WO2013128646A1 - 熱間加工予測システムおよび熱間加工予測方法 - Google Patents
熱間加工予測システムおよび熱間加工予測方法 Download PDFInfo
- Publication number
- WO2013128646A1 WO2013128646A1 PCT/JP2012/055465 JP2012055465W WO2013128646A1 WO 2013128646 A1 WO2013128646 A1 WO 2013128646A1 JP 2012055465 W JP2012055465 W JP 2012055465W WO 2013128646 A1 WO2013128646 A1 WO 2013128646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- database
- hot
- strain
- microstructure
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
Definitions
- the present invention relates to a hot working prediction system and a hot working prediction method for metal materials.
- the present inventors interpolate changes in the material deformation curve by friction between the sample end face and anvil in the process of hot working of a cylindrical sample and heat generation inside the sample, and a processing map that creates a high-precision processing map based on the interpolation.
- a program called “maker” has been developed (see, for example, Patent Document 1 or Patent Document 2).
- Non-Patent Document 2 machining simulation based on FEM analysis (finite element analysis), and by utilizing information obtained from Processing Map as meaning of machining simulation results, the internal structure of the material after hot working Is developing a processing technique that can optimally control the above (see, for example, Non-Patent Document 2).
- the present inventors have developed a processing map creation program that can create a processing map with high correction accuracy and in a short time (see PCT / JP2012 / 053052).
- the processing map by the program described in Patent Document 1 and Patent Document 2 does not correspond to the processing state inside the complex product, so the range that can be used for actual industrial production is limited, and the practicality is poor was there.
- the processing map used since the processing map used only uses data under some conditions, the data for the processing map is insufficient, and the optimal conditions for material processing are predicted. There was a problem that accuracy was low.
- there is no database of processed structures in each condition there is a problem that the fine structure in each place of the processed product cannot be predicted.
- the present invention has been made paying attention to such problems, and can accurately predict post-processing information such as processing state and microstructure in each part of the processed product, and optimize processing conditions. It is an object of the present invention to provide a hot work prediction system and a hot work prediction method that are controllable and highly practical.
- the hot working prediction system is based on the microstructure information of the cylindrical sample piece when the cylindrical sample piece is hot worked by changing temperature, strain amount and strain rate in various ways.
- a first database composed of a processing map created by varying the temperature, strain amount, and strain rate for hot working of a cylindrical specimen, and the first database and the second database.
- an analysis means configured to perform a finite element analysis of a hot working process of a product to be actually processed and to predict post-processing information of the product.
- the hot working prediction method includes a first database composed of microstructure information of the cylindrical sample piece when the cylindrical sample piece is hot worked by changing the temperature, strain amount, and strain rate in various ways.
- a database construction step for constructing a second database comprising processing maps created by variously changing the temperature, strain amount, and strain rate for hot working of a cylindrical sample piece, the first database and the second database, And performing an finite element analysis of a hot working process of a product to be actually processed to predict post-processing information of the product.
- a hot work prediction system and a hot work prediction method include a first database composed of microstructure information of a cylindrical sample piece when hot worked and a second database composed of a processing map. By performing finite element analysis using this, it is possible to predict information after processing of the product with high accuracy. Further, based on the predicted post-processing information, the processing conditions can be optimally controlled so that a desired processed product can be obtained. A desired processed product can be obtained by actually processing according to the processing conditions. Thus, the hot working prediction system and the hot working prediction method according to the present invention are highly practical.
- the first database and the second database are microstructures obtained in all assumed temperature ranges, strain ranges, and strain rate ranges, respectively.
- it consists of information and a processing map.
- the prediction accuracy of post-processing information of the product can be further increased, and the practicality can be further improved.
- the microstructure information includes a dynamic recrystallization area ratio, a crystal grain size distribution, a phase distribution, a texture, and a microstructure photograph of the cylindrical sample piece.
- the microstructure information may include a dynamic recrystallization area ratio, a crystal grain size distribution, a phase distribution, a texture, and a microstructure photograph of the cylindrical sample piece.
- information on the microstructure such as dynamic recrystallization area ratio, crystal grain size distribution, phase distribution, texture, microstructure photograph, etc. is predicted with high accuracy as post-processing information on each part of the processed product. Can do.
- the second database is configured to measure a stress-strain curve at various temperatures and strain rates in the hot processing of the cylindrical sample piece, and to measure the cylindrical sample before and after the deformation.
- the friction coefficient is determined by determining the friction coefficient between the sample end face and the anvil from the shape of the piece.
- the internal temperature rise of the cylindrical sample piece is calculated from the deformation speed and strain amount, and the change in stress due to the temperature rise is calculated. It is preferable to obtain a processing map under various conditions of temperature, strain amount, and strain rate using these corrected data.
- the second database may measure the stress-strain curve at various temperatures and strain rates in the hot working of the cylindrical sample piece, and From the shape of the cylindrical sample piece, the friction coefficient between the sample end face and the anvil is determined to correct the friction. At the same time, the internal temperature rise of the cylindrical sample piece is calculated from the deformation speed and strain amount, and the stress due to the temperature rise is calculated. It is preferable to obtain a processing map under various conditions of temperature, strain amount, and strain rate using these corrected data. In this case, a second database composed of a processing map having high correction accuracy for friction correction and stress change correction can be obtained. For this reason, the information after processing of a product can be predicted with higher accuracy.
- the post-processing information includes a processing state and a fine structure in each part of the product, and a shape or size of the product.
- the post-processing information includes a processing state and a fine structure in each part of the product, and a shape or size of the product.
- processing conditions such as crack generation, adiabatic shear band formation, dynamic recrystallization area ratio, crystal grain size distribution, phase distribution, texture, microstructure photograph The microstructure or the product shape or size can be predicted with high accuracy at the same time.
- the analysis means associates the microstructure information in the first database with the strain, temperature, and strain rate conditions in the finite element analysis, thereby post-processing information. It is preferable that the processing state of the post-processing information is predicted by predicting the microstructure of the second database and associating the processing map of the second database. Further, in the hot working prediction method according to the present invention, the analyzing step associates the microstructure information of the first database with the conditions of strain, temperature, and strain rate in the finite element analysis. It is preferable that the processing state of the post-processing information is predicted by predicting the microstructure of post-processing information and associating the processing map of the second database. In this case, information after processing of the product can be predicted with higher accuracy.
- post-processing information such as the processing state and microstructure in each part of the processed product can be predicted with high accuracy, the processing conditions can be optimally controlled, and hot and highly practical.
- a processing prediction system and a hot processing prediction method can be provided.
- the Co-29Cr-6Mo-0.16N alloy has a strain of 0.6
- FIG. 3 is a side view showing (a) an initial material, (b) a product after forging, and (c) a position at which a microstructure is observed in an artificial bone head product made of Co-29Cr-6Mo-0.16N alloy. It is a microscope picture which shows the fine structure in the position shown in FIG.7 (c). The position shown in FIG. 7C of the forming simulation result for the artificial bone head product made of Co-29Cr-6Mo-0.16N alloy by the hot work prediction system and hot work prediction method of the embodiment of the present invention. It is a fine structure.
- the hot work prediction system includes a computer and includes a first database, a second database, and an analysis unit.
- the first database and the second database are constructed by hot-working cylindrical sample pieces with various changes in temperature, amount of strain, and strain rate in all possible ranges (step 11). Is done.
- the first database performs microstructural observation on a cylindrical sample piece after hot working (step 12), identifies the constituent phases and organizes and grasps the structure refining behavior, and determines the dynamic recrystallization area ratio, It consists of a database (step 13) in which fine structure information such as crystal grain size distribution, phase distribution, texture, and fine structure photograph is collected as observation results.
- the microstructure observation is performed at a position 0.8 times the radius from the center of the cylindrical sample piece.
- the second database is constructed by a processing map creation program (see PCT / JP2012 / 053052) developed by the present inventors.
- This processing map creation program is executed in the order of a hot compression experiment of a cylindrical sample, friction correction, temperature correction, processing map creation, and database construction.
- a stress-strain curve is measured from compression test data obtained by variously changing the temperature and strain rate by hot working of a cylindrical specimen (step). 14).
- the friction coefficient is determined by determining the coefficient of friction between the sample end face and the anvil from the shape of the cylindrical sample piece before and after deformation. Determination of the coefficient of friction between the cylindrical sample and the anvil is performed according to the following equation.
- Equation (4) the sample internal temperature rise ⁇ T at the time of adiabatic deformation is calculated by Equation (4), assuming that the energy input by plastic deformation is converted into heat.
- the integral term of equation (4) is the energy input by hot working, and is calculated from the true stress-true strain ( ⁇ - ⁇ ) curve obtained previously.
- Thermal efficiency is strongly related to strain rate and can be expressed by equation (5).
- ⁇ e is the thermal efficiency
- ⁇ is the density of the test piece
- c the heat capacity
- ⁇ the true strain (True strain)
- ⁇ the true stress (True stress).
- Equation (6) The correction value of the stress at a certain strain and strain rate is obtained by equation (6).
- A, A ′, A ′′... are constants and are determined in the program. Therefore, if equation (6) for each strain is performed using data before temperature correction, a deformation resistance value in consideration of the temperature increase ⁇ T calculated from equation (4) can be obtained.
- the processing map in the processing map creation program is composed of a power distribution map and an instability map based on a dynamic material model (DMM) proposed in Non-Patent Document 1.
- the energy distribution efficiency ⁇ is given by: ⁇ is directly related to the strain rate sensitivity index m, and the power dissipation map is a plot of energy dispersion efficiency against each processing condition (temperature, strain rate).
- the Instability map predicts plastic instability in hot working, and the condition is given by the following formula proposed by Ziegler.
- the processing map creation program is used to create a processing map under various conditions of temperature, strain amount, and strain rate, and to create a database for the second database (step 15). .
- the analysis means performs a finite element analysis of the hot working process of a product to be actually processed using the first database and the second database as a molding simulation (steps). 16) It is configured to predict post-processing information of the product.
- the analysis means is configured to be executable by DEFORM-3D finite element analysis software.
- the analysis means captures the first database of the fine structure information and the second database of the processing map by the user routine included in the DEFFORM-3D finite element analysis software, thereby allowing the first database, the second database, and the finite element analysis to be performed. A relationship is formed.
- the analysis means associates the dynamic recrystallization rate distribution and the crystal grain size distribution of the first database with the conditions of strain, temperature, and strain rate in the finite element analysis, thereby performing dynamic recrystallization.
- Predicting the microstructure such as crystal area ratio, crystal grain size distribution, phase distribution, texture, microstructure photograph, and correlating the processing map of the second database, the processing state such as crack generation, adiabatic shear band formation, Predict product dimensions simultaneously.
- a molding load, a shape defect, a microstructure prediction distribution, a plastic stability distribution, etc. can be predicted as a molding simulation result (step 17).
- the hot working prediction system and the hot working prediction method include the first database including the microstructure information of the cylindrical sample piece when the hot working is performed, and the second database including the processing map.
- the processing conditions can be optimally controlled based on the predicted post-processing information so that a desired processed product can be obtained, which is highly practical.
- the hot processing prediction system and the hot processing prediction method according to the embodiment of the present invention are adjusted again after adjusting the processing conditions.
- To predict post-processing information Repeat the prediction of post-processing information as many times as possible until the post-processing information becomes acceptable. If the predicted post-processing information is acceptable (step 19), the optimal processing conditions of the product are predicted based on the result (step 20), and hot processing is performed (step 21). In this way, a desired processed product can be obtained.
- Co-29Cr-6Mo-0.16N alloy was used to predict post-processing information by the hot processing prediction system and the hot processing prediction method of the embodiment of the present invention.
- FIG. 4 shows instability map and power distribution map under the processing conditions of each strain (Strain strain) -strain rate (Strain rate) at 1100 ° C.
- FIG. 5 shows instability map and power distribution map under the processing conditions of each temperature (Temperature) -strain rate (Strain rate) at strain 0.6.
- FIG. 7 shows the microstructure observation position of the actually manufactured artificial head product made of Co-29Cr-6Mo-0.16N alloy
- FIG. 8 shows a micrograph of the microstructure at the observation position
- FIG. 9 shows the microstructure at the position shown in FIG. 7 obtained from the result of the molding simulation. As shown in FIGS.
- the actual microstructure of the product after hot working is almost equal to the microstructure predicted by the hot working prediction system and hot working prediction method of the embodiment of the present invention. You can see that you are doing it. From this, it can be said that the microstructure information in each part of the product after processing can be predicted with high accuracy by the hot processing prediction system and the hot processing prediction method of the embodiment of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
【課題】加工後の製品の各部分における加工状態や微細組織などの加工後の情報を高精度で予測することができ、加工条件を最適に制御可能で、実用性が高い熱間加工予測システムおよび熱間加工予測方法を提供する。 【解決手段】温度、ひずみ量、ひずみ速度を様々に変えて円柱試料片を熱間加工したときの円柱試料片の微細組織情報から成る第1データベースと、円柱試料片の熱間加工について、温度、ひずみ量、ひずみ速度を様々に変えて作成されたプロセッシングマップから成る第2データベースとを構築する。第1データベースと第2データベースとを利用して、実際に加工される製品の熱間加工過程の有限要素解析を行い、製品の加工後情報を予測する。
Description
本発明は、金属材料の熱間加工予測システムおよび熱間加工予測方法に関する。
従来の金属材料の熱間加工成形技術では、長年の経験による職人の勘やFEM解析を基に、加工工程条件などを決定し、生産を行っていた。また、製品の形状精度の向上への取り組みはなされているが、材料組織制御はほとんど行われていない。
金属材料の熱間加工後の組織予測に対する定量的評価法として、“Processing map(プロセッシングマップ)”による材料学的モデルが提唱されている(例えば、非特許文献1参照)。この“Processing map”は、被加工物の変形状態を記述する温度、変形速度、変形量のパラメーターと、製品内部における亀裂の発生、断熱せん断バンド形成などの組織変化とを対応付けるものである。
また、加工シミュレーションを熱間加工に導入することにより、予め設定した加工温度および加工速度に応じた任意断面における温度分布、ひずみ速度分布、ひずみ分布、応力分布などの力学的パラメーターを得ることが可能となる。しかし、それだけの情報では、それらのパラメーターの組み合わせがどのような金属組織、力学特性に対応しているかは不明であり、何が最適な熱間加工条件であるかを知ることはできない。したがって、加工シミュレーションを活用して熱間加工技術を次世代に通じる素形材の先進加工技術として高度化して発展させるためには、加工シミュレーションによって得られる情報がどのような金属組織や塑性状態と対応するのかを予測する必要がある。
本発明者等は、円柱試料熱間加工過程における試料端面とアンビル間の摩擦と、試料内部断熱発熱とにより、材料変形曲線の変化を補間し、それに基づいて高精度Processing mapを作成するProcessing map makerというプログラムを開発している(例えば、特許文献1または特許文献2参照)。
また、本発明者等は、FEM解析(有限要素解析)に基づいた加工シミュレーションを用い、加工シミュレーション結果の意味づけとしてProcessing Mapから得られる情報を活用することにより、熱間加工後の材料内部組織を最適に制御可能な加工技術の開発を行っている(例えば、非特許文献2参照)。
なお、本発明者等は、補正精度が高く、短い時間でProcessing mapを作成することができるプロセッシングマップ作成プログラムを開発している(PCT/JP2012/053052参照)。
Prasad, Y. & Seshacharyulu,T., "Modelling of hot deformation for microstructural control", Int. Mater. Review, 1998年, 43, p.243-258
小野寺恵美、黒須信吾、李云平、松本洋明、千葉晶彦、「インテリジェント加工法によるNiフリーCo-Cr-Mo合金製」、塑性加工、2010年、51、p.227-232
特許文献1および特許文献2に記載のプログラムによるProcessing mapは、複雑な製品内部の加工状態と対応されてないため、実際の産業生産に使用できる範囲が限られており、実用性に乏しいという課題があった。また、非特許文献2に記載の加工技術では、利用したProcessing mapが幾つかの条件におけるデータしか使っていないため、Processing mapのデータベースとしてはデータが不十分であり、材料加工の最適条件の予測精度が低いという課題があった。また、各条件における加工組織のデータベースがないため、加工後製品の各場所における微細組織も予測できないという課題もあった。
本発明は、このような課題に着目してなされたもので、加工後の製品の各部分における加工状態や微細組織などの加工後の情報を高精度で予測することができ、加工条件を最適に制御可能で、実用性が高い熱間加工予測システムおよび熱間加工予測方法を提供することを目的としている。
上記目的を達成するために、本発明に係る熱間加工予測システムは、温度、ひずみ量、ひずみ速度を様々に変えて円柱試料片を熱間加工したときの前記円柱試料片の微細組織情報から成る第1データベースと、円柱試料片の熱間加工について、温度、ひずみ量、ひずみ速度を様々に変えて作成されたプロセッシングマップから成る第2データベースと、前記第1データベースと前記第2データベースとを利用して、実際に加工される製品の熱間加工過程の有限要素解析を行い、前記製品の加工後情報を予測するよう構成された解析手段とを、有することを特徴とする。
また、本発明に係る熱間加工予測方法は、温度、ひずみ量、ひずみ速度を様々に変えて円柱試料片を熱間加工したときの前記円柱試料片の微細組織情報から成る第1データベースと、円柱試料片の熱間加工について、温度、ひずみ量、ひずみ速度を様々に変えて作成されたプロセッシングマップから成る第2データベースとを構築するデータベース構築ステップと、前記第1データベースと前記第2データベースとを利用して、実際に加工される製品の熱間加工過程の有限要素解析を行い、前記製品の加工後情報を予測する解析ステップとを、有することを特徴とする。
本発明に係る熱間加工予測システムおよび熱間加工予測方法は、熱間加工したときの円柱試料片の微細組織情報から成る第1データベースと、プロセッシングマップ(Processing map)から成る第2データベースとを利用して有限要素解析を行うことにより、製品の加工後の情報を高精度で予測することができる。また、予測された加工後情報に基づいて、所望の加工製品が得られるよう、加工条件を最適に制御することができる。その加工条件に従って実際に加工を行うことにより、所望の加工製品を得ることができる。このように、本発明に係る熱間加工予測システムおよび熱間加工予測方法は、実用性が高い。
本発明に係る熱間加工予測システムおよび熱間加工予測方法で、第1データベースおよび第2データベースはそれぞれ、想定される全ての温度範囲、ひずみ量の範囲、ひずみ速度の範囲において得られた微細組織情報およびプロセッシングマップから成ることが好ましい。この場合、製品の加工後情報の予測精度をさらに高めることができ、実用性をより向上させることができる。
本発明に係る熱間加工予測システムで、前記微細組織情報は、前記円柱試料片の動的再結晶面積率と結晶粒径分布と相分布と集合組織と微細組織写真とを含むことが好ましい。また、本発明に係る熱間加工予測方法で、前記微細組織情報は、前記円柱試料片の動的再結晶面積率と結晶粒径分布と相分布と集合組織と微細組織写真とを含むことが好ましい。この場合、加工後の製品の各部分における加工後情報として、動的再結晶面積率、結晶粒径分布、相分布、集合組織、微細組織写真などの微細組織の情報を高精度で予測することができる。
本発明に係る熱間加工予測システムで、前記第2データベースは、前記円柱試料片の熱間加工において、温度、ひずみ速度を様々に変えて応力-ひずみ曲線を測定し、変形前後の前記円柱試料片の形状から、試料端面とアンビル間の摩擦係数を決定して摩擦補正を行い、同時に、変形速度とひずみ量とから、前記円柱試料片の内部温度上昇を計算し、温度上昇による応力の変化の補正を行い、これらの補正したデータを用いて、温度、ひずみ量、ひずみ速度の様々な条件におけるプロセッシングマップを作成して得られることが好ましい。また、本発明に係る熱間加工予測方法で、前記第2データベースは、前記円柱試料片の熱間加工において、温度、ひずみ速度を様々に変えて応力-ひずみ曲線を測定し、変形前後の前記円柱試料片の形状から、試料端面とアンビル間の摩擦係数を決定して摩擦補正を行い、同時に、変形速度とひずみ量とから、前記円柱試料片の内部温度上昇を計算し、温度上昇による応力の変化の補正を行い、これらの補正したデータを用いて、温度、ひずみ量、ひずみ速度の様々な条件におけるプロセッシングマップを作成して得られることが好ましい。この場合、摩擦補正および応力変化補正の補正精度が高いプロセッシングマップから成る第2データベースを得ることができる。このため、製品の加工後の情報を、より高精度で予測することができる。
本発明に係る熱間加工予測システムで、前記加工後情報は、前記製品の各部分における加工状態および微細組織と、前記製品の形状または大きさとを含むことが好ましい。また、本発明に係る熱間加工予測方法で、前記加工後情報は、前記製品の各部分における加工状態および微細組織と、前記製品の形状または大きさとを含むことが好ましい。この場合、加工後の製品の各部分における加工後情報として、亀裂の発生、断熱せん断バンド形成などの加工状態、動的再結晶面積率、結晶粒径分布、相分布、集合組織、微細組織写真などの微細組織、製品の形状または大きさを、同時に高精度で予測することができる。
本発明に係る熱間加工予測システムで、前記解析手段は、有限要素解析でのひずみ、温度、ひずみ速度の条件に対して、前記第1データベースの前記微細組織情報を関連付けることにより前記加工後情報の前記微細組織を予測し、前記第2データベースの前記プロセッシングマップを関連付けることにより前記加工後情報の前記加工状態を予測するよう構成されていることが好ましい。また、本発明に係る熱間加工予測方法で、前記解析ステップは、有限要素解析でのひずみ、温度、ひずみ速度の条件に対して、前記第1データベースの前記微細組織情報を関連付けることにより前記加工後情報の前記微細組織を予測し、前記第2データベースの前記プロセッシングマップを関連付けることにより前記加工後情報の前記加工状態を予測することが好ましい。この場合、製品の加工後の情報を、より高精度で予測することができる。
本発明によれば、加工後の製品の各部分における加工状態や微細組織などの加工後の情報を高精度で予測することができ、加工条件を最適に制御可能で、実用性が高い熱間加工予測システムおよび熱間加工予測方法を提供することができる。
以下、図面に基づき、本発明の実施の形態について説明する。
図1乃至図9は、本発明の実施の形態の熱間加工予測システムおよび熱間加工予測方法を示している。
本発明の実施の形態の熱間加工予測システムは、コンピュータから成り、第1データベースと第2データベースと解析手段とを有している。
図1乃至図9は、本発明の実施の形態の熱間加工予測システムおよび熱間加工予測方法を示している。
本発明の実施の形態の熱間加工予測システムは、コンピュータから成り、第1データベースと第2データベースと解析手段とを有している。
図1に示すように、第1データベースおよび第2データベースは、想定される全ての範囲で温度、ひずみ量、ひずみ速度を様々に変えて円柱試料片を熱間加工する(ステップ11)ことにより構築される。第1データベースは、熱間加工後の円柱試料片に対して微細組織観察を行い(ステップ12)、構成相の同定や組織微細化挙動の整理・把握を行って、動的再結晶面積率、結晶粒径分布、相分布、集合組織、微細組織写真などの微細組織情報を観察結果としてまとめ、データベース化した(ステップ13)ものから成っている。なお、図2に示すように、微細組織観察は、円柱試料片の中心から半径の0.8倍の距離の位置で行っている。
第2データベースは、本発明者等が開発したプロセッシングマップ作成プログラム(PCT/JP2012/053052参照)により構築されている。このプロセッシングマップ作成プログラムは、円柱試料の熱間圧縮実験、摩擦補正、温度補正、プロセッシングマップ作成、データベース構築の順番で実行される。
図1に示すように、プロセッシングマップ作成プログラムでは、まず、円柱試料片の熱間加工により、温度、ひずみ速度を様々に変えて得られた圧縮試験データから、応力-ひずみ曲線を測定する(ステップ14)。次に、変形前後の円柱試料片の形状から、試料端面とアンビル間の摩擦係数を決定して摩擦補正を行う。円柱試料とアンビルとの間の摩擦係数の決定は、下記の式により行われる。
ここで、Rm、Rt、H、H0は、それぞれ円柱試料の圧縮後の最大半径、元の端面膨張した半径、圧縮後の高さおよび元の高さであり、a’、a’’、a’’’、b’、b’’、b’’’、c’、c’’、c’’’は、材料の種類によらない定数であり、それぞれa’=0.99066、a’’=-0.83993、a’’’=0.22061、b’=0.01642、b’’=0.92685、b’’’=-0.5045、c’=-0.00572、c’’=-0.51804、c’’’=0.32033であり、Pは圧縮前後の円柱試料の形状に関するパラメータをまとめた係数であり、μは円柱試料とアンビルとの間のせん断摩擦係数である。
また、断熱変形時の試料内部温度上昇ΔTは、塑性変形により投入されたエネルギーが熱に変換されたとして、式(4)で計算する。式(4)の積分項は、熱間加工により投入されたエネルギーで、先に求めた真応力-真ひずみ(σ-ε)曲線から計算される。熱効率は、ひずみ速度と強く関係し、式(5)で表せる。
ここで、ηeは熱効率、ρは試験片の密度、cは熱容量、εは真ひずみ(True strain)、σは真応力(True stress)である。
あるひずみ、ひずみ速度における応力の補正値は、式(6)により求める。
ここで、A、A’、A’’・・・は定数であり、プログラム中で決定される。従って、温度補正前のデータを用いて各ひずみにおける式(6)を行えば、式(4)から算出される温度上昇分ΔTを考慮した変形抵抗値を求めることができる。
プロセッシングマップ作成プログラムにおけるプロセッシングマップは、非特許文献1で提案された動的材料モデル(dynamic materials model、DMM)に基づいたPower dissipation mapとInstability mapとから構成されている。エネルギー分散効率(power dissipation efficiency)ηは、次式で与えられる。
ηは、ひずみ速度感受性指数mと直接的に関連しており、Power dissipation mapは、各加工条件(温度、ひずみ速度)に対してエネルギー分散効率をプロットしたものである。
本特許では式(7)から変形し、次の通りに算出される。
この塑性不安定性パラメータζを温度、ひずみ速度の関数としてプロットすることで、その値が負となる領域を、塑性不安定条件として特定できる。こうして、摩擦補正および応力変化補正の補正精度が高いプロセッシングマップを得ることができる。
このように、プロセッシングマップ作成プログラムを利用して、温度、ひずみ量、ひずみ速度の様々な条件におけるプロセッシングマップを作成し、それらをデータベース化することにより、第2データベースが構築される(ステップ15)。
図1および図3に示すように、解析手段は、成形シミュレーションとして、第1データベースと第2データベースとを利用して、実際に加工される製品の熱間加工過程の有限要素解析を行い(ステップ16)、製品の加工後情報を予測するよう構成されている。解析手段は、DEFORM-3D有限要素解析ソフトウェアにより実行可能に構成されている。解析手段は、微細組織情報の第1データベースおよびプロセッシングマップの第2データベースを、DEFORM-3D有限要素解析ソフトウェアに含まれるuser routineにより取り込むことで、第1データベースと第2データベースと有限要素解析との関連関係が形成されている。
解析手段では、有限要素解析でのひずみ、温度、ひずみ速度の条件に対して、第1データベースの動的再結晶率の分布や結晶粒径分布などの微細組織情報を関連付けることにより、動的再結晶面積率、結晶粒径分布、相分布、集合組織、微細組織写真などの微細組織を予測し、第2データベースのプロセッシングマップを関連付けることにより、亀裂の発生、断熱せん断バンド形成などの加工状態、製品の寸法を同時に予測する。これにより、成形シミュレーション結果として、成形荷重や形状不具合、微細組織予測分布、塑性安定性分布などを予測することができる(ステップ17)。
このように、本発明の実施の形態の熱間加工予測システムおよび熱間加工予測方法は、熱間加工したときの円柱試料片の微細組織情報から成る第1データベースと、プロセッシングマップから成る第2データベースとを利用して有限要素解析を行うことにより、製品の加工後の情報を高精度で予測することができる。また、予測された加工後情報に基づいて、所望の加工製品が得られるよう、加工条件を最適に制御することができ、実用性が高い。
図1に示すように、予想された加工後情報が受け入れできない場合には(ステップ18)、加工条件を調整して再度、本発明の実施の形態の熱間加工予測システムおよび熱間加工予測方法により加工後情報の予測を行う。加工後情報が受け入れ可能になるまで何度でも、加工後情報の予測を繰り返す。予想された加工後情報が受け入れ可能な場合には(ステップ19)、その結果に基づいて製品の最適な加工条件を予測し(ステップ20)、熱間加工を実施する(ステップ21)。こうして、所望の加工製品を得ることができる。
Co-29Cr-6Mo-0.16N合金を使用して、本発明の実施の形態の熱間加工予測システムおよび熱間加工予測方法による加工後情報の予測を行った。
プロセッシングマップ作成プログラムを利用して、温度、ひずみ量、ひずみ速度の様々な条件におけるCo-29Cr-6Mo-0.16N合金のプロセッシングマップを作成し、第2データベースを構築した。図4に、1100℃における、各ひずみ(True strain)ーひずみ速度(Strain rate)の加工条件でのinstability mapおよびpower dissipation mapを示す。また、図5に、ひずみ0.6における、各温度(Temperature)ーひずみ速度(Strain rate)の加工条件でのinstability mapおよびpower dissipation mapを示す。このように、任意条件におけるプロセッシングマップの値を、自由的に抽出することができる。
構築された第2データベースを利用して、Co-29Cr-6Mo-0.16N合金製の人工骨頭の製品に対して、DEFORM-3D有限要素解析ソフトウェアにより成形シミュレーションを行った。その結果を図6に示す。図6に示すように、熱間加工中の製品内部における加工条件とプロセッシングマップとを対応させることができ、製品内部の加工状態をプロセッシングマップにより予測することができる。
また、熱間加工後のCo-29Cr-6Mo-0.16N合金に対して微細組織観察を行い、第1データベースを構築した。構築された第1データベースを利用して、Co-29Cr-6Mo-0.16N合金製の人工骨頭の製品に対して、DEFORM-3D有限要素解析ソフトウェアにより成形シミュレーションを行った。実際に製造されたCo-29Cr-6Mo-0.16N合金製の人工骨頭製品の微細組織観察位置を図7に、その観察位置での微細組織の顕微鏡写真を図8に示す。また、成形シミュレーションの結果から得られた、図7に示す位置での微細組織を図9に示す。図8および図9に示すように、実際の熱間加工後の製品の微細組織が、本発明の実施の形態の熱間加工予測システムおよび熱間加工予測方法により予測された微細組織とほぼ一致していることがわかる。このことから、本発明の実施の形態の熱間加工予測システムおよび熱間加工予測方法により、加工後の製品の各部分における微細組織の情報を高精度で予測することができるといえる。
Claims (10)
- 温度、ひずみ量、ひずみ速度を様々に変えて円柱試料片を熱間加工したときの前記円柱試料片の微細組織情報から成る第1データベースと、
円柱試料片の熱間加工について、温度、ひずみ量、ひずみ速度を様々に変えて作成されたプロセッシングマップから成る第2データベースと、
前記第1データベースと前記第2データベースとを利用して、実際に加工される製品の熱間加工過程の有限要素解析を行い、前記製品の加工後情報を予測するよう構成された解析手段とを、
有することを特徴とする熱間加工予測システム。 - 前記微細組織情報は、前記円柱試料片の動的再結晶面積率と結晶粒径分布と相分布と集合組織と微細組織写真とを含むことを特徴とする請求項1記載の熱間加工予測システム。
- 前記第2データベースは、前記円柱試料片の熱間加工において、温度、ひずみ速度を様々に変えて応力-ひずみ曲線を測定し、変形前後の前記円柱試料片の形状から、試料端面とアンビル間の摩擦係数を決定して摩擦補正を行い、同時に、変形速度とひずみ量とから、前記円柱試料片の内部温度上昇を計算し、温度上昇による応力の変化の補正を行い、これらの補正したデータを用いて、温度、ひずみ量、ひずみ速度の様々な条件におけるプロセッシングマップを作成して得られることを特徴とする請求項1または2記載の熱間加工予測システム。
- 前記加工後情報は、前記製品の各部分における加工状態および微細組織と、前記製品の形状または大きさとを含むことを特徴とする請求項1乃至3のいずれか1項に記載の熱間加工予測システム。
- 前記解析手段は、有限要素解析でのひずみ、温度、ひずみ速度の条件に対して、前記第1データベースの前記微細組織情報を関連付けることにより前記加工後情報の前記微細組織を予測し、前記第2データベースの前記プロセッシングマップを関連付けることにより前記加工後情報の前記加工状態を予測するよう構成されていることを特徴とする請求項4記載の熱間加工予測システム。
- 温度、ひずみ量、ひずみ速度を様々に変えて円柱試料片を熱間加工したときの前記円柱試料片の微細組織情報から成る第1データベースと、円柱試料片の熱間加工について、温度、ひずみ量、ひずみ速度を様々に変えて作成されたプロセッシングマップから成る第2データベースとを構築するデータベース構築ステップと、
前記第1データベースと前記第2データベースとを利用して、実際に加工される製品の熱間加工過程の有限要素解析を行い、前記製品の加工後情報を予測する解析ステップとを、
有することを特徴とする熱間加工予測方法。 - 前記微細組織情報は、前記円柱試料片の動的再結晶面積率と結晶粒径分布と相分布と集合組織と微細組織写真とを含むことを特徴とする請求項6記載の熱間加工予測方法。
- 前記第2データベースは、前記円柱試料片の熱間加工において、温度、ひずみ速度を様々に変えて応力-ひずみ曲線を測定し、変形前後の前記円柱試料片の形状から、試料端面とアンビル間の摩擦係数を決定して摩擦補正を行い、同時に、変形速度とひずみ量とから、前記円柱試料片の内部温度上昇を計算し、温度上昇による応力の変化の補正を行い、これらの補正したデータを用いて、温度、ひずみ量、ひずみ速度の様々な条件におけるプロセッシングマップを作成して得られることを特徴とする請求項6または7記載の熱間加工予測方法。
- 前記加工後情報は、前記製品の各部分における加工状態および微細組織と、前記製品の形状または大きさとを含むことを特徴とする請求項6乃至8のいずれか1項に記載の熱間加工予測方法。
- 前記解析ステップは、有限要素解析でのひずみ、温度、ひずみ速度の条件に対して、前記第1データベースの前記微細組織情報を関連付けることにより前記加工後情報の前記微細組織を予測し、前記第2データベースの前記プロセッシングマップを関連付けることにより前記加工後情報の前記加工状態を予測することを特徴とする請求項9記載の熱間加工予測方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/055465 WO2013128646A1 (ja) | 2012-03-02 | 2012-03-02 | 熱間加工予測システムおよび熱間加工予測方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/055465 WO2013128646A1 (ja) | 2012-03-02 | 2012-03-02 | 熱間加工予測システムおよび熱間加工予測方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013128646A1 true WO2013128646A1 (ja) | 2013-09-06 |
Family
ID=49081888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/055465 WO2013128646A1 (ja) | 2012-03-02 | 2012-03-02 | 熱間加工予測システムおよび熱間加工予測方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013128646A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155112A (ja) * | 2014-01-20 | 2015-08-27 | 株式会社神戸製鋼所 | 数値シミュレーション方法 |
WO2016084209A1 (ja) * | 2014-11-27 | 2016-06-02 | 株式会社日立製作所 | 熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法 |
CN109909413A (zh) * | 2019-04-03 | 2019-06-21 | 湖北汽车工业学院 | 一种基于热加工图的锻模速度曲线迭代优化方法 |
CN111985128A (zh) * | 2020-07-20 | 2020-11-24 | 南京钢铁股份有限公司 | 大规格非调质钢的热加工图构建方法 |
CN113158406A (zh) * | 2021-01-11 | 2021-07-23 | 闽南理工学院 | 一种纯铝合金的热加工稳定性预测方法 |
WO2024204639A1 (ja) * | 2023-03-30 | 2024-10-03 | 株式会社プロテリアル | 熱間加工条件の予測方法およびプログラム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011115805A (ja) * | 2009-12-01 | 2011-06-16 | Tohoku Univ | 円柱試料熱間加工における摩擦補正方法 |
JP2011196758A (ja) * | 2010-03-18 | 2011-10-06 | Tohoku Univ | 円柱試料圧縮過程の摩擦係数の決定方法 |
-
2012
- 2012-03-02 WO PCT/JP2012/055465 patent/WO2013128646A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011115805A (ja) * | 2009-12-01 | 2011-06-16 | Tohoku Univ | 円柱試料熱間加工における摩擦補正方法 |
JP2011196758A (ja) * | 2010-03-18 | 2011-10-06 | Tohoku Univ | 円柱試料圧縮過程の摩擦係数の決定方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155112A (ja) * | 2014-01-20 | 2015-08-27 | 株式会社神戸製鋼所 | 数値シミュレーション方法 |
WO2016084209A1 (ja) * | 2014-11-27 | 2016-06-02 | 株式会社日立製作所 | 熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法 |
JPWO2016084209A1 (ja) * | 2014-11-27 | 2017-04-27 | 株式会社日立製作所 | 熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法 |
CN109909413A (zh) * | 2019-04-03 | 2019-06-21 | 湖北汽车工业学院 | 一种基于热加工图的锻模速度曲线迭代优化方法 |
CN111985128A (zh) * | 2020-07-20 | 2020-11-24 | 南京钢铁股份有限公司 | 大规格非调质钢的热加工图构建方法 |
CN111985128B (zh) * | 2020-07-20 | 2024-01-09 | 南京钢铁股份有限公司 | 大规格非调质钢的热加工图构建方法 |
CN113158406A (zh) * | 2021-01-11 | 2021-07-23 | 闽南理工学院 | 一种纯铝合金的热加工稳定性预测方法 |
WO2024204639A1 (ja) * | 2023-03-30 | 2024-10-03 | 株式会社プロテリアル | 熱間加工条件の予測方法およびプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Modeling of the size effects on the behavior of metals in microscale deformation processes | |
WO2013128646A1 (ja) | 熱間加工予測システムおよび熱間加工予測方法 | |
Derazkola et al. | Review on modeling and simulation of dynamic recrystallization of martensitic stainless steels during bulk hot deformation | |
Vijay Sekar et al. | Finite element simulations of Ti6Al4V titanium alloy machining to assess material model parameters of the Johnson-Cook constitutive equation | |
Arun et al. | A constitutive model to describe high temperature flow behavior of AZ31B magnesium alloy processed by equal-channel angular pressing | |
Souza et al. | An analysis on the constitutive models for forging of Ti6Al4V alloy considering the softening behavior | |
Bobbili et al. | Constitutive modeling of hot deformation behavior of high-strength armor steel | |
Zhou et al. | A modified parallel-sided shear zone model for determining material constitutive law | |
Sulzer et al. | On the rapid assessment of mechanical behavior of a prototype nickel-based superalloy using small-scale testing | |
Montheillet et al. | A critical assessment of three usual equations for strain hardening and dynamic recovery | |
CN114169189B (zh) | 一种近α型钛合金热塑性大变形过程中的织构预测方法 | |
Favre et al. | Modeling grain boundary motion and dynamic recrystallization in pure metals | |
Harsch et al. | Influence of scattering material properties on the robustness of deep drawing processes | |
Owolabi et al. | Modeling and simulation of microstructurally small crack formation and growth in notched nickel-base superalloy component | |
WO2013094225A1 (ja) | プロセッシングマップ作成プログラム | |
Rezaei Ashtiani et al. | Influence of thermomechanical parameters on the hot deformation behavior of AA1070 | |
Leu | Modeling of size effect on tensile flow stress of sheet metal in microforming | |
Li et al. | Identification of material parameters from punch stretch test | |
Guo et al. | Isothermal forging process design for spray-formed FGH95 superalloy turbine disk based on numerical simulation | |
Su et al. | The temperature-dependent strength of metals: theory and experimental validation | |
Thepsonthi et al. | Finite element simulation of micro-end milling titanium alloy: comparison of viscoplastic and elasto-viscoplastic models | |
JP6032105B2 (ja) | 鍛造組織の予測方法 | |
Kalita et al. | XFEM analysis of strain rate dependent mechanical properties of additively manufactured 17-4 precipitation hardening stainless steel | |
Mackey et al. | Simulating the evolution of non-metallic inclusions during the forging process | |
Siripath et al. | Comparative study on material models for BS 080M46 medium carbon steel. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12869604 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12869604 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |