JPWO2016084209A1 - 熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法 - Google Patents

熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法 Download PDF

Info

Publication number
JPWO2016084209A1
JPWO2016084209A1 JP2016561173A JP2016561173A JPWO2016084209A1 JP WO2016084209 A1 JPWO2016084209 A1 JP WO2016084209A1 JP 2016561173 A JP2016561173 A JP 2016561173A JP 2016561173 A JP2016561173 A JP 2016561173A JP WO2016084209 A1 JPWO2016084209 A1 JP WO2016084209A1
Authority
JP
Japan
Prior art keywords
thermocouple
temperature
temperature history
hot forging
history data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016561173A
Other languages
English (en)
Other versions
JP6232507B2 (ja
Inventor
浅川 洋平
洋平 浅川
田中 秀明
秀明 田中
舘村 誠
誠 舘村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2016084209A1 publication Critical patent/JPWO2016084209A1/ja
Application granted granted Critical
Publication of JP6232507B2 publication Critical patent/JP6232507B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

熱間鍛造加工品の品質確保には金型表面温度の測定による温度管理が重要である。熱電対を所定の深さに金属結合させた測温ユニットに、予め、熱間鍛造の熱伝導を再現する校正装置において、金型表面からの熱電対深さを校正し、前記測温ユニットを鍛造金型表面に埋設して、鍛造素材に対する熱間鍛造プロセスにおいて、前記測温ユニットの熱電対から測定される熱電対温度履歴データを収集して記録し、前記熱電対温度履歴データと、前記熱電対深さ校正値に基づき、非定常熱伝導逆解析により金型表面温度履歴データを算出し、前記金型表面温度履歴データ、および熱間鍛造プロセス良否判定基準に基づき、該当鍛造品、該当鍛造プロセスの良否判定を出力する熱間鍛造プロセス評価装置を提供する。

Description

本発明は高温に加熱した金属材料を金型を用いて成形する熱間プレス加工技術で、金型表面温度の非定常履歴を精度良く測定し、プレス加工が適切に行われているかを管理する熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法に関する。
金属材料の加工において、金型を用いて材料を塑性変形させる加工方法を一般的に、プレス加工あるいは塑性加工と呼ぶ。プレス加工の中で、材料の変形抵抗が小さくなる高温の加工、例えば鉄系材料の加工であれば800℃以上の温度で加工する方法を熱間加工と呼ぶ。プレス加工は板材を加工するものとバルク材料を加工するものの2種類に大きく分けることができ、後者を鍛造と呼ぶ。鍛造は金属に大きな変形を与えるため、金属材料の変形抵抗を減少させるために再結晶温度以上の高温に加熱して成形する熱間鍛造が、大型製品の鍛造には多く行われる。
熱間鍛造を行う目的は成形荷重を下げることだけではない。金属材料はもともと溶湯を鋳造することから始まる。鋳造では内部に引け巣が生じたり結晶粒が粗大であるなど、そのままの状態では強度的な信頼性に劣る。これを熱間鍛造で大変形を加えることで内部の引け巣を無くすことが出来る。また鍛造による加工熱処理により結晶粒が微細化する。このことを再結晶による結晶粒の微細化と呼ぶ。微細な結晶粒は亀裂の進展を防止し材料の靭性の向上につながる。
再結晶による微細化は大変形を加えたことにより結晶内に大量に導入された転位の弾性エネルギーを駆動力とし、転位を吸収するように新たな粒界が生じることにより行われる。粒界もエネルギーを持つため微細な結晶粒はエネルギー的に準安定な状態であり、高温で保持すると徐々に結晶粒径は成長する。
そのため、再結晶組織には加工温度が大きく影響を与える。そのため、望ましい結晶粒径の材料を得るためには、鍛造加工で温度を厳密に管理することが重要である。
例えば、航空機用ジェットエンジンのタービンディスクに用いられるNi基耐熱合金では望ましい結晶粒径の再結晶組織を得るためには10℃程度の幅での材料温度の制御が求められる。
本技術分野の背景技術として、特許第4579820号公報(特許文献1)がある。この公報には、「鋳型または金型に埋設された温度センサにより計測された少なくとも2点の測温データを入力する入力部と、入力された測温データから非定常伝熱逆問題解析を行うことにより前記鋳型または金型の稼働面(金型表面)における温度を演算する演算部と、演算された可動面における温度に基き前記鋳型または金型の稼動状態を判定する判定部とを有することを特徴とする鋳型または金型の稼働面の操業状態を判定する装置」が記載されている。
また、特許第3129673号公報(特許文献2)には、「熱電対の校正を1つの炉で、100℃〜1600℃の温度範囲をカバーして、その温度範囲における任意の温度点での比較校正を可能とするために、白金または白金合金製の筒状体で構成した電気炉の発熱体に直接通電して炉温を制御し、熱電対のZn、Al、Ag、Au、Cu、Pdの定点をワイヤー法により校正する熱電対校正炉及び校正方法」が記載されている。
また、非特許文献1には、「圧延加工時のロールへの伝熱現象の解明や最適な潤滑・クーラント条件の解明などのために、ロール表面に埋め込む温度センサブロックの中に1組の熱電対を取り付け、深さの異なる2箇所の温度を検出して、これらから圧延中のロール表面の温度や熱流束の変化を実際に測定する方法、及び測定システム」が記載されている。
特許第4579820号公報 特許第3129673号公報
米山猛、外4名、「圧延ロール表面の温度・熱流束測定システムの開発」、塑性と加工、日本塑性加工学会誌、1995年3月、第36巻、第410号、p.236−241
特許文献1に示された方式では、鋳型もしくは金型の表面温度を金型内部に埋設した温度計の信号より非定常熱伝導の逆解析により、鋳型または金型の稼働面の温度を算出する方式を採用している。また、非特許文献1においても、圧延ロールの表面に埋め込まれた温度センサから深さの異なる2箇所の温度を検出して、非定常熱伝導の逆解析により、ロール表面の温度や熱流束の変化を算出している。
これらの方式では温度測定器の金型(ロール)表面からの深さが逆解析の精度に影響するが、温度測定器の深さの校正に関する言及はない。一般に温度が表面温度の1%となる深さδを温度浸透厚さと定義すると、δは3.6√(αt)で表される。ここでαは温度伝導率でtは時間である。表面温度の変化が緩やかで長時間にわたる場合にはδは十分に深くなるが、熱間鍛造のように短時間の現象である場合には、δは1mm以下となり、温度センサは1mmより狭い範囲に複数個配置する必要がある。
この場合には逆解析の精度を確保するために、0.01mmのオーダーの精度で温度センサを配置する必要がある。よって、特許文献1、及び非特許文献1に記載された方法では、鍛造のようにごく短時間の金型表面の加熱時間では、精度よく逆解析により金型表面温度を求めることは困難である。
また特許文献2に開示される熱電対校正炉を用いた熱電対校正方法によると、熱電対の全ての定点を夫々短時間に効率よく校正することができる。しかし、鍛造素材から金型への熱伝達状態を再現するような構成は備えていないので、本願発明が解決しようとする熱間鍛造工程における金型表面温度履歴を正確に測定するために、金型に埋め込む温度測定器の金型表面と一致させる表面部からの熱電対の深さを校正する手段には利用できない。
本発明は、例えば熱間鍛造工程において加工される加工品の再結晶組織の結晶粒径を所望の範囲に揃えるなどの厳密な温度管理を実現するために、鍛造素材と金型との接触面である金型表面から極めて近い距離(深さ)の観測点の温度履歴を正確に測定する測温ユニット、該測温ユニットに備えられた熱電対の接合部の深さを予め校正する校正手段、鍛造金型に埋設された測温ユニットからの熱電対温度履歴データを収集して、金型表面温度履歴データを算出して、鍛造品の品質管理を実行する熱間鍛造プロセス評価装置を提供する。
上記課題を解決するために本発明では、熱間鍛造プロセス評価装置を、熱電対を所定の深さに金属結合させた測温ユニットに、予め、熱間鍛造の熱伝導を再現する校正装置において、金型表面からの熱電対深さを校正して記録する熱電対深さ校正処理部と、前記測温ユニットを鍛造金型表面に埋設して、鍛造素材に対する熱間鍛造プロセスにおいて、前記測温ユニットの熱電対から測定される熱電対温度履歴データを収集して記録する熱電対温度履歴データ記録処理部と、前記熱電対温度履歴データと、前記熱電対深さ校正値に基づき、非定常熱伝導逆解析により金型表面温度履歴データを算出する金型表面温度履歴算出部と、前記金型表面温度履歴データ、および熱間鍛造プロセス良否判定基準に基づき、該当鍛造品、該当鍛造プロセスの良否判定を出力する熱間鍛造プロセス良否判定部とを備えて構成した。
また、上記課題を解決するために本発明では、前記熱間鍛造プロセス評価装置において、前記熱電対深さ校正処理部は、熱電対を所定の深さに金属結合させた測温ユニットのヘッド表面に、校正装置において所定の温度まで加熱した低融点金属材料を密着させて、前記低融点金属材料の密着面に設置された熱電対、および前記測温ユニットの熱電対から測定された熱電対温度履歴データより金型表面からの熱電対深さを校正して、記憶部に記録するように構成した。
また、上記課題を解決するために本発明では、前記熱間鍛造プロセス評価装置において、前記金型表面温度履歴算出部は、前記記録された測温ユニットごとの埋め込み深さの異なる熱電対A、および熱電対Bの熱電対温度履歴データを読み出して、及び当該測温ユニットの熱電対深さ校正値も読出して熱電対A、および熱電対Bの埋め込み深さの値として、当該測温ユニットのヘッド表面と一致する金型表面の温度履歴を、一次元非定常熱伝導の逆問題を解いて算出するように構成した。
また、上記課題を解決するために本発明では、熱間鍛造プロセス評価方法において、熱電対を所定の深さに金属結合させた測温ユニットに、予め、熱間鍛造の熱伝導を再現する校正装置において、金型表面からの熱電対深さを校正して記録する熱電対深さ校正ステップと、前記測温ユニットを鍛造金型表面に埋設して、鍛造素材に対する熱間鍛造プロセスにおいて、前記測温ユニットの熱電対から測定される熱電対温度履歴データを収集して記録する熱電対温度履歴データ記録ステップと、前記熱電対温度履歴データと、前記熱電対深さ校正値に基づき、非定常熱伝導逆解析により金型表面温度履歴データを算出する金型表面温度履歴算出ステップと、前記金型表面温度履歴データ、および熱間鍛造プロセス良否判定基準に基づき、該当鍛造品、該当鍛造プロセスの良否判定を出力する熱間鍛造プロセス良否判定ステップとを有するようにした。
本発明を用いることで、熱間鍛造加工金型に挿入した測温ユニットにより、精度良く金型表面温度が測定できるようになる。これにより、金型寿命の予測精度が向上するほか、熱間鍛造加工後の加工品の表面温度履歴を精度良く測定することにより、熱間鍛造プロセスの管理及び、熱間鍛造加工品の品質管理をより高い精度で行うことが可能となる。
本発明の熱間鍛造プロセス評価装置を使用した熱間鍛造プロセス評価システムの構成例を説明する図である。 測温ユニットの取り付け状態を説明する図である。 測温ユニットの拡大図である。 測温ユニット校正装置の構成を説明する断面図である。 測温ユニット校正装置の校正パンチの接触面に取り付けた表面熱電対の拡大図である。 測温ユニット校正装置の校正パンチの接触面に取り付けた表面熱電対の断面図である。 測温ユニット校正装置において、熱間鍛造と同様の熱伝達の状態を再現した場合の各熱電対の温度履歴をグラフ上に示した例である。 測温ユニット校正装置の測定結果と対比させるための低融点金属材料からの熱伝導状態を解析するための一次元熱伝導解析モデルである。 一次元熱伝導解析結果と測温ユニット熱電対の温度履歴との照合を説明するグラフである。 航空機エンジンのタービン部品鍛造工程を説明する図である。 型鍛造上型における測温ユニットの埋設位置を説明する図である。 型鍛造下型における測温ユニットの埋設位置を説明する図である。 型鍛造工程の開始時の状態を示す図である。 型鍛造工程の終了時の状態を示す図である。 熱間鍛造プロセス評価装置の表示部に表示される温度履歴表示画面の一例を示す図である。 表示対象の測温ユニットの金型表面温度履歴データと、温度履歴過去データとの温度履歴比較画面の一例である。 特徴量時系列比較表示図の一例を示す図である。 現在のロットと、過去の実績データとのロット比較表示画面の一例である。
以下、本発明の金型表面温度測定手段を用いた熱間鍛造加工品評価方法の具体的な実施例を図面を用いて説明する。
図1を参照して本発明の熱間鍛造プロセス評価システムの実施形態の概要を説明する。鍛造加工が施される材料1はプレス(図示せず)のボルスター(図示せず)に取り付けられた下型2と、スライド(図示せず)に取り付けられた上型3で加工する。以降では下型2と上型3を合わせて金型4と呼ぶ。金型4の材料1に接触する面には測温ユニット5が埋め込まれている。後述するが測温ユニット5(図2参照)は金型表面28から異なる2種類の深さで各一対の熱電対6が金属接合されている。各測温ユニット5の二対の熱電対6から発せられる電圧信号は熱電対温度変換部7に送られ、熱電対温度変換部7で電圧を温度に換算し、熱電対温度履歴データが熱間鍛造プロセス評価装置100に送られる。
《熱間鍛造プロセス評価装置100の構成》
熱間鍛造プロセス評価装置100は、記憶部120に記憶された各プログラム(図示せず)をローディングして、演算部110のCPUで実行することにより、演算部110に熱電対深さ校正処理部111、熱電対温度履歴データ記録処理部112、金型表面温度履歴算出部113、及び熱間鍛造プロセス良否判定部114の各機能部を備える。
熱電対深さ校正処理部111は、金型4に測温ユニット5を埋め込む前に、測温ユニット5に接合されている熱電対6の接点が金型表面からどれだけの深さに位置するかを予め校正治具を使って測定して、測定値より熱電対深さ校正値を算出して、記憶部120の熱電対深さ校正値記憶領域121に記憶する。
熱電対温度履歴データ記録処理部112は、材料1の熱間鍛造プロセスの全ての過程に亘って、金型に埋め込まれている全ての測温ユニット5の熱電対6から所定のサンプリングタイムごとに得られる熱電対温度履歴データを熱電対温度変換部7から受け取り、記憶部120の熱電対温度履歴データ記憶領域124に記録する。
金型表面温度履歴算出部113は、前記熱電対温度履歴データ124、金型表面温度算出係数122、および前記熱電対深さ校正値121を読み出して、一次元非定常熱伝導の逆問題を解いて測温ユニット5が埋め込まれている金型表面の温度を算出して、記憶部120の金型表面温度履歴データベース125に記録する。
熱間鍛造プロセス良否判定部114は、記憶部120の前記金型表面温度履歴データベース125、および熱間鍛造プロセス良否判定基準123を読み出して、各種特徴量データを算出してその推移・傾向をユーザインタフェースに提供する。また、熱間鍛造プロセス良否判定部114は、鍛造加工が施された加工品の良否判定処理を行い、判定結果を表示部21へ表示するとともに、ネットワーク8を介して加工品の選別工程へ指示を送信する。
また、熱間鍛造プロセス評価装置100の操作部20は表示部21、キーボード22、マウス23などより構成されている。操作部20は熱間鍛造プロセス評価装置100に通信部130を介して接続されており、ユーザーはキーボード22とマウス23の操作により熱間鍛造プロセス評価装置100と通信し、表示部21に金型表面温度履歴データ125、熱電対温度履歴データ124、及び熱電対深さ校正値121を表示することが可能である。また、金型表面温度履歴データベース125に記憶する複数の金型表面温度履歴データを統計的に処理した結果を表示する。
《測温ユニット5の構造》
図2、及び図3を用いて測温ユニット5の構造を説明する。図2は上型3の中央部に測温ユニット5が装着されている箇所の断面図の拡大図を示す。金型4には測温ユニット装着部24と、熱電対導入部25と、逃げ加工部26の穴加工が施されている。
図2において、測温ユニット装着部24は測温ユニットヘッド27を収納するように、同一形状を除去加工したものである。熱電対導入部25は測温ユニット装着部24よりも細い直径としている。これは鍛造により測温ユニットヘッド27に掛かる圧力を受ける面を形成するためであり、測温ユニット装着部24の直径の半分以下であることが望ましい。また逃げ加工部26は、細径の深い穴を掘るのが困難なため、大径の穴加工を行っているものである。また、図2において測温ユニットヘッド27の外気に露出している面を測温ユニットヘッド表面28とする。測温ユニットヘッド表面28は金型の表面と同一平面あるいは曲面上にある。
図3(a)に、測温ユニットヘッド27の側面に一方の熱電対6の温度検出点が接合されている測温ユニット5の拡大正面図を示す。測温ユニット5は測温ユニットヘッド27と2組の熱電対6より構成されている。測温ユニットヘッド27の材質(例えばSKD61である)は上型3、及び下型2と同じ材質で構成されている。測温ユニットヘッド表面28から熱電対6の温度検出点までの熱伝導の状態を上型3と、下型2ともに同じにするためである。金型の高温での強度を増すために、金型4の表面にNi基耐熱合金などを肉盛り溶接する場合には、熱伝導の状態を肉盛部と同一にするため測温ユニットヘッド27の材質にはNi基耐熱合金を用いるのが望ましい。
図3(b)に測温ユニットヘッド27への熱電対6溶着部斜視図を示す。熱電対6は測温ユニットヘッド27の側面で、測温ユニットヘッド接合面29に金属接合されている。この接合箇所を接合部(温度検出点)30と呼ぶ。測温ユニットヘッド接合面29は測温ユニットヘッド表面28に対して平行な面である。熱電対の種類をK熱電対とした場合に、クロメル(商標名)線31とアルメル(商標名)線32は別々に測温ユニットヘッド接合面29に接合した構造である。
接合方法は材料の混濁を避けるために抵抗溶接や超音波接合など熱による溶融部が少ない方法を採用する場合と、測温ユニットヘッド27と熱電対6の熱伝達抵抗を下げるために、レーザー溶接で広い範囲を溶接する方法を適宜選択する。
《熱電対温度履歴データから金型表面温度履歴データを算出する方法》
図3(c)は、図3(a)における切断線のC−C断面図を示す。図3(c)において、測温ユニットヘッド表面28から接合部30までの距離が、距離Aと距離Bである。図に示す通り、2対の熱電対6の温度検出点(接合部)は、測温ユニットヘッド表面(金型の表面)28から異なった深さに位置する。距離Aの熱電対6を熱電対A33と呼び、距離Bの熱電対を熱電対B34と呼ぶことにする。
熱電対温度履歴データ124を入力して、金型表面の温度を算出する一次元非定常熱伝導の逆解析を行うためには、距離Aと距離Bは異なる大きさとし、両者は2倍程度の違いが望ましい。距離A、距離Bを大きくとると逆解析の応答精度と時間分解能が落ちる。そのため、自動車部品のように毎分数10個製造する大量生産品の温度測定では、距離A、距離Bが0.1mm前後であることが望ましい。また、航空機エンジン部品のように大型の部品では、加工時間が長いため応答速度を多少犠牲に出来る場合には距離A、及び距離Bの大きさは1mm前後でも許容できる。しかし、熱電対温度履歴データ124から金型表面温度履歴データ125を逆解析する精度に影響するために、距離Aと距離Bの精度は重要である。本実施例では時間分解能を0.1秒程度とするため、距離Aの設計値を0.5mm、距離Bの設計値を1.0mmとした場合について検討した。
本実施例では、金型表面温度の逆解析に2対の熱電対6の温度履歴データを用いる方法を採用しているが、1対の熱電対6の熱電対温度履歴データ124を元に逆解析する方法も存在する。この場合には、測温ユニットヘッド表面28から熱電対6の接合部30までの距離は、0.1〜数mm程度となり、また前記距離の精度が重要であることについては2対の熱電対6の場合と同様である。また、熱電対の本数をさらに増やして、それらの熱電対温度履歴データ124を元に逆解析することも可能である。この場合にも熱電対6の接合部30までの距離は精度良く把握されていることが重要である。
各測温ユニット5の熱電対6は、金型4に加工された熱電対導入部25と、逃げ加工部26を通して金型4の外にまで伸ばして、熱電対温度変換部7に接続されている。熱電対温度変換部7と各熱電対6の間には、低温領域で熱電対と同様な起電力をもつ安価な補償導線を用いても良い。熱電対温度変換部7で熱電対6の電圧信号を温度に変換する。変換された温度データは、熱電対温度履歴データ記録処理部112により受付られて、熱電対温度履歴データ記憶領域124に保存される。
熱電対温度履歴データ記憶領域124には、1つの材料1の熱間鍛造プロセスの開始時点から終了時点までの時間分解能ごとの、金型4に埋め込まれた全ての測温ユニット5に搭載された熱電対A33、および熱電対B34の熱電対温度履歴データが保存される。なお、前記材料から成形された加工品に識別IDを付けて、複数の加工品の識別IDごとに熱電対温度履歴データを記録することを可能とする。
《金型表面温度算出方法》
前記金型表面温度履歴算出部113は、前記熱電対温度履歴データ記憶領域124に記録された測温ユニット5ごとの埋め込み深さの異なる熱電対A33、および熱電対B34の熱電対温度履歴データから、測温ユニット5が金型4に埋め込まれて測温ユニットヘッド表面28と金型表面が同一平面に設定されている金型4の表面温度を算出して、金型表面温度履歴データベース125に記録する。その算出方法は、非特許文献1において採用している一次元非定常熱伝導の逆問題を解いた庄司の式を用いる。
庄司の式では、Tを測温ユニットヘッド表面(金型の表面)28から深さAの位置の熱電対A33の温度、Tを測温ユニットヘッド表面(金型の表面)28から深さBの位置の熱電対B34の温度とし、T、Tが時間Δtごとに測定値T(i)、T(i)(t=iΔt,i=0,1,2,3,・・・・・・・)で与えられる場合、測温ユニットヘッド表面(金型の表面)28の温度T(i)は、数1で算出される。
Figure 2016084209
ここで、Κ〜Κはサンプリング間隔Δt、および深さA,Bによって決まる係数である。
Κ〜Κは数2〜数7によって算出される。
Figure 2016084209
Figure 2016084209
Figure 2016084209
Figure 2016084209
Figure 2016084209
Figure 2016084209
ここで、xは設計値である深さA(図3(c)に示す距離A)に相当する実際に測定された値であり、xも設計値である深さB(図3(c)に示す距離B)に相当する実際に測定された値である。κは温度伝導率であり、係数αは数8を用いて、係数βは数9を用いて計算される。Brはベルヌーイ数である。
Figure 2016084209
Figure 2016084209
数1に示すように、同時刻の熱電対の温度データだけでなく、前後の時刻の温度データも用いて金型表面温度を算出する。そのため、アナログの連続したデータである熱電対6の発する信号を、熱電対温度変換部7で温度に変換したのち、Δtごとに離散化したディジタル値に変換して、熱電対温度履歴データ記憶領域124に記録する。例えば1ミリ秒ごとに離散化して記録されている。このデータを本実施例では、Δt=0.1秒毎の分解能で逆解析を行うために、0.1秒ごとに間引いた値、或いは0.1秒ごとに平均をとった値を逆解析に用いる。
数1の係数Κ〜Κおよびα、βの算出には、深さxとxの値を用いるため、金型表面温度履歴データ125を精度良く求めるためには、精度の良いxとxの値が重要である。しかし、図3(b)に示す接合部30は微細な加工を要し、図3(c)に示す距離Aと距離Bの大きさに対する相対的なばらつきが大きい。熱電対6が接合された測温ユニット5を切断して観察すると、熱電対6が測温ユニットヘッド接合面29だけでなく、それと垂直をなす測温ユニットヘッド側面35にも接合していることがある。この場合には、xの距離(測定値)が距離A(設計値)よりも長くなり、逆解析の精度が落ちる。
また接合部30での接合面積が不十分な場合には、熱伝達の障害となり熱電対の温度の上昇が測温ユニットヘッド27の距離Aの箇所と比較して温度上昇が遅れ、逆解析の精度が落ちる。実際に測温ユニット5を製造し実験を行うと、上記のような不具合が生じることがわかった。xおよびxに実際に測定した値を用いることで、逆解析の精度の問題は回避できるが、測温ユニット5を破壊せずに測温ユニットヘッド側面35との接合状況を観察することは困難である。また、接合部30の熱伝達抵抗についても光学的な観察が出来るものではない。
《測温ユニット5の熱電対A,Bの深さx,xの校正方法の検討》
そこで、本願発明者は金型4に測温ユニット5を装着する前に、深さxとxの校正を行う手段に関して検討した。測温ユニット5は金型4と材料1が接触している面の温度を測定するのが目的である。
図4に示すのは測温ユニット校正装置36である。金型材質や測温ユニットヘッド27と同一材料(例えば、SKD61)で製作された校正パンチ37に測温ユニット5を納めて用いる。測温ユニット5は校正パンチ37の接触面38から挿入されている。校正パンチ37に開けられた測温ユニット挿入穴の直径は、収納した測温ユニット5がしっくりと動く程度の隙間ばめとなっている。JISの規格で言えば測温ユニットヘッド27の直径のはめあい公差がm6で、校正パンチ37にあけた穴のはめあい公差がE7である。隙間ばめとすることで、校正を行った後に測温ユニット5を抜き出し、金型4に再度挿入することが可能である。校正パンチ37の公差が隙間ばめのため、このままでは校正中に測温ユニット5が抜け落ちる場合がある。校正時には側面より留めねじ(図示せず)を用いて固定して用いる。校正を終了した後の測温ユニット5を金型4に収納する場合には、測温ユニット装着部24(図2参照)の穴寸法のはめあいをJIS規格で表すH7とすることにより、測温ユニット5の挿入は圧入が必要となり、留めねじを用いずとも使用中に落下することはない。
校正パンチ37の接触面38には表面熱電対39が表面に接合されている。また校正パンチ37は断熱材40を介して支持部材41と結合されている。支持部材41は油圧プレス(図示せず)や油圧シリンダー(図示せず)などの可動装置(図示せず)に接合されている。測温ユニット校正装置36の下部には加熱型42が固定されており、前記加熱型42にはヒーター43が挿入されていて、前記加熱型を所定の温度に加熱することが可能となっている。前記加熱型42の前記校正パンチ37と接触する箇所には低融点金属材料44が配置されている。低融点金属材料44は本実施例では直径100mmで厚さ10mmのものを用いた。
低融点金属材料44にはアルミニウムの純度が99%以上の工業用純アルミニウムを用いる。鉄系材料やNi基材料のように、高温強度の高い材料を校正時の材料として使用すると、パンチ表面に露出した表面熱電対39は破損する。また荷重を下げると、熱伝達係数が小さくなり、校正パンチ37および測温ユニット5との熱伝達は実際の熱間鍛造と大幅に異なる。
ここで、表面熱電対39を破壊することなく低融点金属材料44と校正パンチ37および測温ユニット5の熱伝達を向上する手段を考案する上で、本願発明者は熱伝達係数について、低融点金属材料とパンチ間の真実接触面積が支配要因であることに着目した。つまり、融点直下に材料を加熱することにより材料の降伏応力を下げ、低い圧力で真実接触面積が増加して、熱間塑性加工と同程度の熱伝達係数を得られる手法を考案して用いた。
低融点金属材料44として、様々な材料について検討したが、本実施例では純アルミニウムを用いた場合について説明する。純アルミニウムは融点直下でも安定した酸化膜を作るためスラグが生じず、同じ材料を繰返し利用でき、測温ユニット5の繰り返し精度も含めた校正に適している。しかし、本発明で利用する低融点金属材料44は純アルミニウムに限定するものではない。
続いて、図5と図6を用いて表面熱電対39の構造について示す。図5は表面熱電対39の拡大図である。校正パンチ37には裏側から表面に熱電対6を導入するための、熱電対導入孔48が開けられている。また校正パンチ37には熱電対6を配置するための浅溝49が設けられている。図6は表面熱電対39の断面図である。表面熱電対39のアルメル線32、クロメル線31は細いほど応答速度が早く、より正確に表面温度を測定できる。一方、溶接を含めた加工は熱電対の径が小さいほど難しい。本実施例では反応速度と加工性を考え、アルメル線32、およびクロメル線31の径が0.13mmの物を用いた例について説明する。また浅溝49の深さは0.05mmとして、アルメル線、クロメル線を配置した後に、圧縮・扁平化し浅溝49に配置する。
アルメル線32、クロメル線31はそれぞれレーザー溶接し、校正パンチ37に溶着した構造とする。また浅溝49の未充填部分には校正パンチ37と同材質の充填物50を肉盛り溶接し余った校正パンチ37の表面より突出した箇所は研磨により削除し、アルメル線32、クロメル線31と校正パンチ37の表面は同一面を形成する。
表面熱電対39の溶着には抵抗溶接等を用いることも可能であるが、レーザー溶接を用いることで、アルメル線32、クロメル線31と校正パンチ37との界面は8割以上金属結合をした状態になり、熱伝達抵抗が無くなる。このように校正パンチ37の表面に熱電対6を金属結合状態にすることにより、熱電対6の出力する温度は、校正パンチ37の表面温度と同一と見なすことが可能となる。
本実施例では熱電対6の種類としてK熱電対を用いたが、K熱電対に限るものではなく、また直径も上記寸法に限るものではない。
《測温ユニットの校正方法》
次に校正パンチ37を用いた測温ユニット5の校正方法の一例について説明する。
加熱型42とその中にある低融点金属材料44を600℃に加熱する。測温ユニット校正装置36の支持部材41に下方向の荷重を加える。校正パンチ37の直径が90mmで、低融点金属材料44に600℃の純アルミニウムを用いた場合には、100kN程度の荷重で、低融点金属材料44は完全に降伏して、校正パンチ37と低融点金属材料44は密着し、通常の熱間鍛造と同様の熱伝達の状態となる。
上記の条件で測定した結果の一例が図7である。図7において、表面熱電対39の出力する表面熱電対温度履歴45と、その近傍に挿入した一つの測温ユニット5の熱電対A33の出力する熱電対A温度履歴46、および熱電対B34の熱電対B温度履歴47を、縦軸が温度、横軸が時間のグラフ上に表示している。低融点金属材料44との接触前の校正パンチ37の初期温度が200℃であり、グラフにおける初期温度51は、表面熱電対温度履歴45と熱電対A温度履歴46と熱電対B温度履歴47ともに200℃である。
校正パンチ37と低融点金属材料44が接触した直後から、表面熱電対温度履歴45が上昇を始める。少し遅れて熱電対A温度履歴46の上昇が始まり、また少し遅れて熱電対B温度履歴47が上昇を始める。校正パンチ37の直径は90mmで、測温ユニット5の熱電対A33と熱電対B34の設計深さはそれぞれ0.5mmと1.0mmであり、低融点金属材料44からの熱伝導状態は1次元の熱伝導とみなせる。そのため図8に示すような一次元解析モデルで測定した熱伝導を再現することが可能である。
すなわち、金型材料52(校正パンチ、測温ユニットの材料)の熱物性を入力して、初期温度を図7の初期温度51に設定し、境界条件として表面熱電対温度履歴45を設定して一次元の熱伝導解析を行うことにより、任意の深さの解析点の温度履歴を算出することが可能である。
図9に熱伝導解析の入力条件である表面熱電対温度履歴45(太い実線)とその解析結果である測温ユニット内部温度履歴53(点線表示)の関係を示す。ここでは、解析点を表面から0.1mmピッチの間隔で表面からの深さkを変化させて、測温ユニット内部温度履歴53を取得した。
熱電対A温度履歴46と最も類似性の高い温度履歴を測温ユニット内部温度履歴53のなかから選ぶことで、熱電対A33の深さの校正値xrを大まかに求めることが出来る。また、上記大まかな深さの校正値xrの前後の測温ユニット内部温度履歴53より合成比pで合成した合成温度履歴54と、熱電対A温度履歴46の類似性が最大となる合成比pを求めることで、より精度よく熱電対Aの校正後の深さxを求めることが可能となる。
数10から数15を用いて、類似性の判断基準の一例として、熱伝導解析の出力する測温ユニット内部温度履歴53と、熱電対A温度履歴46との差の2乗和の小ささを類似性の判断基準とする方法を説明する。
数10において、Sk(i)は測温ユニット5の表面からkmmの深さの測温ユニット内部温度履歴53である。T(i)は熱電対A温度履歴46である。数10に示すように、両者の差の2乗和を算出しRkで表す。Rkが最も小さいkを求めることで大まかな校正値xrを算出する。
Figure 2016084209
上記のkをkとし、2番めに小さいkをkとする。数11に示すように、p:1−pの合成比で、kとkに対応する測温ユニット内部温度履歴53を合成した合成温度履歴54のTp(i)を作成する。
Figure 2016084209
数12に示すように変数pを含めた合成温度履歴54と熱電対A温度履歴46の差の2乗和を求める。数12を最小にするpを求めることで、熱電対A33の深さの校正値が求まる。
Figure 2016084209
数12を最小にするpを求めるには、数13に示すように数12をpで偏微分して=0とする。式を展開するとpを示す数14が求まる。
とkの深さを合成比pで合成した値xが熱電対A33の深さの校正値となる(数15)。熱電対B34についても同様の計算により校正値xが求まる。
Figure 2016084209
Figure 2016084209
Figure 2016084209
なお、校正パンチ37の表面部の温度上昇が小さくなると、表面熱電対温度履歴45と熱電対A温度履歴46と熱電対B温度履歴47の差が小さくなり校正の精度が大幅に低下する。非定常の熱伝導は温度の上昇が早いほど、測定箇所による温度の違いも明確になり、校正をより高精度に行うことが可能となる。
熱間鍛造プロセス評価装置100の熱電対深さ校正処理部111は、測温ユニット校正装置36に挿入された校正対象の測温ユニット5の校正処理において、表面熱電対39、熱電対A33、および熱電対B34の各温度履歴を収集して、熱電対温度履歴データ記憶領域124へ記憶した後、それらのデータに基づいて熱電対A33の深さの校正値x、および熱電対B34の深さの校正値xを上記数式に基いて算出して、測温ユニット5のIDに対応付けて熱電対深さ校正値記憶領域121に記憶しておく。
数2〜数9までに前記熱電対深さ校正値を用いることで数1を用いた金型表面温度の算出精度が向上する。なお、逆解析のアルゴリズムについては種々存在するが、算出時に熱電対深さを用いるアルゴリズムでは本発明の熱電対深さの校正値の求め方は利用できるものであり、本実施例の内容に制限するものではない。
図10に航空機用ジェットエンジンのNi基耐熱合金のタービン部品の鍛造工程の一例を示す。素材55を第一工程で据込み加工して据え込み材56を製造する。第2工程で据え込み材56を型鍛造を行い型鍛造材57を製造する。第3工程で型鍛造材57を型鍛造を行い最終鍛造材58の形状とする。最終鍛造材58の外周部59は航空機エンジンに用いた場合に熱疲労が生じる箇所であり、疲労破壊を避けるために10μm程度の結晶粒径にコントロールすることが要求される。数10〜数100μmの結晶粒径をもつ素材55を加工熱処理により微細化する。
加工熱処理による微細化を簡単に説明すると、加工により蓄えられた転位のエネルギーを駆動源として、新たな結晶粒界を生成することで結晶粒を微細化する方法である。結晶粒の微細化の制御因子は歪、歪速度、および温度である。結晶粒界の移動は熱活性化過程であり、微細化を進行させるには一定以上の温度であることが求められる。しかし、微細結晶組織はそれ自体が準安定な組織であり、一定以上の温度では結晶粒の粗大化が進行し、所定の微細組織が得られない。そのため、航空機エンジンに用いられるNi基合金の部品のように微細な組織を必要とする部品では、厳密な温度コントロール下での加工が重要である。加工時には塑性変形の仕事による発熱もあり、また加熱された素材の熱を吸収し金型4の温度が変化することもあるため、同一条件で熱間鍛造をコントロールしても、加工後の最終鍛造材58の温度が異なることもありえる。
よって、加工条件の制御を高精度にするのみならず、加工時の温度を実測することにより事後に鍛造品の良否を判断することも品質を管理するうえで、有効な手段である。
《金型表面の温度の測定方法》
図13と図14を用いて型鍛造材57を型鍛造を行い最終鍛造材58の形状とする工程での金型表面の温度の測定方法を示す。
型鍛造上型60における測温ユニット5の配置について図11を用いて説明する。型鍛造上型60には上中心測温ユニット61、上周辺測温ユニットa62、上周辺測温ユニットb63、上周辺測温ユニットc64の4個の測温ユニット5が埋設されている。上中心測温ユニット61は型鍛造材57との摩擦が小さく、長時間にわたり型鍛造材57と接触しているため、誤差要因の少ない測定が可能な位置である。また、3個の上周辺測温ユニットは材料周辺にあり、誤差要因に影響を受け易く測定する温度が変化しやすい箇所である。
同様に型鍛造下型65の測温ユニット5の配置について図12を用いて説明する。型鍛造下型65には下中心測温ユニット66、下周辺測温ユニットa67、下周辺測温ユニットb68、下周辺測温ユニットc69の4個の測温ユニット5が埋設されている。
図13に、前記型鍛造材57を型鍛造して最終鍛造材58にする第3工程における、型鍛造工程開始70の状態を示す。型鍛造下型65はプレスのボルスター(図示せず)に固定されており、型鍛造上型60はプレスのスライド(図示せず)に固定されている。型鍛造上型60と型鍛造下型65は所定の温度、例えば400℃に加熱されている。また型鍛造材57は所定の温度、例えば980℃に加熱されている。
プレス内の油圧シリンダーやモーターなどのアクチュエーターによりスライドが下方向に所定の位置まで動作することで、型鍛造下型65と型鍛造上型60により、 型鍛造材57は金型形状に沿って塑性変形する。塑性変形後の型鍛造工程終了71の状態を示すのが図14になる。
図13及び図14に示す鍛造工程では軸対称の加工が行われるが、外乱により必ずしも実際の塑性変形が軸対称に進むわけではない。型鍛造上型60の上周辺測温ユニット及び型鍛造下型65の下周辺測温ユニットを120°ごとに3個埋設したのは、これらの軸対称でない現象が生じた場合に温度履歴より検出するためである。
《熱間鍛造プロセス良否判定手段》
以下に、熱間鍛造プロセス評価装置100の熱間鍛造プロセス良否判定部114が提供する熱間鍛造プロセスの良否を判定するためのユーザインタフェースの例、及び熱間鍛造プロセス良否判定部114が熱間鍛造プロセスの良否判定を行い、ワークの選別を実行する鍛造品の製造方法の例を示す。
図15は、図1に示す熱間鍛造プロセス評価装置100の表示部21に表示される画面の一例の温度履歴表示画面72である。温度履歴表示画面72はグラフ表示部73と特徴量表示部74より構成される。
グラフ表示部73は上下の金型の金型表面温度履歴データ125を表示する上型温度履歴表示画面75と下型温度履歴表示画面76より構成される。
上型温度履歴表示画面75には上中心測温ユニット61と上周辺測温ユニットa62と上周辺測温ユニットb63と上周辺測温ユニットc64の熱電対温度履歴データ124から熱電対深さ校正値121を用いて逆解析して求めた金型表面温度履歴データ125が表示される。ここではそれぞれを上中心測温ユニット表面温度履歴77、上周辺測温ユニットa表面温度履歴78、上周辺測温ユニットb表面温度履歴79、上周辺測温ユニットc表面温度履歴80として表示してある。上周辺測温ユニットc表面温度履歴80の温度上昇が、上周辺測温ユニットa表面温度履歴78と上周辺測温ユニットb表面温度履歴79より小さいことが見て取れる。上周辺測温ユニットc64と材料との熱伝達が少ないと考えられ、例えば潤滑油が無くなり、ここだけ熱伝達係数が変化しているなど、何らかの異常を検知している。
同様に、下型温度履歴表示画面76には下中心測温ユニット表面温度履歴81、下周辺測温ユニットa表面温度履歴82、下周辺測温ユニットb表面温度履歴83、下周辺測温ユニットc表面温度履歴84を表示する。軸対称の成形が何らかの理由で非軸対称の加工になる場合には、下型温度履歴表示画面76に一例を示すように下周辺測温ユニットc表面温度履歴84の温度の立ち上がりが、下周辺測温ユニットa表面温度履歴82や下周辺測温ユニットb表面温度履歴83より遅れる可能性が生じる。非定常の熱伝導では測温ユニット5における接合部30の位置のばらつきは応答時間の変化として現れる。本実施例に示す熱間鍛造プロセス評価装置100のように熱電対の深さを校正した測温ユニット5を用いた場合には、熱電対の深さのバラつきによる、逆解析結果における温度の立ち上がりの遅れが生じないため、実際に下周辺測温ユニットc69の表面において温度の立ち上がりが遅れていることが確認できる。
特徴量表示部74は上型測温ユニット特徴量表示部85と下型測温ユニット特徴量表示部86と特徴量選択ボタン87より構成される。本実施例では特徴量として平均温度、温度積分値、および熱流入用の3つの特徴量選択ボタン87を表示している。それぞれ図1のキーボード22やマウス23を利用して特徴量選択ボタン87を選択することにより、平均温度、温度積分値(時間で積分した温度積分量。誤差には強いと予測される。)、熱流入量(測温ユニット位置における、金型側から見た熱流入量。)を用いた表示を切り替えることが可能である。なお、表示する特徴量については本実施例に限るものではなく、熱電対温度履歴データ124、熱電対深さ校正値121を用いて算出した金型表面温度履歴データを格納する金型表面温度履歴データベース125を検索して、算術処理、例えば四則演算や三角関数や指数関数・対数関数などの初等関数を用いた計算、微分・積分などの処理を施したいかなる特徴量も表示でき、本実施例の内容に限定するものではない。
図16は、表示部21に表示される画面の一例の温度履歴比較画面88である。温度履歴比較画面88には、表示対象の測温ユニット5の金型表面温度履歴データ125を表示する。直近の加工での当該表面温度履歴データ89と過去の所定の期間の平均値である平均温度履歴データ90と一番新しい過去データである第1温度履歴過去データ91、第2温度履歴過去データ92などを温度履歴比較画面88に表すことが出来る。これにより、直近の加工に何らかの異常が発生していないか確認することが出来る。ここで比較する特徴量は例えば最高温度や、加工終了時の温度や、加工開始から終了まで温度を積分した値など、金型表面温度履歴データ125を処理して得られる様々な特徴量を表示でき、金型表面温度履歴データ125の算出に熱電対深さ校正値121を用いることで、高精度な値を算出し表示することが出来る。
図17に示すのは表示部21に表示される画面の一例である特徴量時系列比較表示図93である。特徴量時系列比較表示図93では横軸に時系列を、縦軸に特徴量を示す。ここで示す特徴量を選択するのが、特徴量選択ボタン94であり、キーボード22やマウス23を用いて選択する。特徴量選択ボタン94で選択する特徴量としては、最高温度、加工終了時温度(金型表面温度)、加工終了時材料温度(本来は正確に求められないが、材料の伝達係数を用いて金型表面温度から材料内部の温度を逆算する。)、面積当り熱流量の積分値の例を記しているが、熱電対深さ校正値121を用いて算出された金型表面温度履歴データ125に基づいて算出した如何なる特徴量も表示することが可能である。
特徴量時系列比較表示図93には、熱間鍛造プロセス良否判定基準123から読み出されたプロセスウィンドーの上限線95、下限線96が表示される。プロセスウィンドーの上限線95を超えた外れワークデータ(特徴量)97は該当するワークの結晶粒径が粗大化している可能性があるため、組織観察などの検査を優先的に行う。ワークの結晶粒径の組織観察結果に基づき、ワークの良否を判定する閾値となるプロセスウィンドーの上限線95、下限線96を決定して、熱間鍛造プロセス良否判定基準記憶領域123へ再登録する。
その後、熱間鍛造プロセス評価装置100の熱間鍛造プロセス良否判定部114は、熱間鍛造プロセスにおいて、ワークごとの熱電対温度履歴データを収集して、金型表面温度履歴データに変換した後、ワークごとの特徴量データの推移が熱間鍛造プロセス良否判定基準123に登録されたプロセスウィンドーの上限線95、下限線96の範囲に収まっているワークを例えば良品と判定して、判定結果を通信部130、ネットワーク8を介して、例えばワークの選別工程へ通知する。ワークの選別工程では、熱間鍛造プロセス評価装置100の判定結果に基づき、該当ワークを製品化する次工程へ送るか、ワークを検査、再生、廃棄工程へ送るかを選別する。
図18は表示部21に表示される画面の一例で、過去の実績データとのロット比較表示画面140である。例えば、特定の測温ユニット5、過去のロットを指定して、その測温ユニット5により測定された金型表面温度履歴データを検索して、所望の特徴量を算出して、グラフ表示部73には横軸に温度を、縦軸に該当ロットのワーク数(度数)を用いた度数分布図を示した例である。過去のロットのワーク数(度数)データ141と現在の評価対象のロットのワーク数(度数)データ142の分布の比較を可能とする。
ロット特徴量比較表示部143には、現在の評価対象のロットの特徴量平均、現在の評価対象のロットの特徴量の標準偏差、および過去のロットの特徴量平均などが表示される。これによりロット単位での監視も可能となる。
本発明を熱間塑性加工の生産に適用した場合には、平均との乖離が大きいときは品質検査に回す数を増やし、平均に近いロットでは検査に回す数を減らすなど、コストと品質のバランスの取れた生産体制を構築することが可能となり、結果として鍛造品の品質を向上させることが可能となる。
1…材料、 2…下型、 3…上型、 4…金型、 5…測温ユニット、 6…熱電対、 7…熱電対温度変換部、 8…ネットワーク、 20…操作部、 21…表示部、 22…キーボード、 23…マウス、 24…測温ユニット装着部、 25…熱電対導入部、 26…逃げ加工部、 27…測温ユニットヘッド、 28…測温ユニットヘッド表面、 29…測温ユニットヘッド接合面、 30…接合部、 31…クロメル線、 32…アルメル線、 33…熱電対A、 34…熱電対B、 35…測温ユニットヘッド側面、 36…測温ユニット校正装置、 37…校正パンチ、 38…接触面、 39…表面熱電対、 40…断熱材、 41…支持部材、 42…加熱型、 43…ヒーター、 44…低融点金属材料、 45…表面熱電対温度履歴、 46…熱電対A温度履歴、 47…熱電対B温度履歴、 48…熱電対導入孔、 49…浅溝、 50…充填物、 51…初期温度、 52…金型材料、 53…測温ユニット内部温度履歴、 54…合成温度履歴、 55…素材、 56…据え込み材、 57…型鍛造材、 58…最終鍛造材、 59…外周部、 60…型鍛造上型、 61…上中心測温ユニット、 62…上周辺測温ユニットa、 63…上周辺測温ユニットb、 64…上周辺測温ユニットc、 65…型鍛造下型、 66…下中心測温ユニット、 67…下周辺測温ユニットa、 68…下周辺測温ユニットb、 69…下周辺測温ユニットc、 70…型鍛造工程開始、 71…型鍛造工程終了、 72…温度履歴表示画面、 73…グラフ表示部、 74…特徴量表示部、 75…上型温度履歴表示画面、 76…下型温度履歴表示画面、 77…上中心測温ユニット表面温度履歴、 78…上周辺測温ユニットa表面温度履歴、 79…上周辺測温ユニットb表面温度履歴、 80…上周辺測温ユニットc表面温度履歴、 81…下中心測温ユニット表面温度履歴、 82…下周辺測温ユニットa表面温度履歴、 83…下周辺測温ユニットb表面温度履歴、 84…下周辺測温ユニットc表面温度履歴、 85…上型測温ユニット特徴量表示部、 86…下型測温ユニット特徴量表示部、 87…特徴量選択ボタン、 88…温度履歴比較画面、 89…当該表面温度履歴データ、 90…平均温度履歴データ、 91…第1温度履歴過去データ、 92…第2温度履歴過去データ、 93…特徴量時系列比較表示図、 94…特徴量選択ボタン、 95…上限線、 96…下限線、 97…外れワークデータ、
100…熱間鍛造プロセス評価装置、 110 演算部、 111 熱電対深さ校正処理部、 112 熱電対温度履歴データ記録処理部、 113 金型表面温度履歴算出部、 114 熱間鍛造プロセス良否判定部、 120 記憶部、 121 熱電対深さ校正値記憶領域、 122 金型表面温度算出係数記憶領域、 123 熱間鍛造プロセス良否判定基準記憶領域、 124 熱電対温度履歴データ記憶領域、 125 金型表面温度履歴データベース、 140 ロット比較表示部、 141 過去データ、 142 当該ロットデータ、 143 ロット特徴量表示部

Claims (14)

  1. 熱電対を所定の深さに金属結合させた測温ユニットに、予め、熱間鍛造の熱伝導を再現する校正装置において、金型表面からの熱電対深さを校正して記録する熱電対深さ校正処理部と、
    前記測温ユニットを鍛造金型表面に埋設して、鍛造素材に対する熱間鍛造プロセスにおいて、前記測温ユニットの熱電対から測定される熱電対温度履歴データを収集して記録する熱電対温度履歴データ記録処理部と、
    前記熱電対温度履歴データと、前記熱電対深さ校正値に基づき、非定常熱伝導逆解析により金型表面温度履歴データを算出する金型表面温度履歴算出部と、
    前記金型表面温度履歴データ、および熱間鍛造プロセス良否判定基準に基づき、該当鍛造品、該当鍛造プロセスの良否判定を出力する熱間鍛造プロセス良否判定部とを備えたことを特徴とする熱間鍛造プロセス評価装置。
  2. 前記熱電対深さ校正処理部は、
    熱電対を所定の深さに金属結合させた測温ユニットのヘッド表面に、校正装置において所定の温度まで加熱した低融点金属材料を密着させて、前記低融点金属材料の密着面に設置された熱電対、および前記測温ユニットの熱電対から測定された熱電対温度履歴データより金型表面からの熱電対深さを校正して、記憶部に記録することを特徴とする請求項1に記載の熱間鍛造プロセス評価装置。
  3. 前記熱電対深さ校正処理部は、
    前記校正装置において、前記校正対象の測温ユニットへ熱間鍛造の熱伝導を再現する過程の前記熱電対温度履歴データを収集して、前記低融点金属材料の密着面に設置された熱電対の金型表面温度履歴を境界条件とした熱伝導解析で求まる金型内部の温度履歴と、前記測温ユニットの熱電対の温度履歴を比較して、最も一致する金型表面から解析点までの深さを前記測温ユニットの熱電対の深さの校正値とすることを特徴とする請求項2に記載の熱間鍛造プロセス評価装置。
  4. 前記熱電対温度履歴データ記録処理部は、
    1つの鍛造材料の熱間鍛造プロセスの開始時刻から終了時刻までの時間分解能ごとの、鍛造金型に埋め込まれた全ての測温ユニットに搭載された熱電対の熱電対温度履歴データを収集して、それらを纏めて鍛造加工品の識別IDを付して記憶部に記録することを特徴とする請求項1に記載の熱間鍛造プロセス評価装置。
  5. 前記金型表面温度履歴算出部は、
    前記記録された測温ユニットごとの埋め込み深さの異なる熱電対A、および熱電対Bの熱電対温度履歴データを読み出して、及び当該測温ユニットの熱電対深さ校正値も読出して熱電対A、および熱電対Bの埋め込み深さの値として、当該測温ユニットのヘッド表面と一致する金型表面の温度履歴を、一次元非定常熱伝導の逆問題を解いて算出することを特徴とする請求項1に記載の熱間鍛造プロセス評価装置。
  6. 前記熱間鍛造プロセス良否判定部は、
    前記金型表面温度履歴算出部が算出した金型の各部の表面温度履歴データに基づき、各種特徴量を算出して、その推移・傾向をユーザインタフェースに出力し、及び、前記特徴量の推移が熱間鍛造プロセス良否判定基準内に収まるか否かを判定して、鍛造加工が施された加工品の良否判定結果を加工品の選別工程へ通知することを特徴とする請求項1に記載の熱間鍛造プロセス評価装置。
  7. 前記熱間鍛造プロセス良否判定部は、
    前記金型表面温度履歴算出部が算出した金型の各部の表面温度履歴データに基づき、ユーザインタフェース画面に、金型上の複数の測定点の表面温度履歴データを同一グラフ上に重ねて表示を行い、または上金型と下金型のそれぞれの複数の測定点の表面温度履歴データをそれぞれのグラフ上に重ねて対比して表示することを特徴とする請求項6に記載の熱間鍛造プロセス評価装置。
  8. 熱電対を所定の深さに金属結合させた測温ユニットに、予め、熱間鍛造の熱伝導を再現する校正装置において、金型表面からの熱電対深さを校正して記録する熱電対深さ校正ステップと、
    前記測温ユニットを鍛造金型表面に埋設して、鍛造素材に対する熱間鍛造プロセスにおいて、前記測温ユニットの熱電対から測定される熱電対温度履歴データを収集して記録する熱電対温度履歴データ記録ステップと、
    前記熱電対温度履歴データと、前記熱電対深さ校正値に基づき、非定常熱伝導逆解析により金型表面温度履歴データを算出する金型表面温度履歴算出ステップと、
    前記金型表面温度履歴データ、および熱間鍛造プロセス良否判定基準に基づき、該当鍛造品、該当鍛造プロセスの良否判定を出力する熱間鍛造プロセス良否判定ステップとを有することを特徴とする熱間鍛造プロセス評価方法。
  9. 前記熱電対深さ校正ステップは、熱電対を所定の深さに金属結合させた測温ユニットのヘッド表面に、校正装置において所定の温度まで加熱した低融点金属材料を密着させて、前記低融点金属材料の密着面に設置された熱電対、および前記測温ユニットの熱電対から測定された熱電対温度履歴データより金型表面からの熱電対深さを校正して、記憶部に記録するステップであることを特徴とする請求項8に記載する熱間鍛造プロセス評価方法。
  10. 前記熱電対深さ校正ステップには、前記校正装置において、前記校正対象の測温ユニットへ熱間鍛造の熱伝導を再現する過程の前記熱電対温度履歴データを収集して、前記低融点金属材料の密着面に設置された熱電対の金型表面温度履歴を境界条件とした熱伝導解析で求まる金型内部の温度履歴と、前記測温ユニットの熱電対の温度履歴を比較して、最も一致する金型表面から解析点までの深さを前記測温ユニットの熱電対の深さの校正値とするステップを含むことを特徴とする請求項9に記載する熱間鍛造プロセス評価方法。
  11. 前記熱電対温度履歴データ記録ステップは、1つの鍛造材料の熱間鍛造プロセスの開始時刻から終了時刻までの時間分解能ごとの、鍛造金型に埋め込まれた全ての測温ユニットに搭載された熱電対の熱電対温度履歴データを収集して、それらを纏めて鍛造加工品の識別IDを付して記憶部に記録するステップであることを特徴とする請求項8に記載する熱間鍛造プロセス評価方法。
  12. 前記金型表面温度履歴算出ステップは、前記記録された測温ユニットごとの埋め込み深さの異なる熱電対A、および熱電対Bの熱電対温度履歴データを読み出して、及び当該測温ユニットの熱電対深さ校正値も読出して熱電対A、および熱電対Bの埋め込み深さの値として、当該測温ユニットのヘッド表面と一致する金型表面の温度履歴を、一次元非定常熱伝導の逆問題を解いて算出するステップであることを特徴とする請求項8に記載する熱間鍛造プロセス評価方法。
  13. 前記熱間鍛造プロセス良否判定ステップは、前記金型表面温度履歴算出ステップで算出した金型の各部の表面温度履歴データに基づき、各種特徴量を算出して、その推移・傾向をユーザインタフェースに出力し、及び、前記特徴量の推移が熱間鍛造プロセス良否判定基準内に収まるか否かを判定して、鍛造加工が施された加工品の良否判定結果を加工品の選別工程へ通知するステップであることを特徴とする請求項8に記載する熱間鍛造プロセス評価方法。
  14. 熱電対を所定の深さに金属結合させた測温ユニットに、予め、熱間鍛造の熱伝導を再現する校正装置において、金型表面からの熱電対深さを校正して記録する熱電対深さ校正ステップと、
    前記測温ユニットを鍛造金型表面に埋設して、鍛造素材に対する熱間鍛造プロセスにおいて、各鍛造材料の熱間鍛造プロセスの開始時刻から終了時刻までの時間分解能ごとの、鍛造金型に埋め込まれた全ての測温ユニットに搭載された熱電対の熱電対温度履歴データを収集して、それらを纏めて鍛造加工品の識別IDを付して記憶部に記録する熱電対温度履歴データ記録ステップと、
    前記熱電対温度履歴データと、前記熱電対深さ校正値に基づき、非定常熱伝導逆解析により金型表面温度履歴データを算出する金型表面温度履歴算出ステップと、
    前記金型表面温度履歴算出ステップで算出した金型の各部の表面温度履歴データに基づき、各種特徴量を算出して、前記特徴量の推移が熱間鍛造プロセス良否判定基準内に収まるか否かを判定して、鍛造加工が施された加工品の良否判定結果を出力する熱間鍛造品良否判定ステップと、
    前記判定結果に基づき、前記鍛造品の次工程を選別する選別ステップとを有することを特徴とする鍛造品の製造方法。
JP2016561173A 2014-11-27 2014-11-27 熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法 Active JP6232507B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081462 WO2016084209A1 (ja) 2014-11-27 2014-11-27 熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法

Publications (2)

Publication Number Publication Date
JPWO2016084209A1 true JPWO2016084209A1 (ja) 2017-04-27
JP6232507B2 JP6232507B2 (ja) 2017-11-15

Family

ID=56073824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016561173A Active JP6232507B2 (ja) 2014-11-27 2014-11-27 熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法

Country Status (2)

Country Link
JP (1) JP6232507B2 (ja)
WO (1) WO2016084209A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112122520B (zh) * 2020-09-04 2022-09-02 四川蜂巢智造云科技有限公司 一种多工序锻造材料温度反馈系统
CN115319014B (zh) * 2022-08-10 2024-04-02 成都成德重型锻造有限公司 一种核岛用棘齿盘的锻造质量控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576978A (ja) * 1991-09-19 1993-03-30 Aisan Ind Co Ltd 鍛造用ダイス
JP4579820B2 (ja) * 2005-12-19 2010-11-10 新日本製鐵株式会社 鋳型または金型の稼動面の操業状態判定装置および判定方法、鋳型または金型の操業方法、コンピュータプログラム、並びにコンピュータ読み取り可能な記録媒体。
WO2013128646A1 (ja) * 2012-03-02 2013-09-06 国立大学法人東北大学 熱間加工予測システムおよび熱間加工予測方法
EP2684627A1 (en) * 2012-07-13 2014-01-15 Rovalma, S.A. Method of material forming processes in preheated or melted state to strongly reduce the production cost of the produced parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576978A (ja) * 1991-09-19 1993-03-30 Aisan Ind Co Ltd 鍛造用ダイス
JP4579820B2 (ja) * 2005-12-19 2010-11-10 新日本製鐵株式会社 鋳型または金型の稼動面の操業状態判定装置および判定方法、鋳型または金型の操業方法、コンピュータプログラム、並びにコンピュータ読み取り可能な記録媒体。
WO2013128646A1 (ja) * 2012-03-02 2013-09-06 国立大学法人東北大学 熱間加工予測システムおよび熱間加工予測方法
EP2684627A1 (en) * 2012-07-13 2014-01-15 Rovalma, S.A. Method of material forming processes in preheated or melted state to strongly reduce the production cost of the produced parts

Also Published As

Publication number Publication date
WO2016084209A1 (ja) 2016-06-02
JP6232507B2 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
CN101807220B (zh) 用于评估铸件设计的可制造性的系统
Sriraman et al. Thermal transients during processing of materials by very high power ultrasonic additive manufacturing
JP5287995B2 (ja) ホットプレス用金型及び温度測定装置、並びにホットプレス成形方法
Rosochowska et al. A new method of measuring thermal contact conductance
Shekhar et al. Effect of severe plastic deformation in machining elucidated via rate-strain-microstructure mappings
Aweda et al. Experimental determination of heat transfer coefficients during squeeze casting of aluminium
JP6232507B2 (ja) 熱間鍛造プロセス評価装置および評価方法、並びに鍛造品の製造方法
Demmel et al. Interaction of heat generation and material behaviour in sheet metal blanking
Astakhov et al. Importance of temperature in metal cutting and its proper measurement/modeling
Hao et al. Development and validation of a thermal model of the direct chill casting of AZ31 magnesium billets
Sulzer et al. On the rapid assessment of mechanical behavior of a prototype nickel-based superalloy using small-scale testing
US20040082069A1 (en) Systems and methods for estimating exposure temperatures and remaining operational life of high temperature components
US20230384161A1 (en) Method for characterization of temperature in weld zone of friction stir welding based on infrared thermal imager
JP2007330977A (ja) 鋳造シミュレーション方法、その装置、そのプログラム、及び当該プログラムを記録した記録媒体、並びに鋳造方法
Cheng et al. Study on embedding and integration of microsensors into metal structures for manufacturing applications
Greß et al. Production of aluminum AA7075/6060 compounds by die casting and hot extrusion
Härtel et al. Heat generation during mechanical joining processes–by the example of flat-clinching
JP6059611B2 (ja) 熱間鍛造プロセス評価システム
Dargusch et al. The accurate determination of heat transfer coefficient and its evolution with time during high pressure die casting of Al‐9% Si‐3% Cu and Mg‐9% Al‐1% Zn alloys
Nshama et al. Evaluation of temperature and heat transfer conditions at the metal-forming interface
Lancaster et al. Application of small punch test methods to advanced manufactured structures
JP6642392B2 (ja) 表面粗さ測定方法及び表面粗さ測定装置
JP6414770B1 (ja) 金型の寿命予測方法
JP2018008299A (ja) 素材と金型との熱伝達係数を同定する方法
Şimşir et al. A flow stress model for steel in cold forging process range and the associated method for parameter identification

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R150 Certificate of patent or registration of utility model

Ref document number: 6232507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150