JP2015075381A - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
JP2015075381A
JP2015075381A JP2013211339A JP2013211339A JP2015075381A JP 2015075381 A JP2015075381 A JP 2015075381A JP 2013211339 A JP2013211339 A JP 2013211339A JP 2013211339 A JP2013211339 A JP 2013211339A JP 2015075381 A JP2015075381 A JP 2015075381A
Authority
JP
Japan
Prior art keywords
image
inspection
light emitting
luminance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211339A
Other languages
English (en)
Other versions
JP6065804B2 (ja
Inventor
浩 新美
Hiroshi Niimi
浩 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013211339A priority Critical patent/JP6065804B2/ja
Publication of JP2015075381A publication Critical patent/JP2015075381A/ja
Application granted granted Critical
Publication of JP6065804B2 publication Critical patent/JP6065804B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】検査冶具としてのウインドシールドを不要として、ヘッドアップディスプレイ装置による最終像の輝度を容易に予測算出可能とする検査装置を提供する。【解決手段】検査装置100において、検査部140は、検査の前段階において、ウインドシールド5が設けられた状態で、最終像5a中の所定の発光部Pにおける輝度と、撮影画像130a中の所定の発光部Pに対応する部位のカメラ画素ごとの受光データの積算値とを、それぞれ既知の輝度Lsおよび既知の積算受光データSDLsとして予め記憶しており、検査時において、撮影画像130a中の複数の発光部Pから得られるそれぞれの積算受光データSDLsijと、既知の輝度Lsおよび既知の積算受光データSDLsの関係とから、ウインドシールド5が想定された場合の、ウインドシールド5に結像される最終像5a中の複数の発光部Pに対応するそれぞれの最終輝度Lnsijを予測算出する。【選択図】図1

Description

本発明は、ヘッドアップディスプレイ装置の反射像を検査するための検査装置に関するものである。
従来、ヘッドアップディスプレイを用いた車両用表示制御装置(以下、表示制御装置)として、例えば、特許文献1に示されるものが知られている。特許文献1の表示制御装置は、ヘッドアップディスプレイから出射される表示光を車両のウインドシールドに最終像(虚像)として表示するようになっている。そして、表示制御装置は、車両前方領域の画像データを取得する画像カメラを備えており、画像カメラによる画像データから、最終像を表示するための表示領域の平均輝度Baと、表示領域とは異なる領域を含み表示領域よりも広く設定された背景領域の平均輝度Bbとに基づいて、最終像の輝度を調整するようになっている。
また、ヘッドアップディスプレイ装置に用いられる虚像調整装置として、例えば、特許文献2に記載されたものが知られている。特許文献2において、ヘッドアップディスプレイ装置は、画像出力器からの画像を反射して拡大する拡大鏡を備えている。この拡大鏡には、ウインドシールドの形状に基づいて生じる虚像の歪みを補正するような光学的作用が得られる曲率が設けられている。つまり、拡大鏡の曲率によって、反射像に、意図的に逆歪みを持たせて、ウインドシールドでは虚像の歪みが相殺されるようにしている。
このようなヘッドアップディスプレイ装置においては、画像出力器から出射される光が拡大鏡に対して予め定められた入射角で入射した場合に虚像の歪みが相殺されるものとなっている。よって、画像出力器の画像と、拡大鏡の入射側の光軸との相対位置がずれると虚像の位置が正規の位置からずれてしまい、虚像の端の部分に歪みが生じてしまう。
特許文献2の虚像調整装置は、撮像装置および制御装置を備えており、上記のような虚像の歪みを、以下のように低減するようにしている。まず、ヘッドアップディスプレイ装置は、実際の車両、あるいはウインドシールドを備える車両を模した調整台に設置される。そして、画像出力器から検査用画像を出力させ、ウインドシールドの前方に結像される検査用画像の虚像を、撮像装置で撮像する。そして、制御装置は、撮像された虚像における中心点を調整前基準点とする。また、相対位置ずれのない正規の位置に設定される正規虚像の中心点を正規基準点と定義して、調整前基準点と正規基準点との位置ずれを検出する。位置ずれがあると、例えば、検査用画像位置を拡大鏡に対して相対的にずらすことで位置調整を行い、調整前基準点と正規基準点とが極力一致するようにして、虚像の歪みが低減されるようにしている。
特開2007−50757号公報 特開2011−209457号公報
しかしながら、上記特許文献1の表示制御装置は、画像カメラによって取得される車両前方領域の画像データから各平均輝度Ba、Bbを把握するものとなっており、ヘッドアップディスプレイによる最終像の輝度を把握するものではない。
また、例えば、製造工程における完成品検査として、ヘッドアップディスプレイ装置による最終像の輝度の良否ついて検査する場合、実際の車両にヘッドアップディスプレイ装置を搭載して検査を行うことは非現実的である。また、実際の車両を想定した調整台を用いる場合でも、上記特許文献2ではフロントウインドシールドが設けられた調整台であることから、調整台が大型となってしまう。更には、フロントウインドシールドの形状は車両ごとに異なることから、各車両に対応する調整台を準備する必要が発生する。
よって、検査装置として小型化、および種類削減を図るために、ウインドシールドを廃止することを考えると、ヘッドアップディスプレイ装置から出射(反射)される反射像を直接的にカメラで撮影して輝度を把握する必要が生ずる。この場合、反射像は、上記のように逆歪みが持たされていることから、この逆歪みによって、反射像全体に渡って均一な輝度が得られなくなり、逆歪みに基づく輝度の補正が必要となり、輝度の把握が困難なものとなってしまう。
本発明の目的は、上記問題に鑑み、検査冶具としてのウインドシールドを不要として、ヘッドアップディスプレイ装置による最終像の輝度を容易に予測算出可能とする検査装置を提供することにある。
本発明は上記目的を達成するために、以下の技術的手段を採用する。
本発明では、表示器(15)によって生成される表示画像(15a)を、反射鏡(16)によって予め逆歪みを持たせた出力像(16a)として出力して、車両のウインドシールド(5)に歪みのない最終像(5a)として結像させるようにしたヘッドアップディスプレイ装置(10)の出力像(16a)を検査する検査装置であって、
表示画像(15a)として、同一輝度を有する複数の発光部(P)が形成された検査画像(15b)を基にして、出力像(16a)を形成させて、ヘッドアップディスプレイ装置(10)から出力させる制御部(120)と、
出力像(16a)が出力される出力軸線上に配置されて、出力像(16a)を直接的に撮影して撮影画像(130a)を取得するカメラ(130)と、
撮影画像(130a)中の複数の発光部(P)に対応する領域内のカメラ画素ごとの受光データを積算して、複数の発光部(P)に対応するそれぞれの積算受光データ(SDLsij)を算出する検査部(140)と、を備えており、
検査部(140)は、
検査の前段階において、ウインドシールド(5)が設けられた状態で、検査画像(15b)を基にして、ウインドシールド(5)に結像された最終像(5a)中の複数の発光部(P)のうち、所定の発光部(P)における輝度と、撮影画像(130a)中の所定の発光部(P)に対応する部位のカメラ画素ごとの受光データの積算値とを、それぞれ、既知の輝度(Ls)および既知の積算受光データ(SDLs)として予め記憶しており、
検査時において、撮影画像(130a)中の複数の発光部(P)から得られるそれぞれの積算受光データ(SDLsij)と、既知の輝度(Ls)および既知の積算受光データ(SDLs)の関係とから、ウインドシールド(5)が想定された場合の、ウインドシールド(5)に結像される最終像(5a)中の複数の発光部(P)に対応するそれぞれの最終輝度(Lnsij)を予測算出することを特徴としている。
この発明によれば、検査部(140)は、検査の前段階において、検査画像(15b)を基にして、ウインドシールド(5)の最終像(5a)の所定の発光部(P)における既知の輝度(Ls)と、撮影画像(130a)の所定の発光部(P)における既知の積算受光データ(SDLs)とを、予め記憶している。
そして、検査時において、ヘッドアップディスプレイ装置(10)の反射鏡(16)から出力される出力像(16a)が、カメラ(130)によって撮影画像(130a)として直接的に取得される。出力像(16a)と撮影画像(130a)は等価なものである。そして、検査部(140)によって、撮影画像(130a)における各発光部(P)に対応する領域内について、それぞれの積算受光データ(SDLsij)が算出される。積算受光データ(SDLsij)は、カメラ画素ごとの受光データ(明るさのデータ)を各発光部(P)に対応する領域内で積算したものであり、各発光部(P)内における輝度の積分値、つまり光束量(Φ)に相当するデータとなっている。
ここで、出力像(16a)には、逆歪みが与えられているため、出力像(16a)、つまり撮影画像(130a)における各発光部(P)の面積は、逆歪みによって異なるものとなり、各発光部(P)の輝度は異なるものとなってしまう。しかしながら、各発光部(P)における積算受光データ(SDLsij)は逆歪みによって変化することは無いので、逆歪みの影響を受けない。つまり、検査部(140)は、積算受光データ(SDLsij)を、逆歪みに伴う発光部(P)の面積補正を必要としないデータとして扱うことができる。
また、ウインドシールド(5)が想定された場合の最終像(5a)における各発光部(P)の最終輝度(Lnsij)は、出力像(16a)における各発光部(P)の光束量(Φ)に比例する。上記のように光束量(Φ)は、積算受光データ(SDLsij)に比例することから、最終像(5a)における各発光部(P)の最終輝度(Lnsij)は、積算受光データ(SDLsij)に比例する。
よって、検査部(140)は、既知の輝度(Ls)に、撮影画像130aから算出した積算受光データ(SDLsij)および既知の積算受光データ(SDLs)から得られる変換係数を乗ずることで、検査冶具としてのウインドシールド(5)を不要として、逆歪みの影響を受けることなく容易に、最終像(5a)における各発光部(P)の最終輝度(Lnsij)を予測算出することが可能となる。
尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
ヘッドアップディスプレイ装置、および検査装置を示すブロック図である。 ヘッドアップディスプレイ装置における拡大像、およびウインドシールドに形成される最終像を示す説明図である。 ヘッドアップディスプレイ装置における表示画像、拡大像、およびウインドシールドにおける最終像を示す説明図である。 第1実施形態における検査画像を示す説明図である。 検査装置、および検査装置にセットされるヘッドアップディスプレイ装置を示す概略図である。 輝度に対するカメラの受光データの関係を示すグラフである。 拡大像上の輝度に対するカメラの受光データの関係を示すグラフである。 カメラの受光データの総和(積算受光データ)に対するウインドシールドの最終像における輝度の関係を示すグラフである。 各像における輝度の分布を示す定性的なイメージ図である。 各像における発光部面積、および発光部輝度を示す説明図である。 逆歪みの有り無しにおける拡大像を示す説明図である。 第1実施形態における検査制御の内容を示すフローチャートである。 第2実施形態における検査画像(円形形状)を示す説明図である。 第2実施形態における検査画像(四角形状)を示す説明図である。 第3実施形態における検査画像を示す説明図である。 第3実施形態における検査制御の内容を示すフローチャートである。 第4実施形態における第1検査画像を示す説明図である。 第4実施形態における第2検査画像を示す説明図である。 第4実施形態における検査制御の内容を示すフローチャートである。
以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
第1実施形態の検査装置100について、図1〜図12に基づいて説明する。検査装置100は、検査対象としてのヘッドアップディスプレイ装置(以下、HUD装置)10の反射鏡16から出力される拡大像(本発明における出力像)16aを検査する装置である。検査装置100は、拡大像16aをカメラ130によって撮影し、撮影画像130aを取得する。そして、検査装置100は、撮影画像130aにおける積算受光データSDLsijを算出することで、HUD装置10が自動車に搭載されたときのウインドシールド5に結像される最終像5aの最終輝度Lnsijの予測算出と良否判定を行う装置となっている。検査装置100によるHUD装置10の検査は、製造工程の完成品検査(以下、工程検査)として実施される。
まず、HUD装置10について簡単に説明する。HUD装置10は、自動車に適用されるものである。HUD装置10が自動車に搭載されて使用されるときには、HUD装置10は、図1、図2に示すように、表示器15によって生成される表示画像15a(詳細後述)を反射鏡16によって拡大像16aとして、車両のウインドシールド5の投射位置に入射させる。そして、HUD装置10は、運転者と投射位置とを結ぶ線の車両前方延長線上に、最終像5aを表示(結像)させて、最終像5aを虚像として運転者に視認させるようになっている。このHUD装置10によって、運転者は、最終像5aと車両の前景とを重畳して視認することができるようになっている。
また、HUD装置10が検査装置100によって検査されるときには、HUD装置10は、表示器15によって生成される検査画像15b(詳細後述)を基にして拡大像16aを出力するようになっている。
HUD装置10は、インターフェイス11、電源回路12、システム制御回路13、表示制御回路14、表示器15、および反射鏡16等を備えている。HUD装置10は、車両のインストルメントパネルの内側に配設される。インストルメントパネルには、反射鏡16からの反射光を通過させる開口部が形成されている。
インターフェイス11は、実車装着時における各種車両機器あるいは工程検査時における検査装置100と、システム制御回路13とを繋ぐ接続手段である。インターフェイス11は、実車装着時においては、反射鏡16の回動位置を変更する信号、表示器15による表示画像15aの明るさを調整する信号、および表示コンテンツを選択する信号等を受け入れるようになっている。表示コンテンツとは、例えば、車両情報としての速度値あるいは曲がる方向、更にはオーディオ情報等である。また、インターフェイス11は、工程検査時においては、検査装置100から出力される検査信号、およびHUD装置10を制御するための制御信号等を受け入れるようになっている。
電源回路12は、実車装着時において車両バッテリからHUD装置10の内部回路に電源供給する、あるいは工程検査時において工程内電源から内部回路に電源供給する回路である。
システム制御回路13は、インターフェイス11から出力される出力信号に基づいて、実車装置時における製品機能の制御(通常モード)と、工程検査時における検査機能の制御(検査モード)とを切替え可能として総合的に実行する制御回路となっている。システム制御回路13は、例えば、表示制御回路14、光源151、およびステッパモータ161等に対して制御用の指示を与える(制御信号を出力する)ようになっている。
表示制御回路14は、システム制御回路13からの指示に基づき、表示器15における表示内容等を制御する回路である。表示制御回路14は、例えば、実車装着時における表示内容として、車両情報(速度値、曲がる方向等)、あるいはオーディオ情報等のいずれかの画像(後述する表示画像15a)を表示するかを決定して、表示器15に表示させるようになっている。また、表示制御回路14は、工程検査時において、上記実車装着時とは異なる検査用の画像(後述する検査画像15b)を表示器15に表示させるようになっている。
表示器15は、表示制御回路14によって駆動制御されて、表示画像15a、あるいは検査画像15bを生成する機器となっている。表示器15としては、例えば、薄膜トランジスタ(Thin Film Transistor=TFT)が用いられたTFT液晶パネルが使用されている。表示器15は、その他にも、デュアルスキャンタイプのディスプレイ(Dual Scan Super Twisted Nematic=D−STN)、TN(Twisted Nematic)セグメント液晶等を使用することができる。
表示画像15aは、実車装着時における各種車両情報、あるいはオーディオ情報等を示すHUD装置10の本来の画像であり、例えば、図3の左側に示すように、横長の長方形の領域内に、速度値が表示されたもの等となっている。表示画像15aは、反射鏡16によって反射され、更にウインドシールド5にて結像されて虚像となることから、本来表示される形状に対して、上下反転された画像となっている。
一方、検査画像15bは、検査装置100による検査が実施される際に使用される画像である。検査画像15bは、例えば、図4に示すように、表示画像15aと同様に横長の長方形を成す枠を基本として、明るく照らされた複数の発光部P(P11〜P13、P21〜P23、P31〜P33)が形成された画像となっている。ここでは、各発光部Pは、それぞれ同一の円形状を成して、画像領域の全体にわたって一様に分布配置されている。各発光部Pの面積はSaとなっている。各発光部Pは、例えば、3列、3行の配置となっており、全部で9つ設けられている。各発光部Pの輝度はすべて同一となるように設定されており、各発光部Pにおける光束量(面積Sa内の輝度の積分値)は、Φaとなっている。検査画像15b中の発光部P以外の領域は、非発光部Xとなっており、発光部Pに対して暗い領域となっている。
表示器15には、システム制御回路13によって作動制御される光源151が設けられている。光源151は、通電されることで表示器15に対して光を出射する発光素子であり、例えば、発光ダイオード(Light Emitting Diode=LED)が使用されている。光源151は、表示器15に対する光軸に沿うように光を出射するようになっている。よって、表示器15は、光源151から出射される光によって、表面に形成した表示画像15a、あるいは検査画像15bを表示光として、反射鏡16に向けて出射するようになっている。
反射鏡16は、表示器15からの表示光(画像)を、インストルメントパネルの開口部を通して、ウインドシールド5の投射位置に反射させる装置となっている。反射鏡16は、表示器15からの表示画像15aあるいは検査画像15bを拡大させ、且つ、ウインドシールド5によって発生する歪みを予め加味して、意図的に逆歪みを持たせた拡大像16aとして、反射(出力)するようになっている。反射鏡16は、上記のように歪み機能を持った拡大鏡となっており、例えば凹面鏡が使用されている。
拡大像16aは、図3の真中に示すように、表示画像15aあるいは検査画像15bに対して、上側に凸となる扇状の画像として形成される。この上側に凸となる扇状の逆歪みは、ウインドシールド5において下側に凸となる扇状の歪みによって相殺されて、図3中の右側に示すように、歪みの無い最終像5a(虚像)が得られるようになっている。
反射鏡16には、システム制御回路13によって作動制御されるステッパモータ161が設けられている。ステッパモータ161は、表示器15およびウインドシールド5に対する反射鏡16の反射面の位置を制御する位置制御手段となっている。反射鏡16の反射面の位置が変更されることで、ウインドシールド5に形成される最終像5aの位置を調整することが可能となっており、運転者によってアイポイント位置が異なる場合であっても、それぞれ適切な位置関係で虚像が見えるようになっている。
次に、検査装置100について図1、図5〜図8を用いて説明する。検査装置100は、図1、図5に示すように、セット台110、検査制御装置120、カメラ130、および視覚検査装置140等を備えている。
セット台110は、検査対象となるHUD装置10を取付けるための取付け台である。セット台110にHUD装置10を取付けることにより、検査画像15bに基づいてHUD装置10から出力される拡大像16aがカメラ130の光軸近傍に設定できるようになっている。
検査制御装置120は、検査全体の制御を行う制御部である。検査制御装置120は、検査時におけるHUD装置10への電源供給を行うと共に、HUD装置10に対する検査のための各種検査信号の送受信、つまりHUD装置10の検査時作動制御、更には、視覚検査装置140とのデータの送受信を行うようになっている。HUD装置10に対する検査時の作動制御として、検査制御装置120は、システム制御回路13、および表示制御回路14を介して表示器15に検査画像15bを生成させる指示を行う。つまり、検査制御装置120は、検査画像15bを反射鏡16から反射させて、拡大像16aとして出力させるようになっている(詳細後述)。
検査制御装置120には、電源供給状態(電流値、電圧値等)、および検査状態を表示するモニタ121が設けられている。
カメラ130は、反射鏡16によって反射されて出力される拡大像16aを直接的に撮影する撮影部である。カメラ130は、拡大像16aが出力される出力軸線上に位置するように、図示しないアームによってセット台110に固定されるようになっている。カメラ130によって撮影された画像は、撮影画像130aとして、視覚検査装置140に出力されるようになっている。カメラ130は、例えば、CCD(Charge Couple Device)カメラ、あるいは、CMOS(Complementary Metal−Oxide Semiconductor)カメラ等が使用される。
撮影画像130aは、表示器15からの検査画像15bが反射鏡16で反射拡大され、更に上側に凸となる扇状の逆歪みが与えられて形成される拡大像16aに相当する画像である。拡大像16a中の各発光部Pも扇状の逆歪みによって、それぞれ大きさが変化した画像(後述する図10(b)、図11(c))となる。
カメラ130は、図6に示すように、受けた光の輝度に対応するように、カメラ画素ごとにおける受光データが明るさのデータとして、所定の範囲内(ここでは0〜255)の値を取るように、カメラF値およびシャッタ速度がそれぞれ適切に設定されている。
図7に示すように、カメラ130によって撮影される撮影画像130aにおける発光部P内のカメラ画素ごとの受光データ(例えばDL1、DL2、DLn・・・)は、実質の輝度(例えばL1、L2、Ln・・・)に対応するものとして得ることができる。各発光部Pにおけるカメラ画素ごとの受光データを積算したものは、積算受光データ(詳細後述)となり、各発光部P内における光束量Φに相当するものとなる。
カメラ130の撮影分解能としては、上記の積算受光データを精度良く得るために、表示器15における表示分解能に対して、より大きいものを選定するのが好ましい。例えば、表示器15の表示分解能が90μm/画素としたとき、2倍以上、更に好ましくは3倍以上の画素(例えば1200万画素)を有するカメラ130を選定するのが良い。
視覚検査装置140は、撮影画像130aを解析して、拡大像16aの輝度を検査すると共に、検査した輝度の良否を判定する検査部となっている。視覚検査装置140によって判定された結果は、検査制御装置120に出力されるようになっている。
視覚検査装置140は、撮影画像130a中の複数の発光部Pに対応する領域内のカメラ画素ごとの受光データを積算して、複数の発光部Pに対応するそれぞれの積算受光データSDLsijを算出するようになっている。
また、視覚検査装置140は、検査の前段階において、検査画像15bを基にして得られる、以下の既知の輝度Lsと、既知の積算受光データSDLsとを予め記憶している。既知の輝度Lsは、例えば本検査装置100において、実車のウインドシールド5、あるいはウインドシールド5に相当する部材が設けられた状態で、得られる値である。また、既知の積算受光データSDLsは、カメラ130の撮影画像130aから得られるデータである。
既知の輝度Lsは、検査画像15bを用いた場合で、ウインドシールド5に結像される最終像5aにおける所定の発光部Pにおける輝度を、運転者のアイポイントに設定された輝度計によって取得された実際の輝度である。
また、既知の積算受光データSDLsは、カメラ130の取得する撮影画像130aにおいて、上記既知の輝度Lsを取得した所定の発光部Pに対応する部位のカメラ画素ごとの受光データの積算値を求めたデータである。
ウインドシールド5における最終像5aの既知の輝度Lsと、撮影画像130aから得られる積算受光データSDLsは、同一の発光部Pに基づくデータであることから、図8に示すように、比例関係となっている。よって、既知の輝度Lsと、既知の積算受光データSDLsとによって、両者の相関線図(1次線図)が得られることになる。
上記既知の輝度Ls、および既知の積算受光データSDLsについては、複数の発光部Pのうち、所定の1つの発光部Pについて取得あるいは算出する、あるいは、所定の複数の発光部Pについて取得あるいは算出するものとすることができる。所定の複数の発光部Pについて取得あるいは算出した場合は、それらの平均値等を用いて、既知の輝度Lsおよび既知の積算受光データSDLsとするようにすれば良い。
視覚検査装置140には、撮影画像130a、および検査結果、判定結果等を表示するモニタ141が設けられている。
検査対象となるHUD装置10、および検査装置100の構成は以上のようになっている。以下、表示画像15aとして検査画像15bを用いた場合の、HUD装置10、および検査装置100における各像の状態について、まず、図9〜図11を用いて簡単に説明すると共に、検査装置100が行う検査の制御内容について、図12を用いて説明する。
(1)各像の状態について
まず、図9(a)、図10(a)、図11(a)に示すように、表示器15の検査画像15bにおいて、面積(Sa)同一の発光部Pが一様に複数、分布配置されていることから、それぞれの発光部Pの輝度は同一であり、表示画像15bの全体にわたって輝度は均一となっている。各発光部Pの光束量はΦaである。
次に、図9(b)、図10(b)、図11(c)に示すように、反射鏡16の拡大像16aにおいては、逆歪みがかけられることから、上側の領域では拡大し、下側の領域では縮小される。よって、各発光部Pは、拡大像16aの上側の領域で大きくなり、下側の領域で小さくなっている。上側から順に発光部P1、P2、P3とする。各発光部P1、P2、P3の面積はS1、S2、S3となり、また、各発光部P1、P2、P3の輝度はL1、L2、L3となる。基になる発光部Pがすべて同一であることから、各発光部P1、P2、P3における各光束量Φ1、Φ2、Φ3は同一である。よって、各発光部P1、P2、P3の輝度は各面積に逆比例することとなり、面積が大きい発光部ほど輝度は小さく、逆に面積が小さい発光部ほど輝度は大きくなる。
尚、図11(b)に示すように、逆歪みを設けない場合の拡大像16aaであると、各発光部Pは、検査画像15bと同様に、すべて同一の面積(S0)となり、輝度も全体にわたって均一となる。
このことから、逆歪みを持たせた拡大像16aを基に輝度を求めようとすると、各発光部Pの面積補正が必要となるのである。
そして、図9(c)、図10(c)に示すように、ウインドシールド5を想定した場合の最終像5aにおいては、ウインドシールド5によって逆歪みが相殺されるので、歪みの無い像となる。各発光部Pは、面積(Sb)はすべて同一で、一様に複数、分布配置されるものとなる。それぞれの発光部Pの輝度は同一であり(Lb)、最終像5aの全体にわたって輝度は均一となる。
(2)検査装置100が行う検査の制御内容について
最初に、HUD装置10がセット台110にセットされ、カメラ130の位置が、HUD装置10からの拡大像16aの出力軸線上に位置するように調整される。そして、検査装置100の電源が投入される。すると、図12に示すように、検査制御装置120は、まず、ステップS100〜ステップS120において、前処理を行う。
即ち、ステップS100で、検査制御装置120は、HUD装置10の電源回路12に対して工程内電源部から電源供給を行う。
次に、ステップS110で、検査制御装置120は、HUD装置10のインターフェイス11に検査モード信号を送信する。つまり、HUD装置10に対して、これから検査を実施することを認識させる。
次に、ステップS120で、検査制御装置120は、電気的特性検査、つまりインターフェイス電流、消費電流、入出力電圧、ソフトバージョン等の確認を実施する。検査制御装置120は、随時、HUD装置10に検査コマンドを送り、電気計測を実施するようになっている。そして、検査制御装置120は、電気計測の結果データをモニタ121に表示させる。
続いて、検査制御装置120、カメラ130、および視覚検査装置140は、ステップS130〜ステップS150において、カメラ130による撮影画像130aから、拡大像16a(撮影画像130a)の各発光部Pについて最終輝度Lnsijを予測算出する。
即ち、ステップS130で、検査制御装置120は、インターフェイス11を介して、システム制御回路13に対して検査画像15bの表示要求を行う。すると、システム制御回路13は、表示制御回路14に対して検査画像15bの要求信号を出力する。表示制御回路14は、表示器15に対して検査画像15bの生成を指示する。表示器15は、検査画像15bを生成して、反射鏡16に出射する。反射鏡16は、検査画像15bを拡大させると共に、検査画像15bに逆歪みを持たせて拡大像16aにして、カメラ130に出力することになる。
次に、ステップS140で、カメラ130は、拡大像16aを直接的に撮影して撮影画像130aを取得し、取得した撮影画像130aを視覚検査装置140に出力する。すると、視覚検査装置140は、各発光部Pについて、数式1に基づいて、カメラ画素ごとに受光データを積算して、積算受光データSDLsijを算出していく。
(数1)
SDLsij=SDLsij+DLsijk 。
ここで、積算受光データSDLsijにおけるサフィックスijは、各列、各行の発光部P(P11〜P13、P21〜p23、P31〜P33)のサフィックスに対応している。また、数式1中のDLsijkは、各発光部P内のカメラ画素ごとの受光データであり、kは発光部P内のカメラ画素の数を示している。よって、ステップS140では、各発光部P(P11〜P13、P21〜p23、P31〜P33)について順番に積算受光データSDLsij計算していき、合計9つの積算受光データSDLsijを算出する。
次に、ステップS150で、視覚検査装置140は、上記で得た積算受光データSDLsijと、予め記憶された既知の輝度Lsおよび既知の積算受光データSDLsとから、数式2に基づいて、ウインドシールド5が想定された場合の最終像5a中の各発光部Pの最終輝度Lnsijを予測算出する。
(数2)
Lnsij=Ls×(SDLsij/SDLs) 。
ここで、数式2は、先に説明した図8の相関線図より、ステップS140で算出した積算受光データSDLsijと既知の積算受光データSDLsとの比を変換係数として、既知の輝度Lsにこの変換係数を乗ずることで、最終輝度Lnsijを求める式となっている。ステップS150では、各発光部P(P11〜P13、P21〜p23、P31〜P33)について、合計9つの最終輝度Lnsijを算出する。
続いて、視覚検査装置140は、ステップS200〜ステップS250において、算出した各最終輝度Lnsijに対する良否判定を行う。
即ち、ステップS200で、視覚検査装置140は、予め定められた許容輝度判定値を用いて、算出した最終輝度Lnsijに対する良否判定をする。許容輝度判定値は、下限側判定値Lsminと、上限判定値Lnmaxであり、視覚検査装置140は、各最終輝度Lnsijがそれぞれ、下限判定値Lsminと上限判定値Lnmaxとの間にあるか否かを判定する。
ステップS200で、すべての最終輝度Lnsijが許容輝度判定値の間にあると判定すると、ステップS210で、視覚検査装置140は、OK判定をし、その検査データを保存する。
また、ステップS200で、少なくとも1の最終輝度Lnsijが許容輝度判定値の間に無いと判定すると、ステップS220で、視覚検査装置140は、NG判定をし、その検査データを保存する。
次に、ステップS230で、視覚検査装置140は、予め定められた許容輝度比判定値を用いて、算出した最終輝度Lnsijのうち、最小の最終輝度に対する最大の最終輝度の比(輝度比)が、許容輝度比判定値以下であるか否かを判定する。許容輝度比判定値は、ここでは、例えば、1.4が使用される。
ステップS230で、輝度比が許容輝度比判定値以下であると判定すると、ステップS240で、視覚検査装置140は、OK判定をし、その検査データを保存する。
また、ステップS230で、輝度比が許容輝度比判定値を超えると判定すると、ステップS250で、視覚検査装置140は、NG判定をし、その検査データを保存する。
視覚検査装置140は、上記ステップS200〜S250におけるデータをモニタ141に表示させると共に、ステップS260で、検査制御装置120に出力する。検査制御装置120は、それらデータを保存する。
以上のように、本実施形態では、視覚検査装置140は、検査の前段階において、検査画像15bを基にして、ウインドシールド5の最終像5aの所定の発光部Pにおける既知の輝度Lsと、撮影画像130aの所定の発光部Pにおける既知の積算受光データSDLsとを、予め記憶している。
そして、検査時において、HUD装置10の反射鏡16から出力される拡大像16aが、カメラ130によって撮影画像130aとして直接的に取得される。拡大像16aと撮影画像130aは等価なものである。そして、視覚検査装置140によって、撮影画像130aにおける各発光部Pに対応する領域内について、それぞれの積算受光データSDLsijが算出される。積算受光データSDLsijは、カメラ画素ごとの受光データ(明るさのデータ)を各発光部Pに対応する領域内で積算したものであり、各発光部P内における輝度の積分値、つまり光束量Φに相当するデータとなっている。
ここで、拡大像16aには、逆歪みが与えられているため、拡大像16a、つまり撮影画像130aにおける各発光部Pの面積は、逆歪みによって異なるものとなり、各発光部Pの輝度は異なるものとなってしまう。しかしながら、各発光部Pにおける積算受光データSDLsij(光束量Φに相当)は逆歪みによって変化することは無いので、逆歪みの影響を受けない。つまり、視覚検査装置140は、積算受光データSDLsijを、逆歪みに伴う発光部Pの面積補正を必要としないデータとして扱うことができる。
また、ウインドシールド5が想定された場合の最終像5aにおける各発光部Pの最終輝度Lnsijは、拡大像16aにおける各発光部Pの光束量Φに比例する。上記のように光束量Φは、積算受光データSDLsijに比例することから、最終像5aにおける各発光部Pの最終輝度Lnsijは、積算受光データSDLsijに比例する。
よって、視覚検査装置140は、既知の輝度Lsに、撮影画像130aから算出した積算受光データSDLsijおよび既知の積算受光データSDLsから得られる変換係数を乗ずることで、検査冶具としてのウインドシールド5を不要として、逆歪みの影響を受けることなく容易に、最終像5aにおける各発光部Pの最終輝度Lnsijを予測算出することが可能となる。
また、複数の発光部Pは、検査画像15bの全体にわたって一様に分布配置されるようにしているので、これにより、最終像5aの全体にわたって、最終輝度Lnsijを予測算出することができ、精度の高い検査が可能となる。
また、視覚検査装置140には、許容輝度判定値Lsmin、Lsmaxが予め設定されており、この許容輝度判定値Lsmin、Lsmaxを用いて、予測算出したそれぞれの最終輝度Lnsijについて良否判定を行うことができる。
また、視覚検査装置140には、許容輝度比判定値が予め設定されている。そして、予測算出したそれぞれの最終輝度Lnsijのうち、最大値と最小値との比を輝度比としており、許容輝度比判定値を用いて、輝度比の良否判定を行うことができる。
(第2実施形態)
第2実施形態における検査画像15b1、15b2を図13、図14に示す。第2実施形態は、上記第1実施形態の検査画像15bを変更したものである。
第1実施形態の検査画像15bでは、各発光部Pが3列、3行に配置され、全部で9つ設定されたものとしたが、これに限定されるものではない。図13に示すように、検査画像15b1は、各発光部Pが5列、3行に配置され、全部で15個設定されたものとしている。各発光部Pは、P11〜P13、P21〜P23、P31〜P33、P41〜P43、P51〜P53である。発光部Pの数を増加させることにより、予測算出される最終輝度Lnsijの数を増やすことができ、検査の精度を上げることができる。
また、図14に示すように、検査画像15b2は、各発光部Psの形状を円形状に対して四角形状としたものとしても良い。四角形状の各発光部Psは、Ps11〜Ps13、Ps21〜Ps23、Ps31〜Ps33、Ps41〜Ps43、Ps51〜Ps53である。四角形状の面積は、円形状のものと同一である。
更に、検査画像15b、15b1、15b2中の複数の発光部P、Psは、面積同一として、形状が異なるものが混在するようにしても良い。
(第3実施形態)
第3実施形態の検査画像15b3、および制御フローを図15、図16に示す。第3実施形態は、上記第2実施形態の図14で示した検査画像15b2に対して、面積の異なる発光部PA、PBを有する検査画像15b3としている。また、検査装置100による制御においては、第1、第2実施形態における制御フローに対して、ステップS141を追加すると共に、ステップS150をステップS150A、ステップS150Bとしている。
検査画像15b3は、基本面積(本発明の第1の面積)を有する第1発光部PAと、基本面積に対して所定の倍率となる面積(本発明の第2の面積)を有する第2発光部PBが混在するように形成されている。第1発光部PAは、具体的にはPA21〜PA23、PS41〜PA43であり、また、第2発光部PBは、具体的にはPB11〜PB13、PB31〜PB33、PB51〜PB53である。また、所定の倍率は、例えば1.5倍が使用されている。つまり、第1発光部PAの面積(S0)に対して、第2発光部PBの面積は第1発光部PAの1.5倍(S0×1.5)となるように設定されている。
そして、図16のフローチャートにおいて、ステップS100〜ステップS140を実施した後に、ステップS141で、視覚検査装置140は、各発光部PA、PBのパターン(大きさ)を判定する。つまり、ステップS140で扱った各発光部PA、PBが、面積の小さい(Small)第1発光部PAか、面積の大きい(Large)第2発光PBかを判定する。ステップS141で、面積の小さい第1発光部PAと判定したものについては、ステップS150Aに移行して、上記第1実施形態のステップS150と同一の数式2を用いて、最終輝度Lnsijを算出する。
一方、ステップS141で、面積の大きい第2発光部PBと判定したものについては、視覚検査装置140は、ステップS150Bに移行して、面積補正を加えた最終輝度Lnsijを算出する。つまり、発光部PBの面積が大きくなると、面積に反比例して輝度は小さくなるため、面積補正としては、数式3に示すように、面積倍率の逆数をかけるようにしている。
(数3)
Lnsij=(1/1.5)×Ls×(SDLsij/SDLs) 。
以下、第1、第2実施形態における制御フローと同様に、ステップS200〜ステップS260を実施する。このように本実施形態では、既知の面積倍率によって、各発光部PA、PBの面積が異なるものが混在する検査画像15b3を用いた検査を可能としている。
(第4実施形態)
第4実施形態の検査画像15b4、15b5、および制御フローを図17〜図19に示す。第4実施形態は、上記第1実施形態の図4で示した検査画像15bにおける発光部Pを変更し、検査画像15b4、15b5としている。また、第1実施形態における制御フローのステップS130およびステップS140を、ステップS130AとステップS140A、およびステップS130BとステップS140Bに変更したものとしている。
検査画像15b4は、図17に示すように、格子状に区画された各領域に対して、千鳥状に発光部Pが配置された第1検査画像となっている。検査画像15b4は、左上隅の区画領域を基点として、偶数列で奇数段の位置、および奇数列で偶数段の位置が発光部Pとなっている。発光部Pは、全部で100個の設定となっている。逆に、奇数列で奇数段の位置、および偶数列で偶数段の位置は非発光部Xとなっている。
また、検査画像15b5は、図18に示すように、検査画像15b4に対して、発光部Pと非発光部Xとの領域が反転された第2検査画像となっている。検査画像15b5は、左上隅の区画領域を基点として、奇数列で奇数段の位置、および偶数列で偶数段の位置が発光部Pとなっている。発光部Pは、全部で100個の設定となっている。逆に、偶数列で奇数段の位置、および奇数列で偶数段の位置は非発光部Xとなっている。
そして、図19のフローチャートにおいて、ステップS100〜ステップS120を実施した後に、ステップS130Aで、検査制御装置120は、システム制御回路13に対して第1検査画像15b4の表示要求を行う。これにより、第1検査画像15b4を用いた拡大像16aがカメラ130に出力される。
そして、ステップS140Aで、カメラ130は拡大像16a(第1検査画像15b4)を直接的に撮影して撮影画像130aを取得し、取得した撮影画像130aを視覚検査装置140に出力する。すると、視覚検査装置140は、第1検査画像15b4の100個の各発光部Pについて、数式1に基づいて、カメラ画素ごとに受光データを積算して、積算受光データSDLsijを算出していく。
次に、ステップS130Bで、検査制御装置120は、システム制御回路13に対して第2検査画像15b5の表示要求を行う。これにより、第2検査画像15b5を用いた拡大像16aがカメラ130に出力される。
そして、ステップS140Bで、カメラ130は拡大像16a(第2検査画像15b5)を直接的に撮影して撮影画像130aを取得し、取得した撮影画像130aを視覚検査装置140に出力する。すると、視覚検査装置140は、第2検査画像15b5の100個の各発光部Pについて、数式1に基づいて、カメラ画素ごとに受光データを積算して、積算受光データSDLsijを算出していく。
更に、ステップS150で、視覚検査装置140は、上記で得た第1検査画像15b4および第2検査画像15b5における合計200個の積算受光データSDLsijと、予め記憶された既知の輝度Lsおよび既知の積算受光データSDLsとから、数式2に基づいて、ウインドシールド5が想定された場合の最終像5a中の各発光部Pの最終輝度Lnsij(200個)を予測算出する。
以下、第1実施形態における制御フローと同様に、ステップS200〜ステップS260を実施する。このように本実施形態では、第1検査画像15b4を用いて最終輝度Lnsijが予測算出される領域と、第2検査画像15b5を用いて最終輝度Lnsijが予測算出される領域とを合わせると、すべての領域を合わせたものとなるので、より精度の高い検査が可能となる。
5 ウインドシールド
5a 最終像
10 ヘッドアップディスプレイ装置(HUD装置)
15 表示器
15a 表示画像
15b 検査画像、15b4 検査画像(第1検査画像)、15b5 検査画像(第2検査画像)
16 反射鏡
16a 拡大像(出力像)
100 検査装置
120 検査制御装置(制御部)
130 カメラ
130a 撮影画像
140 視覚検査装置(検査部)

Claims (6)

  1. 表示器(15)によって生成される表示画像(15a)を、反射鏡(16)によって予め逆歪みを持たせた出力像(16a)として出力して、車両のウインドシールド(5)に歪みのない最終像(5a)として結像させるようにしたヘッドアップディスプレイ装置(10)の前記出力像(16a)を検査する検査装置であって、
    前記表示画像(15a)として、同一輝度を有する複数の発光部(P)が形成された検査画像(15b)を基にして、前記出力像(16a)を形成させて、前記ヘッドアップディスプレイ装置(10)から出力させる制御部(120)と、
    前記出力像(16a)が出力される出力軸線上に配置されて、前記出力像(16a)を直接的に撮影して撮影画像(130a)を取得するカメラ(130)と、
    前記撮影画像(130a)中の複数の前記発光部(P)に対応する領域内のカメラ画素ごとの受光データを積算して、複数の前記発光部(P)に対応するそれぞれの積算受光データ(SDLsij)を算出する検査部(140)と、を備えており、
    前記検査部(140)は、
    前記検査の前段階において、前記ウインドシールド(5)が設けられた状態で、前記検査画像(15b)を基にして、前記ウインドシールド(5)に結像された前記最終像(5a)中の複数の前記発光部(P)のうち、所定の発光部(P)における輝度と、前記撮影画像(130a)中の前記所定の発光部(P)に対応する部位のカメラ画素ごとの受光データの積算値とを、それぞれ、既知の輝度(Ls)および既知の積算受光データ(SDLs)として予め記憶しており、
    前記検査時において、前記撮影画像(130a)中の複数の前記発光部(P)から得られるそれぞれの前記積算受光データ(SDLsij)と、前記既知の輝度(Ls)および前記既知の積算受光データ(SDLs)の関係とから、前記ウインドシールド(5)が想定された場合の、前記ウインドシールド(5)に結像される前記最終像(5a)中の複数の前記発光部(P)に対応するそれぞれの最終輝度(Lnsij)を予測算出することを特徴とする検査装置。
  2. 複数の前記発光部(P)は、前記検査画像(15b)の全体にわたって一様に分布配置されていることを特徴とする請求項1に記載の検査装置。
  3. 複数の前記発光部(P)は、第1の面積を有する第1発光部(PA)と、前記第1の面積に対して所定の倍率となる第2の面積を有する第2発光部(PB)とが混在するように形成されており、
    前記検査部(140)は、前記第2発光部(PB)に対する前記最終輝度(Lnsij)を予測算出する際に、前記所定の倍率を用いて面積補正することを特徴とする請求項1または請求項2に記載の検査装置。
  4. 前記検査画像(15b)は、格子状に区画された各領域に対して、千鳥状に前記発光部(P)が配置された第1検査画像(15b4)と、前記第1検査画像(15b4)に対して前記発光部(P)と非発光部(X)との領域が反転された第2検査画像(15b5)とから形成されており、
    前記検査部(140)は、前記第1検査画像(15b4)および前記第2検査画像(15b5)の両者を用いて前記最終輝度(Lnsij)を予測算出することを特徴とする請求項1または請求項2に記載の検査装置。
  5. 前記検査部(140)は、予め設定された許容輝度判定値(Lsmin、Lsmax)を用いて、予測算出したそれぞれの前記最終輝度(Lnsij)の良否判定を行うことを特徴とする請求項1〜請求項4のいずれか1つに記載の検査装置。
  6. 前記検査部(140)は、予測算出したそれぞれの前記最終輝度(Lnsij)のうち、最大値と最小値との比を輝度比として、予め設定された許容輝度比判定値を用いて、前記輝度比の良否判定を行うことを特徴とする請求項1〜請求項5のいずれか1つに記載の検査装置。
JP2013211339A 2013-10-08 2013-10-08 検査装置 Active JP6065804B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211339A JP6065804B2 (ja) 2013-10-08 2013-10-08 検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211339A JP6065804B2 (ja) 2013-10-08 2013-10-08 検査装置

Publications (2)

Publication Number Publication Date
JP2015075381A true JP2015075381A (ja) 2015-04-20
JP6065804B2 JP6065804B2 (ja) 2017-01-25

Family

ID=53000348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211339A Active JP6065804B2 (ja) 2013-10-08 2013-10-08 検査装置

Country Status (1)

Country Link
JP (1) JP6065804B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183582A1 (ja) * 2016-04-19 2017-10-26 コニカミノルタ株式会社 光学特性測定装置
CN110361167A (zh) * 2019-07-25 2019-10-22 上海科涅迩光电技术有限公司 一种抬头显示器的测试方法
US10948719B2 (en) 2016-04-14 2021-03-16 AGC Inc. Inspection device and inspection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502620A (ja) * 1986-01-28 1988-09-29 サンドストランド・デ−タ・コントロ−ル・インコ−ポレ−テッド ヘッド・アップ・ディスプレイの独立型試験設備
JPH07131802A (ja) * 1993-11-05 1995-05-19 Matsushita Electric Ind Co Ltd 画像補正装置
JP2006047546A (ja) * 2004-08-03 2006-02-16 Yazaki Corp ディスプレイ装置
JP2008113416A (ja) * 2006-08-11 2008-05-15 Silicon Optix Inc 表示の形状及び色の自動較正及び修正のためのシステム及び方法
JP2011209457A (ja) * 2010-03-29 2011-10-20 Denso Corp ヘッドアップディスプレイ装置の製造方法および同製造方法に用いるのに適した虚像調整装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502620A (ja) * 1986-01-28 1988-09-29 サンドストランド・デ−タ・コントロ−ル・インコ−ポレ−テッド ヘッド・アップ・ディスプレイの独立型試験設備
JPH07131802A (ja) * 1993-11-05 1995-05-19 Matsushita Electric Ind Co Ltd 画像補正装置
JP2006047546A (ja) * 2004-08-03 2006-02-16 Yazaki Corp ディスプレイ装置
JP2008113416A (ja) * 2006-08-11 2008-05-15 Silicon Optix Inc 表示の形状及び色の自動較正及び修正のためのシステム及び方法
JP2011209457A (ja) * 2010-03-29 2011-10-20 Denso Corp ヘッドアップディスプレイ装置の製造方法および同製造方法に用いるのに適した虚像調整装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948719B2 (en) 2016-04-14 2021-03-16 AGC Inc. Inspection device and inspection method
WO2017183582A1 (ja) * 2016-04-19 2017-10-26 コニカミノルタ株式会社 光学特性測定装置
CN109073502A (zh) * 2016-04-19 2018-12-21 柯尼卡美能达株式会社 光学特性测定装置
KR102056555B1 (ko) 2016-04-19 2019-12-16 코니카 미놀타 가부시키가이샤 광학 특성 측정 장치
CN110361167A (zh) * 2019-07-25 2019-10-22 上海科涅迩光电技术有限公司 一种抬头显示器的测试方法
CN110361167B (zh) * 2019-07-25 2021-09-10 上海科涅迩光电技术有限公司 一种抬头显示器的测试方法

Also Published As

Publication number Publication date
JP6065804B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
US7394483B2 (en) Display evaluation method and apparatus
KR101965921B1 (ko) 필드 시퀀셜 화상표시장치
US10948719B2 (en) Inspection device and inspection method
KR0156656B1 (ko) 화질 검사 장치
JP6056692B2 (ja) 検査装置
JP6065804B2 (ja) 検査装置
JP2014195184A (ja) プロジェクタおよびヘッドアップディスプレイ装置
JP6695062B2 (ja) 表示システム、制御装置、制御方法、プログラム、及び移動体
JPWO2017002512A1 (ja) 移動式撮像装置及び移動式撮像方法
JP2014194512A (ja) ヘッドアップディスプレイ装置およびヘッドアップディスプレイ装置の表示方法
EP1718064B1 (en) Image generating apparatus for vehicles and method
EP3590752B1 (en) Head-up display device and onboard display system
JP5509904B2 (ja) プロジェクター
JP2017134226A (ja) 表示装置および車両
JP4244361B1 (ja) 映像補正装置、映像補正方法、及び映像補正プログラム
JP2018063381A (ja) 表示装置
JP2011002401A (ja) 輝度測定装置における補正係数算出方法および輝度測定装置
JP2016170052A (ja) 目検出装置及び車両用表示システム
JP2007279213A (ja) 表示パネルの輝度検査装置、及びこれを用いた表示パネルの製造方法
JP2021182698A (ja) 撮像装置及びその制御方法
JP2011188218A (ja) 表示装置
JP2009068986A (ja) 形状測定装置
JP2009145106A (ja) 表示欠陥評価装置および表示欠陥評価方法
US20230092862A1 (en) Projecting system, projecting method, and storage medium
JP2006293124A (ja) プロジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R151 Written notification of patent or utility model registration

Ref document number: 6065804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250