JP2015085152A - 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法 - Google Patents

内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法 Download PDF

Info

Publication number
JP2015085152A
JP2015085152A JP2013235460A JP2013235460A JP2015085152A JP 2015085152 A JP2015085152 A JP 2015085152A JP 2013235460 A JP2013235460 A JP 2013235460A JP 2013235460 A JP2013235460 A JP 2013235460A JP 2015085152 A JP2015085152 A JP 2015085152A
Authority
JP
Japan
Prior art keywords
region
oxygen saturation
score
distribution pattern
medical condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013235460A
Other languages
English (en)
Other versions
JP6140056B2 (ja
Inventor
泰士 白石
Hiroshi Shiraishi
泰士 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013235460A priority Critical patent/JP6140056B2/ja
Priority to EP14848419.9A priority patent/EP3050487B1/en
Priority to PCT/JP2014/068764 priority patent/WO2015045576A1/ja
Publication of JP2015085152A publication Critical patent/JP2015085152A/ja
Priority to US15/058,391 priority patent/US10231658B2/en
Application granted granted Critical
Publication of JP6140056B2 publication Critical patent/JP6140056B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/044Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for absorption imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Endoscopes (AREA)

Abstract

【課題】観察対象の酸素飽和度に基づいて医師をサポートするための情報を提示することができる内視鏡システムを提供する。
【解決手段】内視鏡システムは、光源装置と、イメージセンサと、酸素飽和度算出部83と、分布パターン生成部96と、病状スコア算出部97と、モニタと、を備える。光源装置は、観察対象に光を照射する。イメージセンサは、光の反射光で観察対象を撮像し、画像信号を出力する。酸素飽和度算出部83は、画像信号に基づいて観察対象の酸素飽和度を算出する。分布パターン生成部96は、酸素飽和度に関する分布を表す分布パターンを生成する。病状スコア算出部97は、分布パターンに基づいて観察対象の病状を表す病状スコアを算出する。モニタは病状スコアまたは病状スコアに基づく情報を表示する。
【選択図】図12

Description

本発明は、被検体内の観察対象を撮像して得られる画像信号から血中ヘモグロビンの酸素飽和度に関する生体機能情報を求める内視鏡システム内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法に関する。
医療分野においては、光源装置、内視鏡、プロセッサ装置を備える内視鏡システムを用いて診断することが一般的になっている。また、近年においては、生体機能情報の中でも血中ヘモグロビンの酸素飽和度を用いた病変部の診断が行われつつあり、特に、酸素飽和度に基づいて正常組織と癌組織の判別をすることができる(特許文献1,2)。さらに、特許文献1では、照射する光の組み合わせを変えて、観察対象の表層,中層,深層の各酸素飽和度の分布を表示することにより、より詳細な癌組織の状態の判別を可能にしている。
酸素飽和度を取得する方法としては、波長帯域と、酸化ヘモグロビンと還元ヘモグロビンの吸光係数が異なる第1信号光と第2信号光を交互に粘膜内の血管に照射して、第1及び第2信号光の各反射光を内視鏡先端部のセンサで検出する方法が知られている(特許文献1〜3)。
センサで検出した第1信号光の反射光に対応する第1信号光画像信号と、第2信号光の反射光に対応する第2信号光画像信号の比率(以下、信号比という)は、血管内の酸素飽和度に変化がなければ一定値を維持するが、酸素飽和度の変化が生じれば、それにもとなって変化する。したがって、第1信号光画像信号と第2信号光画像信号の信号比に基づいて酸素飽和度を算出することができる。
特開2012−213550号公報 特開2012−125402号公報 特開2012−125402号公報
酸素飽和度あるいは酸素飽和度を表す画像(以下、酸素飽和度画像という)を提示されれば、医師はこれに基づいて癌組織の有無を識別することができる。特に、特許文献1のように、内視鏡システムが観察対象の表層,中層,深層の酸素飽和度の分布を提示すれば、医師は癌組織の識別をより正確に行うことができる。
但し、こうした酸素飽和度画像による診断の正確性は、医師の知識や経験(熟練度)による部分も大きく、診断結果にばらつきが生じることがある。例えば、酸素飽和度画像に基づいて癌組織を発見できるとしても、その進行度(例えば、ステージ分類)等のより詳細な診断結果は、医師によって異なってしまう場合がある。また、酸素飽和度画像等の内視鏡システムが提供する各種画像だけでは癌の進行度を診断できない場合もある。
本発明は、観察対象の酸素飽和度に基づいて、より正確かつ詳細な診断を行えるように医師をサポートするための情報を提示する内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法を提供することを目的とする。
本発明の内視鏡システムは、光源装置と、イメージセンサと、酸素飽和度算出部と、分布パターン生成部と、病状スコア算出部と、表示部と、を備える。光源装置は、観察対象に光を照射する。イメージセンサは、光源装置が照射する光の反射光で観察対象を撮像し、画像信号を出力する。酸素飽和度算出部は、画像信号に基づいて観察対象の酸素飽和度を算出する。分布パターン生成部は、酸素飽和度に関する分布を表す分布パターンを生成する。病状スコア算出部は、分布パターンに基づいて観察対象の病状を表す病状スコアを算出する。表示部は、病状スコアまたは病状スコアに基づく情報を表示する。
酸素飽和度が一定値未満の低酸素領域中に酸素飽和度が一定値以上の高酸素領域がある場合の病状スコアは、低酸素領域中に高酸素領域がない場合の病状スコアよりも大きいことが好ましい。また、低酸素領域中に高酸素領域がある場合、低酸素領域に対する高酸素領域の割合が大きいほど病状スコアが大きいことが好ましい。
逆に、酸素飽和度が一定値未満の低酸素領域中に酸素飽和度が一定値以上の高酸素領域がある場合の病状スコアは、低酸素領域中に高酸素領域がない場合の病状スコアよりも小さくなるようにしても良い。この場合、低酸素領域中に高酸素領域がある場合、低酸素領域に対する高酸素領域の割合が大きいほど病状スコアが小さくなる。
病状スコア算出部は、例えば、特定分布形状の基準パターンと、分布パターン生成部が算出した分布パターンとを比較し、基準パターンと分布パターン生成部が算出した分布パターンとの類似度を病状スコアとして算出する。特定分布形状の基準パターンは、酸素飽和度が一定値未満の低酸素領域中に酸素飽和度が一定値以上の高酸素領域があるパターンである。
また、分布パターン生成部は、予め指定された関心領域について分布パターンを生成しても良い。この場合、病状スコア算出部は、関心領域に対して病状スコアを算出する。
内視鏡システムは、さらに類似臨床データ選出部を備えていても良い。類似臨床データ選出部は、過去の臨床データが予め複数記憶されたデータベースを参照して、分布パターンを臨床データと比較し、臨床データのうち分布パターンが類似する類似臨床データを選出して表示部に表示させる。類似臨床データ選出部は、例えば、類似臨床データに含まれる酸素飽和度画像を表示部に表示させる。
また、内視鏡システムは、さらに治療効果スコア算出部を備えていても良い。治療効果スコア算出部は、分布パターンに基づいて、特定の治療方法による治療効果を表す治療効果スコアを算出し、表示部に表示させる。
また、内視鏡システムは、さらに自動保存制御部を備えていても良い。自動保存制御部は、例えば観察対象の静止画像を保存するフリーズ操作がされなかった場合でも、病状スコアが規定値以上の値になった場合には、画像信号と酸素飽和度に基づいて生成される酸素飽和度画像と病状スコアとを関連付けて、自動的に保存する。
表示部は、病状スコアが規定値以上の場合に病状スコアまたは病状スコアに基づく情報を表示しても良い。
また、本発明の内視鏡システムは、画像信号に基づいて観察対象の特徴領域を抽出する特徴領域抽出部を備えていることが好ましい。この場合、病状スコア算出部は、特徴領域における酸素飽和度の分布パターンに基づいて病状スコアを算出する。
特徴領域抽出部は、例えばイメージセンサの青色画素から得られる青色の画像信号または緑色画素から得られる緑色の画像信号に基づいて観察対象の特徴領域を抽出する。
特徴領域は発赤領域であり、発赤領域中に酸素飽和度が一定値以上の高酸素領域がある場合の病状スコアは、発赤領域中に高酸素領域がない場合の病状スコアよりも大きいことが好ましい。また、発赤領域中に高酸素領域がある場合、発赤領域に対する高酸素領域の割合が大きいほど病状スコアが大きいことが好ましい。
特徴領域は発赤領域であり、発赤領域中に酸素飽和度が一定値以上の高酸素領域がある場合の病状スコアを、発赤領域中に高酸素領域がない場合の病状スコアよりも小さくしても良い。この場合、発赤領域中に高酸素領域がある場合、発赤領域に対する高酸素領域の割合が大きいほど病状スコアを小さくすれば良い。
病状スコアを監視し、病状スコアに応じたメッセージを表示部に表示させるメッセージ表示制御部を備えていても良い。
本発明の内視鏡システムのプロセッサ装置は、観察対象に光を照射するための光源装置と、光源装置が照射する光の反射光で観察対象を撮像し、画像信号を出力するイメージセンサと、表示部と、を有する内視鏡システムのプロセッサ装置であり、酸素飽和度算出部と、分布パターン生成部と、病状スコア算出部と、を備える。酸素飽和度算出部は、画像信号に基づいて観察対象の酸素飽和度を算出する。分布パターン生成部は、酸素飽和度に関する分布を表す分布パターンを生成する。病状スコア算出部は、分布パターンに基づいて観察対象の病状を表す病状スコアを算出する。
また、画像信号に基づいて前記観察対象の特徴領域を抽出する特徴領域抽出部を備えていても良い。この場合、病状スコア算出部は、特徴領域における酸素飽和度の分布パターンに基づいて病状スコアを算出する。
本発明の内視鏡システムの作動方法は、観察対象に光を照射するための光源装置と、光源装置が照射する光の反射光で観察対象を撮像し、画像信号を出力するイメージセンサと、表示部と、を有する内視鏡システムの作動方法であり、酸素飽和度算出ステップと、分布パターン生成ステップと、病状スコア算出ステップと、表示ステップと、を備える。酸素飽和度算出ステップでは、酸素飽和度算出部が画像信号に基づいて観察対象の酸素飽和度を算出する。分布パターン生成ステップでは、分布パターン生成部が酸素飽和度に関する分布を表す分布パターンを生成する。病状スコア算出ステップでは、病状スコア算出部が分布パターンに基づいて観察対象の病状を表す病状スコアを算出する。表示ステップでは、表示部が病状スコアまたは病状スコアに基づく情報を表示する。
また、特徴領域抽出部が画像信号に基づいて前記観察対象の特徴領域を抽出する特徴領域抽出ステップを備えていても良い。この場合、病状スコア算出ステップでは、病状スコア算出部は特徴領域における酸素飽和度の分布パターンに基づいて病状スコアを算出する。
本発明のプロセッサ装置の作動方法は、観察対象を撮像して得られる画像信号を処理するプロセッサ装置の作動方法であり、酸素飽和度算出ステップと、分布パターン生成ステップと、病状スコア算出ステップと、を備える。酸素飽和度算出ステップでは、酸素飽和度算出部が画像信号に基づいて観察対象の酸素飽和度を算出する。分布パターン生成ステップでは、分布パターン生成部が酸素飽和度に関する分布を表す分布パターンを生成する。病状スコア算出ステップでは、病状スコア算出部が分布パターンに基づいて観察対象の病状を表す病状スコアを算出する。
また、特徴領域抽出部が画像信号に基づいて前記観察対象の特徴領域を抽出する特徴領域抽出ステップを備えていても良い。この場合、病状スコア算出ステップでは、病状スコア算出部は、特徴領域における酸素飽和度の分布パターンに基づいて病状スコアを算出する。
本発明の内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法によれば、さらに、酸素飽和度に基づいて、より正確かつ詳細な診断を行えるように医師をサポートするための情報を提示することができる。
内視鏡システムの外観図である。 内視鏡システムのブロック図である。 通常観察モード時に発光する光のスペクトルを示すグラフである。 特殊観察モード時に発光する光のスペクトルを示すグラフである。 RGBカラーフィルタの分光透過率を示すグラフである。 通常観察モード時の撮像制御を示す説明図である。 特殊観察モード時の撮像制御を示す説明図である。 酸素飽和度画像生成部のブロック図である。 信号比B1/G2,R2/G2と酸素飽和度の相関関係を示すグラフである。 酸化ヘモグロビンと還元ヘモグロビンの吸光係数を示すグラフである。 酸素飽和度を算出する方法を示す説明図である。 評価部を示すブロック図である。 早期癌の断面と、通常観察画像及び酸素飽和度を示す説明図である。 進行癌の断面と、通常観察画像及び酸素飽和度を示す説明図である。 基準パターンと病状スコアの関係を示す説明図である。 内視鏡システムの作用を示すフローチャートである。 早期癌がある場合の表示例を示す説明図である。 進行癌がある場合の表示例を示す説明図である。 早期癌がある場合の別の表示例を示す説明図である。 進行癌がある場合の別の表示例を示す説明図である。 基準パターンを外部から得る場合の評価部を示すブロック図である。 関心領域を示す説明図である。 第2実施形態の評価部を示すブロック図である。 第2実施形態の表示例を示す説明図である。 第3実施形態の評価部を示すブロック図である。 第3実施形態の表示例を示す説明図である。 第4実施形態の評価部を示すブロック図である。 第4実施形態の表示例を示す説明図である。 第5実施形態の評価部を示すブロック図である。 第6実施形態の評価部を示すブロック図である。 第6実施形態における分布パターンの算出方法を示す説明図である。 第7実施形態の内視鏡システムのブロック図である。 LEDの発光帯域とHPFの特性を示すグラフである。 第7実施形態における通常観察モード時の撮像制御を示す説明図である。 第7実施形態における特殊観察モード時の撮像制御を示す説明図である。 第8実施形態の内視鏡システムのブロック図である。 回転フィルタの平面図である。
[第1実施形態]
図1に示すように、第1実施形態の内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16、モニタ18(表示部)と、コンソール20とを有する。内視鏡12は、光源装置14と光学的に接続されるとともに、プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部21と、挿入部21の基端部分に設けられた操作部22と、挿入部21の先端側に設けられた湾曲部23及び先端部24を有している。操作部22のアングルノブ22aを操作することにより、湾曲部23は湾曲動作する。この湾曲動作にともなって、先端部24が所望の方向に向けられる。
また、操作部22には、アングルノブ22aの他、モード切替SW(モード切替スイッチ)22bと、ズーム操作部22cと、静止画像を保存するためのフリーズボタン(図示しない)と、が設けられている。モード切替SW22bは、通常観察モードと、特殊観察モードの2種類のモード間の切り替え操作に用いられる。通常観察モードは、被検体内の観察対象をフルカラー画像化した通常光画像をモニタ18に表示するモードである。特殊観察モードは、観察対象の血中ヘモグロビンの酸素飽和度を画像化した酸素飽和度画像をモニタ18に表示するモードである。ズーム操作部22cは、内視鏡12内のズームレンズ47(図2参照)を駆動させて、観察対象を拡大させるズーム操作に用いられる。
プロセッサ装置16は、モニタ18及びコンソール20と電気的に接続される。モニタ18は、通常光画像や酸素飽和度画像等の画像、及びこれらの画像に関する情報(以下、画像情報等という)を表示する。コンソール20は、機能設定等の入力操作を受け付けるUI(ユーザインタフェース)として機能する。なお、プロセッサ装置16には、画像情報等を記録する記録部(図示省略)を接続しても良い。
図2に示すように、光源装置14は、中心波長473nmの第1青色レーザ光を発する第1青色レーザ光源(473LD(レーザダイオード))34と、中心波長445nmの第2青色レーザ光を発する第2青色レーザ光源(445LD)36とを発光源として備えている。これらの半導体発光素子からなる各光源34,36の発光は、光源制御部40により個別に制御される。このため、第1青色レーザ光源34の出射光と、第2青色レーザ光源36の出射光の光量比は変更自在になっている。
光源制御部40は、通常観察モードの場合には、第2青色レーザ光源36を点灯させる。これに対して、特殊観察モードの場合には、1フレーム間隔で、第1青色レーザ光源34と第2青色レーザ光源36を交互に点灯させる。なお、第1,第2青色レーザ光の半値幅は±10nm程度にすることが好ましい。また、第1青色レーザ光源34と第2青色レーザ光源36は、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオードを用いることもできる。また、上記光源として、発光ダイオード等の発光体を用いた構成としても良い。
各光源34,36から出射される第1,第2青色レーザ光は、集光レンズ、光ファイバ、合波器等の光学部材(いずれも図示せず)を介してライトガイド(LG)41に入射する。ライトガイド41は、光源装置14と内視鏡12を接続するユニバーサルコード17(図1参照)と、内視鏡12に内蔵されている。ライトガイド41は、各光源34,36からの第1,第2青色レーザ光を、内視鏡12の先端部24まで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3〜0.5mmの細径なファイバケーブルを使用することができる。
内視鏡12の先端部24は、照明光学系24aと撮像光学系24bを有している。照明光学系24aには、蛍光体44と、照明レンズ45が設けられている。蛍光体44には、ライトガイド41から第1,第2青色レーザ光が入射する。蛍光体44は、第1または第2青色レーザ光が照射されることで蛍光を発する。また、一部の第1または第2青色レーザ光は、そのまま蛍光体44を透過する。蛍光体44を出射した光は、照明レンズ45を介して観察対象に照射される。
通常観察モードにおいては、第2青色レーザ光が蛍光体44に入射するため、図3に示すスペクトルの白色光(第2白色光)が観察対象に照射される。この第2白色光は、第2青色レーザ光と、この第2青色レーザ光により蛍光体44から励起発光する緑色〜赤色の第2蛍光とから構成される。したがって、第2白色光は、波長範囲が可視光全域に及んでいる。
一方、特殊観察モードにおいては、第1青色レーザ光と第2青色レーザ光が蛍光体44に交互に入射することにより、図4に示すスペクトルの第1白色光と第2白色光が交互に観察対象に照射される。第1白色光は、第1青色レーザ光と、この第1青色レーザ光により蛍光体44から励起発光する緑色〜赤色の第1蛍光とから構成される。したがって、第1白色光は、波長範囲が可視光全域に及んでいる。第2白色光は、通常観察モード時に照射される第2白色光と同様である。
第1蛍光と第2蛍光は、波形(スペクトルの形状)がほぼ同じであり、第1蛍光の強度(I1(λ))と第2蛍光の強度(I2(λ))の比(以下、フレーム間強度比という)は、何れの波長λにおいても同じである。例えば、I2(λ1)/I1(λ1)=I2(λ2)/I1(λ2)である。このフレーム間強度比I2(λ)/I1(λ)は、酸素飽和度の算出精度に影響を与えるものであるため、光源制御部40により、予め設定された基準フレーム間強度比を維持するように高精度に制御されている。
なお、蛍光体44は、第1及び第2青色レーザ光の一部を吸収して、緑色〜赤色に励起発光する複数種類の蛍光体(例えばYAG系蛍光体、あるいはBAM(BaMgAl1017)等の蛍光体)を含んで構成されるものを使用することが好ましい。また、本実施形態のように、半導体発光素子を蛍光体44の励起光源として用いれば、高い発光効率で高強度の第1白色光及び第2白色光が得られる。また、各白色光の強度を容易に調整できる上に、色温度、色度の変化を小さく抑えることができる。
内視鏡12の撮像光学系24bは、撮像レンズ46、ズームレンズ47、センサ48を有している(図2参照)。観察対象からの反射光は、撮像レンズ46及びズームレンズ47を介してセンサ48に入射する。これにより、センサ48に観察対象の反射像が結像される。ズームレンズ47は、ズーム操作部22cを操作することでテレ端とワイド端との間を移動する。ズームレンズ47がテレ端側に移動すると観察対象の反射像が拡大する。一方、ズームレンズ47がワイド端側に移動することで、観察対象の反射像が縮小する。なお、拡大観察をしない場合(非拡大観察時)には、ズームレンズ47はワイド端に配置されている。そして、拡大観察を行う場合には、ズーム操作部22cの操作によってズームレンズ47はワイド端からテレ端側に移動される。
センサ48は、カラーの撮像素子であり、観察対象の反射像を撮像して画像信号を出力する。センサ48は、例えばCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサである。また、センサ48は、撮像面にRGBカラーフィルタが設けられたRGB画素を有しており、RGBの各色の画素で光電変換をすることによってR,G,Bの三色の画像信号を出力する。
図5に示すように、Bカラーフィルタは380〜560nmの分光透過率を有しており、Gカラーフィルタは450〜630nmの分光透過率を有しており、Rカラーフィルタ580〜760nmの分光透過率を有している。したがって、通常観察モード時に第2白色光が観察対象に照射された場合には、B画素には第2青色レーザ光と第2蛍光の緑色成分の一部が入射し、G画素には第2蛍光の緑色成分の一部が入射し、R画素には第2蛍光の赤色成分が入射する。但し、第2青色レーザ光は第2蛍光よりも発光強度が極めて大きいのでB画素から出力するB画像信号の大部分は第2青色レーザ光の反射光成分で占められている。
一方、特殊観察モード時に第1白色光が観察対象に照射された場合には、B画素には第1青色レーザ光と第1蛍光の緑色成分の一部が入射し、G画素には第1蛍光の緑色成分の一部が入射し、R画素には第1蛍光の赤色成分が入射する。但し、第1青色レーザ光は第1蛍光よりも発光強度が極めて大きいので、B画像信号の大部分は第1青色レーザ光の反射光成分で占められている。なお、特殊観察モード時に第2白色光が観察対象に照射されたときのRGB各画素での光入射成分は、通常観察モードの場合と同様である。
なお、センサ48としては、撮像面にC(シアン),M(マゼンタ),Y(イエロー)及びG(グリーン)の補色フィルタを備えた、いわゆる補色イメージセンサを用いても良い。センサ48として補色イメージセンサを用いる場合は、CMYGの四色の画像信号からRGBの三色の画像信号に色変換する色変換部を、内視鏡12、光源装置14またはプロセッサ装置16のいずれかに設けておけば良い。こうすれば補色イメージセンサを用いる場合でも、CMYGの4色の画像信号から色変換によってRGB3色の画像信号を得ることができる。
撮像制御部49はセンサ48の撮像制御を行う。図6に示すように、通常観察モード時には、1フレームの期間毎に、第2白色光で照明された観察対象をセンサ48で撮像する。これにより、1フレーム毎にセンサ48からRGBの各画像信号が出力される。
撮像制御部49は、特殊観察モード時も、通常観察モード時と同様にしてセンサ48の撮像制御を行う。但し、特殊観察モード下ではセンサ48の撮像のフレームに同期して第1白色光と第2白色光が交互に観察対象に照射されるので、図7に示すように、センサ48は、1フレーム目に第1白色光で観察対象を撮像し、次の2フレーム目では第2白色光で観察対象を撮像する。センサ48は、1フレーム目,2フレーム目ともRGBの各色の画像信号を出力するが、依拠する白色光のスペクトルが異なるので、以下では区別のために、1フレーム目に第1白色光で撮像して得られるRGB各色の画像信号をそれぞれR1画像信号,G1画像信号,B1画像信号といい、2フレーム目に第2白色光で撮像して得られるRGB各色の画像信号をR2画像信号,G2画像信号,B2画像信号という。
なお、酸素飽和度の算出には、B1画像信号とG2画像信号の信号比B1/G2と、R2画像信号とG2画像信号の信号比R2/G2が用いられる。これらのうち、酸素飽和度の算出に必須な信号比は、B1画像信号とG2画像信号の信号比B1/G2である。このため、本実施形態では、第1白色光中のB1画像信号になる成分(蛍光体44を透過した第1青色レーザ光)が第1信号光であり、第2白色光中のG2画像信号になる成分(第2蛍光の緑色帯域成分)が第2信号光である。
センサ48から出力される各色の画像信号は、CDS(correlated double sampling)/AGC(automatic gain control)回路50送信される(図2参照)。CDS/AGC回路50は、センサ48から出力されるアナログの画像信号に相関二重サンプリング(CDS)や自動利得制御(AGC)を行う。CDS/AGC回路50を経た画像信号は、A/D変換器52によってデジタル画像信号に変換される。こうしてデジタル化された画像信号はプロセッサ装置16に入力される。
プロセッサ装置16は、受信部54と、画像処理切替部60と、通常観察画像処理部62と、特殊観察用画像処理部64と、評価部65と、画像表示信号生成部66とを備えている。受信部54は、内視鏡12から入力される画像信号を受信する。受信部54はDSP(Digital Signal Processor)56とノイズ除去部58を備えており、DSP56は、受信した画像信号に対して色補正処理等のデジタル信号処理を行う。ノイズ除去部58は、DSP56で色補正処理等が施された画像信号に対して、例えば移動平均法やメディアンフィルタ法等によるノイズ除去処理を施す。ノイズが除去された画像信号は、画像処理切替部60に入力される。
画像処理切替部60は、モード切替SW22bが通常観察モードにセットされている場合には、画像信号を通常観察画像処理部62に入力する。一方、モード切替SW22bが特殊観察モードに設定されている場合、画像処理切替部60は、画像信号を特殊観察用画像処理部64に入力する。
通常観察画像処理部62は、色変換部68と、色彩強調部70と、構造強調部72とを有する。色変換部68は、入力された1フレーム分のRGBの各画像信号を、それぞれR画素、G画素、B画素に割り当てたRGB画像データを生成する。そして、RGB画像データに対して、さらに3×3のマトリックス処理、階調変換処理、3次元LUT処理等の色変換処理を施す。
色彩強調部70は、色変換処理済みのRGB画像データに対して、各種色彩強調処理を施す。構造強調部72は、色彩強調処理済みのRGB画像データに対して、空間周波数強調等の構造強調処理を施す。構造強調部72で構造強調処理が施されたRGB画像データは、通常観察画像として画像表示信号生成部66に入力される。
特殊観察画像処理部64は、酸素飽和度画像生成部76と、構造強調部78とを有する。酸素飽和度画像生成部76は、酸素飽和度を算出するとともに、算出した酸素飽和度を表す酸素飽和度画像を生成する。
構造強調部78は、酸素飽和度画像生成部76から入力される酸素飽和度画像に対して、空間周波数強調処理等の構造強調処理を施す。構造強調部72で構造強調処理が施された酸素飽和度画像は、画像表示信号生成部66に入力される。
評価部65は、酸素飽和度画像生成部76で算出される酸素飽和度のデータを取得し、この酸素飽和度のデータに基づいて酸素飽和度に関する分布を表す分布パターンを生成する。そして、算出した分布パターンに基づいて観察対象の病状を表す病状スコアを算出する。病状とは、例えば、癌の進行度である。
表示用画像信号生成部66は、通常観察画像または酸素飽和度画像を表示用形式の信号(表示用画像信号)に変換し、モニタ18に入力する。これにより、モニタ18には通常観察画像または酸素飽和度画像が表示される。また、表示用画像信号生成部66には、評価部65から病状スコアが入力される。このため、表示画像信号生成部66は、酸素飽和度画像とともに、病状スコアまたは病状スコアに基づく情報(警告メッセージ等)をモニタ18に表示する。このため、医師は、酸素飽和度画像だけでなく、病状スコアまたは病状スコアに基づく情報の表示を参照することで、病変の可能性がある組織を、より客観的で正確かつ詳細に診断することができる。
図8に示すように、酸素飽和度画像生成部76は、信号比算出部81と、相関関係記憶部82と、酸素飽和度算出部83と、画像生成部87と、を備えている。
信号比算出部81には、酸素飽和度画像生成部76に入力される2フレーム分の画像信号のうち、B1画像信号、G2画像信号、R2画像信号が入力される。信号比算出部81は、B1画像信号とG2画像信号の信号比B1/G2と、G2画像信号とR2画像信号の信号比R2/G2とを、画素毎に算出する。
相関関係記憶部82は、信号比B1/G2及び信号比R2/G2と、酸素飽和度の相関関係を記憶している。この相関関係は、図9に示す二次元空間上に酸素飽和度の等値線を定義した2次元テーブルで記憶されている。信号比B1/G2及び信号比R2/G2に対する等値線の位置及び形状は、光散乱の物理的なシミュレーションによって予め得られ、各等値線の間隔は、血液量(信号比R2/G2)に応じて変化する。なお、信号比B1/G2及び信号比R2/G2と、酸素飽和度との相関関係はlogスケールで記憶されている。
なお、上記相関関係は、図10に示すように、酸化ヘモグロビン(グラフ90)や還元ヘモグロビン(グラフ91)の吸光特性や光散乱特性と密接に関連し合っている。例えば、第1青色レーザ光の中心波長473nmのように、酸化ヘモグロビンと還元ヘモグロビンの吸光係数の差が大きい波長では、酸素飽和度の情報を取り扱いやすい。しかしながら、473nmの光に対応する信号を含むB1画像信号は、酸素飽和度だけでなく、血液量にも依存度が高い。そこで、B1画像信号に加え、主として血液量に依存して変化する光に対応するR2画像信号と、B1画像信号とR2画像信号のリファレンス信号となるG2画像信号から得られる信号比B1/G2及びR2/G2を用いることで血液量に依存することなく、酸素飽和度を正確に求めることができる。
酸素飽和度算出部83は、相関関係記憶部82に記憶された相関関係を参照し、信号比算出部81で算出された信号比B1/G2及び信号比R2/G2に対応する酸素飽和度を画素毎に算出する。例えば、特定画素における信号比B1/G2及び信号比R2/G2がそれぞれB1/G2及びR2/G2である場合、図11に示すように、相関関係を参照すると、信号比B1/G2及び信号比R2/G2に対応する酸素飽和度は「60%」である。したがって、酸素飽和度算出部83は、この画素の酸素飽和度を「60%」と算出する。
なお、信号比B1/G2及び信号比R2/G2が極めて大きくなったり、極めて小さくなったりすることはほとんどない。すなわち、信号比B1/G2や信号比R2/G2の値が、酸素飽和度0%の下限ライン93を上回ったり、反対に酸素飽和度100%の上限ライン94を下回ったりすることはほとんどない。但し、算出する酸素飽和度が下限ライン93を下回ってしまった場合には酸素飽和度算出部83は酸素飽和度を0%とし、上限ライン94を上回ってしまった場合には酸素飽和度を100%とする。また、信号比B1/G2及び信号比R2/G2に対応する点が下限ライン93と上限ライン94の間から外れた場合には、その画素における酸素飽和度の信頼度が低いことが分かるように表示をしたり、酸素飽和度を算出しないようにしても良い。
画像生成部84は、酸素飽和度算出部83で算出された酸素飽和度のデータと、B2画像信号、G2画像信号、R2画像信号を用いて、酸素飽和度を画像化した酸素飽和度画像を生成する。具体的には、画像生成部84は、入力される元のB2画像信号,G2画像信号,R2画像信号に対して、酸素飽和度に応じたゲインを画素毎に施し、ゲインを施したB2画像信号,G2画像信号,R2画像信号を用いてRGB画像データを生成する。例えば、画像生成部84は、補正酸素飽和度が60%以上の画素ではB2画像信号,G2画像信号,R2画像信号のいずれにも同じゲイン「1」を乗じる。これに対して、補正酸素飽和度が60%未満の画素では、B2画像信号に対して「1」未満のゲインを乗じ、G2画像信号及びR2画像信号に対しては「1」以上のゲインを乗じる。このゲイン処理後のB1画像信号,G2画像信号,R2画像信号を用いて生成されたRGB画像データが酸素飽和度画像である。
画像生成部84が生成した酸素飽和度画像では、高酸素の領域(酸素飽和度が60〜100%の領域)では、通常観察画像と同様の色で表される。一方、酸素飽和度が特定値を下回る低酸素の領域(酸素飽和度が0〜60%の領域)は、通常観察画像とは異なる色(疑似カラー)で表される。
なお、本実施形態では、画像生成部84は、低酸素の領域のみ疑似カラー化するゲインを乗じているが、高酸素領域でも酸素飽和度に応じたゲインを施し、酸素飽和度画像の全体を疑似カラー化しても良い。また、低酸素領域と高酸素領域を酸素飽和度60%で分けているがこの境界も任意である。
図12に示すように、評価部65は、分布パターン生成部96、病状スコア算出部97、基準パターン記憶部98を備える。
分布パターン生成部96は、酸素飽和度算出部83が画素毎に算出した酸素飽和度のデータを取得し、酸素飽和度に関する分布を表す分布パターンを生成する。分布パターンとは、例えば、各画素の酸素飽和度を画像のように配列した2次元状の分布パターンや、これを所定方向に微分した酸素飽和度の勾配に関する分布パターン、各画素の酸素飽和度を画像のように配列した2次元状の分布パターンをフーリエ変換することにより得られる空間周波数スペクトルである。本実施形態では、分布パターン生成部96は、酸素飽和度の分布を分布パターンとして算出するが、分布パターン生成部96は、他の上記分布パターンを生成しても良いし、複数の分布パターンを生成しても良い。
例えば、図13の通常観察画像101及びその中央の断面102に示すように、癌組織103が粘膜基板105を浸潤せずに粘膜層104に留まっている早期癌の場合、癌組織103の周辺には新生血管103aが構築されるものの、これらの新生血管103aは粘膜下組織層106の太い血管106aには到達しない。このため、酸素飽和度の分布115やその中央での分布116に示すように、癌組織103は正常組織よりも酸素飽和度が低い低酸素領域になっている。また、癌組織が多い部分ほど酸素が欠乏して酸素飽和度が低下するので、早期癌では、癌組織103の概ね中央近傍が最も低酸素状態になり、中央のX1−X2断面に沿ってみれば、酸素飽和度の分布は、U字(あるいはV字)の分布になる。
一方、図14の通常観察画像110及びその中央の断面112に示すように、癌組織113が粘膜基板105を浸潤した進行癌の場合、癌組織113の周辺に構築された新生血管113aの一部は粘膜下組織層106の太い血管106aに到達する。このため、酸素飽和度の分布125やその中央での分布126に示すように、新生血管113aが粘膜下組織層106の太い血管106aに到達していない癌組織113の周辺部分では、早期癌組織103と同様に周辺の正常組織よりも酸素飽和度が低い低酸素状態になるが、新生血管113aが粘膜下組織層106の太い血管106aに到達した中央部分では酸素の供給が豊富になるので、例えば正常組織と同等程度の高酸素状態になる。このため、進行癌では、中央部分に高酸素領域が形成され、その周囲が低酸素領域で囲まれた円環状の低酸素領域が観察される。また、中央の断面X1−X2に沿ってみれば、酸素飽和度の分布は、中央が凸になったW字に近い分布になる。
本実施形態では、分布パターン生成部96は、この酸素飽和度の分布115,125を分布パターンとして算出する。酸素飽和度の勾配や空間周波数スペクトルは、上記酸素飽和度の分布115,125を微分し、あるいはフーリエ変換することにより求めることができる。なお、図13及び図14から容易に分かるように、癌が発生すると、酸素飽和度の空間周波数スペクトルには高周波成分が生じ、癌が進行して粘膜筋板106を浸潤した場合に、さらなる高周波成分が生じる。
病状スコア算出部97は、分布パターン生成部96が算出した分布パターンに基づいて、観察対象の病状を表す病状スコアを算出する。具体的には、分布パターン生成部96が算出した分布パターンを、基準パターン記憶部98に予め記憶された基準パターンと比較し、その類似度を病状スコアとして算出する。本実施形態では、分布パターン生成部96は酸素飽和度の分布を分布パターンとして算出するので、これに対応して、基準パターン生成部98には過去の臨床データ等に基づいて作成された酸素飽和度の分布の雛形が基準パターンとして予め記憶している。病状スコア算出部97は、分布パターン生成部96から得る分布パターンと、基準パターンとのマッチングを行って病状スコア(類似度)を算出する。
図15に示すように、基準パターン130は、例えば酸素飽和度が一定値未満の低酸素領域131中に、酸素飽和度が一定値以上の高酸素領域132を有する特定の酸素飽和度の分布形状である。すなわち、この基準パターン130は、進行癌の酸素飽和度の分布を模した酸素飽和度の分布形状になっている。なお、低酸素領域131や高酸素領域132を区別する酸素飽和度の一定値は、臨床データに基づいて定められている。また、低酸素領域131の外周部分133の酸素飽和度は、正常組織の酸素飽和度を模した値になっている。
病状スコア算出部97は、基準パターン130を拡大あるいは縮小して、分布パターン生成部96が算出した分布パターンとマッチングする。低酸素領域中に高酸素領域がない早期癌の分布パターン115(図13参照)に比べて、低酸素領域中に高酸素領域を有する進行癌の分布パターン125(図14参照)の方が基準パターン130との類似度が高い。このため、病状スコアは進行癌を観察している場合に大きい。なお、癌がない場合には、分布パターン生成部96が算出した分布パターンには低酸素領域すら含まれないので、早期癌を観察している場合よりもさらに病状スコアは小さい。
上記のように、病状スコアは、低酸素領域中に高酸素領域がある場合に高スコアになるが、さらに低酸素領域中にある高酸素領域の割合が大きいほど、病状スコアが大きいことが好ましい。低酸素領域中にある高酸素領域の割合は粘膜筋板105が浸潤されている範囲に対応するので、このように病状スコアをスコアリングすれば、進行癌の進行程度をさらに詳細かつ客観的に評価することができる。低酸素領域中にある高酸素領域の割合に応じて大きい病状スコアを算出するためには、例えば、高酸素領域132の面積を変えた複数の基準パターンを予め用意し、これらと分布パターンとのマッチングを行い、各基準パターンとのマッチングで得られた病変スコアの総計を最終的な病変スコアとすれば良い。また、基準パターン130から演算により、低酸素領域中にある高酸素領域の割合が異なる基準パターンを生成して用いても良い。また、マッチングで得られた類似度を、低酸素領域中にある高酸素領域の割合に応じて補正した値を病変スコアにしても良い。
なお、病状スコア算出部97が算出した病状スコアは、画像表示信号生成部66に入力され、酸素飽和度画像とともにモニタ18に表示される。
次に、本実施形態の内視鏡システム10による観察の流れを図16のフローチャートに沿って説明する。まず、通常観察モードにおいて、最も遠景の状態からスクリーニングを行う(S10)。通常観察モードでは、通常観察画像がモニタ18に表示される。このスクリーニング時に、ブラウニッシュエリアや発赤等の病変の可能性がある部位(以下、病変可能性部位という)を発見した場合(S11)には、モード切替SW22bを操作して、特殊観察モードに切り替える(S12)。そして、この特殊観察モードにおいて、病変可能性部位の診断を行う。
特殊観察モードでは、第1及び第2白色光がセンサ48の撮像フレームに同期して交互に観察対象に照射されるので、第1白色光が照射されたフレームではセンサ48はR1画像信号,G1画像信号,B1画像信号を出力し、第2白色光が照射されたフレームではR2画像信号,G2画像信号,B2画像信号を出力する。これら2フレーム分の画像信号に基づいて、信号比算出部81によって信号比B1/G2及び信号比R2/G2が画素毎に算出される(S13)。そして、酸素飽和度算出部83によって、これらの信号比B1/G2及び信号比R2/G2に基づいて、画素毎に酸素飽和度が算出される(S14)。酸素飽和度が算出されると、画像生成部87においてB2画像信号、G2画像信号、R2画像信号に酸素飽和度に応じたゲインを施した酸素飽和度画像が生成される(S15)。
また、分布パターン生成部96によって、酸素飽和度算出部83で算出された酸素飽和度のデータに基づいて酸素飽和度に関する分布を表す分布パターンが算出され(S16)、さらに病状スコア算出部97によってこの分布パターンに基づいて病状スコアが算出される(S17)。
こうして生成及び算出された酸素飽和度画像と病状スコアは、モニタ18に表示される(S18)。例えば、図17に示すように、病変組織が早期癌の場合、癌組織103のほぼ全体が疑似カラー化された酸素飽和度画像141と、病状スコア「12」がモニタ18に表示される。また、図18に示すように、病変組織が進行癌の場合、疑似カラー化された低酸素領域中に通常色の高酸素領域を有する癌組織113が写し出された酸素飽和度画像142と、病状スコア「95」がモニタ18に表示される。
上記のように、早期癌では癌組織103の全体が疑似カラー化され、進行癌では癌組織113が円環状に疑似カラー化されるので、医師は、モニタ18に表示された酸素飽和度画像を観察することにより、病変組織が早期癌であるか進行癌であるか(あるいは癌でないか)を判別できる。これに加え、内視鏡システム10では、モニタ18には浸潤の可能性を客観的に評価した病変スコアが表示されているので、この病変スコアを見れば、より容易に浸潤の可能性を把握することができ、癌の進行度まで含めた詳細な診断を正確かつ容易に行うことができる。
なお、こうした酸素飽和度(酸素飽和度画像)の表示は、通常観察モードに切り替えられるまで継続して行わる(S19)。また、診断を終了する場合には、内視鏡12の挿入部21を被検体内から抜き出す(S20)。
以上のように、内視鏡システム10は、酸素飽和度画像をモニタ18に表示するだけでなく、さらに病変スコアを算出し、モニタ18に表示することにより、医師の診断を支援することができる。内視鏡システム10は、この病変スコアの算出及び表示による支援を、観察対象を観察している最中にリアルタイムに行うことができる。特に、内視鏡システム10は、観察対象の表面を観察して、観察対象の内部(病変の深さ方向)への病変の進行度をスコア化することができるので、観察に使用する波長を変更する等して観察対象の深さ毎の観察をする場合よりも、迅速に(例えば観察のフレームレートを落とさずに)診断を支援する情報を提示することができる。
なお、内視鏡システム10は、酸素飽和度60%を境界にして低酸素領域を疑似カラー化した酸素飽和度画像を生成及び表示するが、さらに酸素飽和度をさらに細かく段階的に分け、各段階で異なる色になるように疑似カラー化しても良い。例えば、酸素飽和度に応じて画像信号に乗じるゲイン変えることによって、酸素飽和度の各段階で異なる色となるようにして表示することができる。この場合、図19及び図20に示すように、早期癌の癌組織103や進行癌の癌組織113の内部の酸素飽和度の分布形状が詳細に表れた酸素飽和度画像143,144を表示することができる。
なお、内視鏡システム10は、癌の進行度の診断を支援する病状スコアを算出及び表示しているが、同様の方法で、癌以外の病変(炎症や潰瘍等)の進行度の診断を支援する病状スコアを算出及び表示することができる。
なお、内視鏡システム10では、癌の進行度に応じて大きくなる病状スコアを算出及び表示しているが、逆に、癌が進行度に応じて小さくなる病状スコアを算出しても良い。例えば、病状スコア算出部97は、分布パターン生成部96から得る分布パターンと基準パターンの類似度の逆数を病状スコアとして算出して良い。この場合、低酸素領域中に高酸素領域がない場合に最も病状スコアが大きく、低酸素領域中に高酸素領域がある場合に病状スコアは小さくなる。そして、低酸素領域中の高酸素領域の割合が大きいほどさらに病状スコアは小さくなる。このため、病状スコアの小ささが癌の進行度を表す。
なお、内視鏡システム10では、基準パターン130を予め記憶した基準パターン記憶部98が評価部65に設けられているが、図21に示すように、例えばプロセッサ装置16とネットワーク接続された外部のデータベース151から基準パターン130を取得しても良い。このように、外部データベース151から基準パターン130を取得するようにしておくと、最新の症例に基づいて基準パターン130が更新された場合でも、基準パターン記憶部98のデータを更新するメンテナンスを行わなくても常に最適な基準パターンを用いて病変スコアを算出することができる。
なお、内視鏡システム10では、分布パターン生成部96及び病変スコア算出部97が分布パターン及び病変スコアを算出する領域を指定していないが、分布パターン生成部96及び病変スコア算出部97は、図22に示すように予め指定された関心領域161について分布パターン及び病変スコアの算出をしても良い。こうすれば、病変スコアの算出を素早く行うことができる。関心領域161は、例えば、通常観察画像110等(酸素飽和度画像でも良い)を観察しながら、医師が指定する領域である。関心領域161の指定は、プロセッサ装置16で行うことができる。もちろん、関心領域161が指定されない場合には、観察をしている全範囲について分布パターン及び病変スコアの算出をし、関心領域161が指定された場合には指定された関心領域161について分布パターン及び病変スコアの算出をすれば良い。
なお、関心領域161は、内視鏡システム10が自動的に行っても良い。例えば、分布パターン生成部96で生成する分布パターン115,125から低酸素領域を含む所定サイズ及び所定形状(例えば四角形)の領域を関心領域として抽出する関心領域抽出部を評価部65に設け、抽出された関心領域について病状スコアを算出しても良い。
なお、内視鏡システム10では、分布パターン生成部96において1つの分布パターン(酸素飽和度の分布形状)を算出し、病変スコア算出部97では、これに対応する病変スコアを算出しているが、酸素飽和度の勾配の分布パターン等、他の分布パターンを含め、複数の分布パターンを生成する場合には、各分布パターンについて算出した病変スコアの合計値、各分布パターンについて算出した病変スコアを重み付けして加算した値等、各分布パターンについて算出した病変スコアを用いて演算した結果を最終的に算出及び表示する病変スコアにすれば良い。
[第2実施形態]
図23に示すように、第2実施形態の内視鏡システムは、評価部65にさらに類似臨床データ選出部201を備える。それ以外の構成は第1実施形態の内視鏡システム10と同じである。
類似臨床データ選出部201は、病状スコア算出部97から病状スコアを取得し、取得した病状スコアと病変スコアが近い(あるいは一致する)過去の症例を、複数の臨床データ203が記憶された臨床データベース202から選出する。そして、選出した臨床データ(以下、類似臨床データという)を画像表示信号生成部66に入力する。これにより、図24に示すように、例えば類似臨床データに含まれる酸素飽和度画像206を、観察対象の酸素飽和度画像142と並べてモニタ18に表示させる。
この第2実施形態の内視鏡システムでは、病状スコアに加えて、類似臨床データの酸素飽和度画像206をリアルタイムに医師に提示することができる。
なお、酸素飽和度画像206の他に、類似臨床データに含まれる通常観察画像や狭帯域光で観察した場合の狭帯域光画像等、他の種類の画像をモニタ18に表示させても良い。また、類似臨床データに、各種画像の他、病名等の診断の結果や、行った治療とその効果等の記録が含まれる場合、これらをモニタ18に表示しても良い。こうした類似症例の様々な記録も医師の診断の支援になる。
なお、臨床データベース202は、内視鏡システムとネットワーク接続された外部データベースでも良いし、内視鏡システム(プロセッサ装置16)が内蔵するデータベースでも良い。また、病状スコアが同じものが複数ある場合には、例えば、これらのうち最も新しいものを選んで表示させたり、参照回数が多いものを選んで表示させたりしても良い。また、類似臨床データとして表示する臨床データを、病状スコア毎に予め設定しておいても良い。また、類似臨床データは、被検体の年齢や性別、観察部位等の病状スコア以外の観察対象との共通性に応じて絞り込んで選出しても良い。
なお、第2実施形態の内視鏡システムでは、類似臨床データを1例選出しているが、複数の類似臨床データを選出し、モニタ18に表示させても良い。また、複数の類似臨床データが選出された場合には、これらのリストをモニタ18に表示し、このリストから医師が選択した類似臨床データの酸素飽和度画像等をモニタ18に表示させても良い。
[第3実施形態]
図25に示すように、第3実施形態の内視鏡システムは、第1実施形態の内視鏡システム10に対して、評価部65に治療効果スコア算出部301を加えたものであり、これ以外の構成は、第1実施形態の内視鏡システム10と同じである。
治療効果スコア算出部301は、分布パターン生成部96から分布パターンを取得し、取得した分布パターンに基づいて、特定の治療方法による治療効果を表す治療効果スコアを算出する。具体的には、分布パターン(酸素飽和度の分布形状)や分布パターンから算出される情報(低酸素領域の面積、低酸素領域中の高酸素領域の割合等)に基づいて治療効果スコアを算出する。治療効果スコア算出部301は、算出した治療効果スコアを画像表示信号生成部66に入力することにより、図26に示すように、観察対象の酸素飽和度画像142と並べて、治療効果スコア302をモニタ18に表示させる。特定の治療方法とその治療効果とは、病変が癌の場合、例えば、抗癌剤とその効き目、放射線治療とその効き目、外科手術とその予後(生存率、再発可能性や転移可能性)等である。
例えば、抗癌剤の場合、低酸素領域は血流が悪いので抗癌剤の効果が薄く、高酸素領域では高い効果が得られるので、治療効果スコア算出部301は、低酸素領域が多い場合に抗癌剤の治療効果スコアを低く、高酸素領域が多い(特に低酸素領域中にある高酸素領域の割合が大きい)場合に、抗癌剤の治療効果スコアを高くスコアリングする。また、放射線治療の場合、低酸素領域ではフリーラジカルの発生量が低下するので、治療効果が薄くなるので、治療効果スコア算出部301は、低酸素領域が多い場合に放射線治療の治療効果スコアを低くスコアリングし、高酸素領域が多い場合(低酸素領域中にある高酸素領域の割合が大きい)場合に、放射線治療の治療効果スコアを高くスコアリングする。
[第4実施形態]
図27に示すように、第4実施形態の内視鏡システムは、第1実施形態の内視鏡システム10に対して、評価部65にメッセージ表示制御部401を加えたものであり、これ以外の構成は、第1実施形態の内視鏡システム10と同じである。
メッセージ表示制御部401は、病状スコア算出部97から病状スコアを取得し、取得した病状スコアの値を監視する。そして、例えば、メッセージ表示制御部401は、警告等の病状スコアに応じた情報を画像表示信号生成部66に入力する。これにより、図28に示すように、観察対象の酸素飽和度画像142と並べて、病状スコアに応じたメッセージ402をモニタ18に表示させる。例えば、病状スコアが大きい場合には、粘膜筋板105や粘膜下組織層106に浸潤している可能性が高いので、病状スコアが予め定めた特定値以上の場合に、浸潤の可能性を警告するメッセージ402を表示することが好ましい。なお、メッセージ表示制御部401は、病状スコアの監視を常に行うが、メッセージ402の表示は行わない場合があっても良い。例えば、病状スコアが特定値以上(または以下)の場合、あるいは所定の範囲にある場合など、特定の症状スコアの場合にだけメッセージを表示させても良い。
[第5実施形態]
図29に示すように、第5実施形態の内視鏡システムは、第1実施形態の内視鏡システム10に対して、評価部65に自動保存制御部501を加えたものであり、これ以外の構成は、第1実施形態の内視鏡システム10と同じである。
自動保存制御部501は、病状スコア監視部97から病状スコアを取得し、その値を監視する。そして、病状スコアが所定の規定値以上の値であった場合に、例えば構造強調部78から出力される酸素飽和度画像を取得し、記憶部502に自動的に保存する。この自動保存制御部501が行う酸素飽和度画像の自動保存は、内視鏡システムを操作する医師が静止画像の保存をするための操作をしなかった場合でも実行する。また、自動保存する酸素飽和度画像には、病状スコアを関連付けて保存する。病状スコアは、例えば、酸素飽和度画像のヘッダに、付帯情報として記録される。
病状スコアが高スコアの場合は、進行癌の可能性が高く、通常は、医師によって静止画像として保存される可能性が高いが、万が一、医師が静止画像としての保存を忘れた場合でも、自動保存制御部501によって酸素飽和度画像を自動的に保存しているので、検査のやり直す必要はなく、医師及び被検体への負担は低減される。
なお、病状スコアが高スコアの場合に、全フレームの酸素飽和度画像を自動保存する必要はなく、例えば、一定のフレーム間隔で自動保存制御部501による自動保存を実行しても良い。
なお、第2実施形態の類似臨床データ選出部201、第3実施形態の治療効果スコア算出部301、第4実施形態のメッセージ表示制御部401、第5実施形態の自動保存制御部501は、相互に任意に組み合わせて用いることができる。
[第6実施形態]
図30に示すように、第6実施形態の内視鏡システムは、評価部65に特徴領域抽出部601を備える。また、病状スコア算出部602は、特徴領域抽出部601が抽出した特徴領域における酸素飽和度の分布パターンに基づいて病状スコアを算出する。これ以外の構成は、第1実施形態の内視鏡システム10と同じである。
特徴領域抽出部601は、画像信号を取得し、病変部と疑われる箇所を観察対象の特徴領域として抽出する。例えば、図31に示すように、特徴領域抽出部601は、取得した画像信号に基づいて、赤味が強い領域(以下、発赤領域という)605を特徴領域として抽出する。
病状スコア算出部602は、特徴領域抽出部601が抽出した発赤領域605における酸素飽和度の分布パターンに基づいて、観察対象の病状を表す病状スコアを算出する。例えば、酸素飽和度の分布パターン603のように、低酸素領域606中に高酸素領域607がある分布パターンが、発赤領域605に重なっていれば、この発赤領域605は癌組織による新生血管の構築によるものである可能性が高い。このため、発赤領域605における酸素飽和度の分布パターンに基づいて病状スコアを算出することにより、癌組織の有無及びその進行度を特に正確に病状スコアで表すことができる。
本実施形態では、病状スコア算出部602は、発赤領域605中に酸素飽和度が一定値以上の高酸素領域がある場合の病状スコアを、発赤領域605中に高酸素領域がない場合の病状スコアよりも大きくする。また、発赤領域605中に高酸素領域がある場合、発赤領域605に対する高酸素領域の割合が大きいほど病状スコアを大きくする。こうすれば、病状スコアで癌の進行度を良く表すことができる。もちろん、病状スコア算出部602は、発赤領域605中に酸素飽和度が一定値以上の高酸素領域がある場合の病状スコアを、発赤領域605中に高酸素領域がない場合の病状スコアよりも小さくしても良い。この場合、発赤領域605中に高酸素領域がある場合、発赤領域605に対する高酸素領域の割合が大きいほど病状スコアは小さくなる。この場合でも病状スコアで癌の進行度を良く表すことができる。
なお、特徴領域抽出部601は、B2画像信号またはG2画像信号を用いて発赤領域605を抽出することができる。例えば、420nmや550nm付近の波長帯域において血中ヘモグロビンによる吸収が大きくなるので(図10参照)、この波長帯域の情報を含むB2画像信号やG2画像信号では、ヘモグロビンの吸収によるコントラストが大きく表れ、血管の有無が判別しやすいからである。もちろん、B1画像信号やG2画像信号を用いても良い。また、R1(R2)画像信号を含め、複数の画像信号に基づいて発赤領域605を抽出しても良い。
なお、特徴領域として発赤領域605を抽出しているが、観察対象の隆起した領域(隆起領域)を特徴領域として抽出しても良い。
病状スコアが画像表示信号生成部66に入力され、モニタ18に表示されるのは第1実施形態と同様である。このため、第2〜第5実施形態はこの第6実施形態に組み合わせて用いることができる。
[第7実施形態]
図32に示すように、内視鏡システム700の光源装置14には、第1及び第2青色レーザ光源34,36と光源制御部40の代わりに、LED(Light Emitting Diode)光源ユニット701と、LED光源制御部704が設けられている。また、内視鏡システム700の照明光学系24aには蛍光体44が設けられていない。それ以外については、第1実施形態の内視鏡システム10と同様である。
LED光源ユニット701は、特定の波長帯域に制限された光を発光する光源として、R−LED701a,G−LED701b,B−LED701cを有する。図33に示すように、R−LED701aは、600〜720nmの赤色領域の赤色帯域光(以下、単に赤色光という)し、G−LED701bは、480〜620nmの緑色領域の緑色帯域光(以下、単に緑色光)を発光する。また、B−LED701cは、400〜500nmの青色領域の青色帯域光(以下、単に青色光という)を発光する。
また、LED光源ユニット701は、B−LED701cが発する青色光の光路上に挿抜されるハイパスフィルタ(HPF)702を有する。ハイパスフィルタ702は、450nm以下の波長帯域の青色光をカットし、450nmより長波長帯域の光を透過する。
ハイパスフィルタ702のカットオフ波長(450nm)は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数がほぼ等しい波長であり(図10参照)、この波長を境に酸化ヘモグロビンと還元ヘモグロビンの吸光係数が逆転する。本実施形態の場合、相関関係記憶部82に記憶された相関関係は、酸化ヘモグロビンの吸光係数が還元ヘモグロビンの吸光係数よりも大きい場合のものなので、カットオフ波長以下の波長帯域に基づくシグナルは、信号比B1/G2が473nmで測定する本来の値よりも低下し、不正確な酸素飽和度が算出される原因になる。このため、ハイパスフィルタ702は、酸素飽和度を算出するためのB1画像信号を取得する時に、カットオフ波長以下の波長帯域の光が観察対象に照射されないようにする。
したがって、ハイパスフィルタ702は、特殊観察モード時にB−LED701cの前に挿入され、通常観察モード時には退避位置に退避される。ハイパスフィルタ702の挿抜は、LED光源制御部704の制御の下、HPF挿抜部703によって行われる。
LED光源制御部704は、LED光源ユニット701の各LED701a〜701cの点灯/消灯、及びハイパスフィルタ702の挿抜を制御する。具体的には、図34に示すように、通常観察モードの場合、LED光源制御部704は、各LED701a〜701cを全て点灯させ、ハイパスフィルタ702はB−LED701cの光路上から退避させる。
一方、図35に示すように、特殊観察モードの場合、LED光源制御部704は、ハイパスフィルタ702をB−LED701cの光路上に挿入する。そして、1フレーム目は、B−LED701cを点灯させ、R−LED701a及びG−LED701bを消灯させることにより、450nm以下の波長帯域がカットされた青色光を観察対象に照射させる。そして、2フレーム目は、R−LED701a、G−LED701b、B−LED701cを全て点灯させ、B−LED701cが発する青色光のうち450nm以下の波長帯域がカットされた青色光と、R−LED701aが発する赤色光と、G−LED701bが発する緑色光からなる白色光を観察対象に照射させる。これにより、センサ48は、1フレーム目には、B1画像信号を出力し、2フレーム目にはR2画像信号,G2画像信号,B2画像信号をそれぞれ出力する。したがって、その後の処理は第1実施形態の内視鏡システム10と同様に行うことができる。
なお、第7実施形態では、特殊観察モード時の1フレーム目、2フレーム目ともハイパスフィルタ702を挿入したまま観察対象を撮像しているが、1フレーム目だけハイパスフィルタ702を挿入し、2フレーム目にはハイパスフィルタ702を退避させても良い。また、特殊観察モード時の1フレーム目では、B−LED701cだけを点灯させ、青色光だけを観察対象に照射しているが、1フレーム目でもR−LED701a及びG−LED701bを点灯させ、R1画像信号及びG1画像信号をセンサ48に出力させても良い。
[第8実施形態]
図36に示すように、内視鏡システム800の光源装置14には、第1及び第2青色レーザ光34,36と光源制御部40の代わりに、広帯域光源801と、回転フィルタ802と、回転フィルタ制御部803が設けられている。また、内視鏡システム800のセンサ805は、カラーフィルタが設けられていないモノクロの撮像素子である。それ以外については、第1実施形態の内視鏡システム10と同じである。
広帯域光源801は、例えばキセノンランプ、白色LED等からなり、波長帯域が青色から赤色に及ぶ白色光を発する。回転フィルタ802は、通常観察モード用フィルタ810と特殊観察モード用フィルタ811とを備えており(図37参照)、広帯域光源801から発せられる白色光がライトガイド41に入射される光路上に、通常観察モード用フィルタ810を配置する通常観察モード用の第1位置と、特殊観察モード用フィルタ811を配置する特殊観察モード用の第2位置との間で径方向に移動可能である。この第1位置と第2位置への回転フィルタ802の相互移動は、選択された観察モードに応じて回転フィルタ制御部803によって制御される。また、回転フィルタ802は、第1位置または第2位置に配置された状態で、センサ805の撮像フレームに応じて回転する。回転フィルタ802の回転速度は、選択された観察モードに応じて回転フィルタ制御部803によって制御される。
図37に示すように、通常観察モード用フィルタ810は、回転フィルタ802の内周部に設けられている。通常観察モード用フィルタ810は、赤色光を透過するRフィルタ810aと、緑色光を透過するGフィルタ810bと、青色光を透過するBフィルタ810cと有する。したがって、回転フィルタ802を通常光観察モード用の第1位置に配置すると、広帯域光源801からの白色光は、回転フィルタ802の回転に応じてRフィルタ810a、Gフィルタ810b、Bフィルタ810cのいずれかに入射する。このため、観察対象には、透過したフィルタに応じて、赤色光、緑色光、青色光が順次照射され、センサ805は、これらの反射光によりそれぞれ観察対象を撮像することにより、R画像信号、G画像信号、B画像信号を順次出力する。
また、特殊観察モード用フィルタ811は、回転フィルタ802の外周部に設けられている。特殊観察モード用フィルタ811は、赤色光を透過するRフィルタ811aと、緑色光を透過するGフィルタ811bと、青色光を透過するBフィルタ811cと、473±10nmの狭帯域光を透過する狭帯域フィルタ811dとを有する。したがって、回転フィルタ802を通常光観察モード用の第2位置に配置すると、広帯域光源801からの白色光は、回転フィルタ802の回転に応じてRフィルタ811a、Gフィルタ811b、Bフィルタ811c、狭帯域フィルタ811dのいずれかに入射する。このため、観察対象には、透過したフィルタに応じて、赤色光、緑色光、青色光,狭帯域光(473nm)が順次照射され、センサ805は、これらの反射光によりそれぞれ観察対象を撮像することにより、R画像信号、G画像信号、B画像信号、及び狭帯域画像信号を順次出力する。
特殊観察モードで得られるR画像信号とG画像信号は、第1実施形態のR1(またはR2)画像信号とG1(またはG2)画像信号に対応する。また、特殊観察モードで得られるB画像信号は、第1実施形態のB2画像信号に対応し、狭帯域画像信号はB1画像信号に対応する。したがって、その後の処理は第1実施形態の内視鏡システム10と同様に行うことができる。
なお、第1〜第8実施形態では、信号比B1/G2と信号比R2/G2に基づいて酸素飽和度を算出しているが、信号比B1/G2のみに基づいて酸素飽和度を算出しても良い。この場合には、相関関係記憶部82には信号比B1/G2と酸素飽和度の相関関係を記憶しておけば良い。
なお、第1〜第8実施形態では、酸素飽和度を画像化した酸素飽和度画像を生成及び表示しているが、これに加えて、血液量を画像化した血液量画像を生成及び表示しても良い。血液量は信号比R2/G2と相関があるので、信号比R2/G2に応じて異なる色を割り当てることで、血液量を画像化した血液量画像を作成することができる。
なお、第1〜第8実施形態では酸素飽和度を算出しているが、これに代えて、あるいはこれに加えて、「血液量(信号比R2/G2)×酸素飽和度(%)」から求まる酸化ヘモグロビンインデックスや、「血液量×(1−酸素飽和度)(%)」から求まる還元ヘモグロビンインデックス等、他の生体機能情報を算出しても良い。
10,700,800 内視鏡システム
18 モニタ
65 評価部
76 酸素飽和度画像生成部
83 酸素飽和度算出部
96 分布パターン生成部
97,602 病状スコア算出部
115,125 分布パターン
130 基準パターン
161 関心領域(指定領域)
201 類似臨床データ選出部
301 治療効果スコア算出部
401 メッセージ表示制御部
501 自動保存制御部
601 特徴領域抽出部

Claims (26)

  1. 観察対象に光を照射するための光源装置と、
    前記光の反射光で前記観察対象を撮像し、画像信号を出力するイメージセンサと、
    前記画像信号に基づいて前記観察対象の酸素飽和度を算出する酸素飽和度算出部と、
    前記酸素飽和度に関する分布を表す分布パターンを生成する分布パターン生成部と、
    前記分布パターンに基づいて前記観察対象の病状を表す病状スコアを算出する病状スコア算出部と、
    前記病状スコアまたは前記病状スコアに基づく情報を表示する表示部と、
    を備える内視鏡システム。
  2. 前記酸素飽和度が一定値未満の低酸素領域中に前記酸素飽和度が前記一定値以上の高酸素領域がある場合の前記病状スコアは、前記低酸素領域中に前記高酸素領域がない場合の前記病状スコアよりも大きい請求項1に記載の内視鏡システム。
  3. 前記低酸素領域中に前記高酸素領域がある場合、前記低酸素領域に対する前記高酸素領域の割合が大きいほど前記病状スコアが大きい請求項2に記載の内視鏡システム。
  4. 前記酸素飽和度が一定値未満の低酸素領域中に前記酸素飽和度が前記一定値以上の高酸素領域がある場合の前記病状スコアは、前記低酸素領域中に前記高酸素領域がない場合の前記病状スコアよりも小さい請求項1に記載の内視鏡システム。
  5. 前記低酸素領域中に前記高酸素領域がある場合、前記低酸素領域に対する前記高酸素領域の割合が大きいほど前記病状スコアが小さい請求項4に記載の内視鏡システム。
  6. 前記病状スコア算出部は、特定分布形状の基準パターンと、前記分布パターン生成部が算出した前記分布パターンとを比較し、前記基準パターンと前記分布パターン生成部が算出した前記分布パターンとの類似度を前記病状スコアとして算出する請求項1〜5のいずれか1項に記載の内視鏡システム。
  7. 前記特定分布形状の基準パターンは、前記酸素飽和度が一定値未満の低酸素領域中に前記酸素飽和度が前記一定値以上の高酸素領域があるパターンである請求項6に記載の内視鏡システム。
  8. 前記分布パターン生成部は、予め指定された関心領域について前記分布パターンを生成し、
    前記病状スコア算出部は、前記関心領域に対して前記病状スコアを算出する請求項1〜7のいずれか1項に記載の内視鏡システム。
  9. 過去の臨床データが予め複数記憶されたデータベースを参照して、前記分布パターンを前記臨床データと比較し、前記臨床データのうち前記分布パターンが類似する類似臨床データを選出して前記表示部に表示させる類似臨床データ選出部を備える請求項1〜8のいずれか1項に記載の内視鏡システム。
  10. 前記類似臨床データ選出部は、前記類似臨床データに含まれる前記酸素飽和度画像を前記表示部に表示させる請求項9に記載の内視鏡システム。
  11. 前記分布パターンに基づいて、特定の治療方法による治療効果を表す治療効果スコアを算出し、前記表示部に表示させる治療効果スコア算出部を備える請求項1〜10のいずれか1項に記載の内視鏡システム。
  12. 前記病状スコアが規定値以上の値になった場合に、前記画像信号と前記酸素飽和度に基づいて生成される酸素飽和度画像と前記病状スコアとを関連付けて、自動的に保存する自動保存制御部を備える請求項1〜11のいずれか1項に記載の内視鏡システム。
  13. 前記表示部は、前記病状スコアが特定値以上の場合に前記病状スコアまたは前記病状スコアに基づく情報を表示する請求項1〜12のいずれか1項に記載の内視鏡システム。
  14. 前記画像信号に基づいて前記観察対象の特徴領域を抽出する特徴領域抽出部を備え、
    前記病状スコア算出部は、前記特徴領域の前記分布パターンに基づいて前記病状スコアを算出する請求項1〜13のいずれか1項に記載の内視鏡システム。
  15. 前記特徴領域抽出部は、前記イメージセンサの青色画素から得られる青色の前記画像信号または緑色画素から得られる緑色の前記画像信号に基づいて前記特徴領域を抽出する請求項13に記載の内視鏡システム。
  16. 前記特徴領域は発赤領域であり、前記発赤領域中に前記酸素飽和度が一定値以上の高酸素領域がある場合の前記病状スコアは、前記発赤領域中に前記高酸素領域がない場合の前記病状スコアよりも大きい請求項13または14に記載の内視鏡システム。
  17. 前記発赤領域中に前記高酸素領域がある場合、前記発赤領域に対する前記高酸素領域の割合が大きいほど前記病状スコアが大きい請求項16に記載の内視鏡システム。
  18. 前記特徴領域は発赤領域であり、前記発赤領域中に前記酸素飽和度が一定値以上の高酸素領域がある場合の前記病状スコアは、前記発赤領域中に前記高酸素領域がない場合の前記病状スコアよりも小さい請求項13または14に記載の内視鏡システム。
  19. 前記発赤領域中に前記高酸素領域がある場合、前記発赤領域に対する前記高酸素領域の割合が大きいほど前記病状スコアが小さい請求項18に記載の内視鏡システム。
  20. 前記病状スコアを監視し、前記病状スコアに応じたメッセージを前記表示部に表示させるメッセージ表示制御部を備える請求項1〜19のいずれか1項に記載の内視鏡システム。
  21. 観察対象に光を照射するための光源装置と、前記光の反射光で前記観察対象を撮像し、画像信号を出力するイメージセンサと、表示部と、を有する内視鏡システムのプロセッサ装置において、
    前記画像信号に基づいて前記観察対象の酸素飽和度を算出する酸素飽和度算出部と、
    前記酸素飽和度に関する分布を表す分布パターンを生成する分布パターン生成部と、
    前記分布パターンに基づいて前記観察対象の病状を表す病状スコアを算出する病状スコア算出部と、
    を備える内視鏡システムのプロセッサ装置。
  22. 前記画像信号に基づいて前記観察対象の特徴領域を抽出する特徴領域抽出部を備え、
    前記病状スコア算出部は、前記特徴領域の前記分布パターンに基づいて前記病状スコアを算出する請求項21に記載のプロセッサ装置。
  23. 観察対象に光を照射するための光源装置と、前記光の反射光で前記観察対象を撮像し、画像信号を出力するイメージセンサと、表示部と、を有する内視鏡システムの作動方法において、
    酸素飽和度算出部が前記画像信号に基づいて前記観察対象の酸素飽和度を算出する酸素飽和度算出ステップと、
    分布パターン生成部が前記酸素飽和度に関する分布を表す分布パターンを生成する分布パターン生成ステップと、
    病状スコア算出部が前記分布パターンに基づいて前記観察対象の病状を表す病状スコアを算出する病状スコア算出ステップと、
    前記表示部が、前記病状スコアまたは前記病状スコアに基づく情報を表示する表示ステップと、
    を備える内視鏡システムの作動方法。
  24. 特徴領域抽出部が前記画像信号に基づいて前記観察対象の特徴領域を抽出する特徴領域抽出ステップを備え、
    前記病状スコア算出ステップでは、前記病状スコア算出部は、前記特徴領域の前記分布パターンに基づいて前記病状スコアを算出する請求項23に記載の内視鏡システムの作動方法。
  25. 観察対象を撮像して得られる画像信号を処理するプロセッサ装置の作動方法において、
    酸素飽和度算出部が前記画像信号に基づいて前記観察対象の酸素飽和度を算出する酸素飽和度算出ステップと、
    分布パターン生成部が前記酸素飽和度に関する分布を表す分布パターンを生成する分布パターン生成ステップと、
    病状スコア算出部が前記分布パターンに基づいて前記観察対象の病状を表す病状スコアを算出する病状スコア算出ステップと、
    を備えるプロセッサ装置の作動方法。
  26. 特徴領域抽出部が前記画像信号に基づいて前記観察対象の特徴領域を抽出する特徴領域抽出ステップを備え、
    前記病状スコア算出ステップでは、前記病状スコア算出部が前記特徴領域の前記分布パターンに基づいて前記病状スコアを算出する請求項25に記載のプロセッサ装置の作動方法。
JP2013235460A 2013-09-26 2013-11-13 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法 Active JP6140056B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013235460A JP6140056B2 (ja) 2013-09-26 2013-11-13 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法
EP14848419.9A EP3050487B1 (en) 2013-09-26 2014-07-15 Endoscope system and processor device for endoscope system
PCT/JP2014/068764 WO2015045576A1 (ja) 2013-09-26 2014-07-15 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法及びプロセッサ装置の作動方法
US15/058,391 US10231658B2 (en) 2013-09-26 2016-03-02 Endoscope system, processor device for endoscope system, operation method for endoscope system, and operation method for processor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013200653 2013-09-26
JP2013200653 2013-09-26
JP2013235460A JP6140056B2 (ja) 2013-09-26 2013-11-13 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017088802A Division JP6389299B2 (ja) 2013-09-26 2017-04-27 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法

Publications (2)

Publication Number Publication Date
JP2015085152A true JP2015085152A (ja) 2015-05-07
JP6140056B2 JP6140056B2 (ja) 2017-05-31

Family

ID=52742733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235460A Active JP6140056B2 (ja) 2013-09-26 2013-11-13 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法

Country Status (4)

Country Link
US (1) US10231658B2 (ja)
EP (1) EP3050487B1 (ja)
JP (1) JP6140056B2 (ja)
WO (1) WO2015045576A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208748A1 (ja) * 2015-06-25 2016-12-29 Hoya株式会社 内視鏡システム及び評価値計算装置
WO2019078204A1 (ja) * 2017-10-17 2019-04-25 富士フイルム株式会社 医療画像処理装置、及び、内視鏡装置
WO2019138773A1 (ja) * 2018-01-10 2019-07-18 富士フイルム株式会社 医療画像処理装置、内視鏡システム、医療画像処理方法及びプログラム
KR20200038121A (ko) * 2018-10-02 2020-04-10 한림대학교 산학협력단 실시간으로 획득되는 위 내시경 이미지를 기반으로 위 병변을 진단하는 내시경 장치 및 방법
JPWO2019008942A1 (ja) * 2017-07-03 2020-05-07 富士フイルム株式会社 医療画像処理装置、内視鏡装置、診断支援装置、医療業務支援装置、及び、レポート作成支援装置
WO2020100630A1 (ja) * 2018-11-14 2020-05-22 富士フイルム株式会社 医療画像処理システム
JPWO2019087971A1 (ja) * 2017-10-30 2020-10-22 富士フイルム株式会社 医療画像処理装置、及び、内視鏡装置
JPWO2020008834A1 (ja) * 2018-07-05 2021-06-24 富士フイルム株式会社 画像処理装置、方法及び内視鏡システム

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10426388B2 (en) * 2014-01-31 2019-10-01 The General Hospital Corporation Prediction of tumor recurrence by measuring oxygen saturation
WO2017057680A1 (ja) * 2015-09-30 2017-04-06 Hoya株式会社 内視鏡システム及び評価値計算装置
EP3479118A4 (en) * 2016-06-30 2020-01-15 NDSU Research Foundation METHOD FOR IMPROVING THE QUALITY AND QUANTITY OF BOYS IN MAMMALS
WO2018159083A1 (ja) * 2017-03-03 2018-09-07 富士フイルム株式会社 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
US20180263568A1 (en) * 2017-03-09 2018-09-20 The Board Of Trustees Of The Leland Stanford Junior University Systems and Methods for Clinical Image Classification
US20180289263A1 (en) * 2017-03-30 2018-10-11 Nan M. Jokerst Devices and methods for endoscopic optical assessment of tissue histology
EP3603481B1 (en) * 2017-03-30 2023-05-03 FUJIFILM Corporation Medical image processing device, endoscope system, and method for operating medical image processing device
JP6834001B2 (ja) 2017-07-03 2021-02-24 富士フイルム株式会社 医療画像処理装置、診断支援装置、医療業務支援装置、及び、レポート作成支援装置
JP6850225B2 (ja) * 2017-09-01 2021-03-31 富士フイルム株式会社 医療画像処理装置、内視鏡装置、診断支援装置、及び、医療業務支援装置
WO2019159273A1 (ja) * 2018-02-15 2019-08-22 株式会社日立製作所 放射線治療装置
WO2019220583A1 (ja) * 2018-05-17 2019-11-21 オリンパス株式会社 内視鏡装置、内視鏡装置の作動方法及びプログラム
JP7270626B2 (ja) * 2018-07-09 2023-05-10 富士フイルム株式会社 医用画像処理装置、医用画像処理システム、医用画像処理装置の作動方法、プログラム、及び記憶媒体
CN113040707A (zh) * 2020-12-02 2021-06-29 泰州国安医疗用品有限公司 人体组织病变参数解析平台及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167045A (ja) * 2009-01-21 2010-08-05 Olympus Medical Systems Corp 画像表示装置
JP2012213551A (ja) * 2011-04-01 2012-11-08 Fujifilm Corp 生体情報取得システムおよび生体情報取得方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311937A (ja) * 1987-06-16 1988-12-20 Toshiba Corp 内視鏡装置
US5795295A (en) * 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
JP2001037718A (ja) * 1999-05-26 2001-02-13 Olympus Optical Co Ltd 画像診断装置及び内視鏡装置
JP2001046388A (ja) * 1999-08-12 2001-02-20 Terumo Corp 加熱治療装置
US6516209B2 (en) * 2000-08-04 2003-02-04 Photonify Technologies, Inc. Self-calibrating optical imaging system
JP2010068865A (ja) * 2008-09-16 2010-04-02 Fujifilm Corp 画像診断装置
JP2010184057A (ja) * 2009-02-13 2010-08-26 Fujifilm Corp 画像処理方法および装置
JP5452300B2 (ja) * 2010-03-19 2014-03-26 富士フイルム株式会社 電子内視鏡システム、電子内視鏡用のプロセッサ装置、電子内視鏡システムの作動方法、病理観察装置および病理顕微鏡装置
JP5616303B2 (ja) * 2010-08-24 2014-10-29 富士フイルム株式会社 電子内視鏡システム及び電子内視鏡システムの作動方法
JP5558331B2 (ja) 2010-12-15 2014-07-23 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法
JP5222934B2 (ja) * 2010-12-21 2013-06-26 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
JP5351924B2 (ja) 2011-04-01 2013-11-27 富士フイルム株式会社 生体情報取得システムおよび生体情報取得システムの作動方法
JP5611892B2 (ja) * 2011-05-24 2014-10-22 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
JP5502812B2 (ja) * 2011-07-14 2014-05-28 富士フイルム株式会社 生体情報取得システムおよび生体情報取得システムの作動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167045A (ja) * 2009-01-21 2010-08-05 Olympus Medical Systems Corp 画像表示装置
JP2012213551A (ja) * 2011-04-01 2012-11-08 Fujifilm Corp 生体情報取得システムおよび生体情報取得方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208748A1 (ja) * 2015-06-25 2016-12-29 Hoya株式会社 内視鏡システム及び評価値計算装置
US10702127B2 (en) 2015-06-25 2020-07-07 Hoya Corporation Endoscope system and evaluation value calculation device
JPWO2016208748A1 (ja) * 2015-06-25 2017-06-29 Hoya株式会社 内視鏡システム及び評価値計算装置
JPWO2019008942A1 (ja) * 2017-07-03 2020-05-07 富士フイルム株式会社 医療画像処理装置、内視鏡装置、診断支援装置、医療業務支援装置、及び、レポート作成支援装置
US11416985B2 (en) 2017-07-03 2022-08-16 Fujifilm Corporation Medical image processing apparatus, endoscope apparatus, diagnostic support apparatus, medical service support apparatus, and report creation support apparatus
JP7296498B2 (ja) 2017-10-17 2023-06-22 富士フイルム株式会社 医療画像処理装置、及び、内視鏡装置
US11574401B2 (en) 2017-10-17 2023-02-07 Fujifilm Corporation Medical image processing apparatus and endoscope apparatus
JPWO2019078204A1 (ja) * 2017-10-17 2020-10-22 富士フイルム株式会社 医療画像処理装置、及び、内視鏡装置
WO2019078204A1 (ja) * 2017-10-17 2019-04-25 富士フイルム株式会社 医療画像処理装置、及び、内視鏡装置
CN111212591A (zh) * 2017-10-17 2020-05-29 富士胶片株式会社 医疗图像处理装置及内窥镜装置
CN111212591B (zh) * 2017-10-17 2022-08-02 富士胶片株式会社 医疗图像处理装置及内窥镜装置
JP7033146B2 (ja) 2017-10-17 2022-03-09 富士フイルム株式会社 医療画像処理装置、及び、内視鏡装置
JP2022060540A (ja) * 2017-10-17 2022-04-14 富士フイルム株式会社 医療画像処理装置、及び、内視鏡装置
JPWO2019087971A1 (ja) * 2017-10-30 2020-10-22 富士フイルム株式会社 医療画像処理装置、及び、内視鏡装置
US11526986B2 (en) 2018-01-10 2022-12-13 Fujifilm Corporation Medical image processing device, endoscope system, medical image processing method, and program
WO2019138773A1 (ja) * 2018-01-10 2019-07-18 富士フイルム株式会社 医療画像処理装置、内視鏡システム、医療画像処理方法及びプログラム
JPWO2020008834A1 (ja) * 2018-07-05 2021-06-24 富士フイルム株式会社 画像処理装置、方法及び内視鏡システム
CN112823396A (zh) * 2018-10-02 2021-05-18 翰林大学产学合作团 基于实时获得的胃内窥镜图像诊断胃病变的内窥镜装置及方法
KR102168485B1 (ko) * 2018-10-02 2020-10-21 한림대학교 산학협력단 실시간으로 획득되는 위 내시경 이미지를 기반으로 위 병변을 진단하는 내시경 장치 및 방법
KR20200038121A (ko) * 2018-10-02 2020-04-10 한림대학교 산학협력단 실시간으로 획득되는 위 내시경 이미지를 기반으로 위 병변을 진단하는 내시경 장치 및 방법
JPWO2020100630A1 (ja) * 2018-11-14 2021-09-30 富士フイルム株式会社 医療画像処理システム
WO2020100630A1 (ja) * 2018-11-14 2020-05-22 富士フイルム株式会社 医療画像処理システム
JP7263387B2 (ja) 2018-11-14 2023-04-24 富士フイルム株式会社 医療画像処理システム
US11961228B2 (en) 2018-11-14 2024-04-16 Fujifilm Corporation Medical image processing system

Also Published As

Publication number Publication date
US10231658B2 (en) 2019-03-19
US20160174886A1 (en) 2016-06-23
EP3050487A1 (en) 2016-08-03
EP3050487A4 (en) 2017-01-18
EP3050487B1 (en) 2018-03-07
WO2015045576A1 (ja) 2015-04-02
JP6140056B2 (ja) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6140056B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法
JP6092792B2 (ja) 内視鏡システム用プロセッサ装置、内視鏡システム、内視鏡システム用プロセッサ装置の作動方法、内視鏡システムの作動方法
JP5992936B2 (ja) 内視鏡システム、内視鏡システム用プロセッサ装置、内視鏡システムの作動方法、内視鏡システム用プロセッサ装置の作動方法
JP5887367B2 (ja) プロセッサ装置、内視鏡システム、及び内視鏡システムの作動方法
WO2018159363A1 (ja) 内視鏡システム及びその作動方法
JP6785948B2 (ja) 医療用画像処理装置及び内視鏡システム並びに医療用画像処理装置の作動方法
JP5977772B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法
JP6109695B2 (ja) 内視鏡システム及びプロセッサ装置並びに作動方法並びに距離測定装置
JP6640865B2 (ja) 画像処理装置、内視鏡システム、及び画像処理方法
JP5789280B2 (ja) プロセッサ装置、内視鏡システム、及び内視鏡システムの作動方法
JP6640866B2 (ja) 画像処理装置、内視鏡システム、及び画像処理方法
JP2019081044A (ja) 画像処理装置、画像処理装置の作動方法、および画像処理プログラム
JP6420492B2 (ja) 画像処理装置、内視鏡システム、及び画像処理装置の作動方法
WO2019172231A1 (ja) 医療画像処理システム及び内視鏡システム
JP6389299B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法
JP6129686B2 (ja) 内視鏡システム及びプロセッサ装置並びに作動方法並びにテーブル作成方法
JP2015173737A (ja) 生体観察システム
JP6099518B2 (ja) 内視鏡システム及び作動方法
EP4223203A1 (en) Image processing device, endoscope system, method for operating image processing device, and program for image processing device
JP6196599B2 (ja) 内視鏡用のプロセッサ装置、内視鏡用のプロセッサ装置の作動方法
JP6272956B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170428

R150 Certificate of patent or registration of utility model

Ref document number: 6140056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250