja) 音響位置追跡システム
TW201625041A (zh) 訊號強度分佈建立方法及無線定位系統
WO2017149582A1 (ja) データ処理方法及び計測装置
US9766605B1 (en) Methods and systems for synthesis of a waveguide array antenna
JP2015090284A (ja) キャリブレーション装置、キャリブレーション方法、及び、キャリブレーションプログラム
Jiménez et al. Precise localisation of archaeological findings with a new ultrasonic 3D positioning sensor
JP6659054B2 (ja) 電波監視装置、電波監視システム、電波監視方法及びプログラム
JP7130943B2 (ja) 電波環境推定装置および電波環境推定方法
JP7224882B2 (ja) センサシステム、センサシステムの制御方法、及び制御装置
WO2017098641A1 (ja) 超音波送受信装置、および、超音波送受信方法
JP2009210408A (ja) 無線システム及びその位置特定方法
TW201409057A (zh) 使用聲波測量物體空間位置的方法及系統
KR20080000936A (ko) 삼각형 셀을 이용한 3차원 광선 추적 방법 및 그를 이용한전파 특성 예측 방법
Chaitanya et al. Unknown radio source localization based on a modified closed form solution using TDOA measurement technique
US20220341877A1 (en) Measurement apparatus, and measurement method
JP2022071237A (ja) 測位方法
JP2001166054A (ja) 演算計測装置、物体移動速度測定方法および金属の温度測定方法
JPWO2011068224A1 (ja) 伝搬経路推定方法、プログラム及び装置
JP2009175096A (ja) 信号源位置推定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180213