JP2015078834A - プロセッシングマップ作成プログラム - Google Patents

プロセッシングマップ作成プログラム Download PDF

Info

Publication number
JP2015078834A
JP2015078834A JP2011279609A JP2011279609A JP2015078834A JP 2015078834 A JP2015078834 A JP 2015078834A JP 2011279609 A JP2011279609 A JP 2011279609A JP 2011279609 A JP2011279609 A JP 2011279609A JP 2015078834 A JP2015078834 A JP 2015078834A
Authority
JP
Japan
Prior art keywords
strain
temperature
processing map
stress
creation program
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011279609A
Other languages
English (en)
Inventor
云平 李
Yunping Li
云平 李
千葉 晶彦
Masahiko Chiba
晶彦 千葉
祐一 田中
Yuichi Tanaka
祐一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2011279609A priority Critical patent/JP2015078834A/ja
Priority to PCT/JP2012/053052 priority patent/WO2013094225A1/ja
Publication of JP2015078834A publication Critical patent/JP2015078834A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D37/00Controlling or regulating the pouring of molten metal from a casting melt-holding vessel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Forging (AREA)

Abstract

【課題】熱間鍛造工程における、摩擦補正、温度補正及びそれに基づくプロセッシングマップを作成するプロセッシングマップ作成プログラムを提供する。【解決手段】円柱試料片の熱間鍛造過程において、各温度とひずみ速度との条件で応力−ひずみ曲線を測定し、変形前後の円柱試料片の形状から、試料端面とアンピル間の摩擦係数を決定して摩擦補正を行い、同時に、変形速度とひずみ量(圧縮率)とから、円柱試料片の内部温度上昇を計算し、温度上昇による応力の変化の補正を行い、これらの補正したデータを用いて任意ひずみ速度、温度、ひずみ量の条件における熱間鍛造条件を求めるプロセッシングマップを作成する。【選択図】図1

Description

本発明は、金属材料の熱間加工過程における摩擦、温度上昇の応力影響を除き、材料固有曲線を取得し、それに基づいてプロセッシングマップを作成する、プロセッシングマップ作成プログラムに関する。
従来、金属材料熱間鍛造性の定量的評価法として、“Processing map”の材料学的モデルが提唱されている(例えば、非特許文献1参照)。この“Processing map”は、被加工物の変形状態を記述するパラメータ(温度、変形速度、変形量)と変形状態に対応する組織変化とを対応付けするものである。金属材料熱加工最適条件を予測するには非常に良い手段である。Processing mapは、各条件での応力−ひずみ曲線をまとめて作成したものである。その際,円柱試料とアンビルとの間で発生する摩擦により、変形応力の値は、材料固有の変形応力よりも大きな値となる(例えば、非特許文献2参照)。また、圧縮試験の際に試験片内部に発生する加工発熱により、試験片の温度は上昇し、変形応力を低下させる(例えば、非特許文献3または4参照)。この傾向は、ひずみ速度が高いほど顕著に現れる。これらの外的因子を排除して得られる応力−ひずみ曲線から構築される“Processing map”は、より高精度な熱間鍛造性についての情報を与える(例えば、特許文献1または2参照)。
これまで様々な合金系で“Processing map”が作成されているが、上述の外的因子が排除されないままの応力−ひずみ曲線から構築されたものがほとんどである。従来の試料片の温度上昇による応力の変化の計算は、変形過程における材料の熱活性化エネルギーを定数と仮定してから行なわれている。実際に、各条件における見かけ熱活性化エネルギーが異なるため、従来の温度上昇による応力変化の計算による誤差が大きいと考えられる。また、上記の摩擦補正、温度補正及びプロセッシングマップの作成を行う場合には、各条件の計算に長い時間がかかり、これらの方法をまとめてプログラム化する必要がある。
Prasad, Y. & Seshacharyulu,T., "Modelling of hot deformation for microstructural control", Int. Mater. Review, 1998年, 43, p.243-258 G. W. Rowe, "Anintroduction of the principles of the metalworking", Edward Arnold, London, 1965年, p.243 Li, Y., Matsumoto, H. & Chiba, A., "Correcting theStress-Strain Curve in Hot Compression Process to High Strain Level", Metall. Mater. Trans., 2009年, 40A, p.982-990 M. Mataya and V.Sackschewsky, "Effect of internal heating during hot compression on thestress-strain behavior of alloy 304L", Metall. Mater.Trans., 1994年, A 25, p.2727-2752
特開2011−196758号公報 特開2011−115805号公報
材料固有曲線を取得するための摩擦補正と温度補正とに関する従来の方法は、各条件での変形曲線をそれぞれ計算する必要があり、また、熱間鍛造最適条件を予測するプロセッシングマップは、様々な条件(鍛造量或いはひずみ、圧縮速度及び温度)を組み合わせて作成する必要があるため、非常に時間がかかるという課題があった。また、従来の試料片の温度上昇による応力の変化の計算は、変形過程における材料の熱活性化エネルギーを定数と仮定してから行なわれている。実際に、各条件における見かけ熱活性化エネルギーが異なるため、従来の温度上昇による応力変化の計算による誤差が大きく、補正精度を向上する方法を提案する必要があるという課題もあった。
本発明は、このような課題に着目してなされたもので、補正精度が高く、短い時間でプロセッシングマップを作成することができるプロセッシングマップ作成プログラムを提供することを目的としている。
本発明によれば、円柱試料片の熱間鍛造過程において、各温度とひずみ速度との条件で応力−ひずみ曲線を測定し、変形前後の前記円柱試料片の形状から、試料端面とアンピル間の摩擦係数を決定して摩擦補正を行い、同時に、変形速度とひずみ量(圧縮率)とから、前記円柱試料片の内部温度上昇を計算し、温度上昇による応力の変化の補正を行い、これらの補正したデータを用いて任意ひずみ速度、温度、ひずみ量の条件における熱間鍛造条件を求めるプロセッシングマップを作成することを特徴とするプロセッシングマップ作成プログラムが得られる。
また、本発明によれば、前記変形速度と前記ひずみ量(圧縮率)とから、前記円柱試料片の内部温度の上昇ΔTは、式(1)および式(2)で求めることを特徴とするプロセッシングマップ作成プログラムが得られる。
ここで、ηは熱効率、ρは試験片の密度、cは熱容量、εは真ひずみ(True strain)、σは真応力(True stress)である。
また、本発明によれば、前記温度上昇による応力の変化を、式(3)で求めることを特徴とするプロセッシングマップ作成プログラムが得られる。
ここで、Tは温度、A、A’、A’’・・・は定数である。
また、本発明によれば、前記円柱試料片の熱間鍛造過程において、温度とひずみ速度とに関する前記応力−ひずみ曲線データは、実験と同時に測定し、記録媒体に記録することを特徴とするプロセッシングマップ作成プログラムが得られる。
さらに、本発明によれば、前記記録媒体に記録されたデータを用いて各温度、ひずみ、ひずみ速度の条件にプロセッシングマップの塑性不安定因子を、式(10)で求めることを特徴とするプロセッシングマップ作成プログラムが得られる。
ここで、mはひずみ速度感受性指数、ηはエネルギー分散効率である。
本発明のプログラムは、円柱試料熱間圧縮曲線の摩擦補正、温度補正、およびプロセッシングマップ作成などの機能を組み合わせてできるものであり、従来の摩擦補正、新しい温度上昇による応力低下の補正、及びプロセッシングマップの新しい作成方法により、自動作成、補正を行うことができるため、これらの知識を有していない研究者であっても、材料の固有金属材料の取得、熱間鍛造最適条件の予測を行うことできる。
また、本発明によれば、補正精度が高く、短い時間でプロセッシングマップを作成することができるプロセッシングマップ作成プログラムを提供することができる。
本発明の実施の形態のプロセッシングマップ作成プログラムの補正とprocessing mapの作成に関する流れを示すブロック図である ある鉄鋼材料の熱間鍛造過程で得られた変形曲線、ならびに、本発明の実施の形態のプロセッシングマップ作成プログラムによる摩擦補正後、摩擦補正および温度補正後の変形曲線である。 本発明の実施の形態のプロセッシングマップ作成プログラムにより、ある鉄鋼材料のひずみ0.6における、ひずみ速度、温度の異なる場合のprocessing mapである。
上記課題を解決するための本発明の実施の形態のプロセッシングマップ作成プログラム(Processing map maker)は、図1に示すように、摩擦補正、温度補正およびプロセッシングマップ作成により構成される。
本発明の実施の形態のプロセッシングマップ作成プログラムは、Microsoft Visual Basic 2005により作成され、摩擦補正、温度補正、プロセッシングマップ作成などの機能を組み合わせることができる。
本発明の実施の形態のプロセッシングマップ作成プログラムにおける円柱試料とアンビルとの間の摩擦係数の決定は、下記の式により行われている。
ここで、R、R、H、Hは、それぞれ円柱試料の圧縮後の最大半径、元の端面膨張した半径、圧縮後の高さおよび元の高さであり、a’、a’’、a’’’、b’、b’’、b’’’、c’、c’’、c’’’は、材料の種類によらない定数であり、それぞれa’=0.99066、a’’=−0.83993、a’’’=0.22061、b’=0.01642、b’’=0.92685、b’’’=−0.5045、c’=−0.00572、c’’=−0.51804、c’’’=0.32033であり、Pは圧縮前後の円柱試料の形状に関するパラメータをまとめた係数であり、μは円柱試料とアンビルとの間のせん断摩擦係数である。
本発明の実施の形態のプロセッシングマップ作成プログラムにおける円柱試料とアンビルとの間の摩擦による応力の補正は、下記の式により行われている。
ここで、a、b、c、dは定数であり、材料の種類によらない、ε、μはそれぞれ真ひずみとせん断摩擦係数である。
本発明の実施の形態のプロセッシングマップ作成プログラムにおける断熱変形時の試料内部温度上昇ΔTは、塑性変形により投入されたエネルギーが熱に変換されたとして、式(1)で計算した。式(1)の積分項は、熱間加工により投入されたエネルギーで、真応力−真ひずみ(σ−ε)曲線から計算される.熱効率は、ひずみ速度と強く関係し、式(2)で表せる。
本発明の実施の形態のプロセッシングマップ作成プログラムでは、あるひずみ、ひずみ速度における応力の補正値を、式(3)により求めた。ここで、A、A’、A’’・・・は定数であり、プログラム中で決定される。従って、温度補正前のデータを用いて各ひずみにおける式(3)を行えば、式(1)から算出される温度上昇分ΔTを考慮した変形抵抗値を求めることができる。
本発明の実施の形態のプロセッシングマップ作成プログラムにおけるプロセッシングマップは、非特許文献1で提案された動的材料モデル(dynamic materials model、DMM)に基づいたPower dissipation mapとInstability mapとから構成されている。エネルギー分散効率(power dissipation efficiency)ηは、次式で与えられる。
ηは、ひずみ速度感受性指数mと直接的に関連しており、Power dissipation mapは、各加工条件(温度、ひずみ速度)に対してエネルギー分散効率をプロットしたものである。
mは、温度T、ひずみε一定の時に、次の式で表される。
一方、Instability mapは、熱間加工における塑性不安定性を予測するもので、その条件はZieglerにより提案された次式で与えられる。
本特許では式(7)から変形し、次の通りに算出される。
この塑性不安定性パラメータζを温度、ひずみ速度の関数としてプロットすることで、その値が負となる領域を、塑性不安定条件として特定できる。
本発明の実施の形態のプロセッシングマップ作成プログラムは、応力ひずみ曲線データのファイルの名を統一することにより、温度、ひずみ速度に対する、ラベルの接頭文字を指定するだけで自動的にデータを選択して読み取ることができる。一度入力した上記の情報は、パラメータとしてテキストファイルに保存され、再度入力する項目を減らすことができる。
図2は、ある鉄鋼材料の熱間鍛造過程で得られた変形曲線、摩擦補正、摩擦補正後の温度補正の各段階における変形曲線であり、応力曲線への摩擦、加工発熱の影響が明らかに示されている。摩擦係数の決定と摩擦による応力変化の補正とは、それぞれ式(4)、式(5)および式(6)により行われている。加工発熱による温度の上昇は、式(1)および式(2)により計算され、応力の変化の補正は、式(3)で計算されている。
図3は、熱間鍛造過程におけるある鉄鋼材料の変形曲線を、processing map makerにより、摩擦補正、温度補正を行ったデータを用いて、式(10)により作成したprocessing map(Instability map)である。これらの結果により、ひずみ速度(Strain rate)の対数0.5以上、或いは温度1000℃以上の範囲においては、最適な加工条件が得られることが示されている。

Claims (5)

  1. 円柱試料片の熱間鍛造過程において、各温度とひずみ速度との条件で応力−ひずみ曲線を測定し、変形前後の前記円柱試料片の形状から、試料端面とアンピル間の摩擦係数を決定して摩擦補正を行い、同時に、変形速度とひずみ量(圧縮率)とから、前記円柱試料片の内部温度上昇を計算し、温度上昇による応力の変化の補正を行い、これらの補正したデータを用いて任意ひずみ速度、温度、ひずみ量の条件における熱間鍛造条件を求めるプロセッシングマップを作成することを特徴とするプロセッシングマップ作成プログラム。
  2. 前記変形速度と前記ひずみ量(圧縮率)とから、前記円柱試料片の内部温度の上昇ΔTは、式(1)および式(2)で求めることを特徴とする請求項1記載のプロセッシングマップ作成プログラム。
    ここで、ηは熱効率、ρは試験片の密度、cは熱容量、εは真ひずみ、σは真応力である。
  3. 前記温度上昇による応力の変化を、式(3)で求めることを特徴とする請求項1または2記載のプロセッシングマップ作成プログラム。
    ここで、Tは温度、A、A’、A’’・・・は定数である。
  4. 前記円柱試料片の熱間鍛造過程において、温度とひずみ速度とに関する前記応力−ひずみ曲線データは、実験と同時に測定し、記録媒体に記録することを特徴とする請求項1、2または3記載のプロセッシングマップ作成プログラム。
  5. 前記記録媒体に記録されたデータを用いて各温度、ひずみ、ひずみ速度の条件にプロセッシングマップの塑性不安定因子を、式(10)で求めることを特徴とする請求項4記載のプロセッシングマップ作成プログラム。
    ここで、mはひずみ速度感受性指数、ηはエネルギー分散効率である。
JP2011279609A 2011-12-21 2011-12-21 プロセッシングマップ作成プログラム Pending JP2015078834A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011279609A JP2015078834A (ja) 2011-12-21 2011-12-21 プロセッシングマップ作成プログラム
PCT/JP2012/053052 WO2013094225A1 (ja) 2011-12-21 2012-02-10 プロセッシングマップ作成プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279609A JP2015078834A (ja) 2011-12-21 2011-12-21 プロセッシングマップ作成プログラム

Publications (1)

Publication Number Publication Date
JP2015078834A true JP2015078834A (ja) 2015-04-23

Family

ID=48668138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279609A Pending JP2015078834A (ja) 2011-12-21 2011-12-21 プロセッシングマップ作成プログラム

Country Status (2)

Country Link
JP (1) JP2015078834A (ja)
WO (1) WO2013094225A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380899A (zh) * 2019-11-29 2020-07-07 中国科学院金属研究所 一种通过轧制模拟过程温升修正锆合金流变应力的方法
JP7385128B2 (ja) 2020-03-31 2023-11-22 日本製鉄株式会社 変形抵抗の算出方法、変形抵抗の算出装置、及び変形抵抗の算出プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205909B (zh) * 2019-07-04 2020-12-25 交通运输部公路科学研究所 一种基于沥青层当量温度的路面结构弯沉系指标的温度修正方法
CN111411210B (zh) * 2020-04-26 2021-11-16 陕西理工大学 一种多角度晶界纯铁材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115805A (ja) * 2009-12-01 2011-06-16 Tohoku Univ 円柱試料熱間加工における摩擦補正方法
JP2011196758A (ja) * 2010-03-18 2011-10-06 Tohoku Univ 円柱試料圧縮過程の摩擦係数の決定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380899A (zh) * 2019-11-29 2020-07-07 中国科学院金属研究所 一种通过轧制模拟过程温升修正锆合金流变应力的方法
JP7385128B2 (ja) 2020-03-31 2023-11-22 日本製鉄株式会社 変形抵抗の算出方法、変形抵抗の算出装置、及び変形抵抗の算出プログラム

Also Published As

Publication number Publication date
WO2013094225A1 (ja) 2013-06-27

Similar Documents

Publication Publication Date Title
Mani et al. A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes
CN104729962B (zh) Gh4169合金锻件晶粒度分析及预测方法
JP6867329B2 (ja) 残留応力算出方法
WO2013094225A1 (ja) プロセッシングマップ作成プログラム
Akbari et al. A new value for Johnson Cook damage limit criterion in machining with large negative rake angle as basis for understanding of grinding
CN103471932B (zh) 金属材料的应力-应变曲线测量及应用方法
Favre et al. Modeling grain boundary motion and dynamic recrystallization in pure metals
Montheillet et al. A critical assessment of three usual equations for strain hardening and dynamic recovery
CN110728091A (zh) 基于用户子程序的有限元法预测晶粒尺寸的方法及系统
JP6468149B2 (ja) 溶接部の変形抵抗曲線の算出方法、溶接部を備えた部材の製造方法、プログラム、および、プログラムを記録したコンピュータ読み取り可能な記録
WO2013128646A1 (ja) 熱間加工予測システムおよび熱間加工予測方法
Ma et al. A new damage constitutive model for thermal deformation of AA6111 sheet
Harsch et al. Influence of scattering material properties on the robustness of deep drawing processes
Nie et al. A statistical model of equivalent grinding heat source based on random distributed grains
Huang et al. Determination of the Johnson-Cook constitutive model parameters of materials by cluster global optimization algorithm
CN104535257B (zh) 一种硅压阻温度补偿评估方法
JP2011196758A (ja) 円柱試料圧縮過程の摩擦係数の決定方法
Liu et al. Thermal fatigue life prediction method for die casting mold steel based on the cooling cycle
Xia et al. Modified Arrhenius constitutive model and simulation verification of 2A12-T4 aluminum alloy during hot compression
CN108536968A (zh) 一种焊接过程中的应力与变形的调控方法
Chen et al. New constitutive model for hot working
Zhang et al. In-situ microscopy testing of plasticity variation ahead of fatigue crack tip in AL2024-T3
Zhou et al. Investigation of interfacial heat transfer characterization for TC4 alloy in triple-layer sheet hot stamping process
Li et al. Deformation behavior of powder metallurgy connecting rod preform during Hot forging based on Hot compression and finite element method simulation
Suh et al. Quantitative relationship analysis of mechanical properties with microstructure and texture evolution in AZ series alloys