JP2015075277A - Ammonia injection quantity control device and ammonia injection quantity control method - Google Patents

Ammonia injection quantity control device and ammonia injection quantity control method Download PDF

Info

Publication number
JP2015075277A
JP2015075277A JP2013211665A JP2013211665A JP2015075277A JP 2015075277 A JP2015075277 A JP 2015075277A JP 2013211665 A JP2013211665 A JP 2013211665A JP 2013211665 A JP2013211665 A JP 2013211665A JP 2015075277 A JP2015075277 A JP 2015075277A
Authority
JP
Japan
Prior art keywords
ammonia
denitration
amount
value
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211665A
Other languages
Japanese (ja)
Other versions
JP6189703B2 (en
Inventor
政治 森井
Seiji Morii
政治 森井
孝裕 竹友
Takahiro Taketomo
孝裕 竹友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013211665A priority Critical patent/JP6189703B2/en
Publication of JP2015075277A publication Critical patent/JP2015075277A/en
Application granted granted Critical
Publication of JP6189703B2 publication Critical patent/JP6189703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ammonia injection quantity control device and an ammonia injection quantity control method for a denitrification plant, capable of detecting an abnormality that an ammonia flow transmitter malfunctions, and preventing continuation of operation in an excessive ammonia injection state.SOLUTION: An ammonia injection quantity control device for injecting ammonia into a denitrification plant includes circuits that calculate a denitrification ratio from a deviation between a value obtained by converting a NOx concentration at an inlet of the denitrification plant to a NOx concentration at a predetermined oxygen concentration and a set value of a NOx concentration at an outlet of the nitrification plant to convert the denitrification ratio to a molar ratio, that correct the molar ratio in view of the NOx concentration at the outlet, that determine an ammonia required quantity from the corrected molar ratio and a total NOx quantity, control an ammonia injection quantity based on the ammonia required quantity and an ammonia flow indication value, and detect an abnormality if a deviation between an ammonia required quantity determined from the total NOx quantity and the uncorrected molar ratio and the ammonia flow indication value is not smaller than a predetermined value. By providing the circuits, it is possible to notify surroundings of the abnormality. Therefore, it is possible to prevent continuation of operation in an abnormal state such as an excessive ammonia injection state.

Description

本発明は、脱硝触媒を内部に設置した脱硝装置に、窒素酸化物の還元剤としてアンモニアを注入するアンモニア注入量制御装置及びアンモニア注入量制御方法に関し、排ガス中に含まれる窒素酸化物を、触媒を用いたアンモニア接触還元法により除去するのに好適なアンモニア注入量制御装置及びアンモニア注入量制御方法に関する。   TECHNICAL FIELD The present invention relates to an ammonia injection amount control device and an ammonia injection amount control method for injecting ammonia as a nitrogen oxide reducing agent into a denitration device in which a denitration catalyst is installed. The present invention relates to an ammonia injection amount control device and an ammonia injection amount control method that are suitable for removal by an ammonia catalytic reduction method using ammonia.

火力発電所におけるボイラ及びガスタービン等の燃焼装置から発生する排ガスは、脱硝触媒層を備えた脱硝装置に導かれて排ガス中の窒素酸化物(NOx)等を除去した後、系外に排出されるが、上記脱硝装置入口の排ガス中に還元剤としてアンモニア(NH3)が注入される。 Exhaust gas generated from combustion devices such as boilers and gas turbines in a thermal power plant is led to a denitration device equipped with a denitration catalyst layer to remove nitrogen oxides (NOx), etc. in the exhaust gas, and then discharged outside the system. However, ammonia (NH 3 ) is injected as a reducing agent into the exhaust gas at the inlet of the denitration apparatus.

図2には、従来のガスタービン排ガス用ボイラの排ガス用脱硝装置のアンモニア注入量制御方法を示し、脱硝装置出口のNOx濃度を一定に制御する方式の制御系統図を示している。このアンモニア注入量制御装置50は以下のような回路を備えている。   FIG. 2 shows a control system diagram of a method for controlling the NOx concentration at the outlet of the denitration device to be constant, showing a method for controlling the ammonia injection amount of the denitration device for exhaust gas of a conventional gas turbine exhaust gas boiler. The ammonia injection amount control device 50 includes the following circuit.

図2において、まず、排ガス流量計9からの排ガス流量信号9aと脱硝装置の入口に設置されたNOx濃度計10からの実測値である入口NOx濃度信号10a(実際に測定されるNOx濃度)に基づいて乗算器3により排ガス中のNOx総量が算出される。また、脱硝装置の入口のNOx濃度計11(NOx濃度計10と同じものでもよい)からは、実際に測定されるNOx濃度を酸素濃度16%に換算した場合のNOx濃度の入口NOx濃度信号11aが出力される。酸素濃度16%に換算した場合のNOx濃度(16%O2)は、実際に測定されるNOx濃度(実O2)と実際の酸素濃度(O2濃度)から、以下の式により求められる。なお、下記数値の「21」は、通常の空気のO2濃度(%)である。
NOx濃度(16%O2)=NOx濃度(実O2)×(21−16)/(21−O2濃度)
In FIG. 2, first, an exhaust gas flow rate signal 9a from the exhaust gas flow meter 9 and an inlet NOx concentration signal 10a (actually measured NOx concentration) which is an actual measurement value from the NOx concentration meter 10 installed at the inlet of the denitration apparatus. Based on this, the multiplier 3 calculates the total amount of NOx in the exhaust gas. Further, from the NOx concentration meter 11 at the inlet of the denitration apparatus (which may be the same as the NOx concentration meter 10), the NOx concentration inlet NOx concentration signal 11a when the actually measured NOx concentration is converted into the oxygen concentration 16%. Is output. The NOx concentration (16% O 2 ) when converted to an oxygen concentration of 16% is obtained by the following formula from the actually measured NOx concentration (actual O 2 ) and the actual oxygen concentration (O 2 concentration). In the following numerical value, “21” is the O 2 concentration (%) of normal air.
NOx concentration (16% O 2 ) = NOx concentration (actual O 2 ) × (21−16) / (21−O 2 concentration)

排ガス中のNOx濃度(実O2)は同じNOx量でもO2濃度により変わるため、一定の酸素濃度を基準として評価するために、酸素濃度16%に換算した場合のNOx濃度を使用する。大気汚染防止法において、NOx濃度は酸素濃度を補正した値で排出基準が決められており、補正する酸素濃度は煤煙の発生施設により異なる。例えば、ガスタービン排ガス用ボイラの排ガスは16%O2濃度であり、このO2濃度に補正した場合のNOx濃度を基準としている。なお、他の燃焼装置からの排ガスにおいては、それぞれの所定の酸素濃度に換算を行う。例えば、石炭炊きボイラの排ガスでは6%O2濃度である。 Since the NOx concentration (actual O 2 ) in the exhaust gas varies depending on the O 2 concentration even with the same NOx amount, the NOx concentration when converted to an oxygen concentration of 16% is used in order to evaluate on the basis of a constant oxygen concentration. In the Air Pollution Control Law, the NOx concentration is determined by correcting the oxygen concentration, and the emission standard is determined. The corrected oxygen concentration varies depending on the facility where the smoke is generated. For example, the exhaust gas of a gas turbine exhaust gas boiler has a 16% O 2 concentration, and the NOx concentration when corrected to this O 2 concentration is used as a reference. In addition, in the exhaust gas from another combustion apparatus, it converts into each predetermined oxygen concentration. For example, the exhaust gas from a coal-fired boiler has a 6% O 2 concentration.

そして、この入口NOx濃度信号11aと出口NOx濃度設定器2の出口NOx濃度設定値信号2aに基づいて脱硝率が算出される。脱硝率とその脱硝率を満たすためのNOx量に対するNH3量のモル比(以下、モル比(NH3/NOx)という)との関係は予め関数として設定され、制御装置50に記憶されている。なお、モル比は、ほぼ(脱硝率/100)に相当する。そして、信号発生器19では、脱硝率がモル比(NH3/NOx)に変換され、切換器115に入力される。 The NOx removal rate is calculated based on the inlet NOx concentration signal 11a and the outlet NOx concentration setting value signal 2a of the outlet NOx concentration setting device 2. The relationship between the denitration rate and the molar ratio of the NH 3 amount to the NOx amount for satisfying the denitration rate (hereinafter referred to as the molar ratio (NH 3 / NOx)) is set in advance as a function and stored in the control device 50. . The molar ratio substantially corresponds to (denitration rate / 100). In the signal generator 19, the denitration rate is converted into a molar ratio (NH 3 / NOx) and input to the switch 115.

そして、前記NOx総量信号13からのNOx総量と前記モル比からアンモニア要求量信号21が求められる。このアンモニア要求量信号21は、脱硝装置出口のNOx濃度に関し、出口NOx濃度設定器2の出口NOx濃度(設定値)に基づいて求められるもので、実際に測定される出口NOx濃度を考慮していない場合のアンモニア要求量の信号である。   Then, the ammonia demand signal 21 is obtained from the NOx total amount from the NOx total amount signal 13 and the molar ratio. This ammonia demand amount signal 21 is obtained based on the outlet NOx concentration (set value) of the outlet NOx concentration setting device 2 with respect to the NOx concentration at the outlet of the NOx removal apparatus, and takes into account the outlet NOx concentration actually measured. This is a signal of the ammonia demand in the absence.

更に、出口NOx濃度設定器2の出口NOx濃度設定値信号2aと脱硝装置の出口に設置されたNOx濃度計1からの出口NOx濃度信号(実際に測定されるNOx濃度を酸素濃度16%に換算した場合のNOx濃度の出口NOx濃度信号)1aの偏差は比例積分演算器17を介して、フィードバック信号として加算器23に供給され、前記信号発生器19からのモル比の入力信号を補正した後、切換器15に入力される。そして、前記NOx総量信号13からのNOx総量と前記補正されたモル比からアンモニア要求量信号14が求められる。   Further, the outlet NOx concentration set value signal 2a of the outlet NOx concentration setting device 2 and the outlet NOx concentration signal from the NOx concentration meter 1 installed at the outlet of the denitration device (the actually measured NOx concentration is converted into an oxygen concentration of 16%). The deviation of the NOx concentration at the outlet NOx concentration signal) 1a is supplied as a feedback signal to the adder 23 via the proportional-plus-integral calculator 17, and after correcting the input signal of the molar ratio from the signal generator 19 , Input to the switch 15. Then, the ammonia demand signal 14 is obtained from the NOx total amount from the NOx total amount signal 13 and the corrected molar ratio.

このアンモニア要求量信号14は、脱硝装置出口のNOx濃度計1からの実測値を考慮したアンモニア要求量の信号である。本明細書中、脱硝装置の出口NOx濃度(実測値から所定の酸素濃度時のNOx濃度に換算した値)を一定に制御する方法を出口NOx一定制御と言う。   This ammonia demand amount signal 14 is a signal of the ammonia demand amount in consideration of the actual measurement value from the NOx concentration meter 1 at the denitration apparatus outlet. In the present specification, a method of controlling the NOx concentration at the outlet of the denitration apparatus (a value converted from an actual measurement value into a NOx concentration at a predetermined oxygen concentration) to be constant is referred to as outlet NOx constant control.

一方、前記アンモニア要求量信号21は出口NOx濃度設定値(実測値や実測値から換算された値ではない)から算出されたアンモニア要求量信号であることから、出口NOx一定制御を含まない場合のアンモニア要求量の信号である。   On the other hand, the ammonia demand amount signal 21 is an ammonia demand amount signal calculated from the outlet NOx concentration set value (not an actual value or a value converted from the actual value), and therefore, when the NOx constant control is not included. It is a signal of ammonia demand.

そして、出口NOx一定制御を含むアンモニア要求量信号14とアンモニア流量発信器12のアンモニア流量指示値信号12aとの偏差から比例積分演算器17によりアンモニア流量調節弁6の開度が算出されてアンモニア流量調節開度指令41がなされ、配管5から脱硝装置入口ダクトに注入されるアンモニア量が制御される。   Then, the degree of opening of the ammonia flow rate control valve 6 is calculated by the proportional-plus-integral calculator 17 from the deviation between the ammonia demand signal 14 including the outlet NOx constant control and the ammonia flow rate instruction value signal 12a of the ammonia flow rate transmitter 12. The adjustment opening degree command 41 is made, and the amount of ammonia injected from the pipe 5 into the denitration apparatus inlet duct is controlled.

なお、出口NOx濃度計1の校正時や異常時には、上記アンモニア注入量制御は、入口NOx濃度計11とモル比手動設定器25の制御に切り替えを行い、出口NOx一定制御を含まない場合のアンモニア要求量信号21を、出口NOx一定制御を含むアンモニア要求量信号14の代わりに使用する。この場合の信号ルートは以下のようになる。モル比手動設定器25からの信号25aが切換器115に入力されて、このモル比とNOx総量信号13からのNOx総量とが乗算器3に入力されることでアンモニア要求量信号21が求められる。   When the outlet NOx concentration meter 1 is calibrated or abnormal, the ammonia injection amount control is switched to the control of the inlet NOx concentration meter 11 and the molar ratio manual setting device 25, and the ammonia when the outlet NOx constant control is not included. The demand quantity signal 21 is used instead of the ammonia demand quantity signal 14 including the outlet NOx constant control. The signal route in this case is as follows. A signal 25a from the molar ratio manual setting device 25 is input to the switch 115, and this molar ratio and the total NOx amount from the NOx total amount signal 13 are input to the multiplier 3, whereby the ammonia demand signal 21 is obtained. .

特許文献1には、出口NOx一定制御によるアンモニア注入量制御方法が開示されており、ボイラの負荷変動が生じた場合に生じる脱硝装置出口のNOx濃度のハンチングを防ぐために、ボイラ負荷信号に対しアンモニアモル比のバイアスが上昇するときは瞬時に増バイアスを加えて応答遅れを防ぎ、アンモニアモル比のバイアスが降下するときは徐々に減バイアスを加えてアンモニア流量の変動を抑える構成としている。   Patent Document 1 discloses an ammonia injection amount control method by constant control of outlet NOx, and in order to prevent hunting of NOx concentration at the outlet of the denitration device that occurs when a load fluctuation of the boiler occurs, ammonia is detected with respect to the boiler load signal. When the molar ratio bias increases, an increase bias is instantaneously applied to prevent a delay in response, and when the ammonia molar ratio bias decreases, a decrease bias is gradually applied to suppress fluctuations in the ammonia flow rate.

特開2001−104755号公報JP 2001-104755 A 特開2010−133354号公報JP 2010-133354 A

最近の火力発電所のプラントでは、コスト低減のために脱硝装置出口のNH3計を設置しないことが多く、その場合、アンモニアの過注入によるアンモニア流量異常を検知することができず、問題となっている。 Recent thermal power plant plants often do not have an NH 3 meter installed at the exit of the denitration unit to reduce costs. In that case, abnormalities in ammonia flow due to excessive ammonia injection cannot be detected, which is a problem. ing.

特許文献2には、還元触媒の排ガス下流側に設けたNOx及びアンモニアに感応するセンサのセンサ値を所定の閾値と比較してアンモニアなどの還元剤噴射装置からの噴射量の異常を判定する噴射量異常判定部を設けた還元剤噴射制御装置が開示されている。具体的にはNOxセンサによってNOx及びアンモニアを検知している。   Patent Document 2 discloses an injection that compares the sensor value of a sensor that is sensitive to NOx and ammonia provided on the exhaust gas downstream side of a reduction catalyst with a predetermined threshold value to determine an abnormality in the injection amount of a reducing agent injection device such as ammonia. A reducing agent injection control device provided with a quantity abnormality determination unit is disclosed. Specifically, NOx and ammonia are detected by a NOx sensor.

特許文献2の構成によれば、NOxセンサによってNOxが検知されれば還元剤の不足を意味し、NOxセンサによってアンモニアが検知されれば還元剤の過剰を意味しており、これらの検知量が閾値との比較により判別される。   According to the configuration of Patent Literature 2, if NOx is detected by the NOx sensor, it means that the reducing agent is insufficient, and if ammonia is detected by the NOx sensor, it means that the reducing agent is excessive. This is determined by comparison with a threshold value.

しかし、計器の異常により誤った流量検知がされた場合は、実際は正常であるにもかかわらず、異常と判断されてしまうこともある。
そして、上述のような従来技術において、アンモニア流量発信器(例えば、特許文献2の還元剤噴射装置40)が不調となった場合は、その指示値の信頼性が低くなって正常な制御が行われなくなってしまう。
However, if an erroneous flow rate is detected due to an abnormality in the instrument, it may be judged abnormal even though it is actually normal.
In the conventional technology as described above, when the ammonia flow rate transmitter (for example, the reducing agent injection device 40 of Patent Document 2) malfunctions, the reliability of the indicated value is lowered and normal control is performed. I won't break.

本発明の課題は、上述のような従来技術の問題に対して、脱硝装置に、排ガス中のNOxの還元剤としてアンモニアを注入するアンモニア注入量制御装置及びアンモニア注入量制御方法において、アンモニア流量発信器に不具合が生じた場合に、その異常を検知しアンモニアの過注入状態における運転の継続を防止できるアンモニア注入量制御装置及びアンモニア注入量制御方法を提供することである。   An object of the present invention is to solve the problems of the prior art as described above, in an ammonia injection amount control device and an ammonia injection amount control method for injecting ammonia as a reducing agent for NOx in exhaust gas into a denitration device. It is to provide an ammonia injection amount control device and an ammonia injection amount control method capable of detecting an abnormality and preventing continuation of operation in an over-injected state of ammonia when a malfunction occurs in the vessel.

上記本発明の課題は、下記の構成を採用することにより達成できる。
請求項1記載の発明は、ボイラを含む燃焼装置の排ガスから窒素酸化物を除去する脱硝装置に、還元剤としてアンモニアを注入するアンモニア注入量制御装置において、前記脱硝装置入口の窒素酸化物濃度の測定値を所定の酸素濃度時の窒素酸化物濃度に換算した入口換算値と脱硝装置出口の窒素酸化物濃度の設定値との偏差から脱硝率を算出する回路と、前記脱硝装置入口の窒素酸化物濃度の測定値と排ガス量から排ガス中の窒素酸化物の総量を求める回路と、前記脱硝率を、予め設定された脱硝率とその脱硝率を満たすためのNOx量に対するNH3量のモル比(NH3/NOx)との関係からモル比(M1)に変換する回路と、前記モル比(M1)を、脱硝装置出口の窒素酸化物濃度の測定値を所定の酸素濃度時の窒素酸化物濃度に換算した出口換算値と脱硝装置出口の窒素酸化物濃度の設定値との偏差により補正する回路と、補正されたモル比(M2)と前記排ガス中の窒素酸化物の総量から窒素酸化物の還元に必要なアンモニア要求量(A)を求める回路と、該アンモニア要求量(A)と脱硝装置に注入されるアンモニアの流量指示値との偏差からアンモニア注入量を制御する回路とを備え、更に、前記モル比(M1)と前記排ガス中の窒素酸化物の総量から窒素酸化物の還元に必要なアンモニア要求量(B)を求める回路と、該アンモニア要求量(B)とアンモニアの流量指示値との偏差が所定値以上であるとアンモニア流量の異常を検知する回路とを備えたアンモニア注入量制御装置である。
The object of the present invention can be achieved by adopting the following constitution.
The invention according to claim 1 is an ammonia injection amount control device for injecting ammonia as a reducing agent into a denitration device that removes nitrogen oxides from exhaust gas of a combustion device including a boiler. A circuit for calculating a denitration rate from a deviation between an inlet conversion value obtained by converting a measured value into a nitrogen oxide concentration at a predetermined oxygen concentration and a set value of the nitrogen oxide concentration at the denitration device outlet, and nitrogen oxidation at the denitration device inlet A circuit for obtaining the total amount of nitrogen oxides in the exhaust gas from the measured value of the substance concentration and the amount of exhaust gas, and the denitration rate, the molar ratio of the NH 3 amount to the NOx amount for satisfying the preset denitration rate and the denitration rate A circuit for converting the molar ratio (M1) from the relationship with (NH 3 / NOx), and the molar ratio (M1), the measured value of the nitrogen oxide concentration at the outlet of the denitration apparatus is the nitrogen oxide at a predetermined oxygen concentration Change to concentration A circuit for correcting the deviation between the converted outlet value and the set value of the concentration of nitrogen oxides at the outlet of the denitration apparatus, and the reduction of nitrogen oxides from the corrected molar ratio (M2) and the total amount of nitrogen oxides in the exhaust gas. A circuit for determining the required ammonia demand (A), and a circuit for controlling the ammonia injection amount from the deviation between the ammonia demand (A) and the flow rate instruction value of ammonia injected into the denitration device, A circuit for obtaining a required ammonia amount (B) required for the reduction of nitrogen oxides from the molar ratio (M1) and the total amount of nitrogen oxides in the exhaust gas, and the ammonia required amount (B) and an ammonia flow rate indication value When the deviation is equal to or greater than a predetermined value, the ammonia injection amount control device includes a circuit that detects an abnormality in the ammonia flow rate.

請求項2記載の発明は、ボイラを含む燃焼装置の排ガスから窒素酸化物を除去する脱硝装置に、還元剤としてアンモニアを注入するアンモニア注入量制御方法において、脱硝装置入口の窒素酸化物濃度を測定し、該測定値を所定の酸素濃度時の窒素酸化物濃度に換算し、該入口換算値と脱硝装置出口の窒素酸化物濃度の設定値とに基づいて脱硝率を算出し、前記脱硝率を、予め設定された脱硝率とその脱硝率を満たすためのNOx量に対するNH3量のモル比(NH3/NOx)との関係からモル比(M1)に変換し、脱硝装置出口の窒素酸化物濃度を測定し、該測定値を所定の酸素濃度時の窒素酸化物濃度に換算し、該出口換算値と脱硝装置出口の窒素酸化物濃度の設定値との偏差により前記モル比(M1)を補正すると共に、前記脱硝装置入口の窒素酸化物濃度の測定値と排ガス量から排ガス中の窒素酸化物の総量を求め、前記補正されたモル比(M2)と前記排ガス中の窒素酸化物の総量から窒素酸化物の還元に必要なアンモニア要求量(A)を求め、該アンモニア要求量(A)と脱硝装置に注入されるアンモニアの流量指示値との偏差からアンモニア注入量を制御すると共に、前記モル比(M1)と排ガス中の窒素酸化物の総量から窒素酸化物の還元に必要なアンモニア要求量(B)を求め、該アンモニア要求量(B)とアンモニアの流量指示値との偏差が所定値以上であるとアンモニア流量の異常を検知するアンモニア注入量制御方法である。 The invention according to claim 2 measures the nitrogen oxide concentration at the inlet of the denitration apparatus in the ammonia injection amount control method in which ammonia is injected as a reducing agent into the denitration apparatus that removes nitrogen oxide from the exhaust gas of the combustion apparatus including the boiler. The measured value is converted into a nitrogen oxide concentration at a predetermined oxygen concentration, a denitration rate is calculated based on the converted value at the inlet and the set value of the nitrogen oxide concentration at the outlet of the denitration device, and the denitration rate is calculated. The NOx removal rate is converted into a molar ratio (M1) based on the relationship between a predetermined denitration rate and the molar ratio (NH 3 / NOx) of the NH 3 amount to the NOx amount to satisfy the denitration rate. The concentration is measured, the measured value is converted into a nitrogen oxide concentration at a predetermined oxygen concentration, and the molar ratio (M1) is determined by a deviation between the outlet converted value and the set value of the nitrogen oxide concentration at the outlet of the denitration apparatus. And correcting the denitration equipment The total amount of nitrogen oxides in the exhaust gas is obtained from the measured value of the nitrogen oxide concentration at the inlet and the amount of exhaust gas, and the nitrogen oxide is reduced from the corrected molar ratio (M2) and the total amount of nitrogen oxide in the exhaust gas. The required ammonia demand (A) is obtained, and the ammonia injection amount is controlled from the deviation between the ammonia demand (A) and the flow rate instruction value of ammonia injected into the denitration device, and the molar ratio (M1) and the exhaust gas are controlled. The ammonia demand (B) required for the reduction of nitrogen oxides is determined from the total amount of nitrogen oxides contained therein, and when the deviation between the ammonia demand (B) and the ammonia flow rate instruction value is greater than or equal to a predetermined value, the ammonia flow rate This is a method for controlling the amount of ammonia injected to detect an abnormality.

(作用)
本発明によれば、排ガス中のNOxの還元に必要なアンモニア要求量とアンモニア流量指示値の偏差が所定値以上となった場合にその異常を検知し、警報を発することにより、周囲に報知することができる。
なお、アンモニア流量計などのアンモニア流量発信器に異常が生じ、実際の流量以上の流量信号が発生した場合に、脱硝装置出口のNOx濃度の実測値を考慮したアンモニア要求量(A)によりアンモニアを注入していると、実際の脱硝装置出口のNOx濃度は設定値以下に低下し、アンモニア要求量(A)及びアンモニア流量も低下して、脱硝装置出口のNOx濃度は設定値付近になるように制御される。この場合、設定値に制御されるまでの間は、アンモニアが過注入の状態となる。
(Function)
According to the present invention, when the deviation between the required ammonia amount required for the reduction of NOx in the exhaust gas and the ammonia flow rate instruction value exceeds a predetermined value, the abnormality is detected and an alarm is issued to notify the surroundings. be able to.
In addition, when an abnormality occurs in an ammonia flow transmitter such as an ammonia flow meter and a flow rate signal exceeding the actual flow rate is generated, ammonia is reduced by the required ammonia amount (A) considering the measured NOx concentration at the denitration device outlet. When injected, the actual NOx concentration at the outlet of the denitration device falls below the set value, the ammonia demand (A) and the ammonia flow rate also fall, and the NOx concentration at the exit of the denitration device becomes close to the set value. Be controlled. In this case, ammonia is in an over-injected state until it is controlled to the set value.

しかし、請求項1又は請求項2記載の発明によれば、計器の異常により誤った流量検知がされた場合でも、脱硝装置出口のNOx濃度の実測値を考慮せず、脱硝装置出口のNOx濃度設定値から算出されるアンモニア要求量(B)とアンモニア流量指示値の偏差を異常判定の基準とすることで、アンモニア過注入等の異常な状態での運転継続を防止できる。   However, according to the first or second aspect of the invention, even when an erroneous flow rate is detected due to an abnormality in the meter, the measured NOx concentration at the denitration device outlet is not taken into account, and the NOx concentration at the denitration device outlet is not taken into consideration. By using the deviation between the ammonia demand (B) calculated from the set value and the ammonia flow rate instruction value as a criterion for abnormality determination, it is possible to prevent continuation of operation in an abnormal state such as ammonia over-injection.

なお、脱硝装置出口のNOx濃度の実測値を考慮したアンモニア要求量(A)とアンモニア流量指示値の偏差を異常判定の基準とすると、上述のようにフィードバック制御により設定値に制御されるため、異常が検知されない場合も想定されるが、アンモニア要求量(B)とアンモニア流量指示値の偏差を異常判定の基準とすることで、フィードバック制御により偏差が小さくなる影響を受けず、確実に異常を検知できる。   If the deviation between the ammonia requirement amount (A) taking into account the actual measured value of the NOx concentration at the outlet of the NOx removal apparatus and the ammonia flow rate instruction value is used as a criterion for abnormality determination, it is controlled to the set value by feedback control as described above. Although it is assumed that an abnormality is not detected, the deviation between the ammonia demand (B) and the ammonia flow rate instruction value is used as a criterion for abnormality determination. Can be detected.

請求項1又は請求項2記載の発明によれば、アンモニアを還元剤とする脱硝装置において、アンモニア流量発信器が不調となった場合でも、その異常を検知できるため、アンモニアの過注入状態における運転の継続を防止できる。   According to the first or second aspect of the present invention, in the denitration apparatus using ammonia as a reducing agent, even when the ammonia flow rate transmitter is malfunctioning, the abnormality can be detected. Can be prevented.

本発明の実施例のアンモニア流量制御回路を示した図である。It is the figure which showed the ammonia flow control circuit of the Example of this invention. 従来技術のアンモニア流量制御回路を示した図である。It is the figure which showed the ammonia flow control circuit of the prior art.

以下に、本発明の実施の形態を示す。なお、下記実施例ではガスタービン排ガス用ボイラ(HRSG)からの排ガスに適用した場合を示しているが、石炭炊きボイラ及びその他の燃焼装置からの排ガスにも適用されることは言うまでもない。   Embodiments of the present invention are shown below. In addition, although the case where it applies to the exhaust gas from the boiler for gas turbine exhaust gas (HRSG) is shown in the following Example, it cannot be overemphasized that it applies also to the exhaust gas from a coal-fired boiler and other combustion apparatuses.

図1には、実施例1の排ガス用脱硝装置のアンモニア注入量制御方法を示し、脱硝装置出口NOx濃度を一定に制御する方式の制御系統図を示している。このアンモニア注入量制御装置60は以下のような回路を備えている。   FIG. 1 shows a control system diagram of a method for controlling the ammonia injection amount of the denitration device for exhaust gas according to the first embodiment and controlling the NOx concentration at the exit of the denitration device to be constant. The ammonia injection amount control device 60 includes the following circuit.

図1において、まず、排ガス流量計9からの排ガス流量信号9aと脱硝装置の入口に設置されたNOx濃度計10からの実測値である入口NOx濃度信号10a(実O2)に基づいて乗算器3によりNOx総量が算出される。また、脱硝装置の入口のNOx濃度計11からの入口NOx濃度信号11a(16%O2換算値)と出口NOx濃度設定値信号2aに基づいて脱硝率が算出される。脱硝率とモル比(NH3/NOx)との関係は予め関数として設定され、制御装置60に記憶されている。そして、信号発生器19では、脱硝率がモル比(M1)に変換され、切換器115に入力される。 In FIG. 1, first, a multiplier based on an exhaust gas flow rate signal 9a from the exhaust gas flow meter 9 and an inlet NOx concentration signal 10a (actual O 2 ) which is an actual measurement value from a NOx concentration meter 10 installed at the inlet of the denitration device. 3 calculates the total amount of NOx. Further, the denitration rate is calculated based on the inlet NOx concentration signal 11a (16% O 2 conversion value) from the NOx concentration meter 11 at the inlet of the denitration apparatus and the outlet NOx concentration set value signal 2a. The relationship between the denitration rate and the molar ratio (NH 3 / NOx) is preset as a function and stored in the control device 60. In the signal generator 19, the denitration rate is converted into a molar ratio (M 1) and input to the switch 115.

そして、前記NOx総量信号13からのNOx総量と前記モル比(M1)からアンモニア要求量信号21が求められる。このアンモニア要求量信号21は、出口NOx濃度設定値(実測値や実測値から換算された値ではない)から算出されたアンモニア要求量信号であり、上述のように出口NOx一定制御を含まない場合のアンモニア要求量(B)の信号である。   The ammonia demand signal 21 is obtained from the total NOx amount from the total NOx signal 13 and the molar ratio (M1). This ammonia requirement amount signal 21 is an ammonia requirement amount signal calculated from the outlet NOx concentration set value (not an actual value or a value converted from the actual value), and does not include the outlet NOx constant control as described above. This is a signal of the required ammonia amount (B).

更に、出口NOx濃度設定器2の出口NOx濃度設定値信号2aと脱硝装置の出口に設置されたNOx濃度計1からの出口NOx濃度信号(16%O2換算値)1aの偏差は比例積分演算器17を介して、フィードバック信号として加算器23に供給され、前記信号発生器19からのモル比(M1)の入力信号を補正した後、切換器15に入力される。そして、前記NOx総量信号13からのNOx総量と前記補正されたモル比(M2)からアンモニア要求量信号14が求められる。このアンモニア要求量信号14は、脱硝装置出口のNOx濃度計1からの実測値を考慮したアンモニア要求量の信号であり、上述のように出口NOx一定制御を含むアンモニア要求量(A)の信号である。 Further, the deviation between the outlet NOx concentration set value signal 2a of the outlet NOx concentration setter 2 and the outlet NOx concentration signal 1a (a 16% O 2 equivalent value) 1a from the NOx concentration meter 1 installed at the outlet of the denitration apparatus is a proportional integral calculation. The signal is supplied as a feedback signal to the adder 23 via the device 17, and the input signal of the molar ratio (M1) from the signal generator 19 is corrected and then input to the switch 15. Then, the ammonia demand amount signal 14 is obtained from the NOx total amount from the NOx total amount signal 13 and the corrected molar ratio (M2). This ammonia demand amount signal 14 is a signal of ammonia demand amount in consideration of the actual measurement value from the NOx concentration meter 1 at the outlet of the denitration device, and is a signal of ammonia demand amount (A) including the outlet NOx constant control as described above. is there.

そして、出口NOx一定制御を含むアンモニア要求量信号14とアンモニア流量発信器12からのアンモニア流量指示値信号12aとの偏差から比例積分演算器17によりアンモニア流量調節弁6の開度が算出されてアンモニア流量調節開度指令41がなされ、配管5から脱硝装置入口ダクトに注入されるアンモニア量が制御される。   Then, the degree of opening of the ammonia flow rate control valve 6 is calculated by the proportional integral calculator 17 from the deviation between the ammonia required amount signal 14 including the outlet NOx constant control and the ammonia flow rate instruction value signal 12a from the ammonia flow rate transmitter 12. A flow rate adjustment opening degree command 41 is made, and the amount of ammonia injected from the pipe 5 into the denitration apparatus inlet duct is controlled.

ここで、アンモニア流量発信器12に異常が生じ、実際の流量以上のアンモニア流量指示値信号12aが発生した場合、脱硝装置の出口NOx濃度は設定値以下に低下し、出口NOx一定制御を含むアンモニア要求量信号14からのアンモニア要求量及びアンモニア流量も低下して、脱硝装置出口のNOx濃度は設定値付近になるように制御される。この場合、設定値に制御されるまでの間は、アンモニアが過注入の状態となる。   Here, when an abnormality occurs in the ammonia flow rate transmitter 12 and an ammonia flow rate instruction value signal 12a exceeding the actual flow rate is generated, the outlet NOx concentration of the denitration device decreases below the set value, and the ammonia including the outlet NOx constant control. The ammonia request amount and the ammonia flow rate from the request amount signal 14 are also reduced, and the NOx concentration at the denitration apparatus outlet is controlled to be close to the set value. In this case, ammonia is in an over-injected state until it is controlled to the set value.

そこで、NOx濃度計1からのフィードバック信号を含まないアンモニア要求量信号21とアンモニア流量指示値信号12aとの偏差を監視し、その偏差が所定値以上となった場合はアンモニア流量偏差大の警報を発するシステムとすれば良い。   Therefore, the deviation between the ammonia demand amount signal 21 not including the feedback signal from the NOx concentration meter 1 and the ammonia flow rate instruction value signal 12a is monitored, and if the deviation exceeds a predetermined value, an alarm of large ammonia flow rate deviation is issued. A system that emits light may be used.

アンモニア要求量信号21とアンモニア流量指示値信号12aとの偏差が絶対値演算器32により絶対値に変換され、判定器33により基準となる所定値と比較して所定値以上である場合は警報発信器34から警報信号34aが出力されて警報を発する。   The deviation between the ammonia demand amount signal 21 and the ammonia flow rate instruction value signal 12a is converted into an absolute value by the absolute value calculator 32, and if it is equal to or greater than the predetermined value by the determiner 33, the alarm is transmitted. An alarm signal 34a is output from the device 34 to issue an alarm.

ここで、脱硝装置出口のNOx濃度の実測値を考慮したアンモニア要求量信号14とアンモニア流量指示値信号12aの偏差を異常判定の基準とすると、フィードバック制御により設定値に制御されるため、異常が検知されない場合も想定されるが、そのようなことを防止できる。   Here, if the deviation between the ammonia demand amount signal 14 and the ammonia flow rate instruction value signal 12a in consideration of the actual measured value of the NOx concentration at the outlet of the NOx removal apparatus is used as a criterion for abnormality determination, the abnormality is detected because it is controlled to the set value by feedback control. Although the case where it is not detected is also assumed, such a thing can be prevented.

なお、ボイラ負荷変化信号発生器35からのボイラ負荷変化信号35aも考慮し、負荷変化中ではない条件で警報を発するようにすると良い。すなわち、負荷変化中である場合は前記偏差が大きくても警報は発しない。負荷変化中である場合は、追従遅れでアンモニア要求量信号21とアンモニア流量指示値信号12aとの偏差が発生するため、負荷変化に応じてアンモニア要求量信号21が変化するが、アンモニア流量指示値信号12aの変化は応答に遅れが出るため偏差が大きくなる。   In consideration of the boiler load change signal 35a from the boiler load change signal generator 35, an alarm may be issued under conditions where the load is not changing. That is, when the load is changing, no alarm is issued even if the deviation is large. When the load is changing, a deviation between the ammonia demand amount signal 21 and the ammonia flow rate instruction value signal 12a occurs due to a follow-up delay. Therefore, the ammonia demand amount signal 21 changes according to the load change. Since the change in the signal 12a is delayed in response, the deviation becomes large.

従って、このように正常な運転でも偏差が発生するため、負荷変化中は除外する条件とする。負荷変化判定器36により負荷変化中でない場合は、ボイラ負荷変化信号35aは発生せず警報発信器34に入力されないが、負荷変化中である場合は負荷変化判定器36からボイラ負荷変化信号35aが警報発信器34に入力される。   Therefore, since a deviation occurs even in such a normal operation, the condition is excluded during a load change. When the load change determining unit 36 is not changing the load, the boiler load change signal 35a is not generated and is not input to the alarm transmitter 34. However, when the load is changing, the boiler change change signal 35a is output from the load change determining unit 36. Input to the alarm transmitter 34.

例えば、ボイラの運用負荷帯を100MW〜260MWとし、アンモニア注入量を10〜30m3N/hの間で変化させる。この場合、アンモニア要求量信号21によるアンモニア要求量とアンモニア流量の偏差が6m3N/h以上で警報を発するようにする。なお、この警報発生の偏差の基準値(この例では6m3N/h)は、各負荷におけるアンモニア流量を考慮して設定される。 For example, the operational load zone of the boiler is set to 100 MW to 260 MW, and the ammonia injection amount is changed between 10 to 30 m 3 N / h. In this case, an alarm is issued when the deviation between the ammonia request amount and the ammonia flow rate by the ammonia request amount signal 21 is 6 m 3 N / h or more. Note that the reference value of the alarm generation deviation (in this example, 6 m 3 N / h) is set in consideration of the ammonia flow rate at each load.

また、図示しないが、出口NOx濃度計1の校正時や異常時には、上述のように入口NOx濃度計11とモル比手動設定器25の制御に切り替えを行い、出口NOx一定制御を含まない場合のアンモニア要求量信号21とアンモニア流量発信器12からのアンモニア流量指示値信号12aとの偏差から比例積分演算器17によりアンモニア流量調節弁6の開度を算出し、このアンモニア流量調節開度指令41により、アンモニア注入量が制御されるようにする。この場合も、出口NOx一定制御を含まない場合のアンモニア要求量信号21とアンモニア流量指示値信号12aとの偏差が所定値以上となった場合はアンモニア流量偏差大の警報を発するシステムとすれば良い。   Although not shown, when the outlet NOx concentration meter 1 is calibrated or abnormal, the control is performed to the inlet NOx concentration meter 11 and the molar ratio manual setting device 25 as described above, and the outlet NOx constant control is not included. From the deviation between the ammonia demand signal 21 and the ammonia flow command value signal 12a from the ammonia flow transmitter 12, the proportional integral calculator 17 calculates the opening of the ammonia flow control valve 6, and the ammonia flow control opening command 41 The ammonia injection amount is controlled. Also in this case, when the deviation between the ammonia demand amount signal 21 and the ammonia flow rate instruction value signal 12a when the constant control of the outlet NOx is not included becomes a predetermined value or more, a system that issues an alarm of large ammonia flow rate deviation may be used. .

ボイラ等の燃焼装置の排ガスから窒素酸化物を除去する脱硝装置において、窒素酸化物の還元剤であるアンモニアの注入量制御技術として利用可能性がある。   In a denitration apparatus that removes nitrogen oxides from exhaust gas from a combustion apparatus such as a boiler, it may be used as an injection amount control technique for ammonia that is a reducing agent for nitrogen oxides.

1 出口NOx濃度計 2 出口NOx濃度設定器
3 乗算器 5 配管
6 アンモニア流量調節弁 9 排ガス流量計
10,11 入口NOx濃度計 12 アンモニア流量発信器
13 NOx総量信号
14 出口NOx一定制御を含むアンモニア要求量信号
15,115 切換器 17 比例積分演算器
19 信号発生器
21 出口NOx一定制御を含まないアンモニア要求量信号
23 加算器 25 モル比手動設定器
32 絶対値演算器 33 判定器
34 警報発信器 35 ボイラ負荷変化信号発生器
36 負荷変化判定器
50,60 制御装置 41 アンモニア流量調節開度指令
DESCRIPTION OF SYMBOLS 1 Outlet NOx concentration meter 2 Outlet NOx concentration setter 3 Multiplier 5 Piping 6 Ammonia flow control valve 9 Exhaust gas flow meter 10, 11 Inlet NOx concentration meter 12 Ammonia flow transmitter 13 NOx total amount signal
14 Ammonia demand amount signal 15, 115 including constant control of outlet NOx 17 Switcher 17 Proportional integral calculator 19 Signal generator
21 Excluded NOx constant control does not include ammonia demand signal 23 Adder 25 Molar ratio manual setter 32 Absolute value calculator 33 Determinator 34 Alarm transmitter 35 Boiler load change signal generator 36 Load change determiner 50, 60 Controller 41 Ammonia flow rate adjustment opening command

Claims (2)

ボイラを含む燃焼装置の排ガスから窒素酸化物を除去する脱硝装置に、還元剤としてアンモニアを注入するアンモニア注入量制御装置において、
前記脱硝装置入口の窒素酸化物濃度の測定値を所定の酸素濃度時の窒素酸化物濃度に換算した入口換算値と脱硝装置出口の窒素酸化物濃度の設定値との偏差から脱硝率を算出する回路と、
前記脱硝装置入口の窒素酸化物濃度の測定値と排ガス量から排ガス中の窒素酸化物の総量を求める回路と、
前記脱硝率を、予め設定された脱硝率とその脱硝率を満たすためのNOx量に対するNH3量のモル比(NH3/NOx)との関係からモル比(M1)に変換する回路と、
前記モル比(M1)を、脱硝装置出口の窒素酸化物濃度の測定値を所定の酸素濃度時の窒素酸化物濃度に換算した出口換算値と脱硝装置出口の窒素酸化物濃度の設定値との偏差により補正する回路と、
補正されたモル比(M2)と前記排ガス中の窒素酸化物の総量から窒素酸化物の還元に必要なアンモニア要求量(A)を求める回路と、
該アンモニア要求量(A)と脱硝装置に注入されるアンモニアの流量指示値との偏差からアンモニア注入量を制御する回路と
を備え、
更に、前記モル比(M1)と前記排ガス中の窒素酸化物の総量から窒素酸化物の還元に必要なアンモニア要求量(B)を求める回路と、
該アンモニア要求量(B)とアンモニアの流量指示値との偏差が所定値以上であるとアンモニア流量の異常を検知する回路と
を備えたことを特徴とするアンモニア注入量制御装置。
In an ammonia injection amount control device that injects ammonia as a reducing agent into a denitration device that removes nitrogen oxides from exhaust gas of a combustion device including a boiler,
The denitration rate is calculated from the deviation between the converted value of the nitrogen oxide concentration measured at the inlet of the denitration device into the nitrogen oxide concentration at a predetermined oxygen concentration and the set value of the nitrogen oxide concentration at the denitration device outlet. Circuit,
A circuit for obtaining the total amount of nitrogen oxides in the exhaust gas from the measured value of the nitrogen oxide concentration at the inlet of the denitration device and the amount of exhaust gas;
A circuit for converting the denitration rate into a molar ratio (M1) from a relationship between a preset denitration rate and a molar ratio of NH 3 amount to NHx amount (NH 3 / NOx) for satisfying the denitration rate;
For the molar ratio (M1), an outlet converted value obtained by converting a measured value of the nitrogen oxide concentration at the outlet of the denitration apparatus into a nitrogen oxide concentration at a predetermined oxygen concentration and a set value of the nitrogen oxide concentration at the outlet of the denitration apparatus A circuit to correct by deviation,
A circuit for obtaining an ammonia requirement amount (A) required for reduction of nitrogen oxides from the corrected molar ratio (M2) and the total amount of nitrogen oxides in the exhaust gas;
A circuit for controlling the ammonia injection amount from the deviation between the ammonia demand (A) and the flow rate instruction value of ammonia injected into the denitration device,
Furthermore, a circuit for obtaining an ammonia requirement amount (B) required for reduction of nitrogen oxides from the molar ratio (M1) and the total amount of nitrogen oxides in the exhaust gas;
An ammonia injection amount control device comprising: a circuit for detecting an abnormality in the ammonia flow rate when a deviation between the ammonia demand amount (B) and an ammonia flow rate instruction value is a predetermined value or more.
ボイラを含む燃焼装置の排ガスから窒素酸化物を除去する脱硝装置に、還元剤としてアンモニアを注入するアンモニア注入量制御方法において、
脱硝装置入口の窒素酸化物濃度を測定し、該測定値を所定の酸素濃度時の窒素酸化物濃度に換算し、
該入口換算値と脱硝装置出口の窒素酸化物濃度の設定値とに基づいて脱硝率を算出し、
前記脱硝率を、予め設定された脱硝率とその脱硝率を満たすためのNOx量に対するNH3量のモル比(NH3/NOx)との関係からモル比(M1)に変換し、
脱硝装置出口の窒素酸化物濃度を測定し、該測定値を所定の酸素濃度時の窒素酸化物濃度に換算し、
該出口換算値と脱硝装置出口の窒素酸化物濃度の設定値との偏差により前記モル比(M1)を補正すると共に、前記脱硝装置入口の窒素酸化物濃度の測定値と排ガス量から排ガス中の窒素酸化物の総量を求め、
前記補正されたモル比(M2)と前記排ガス中の窒素酸化物の総量から窒素酸化物の還元に必要なアンモニア要求量(A)を求め、
該アンモニア要求量(A)と脱硝装置に注入されるアンモニアの流量指示値との偏差からアンモニア注入量を制御すると共に、
前記モル比(M1)と排ガス中の窒素酸化物の総量から窒素酸化物の還元に必要なアンモニア要求量(B)を求め、
該アンモニア要求量(B)とアンモニアの流量指示値との偏差が所定値以上であるとアンモニア流量の異常を検知することを特徴とするアンモニア注入量制御方法。
In an ammonia injection amount control method for injecting ammonia as a reducing agent into a denitration device that removes nitrogen oxides from exhaust gas of a combustion device including a boiler,
Measure the nitrogen oxide concentration at the inlet of the denitration device, convert the measured value to the nitrogen oxide concentration at the predetermined oxygen concentration,
Calculate the denitration rate based on the inlet conversion value and the set value of the nitrogen oxide concentration at the denitration device outlet,
The denitration rate is converted into a molar ratio (M1) from a relationship between a preset denitration rate and a molar ratio of NH 3 amount to NHx amount (NH 3 / NOx) to satisfy the denitration rate,
Measure the nitrogen oxide concentration at the outlet of the denitration device, convert the measured value to the nitrogen oxide concentration at the predetermined oxygen concentration,
The molar ratio (M1) is corrected by the deviation between the outlet conversion value and the set value of the nitrogen oxide concentration at the outlet of the denitration device, and the measured value of the nitrogen oxide concentration at the denitration device inlet and the amount of exhaust gas Find the total amount of nitrogen oxides,
From the corrected molar ratio (M2) and the total amount of nitrogen oxides in the exhaust gas, the ammonia requirement amount (A) required for the reduction of nitrogen oxides is determined,
While controlling the ammonia injection amount from the deviation between the ammonia demand (A) and the flow rate instruction value of ammonia injected into the denitration device,
From the molar ratio (M1) and the total amount of nitrogen oxides in the exhaust gas, the ammonia requirement amount (B) required for the reduction of nitrogen oxides is determined,
An ammonia injection amount control method, wherein an abnormality in ammonia flow rate is detected when a deviation between the ammonia demand amount (B) and an ammonia flow rate instruction value is a predetermined value or more.
JP2013211665A 2013-10-09 2013-10-09 Ammonia injection amount control device and ammonia injection amount control method Active JP6189703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211665A JP6189703B2 (en) 2013-10-09 2013-10-09 Ammonia injection amount control device and ammonia injection amount control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211665A JP6189703B2 (en) 2013-10-09 2013-10-09 Ammonia injection amount control device and ammonia injection amount control method

Publications (2)

Publication Number Publication Date
JP2015075277A true JP2015075277A (en) 2015-04-20
JP6189703B2 JP6189703B2 (en) 2017-08-30

Family

ID=53000266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211665A Active JP6189703B2 (en) 2013-10-09 2013-10-09 Ammonia injection amount control device and ammonia injection amount control method

Country Status (1)

Country Link
JP (1) JP6189703B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101669598B1 (en) * 2015-12-02 2016-10-26 한국남동발전 주식회사 Cascade control method using IDF outlet NOx analyzer for De-NOx process
CN106422709A (en) * 2016-10-24 2017-02-22 大唐韩城第二发电有限责任公司 Ammonia spraying regulation automatic control method for denitrification system of thermal power plant
CN108325357A (en) * 2018-03-02 2018-07-27 国电环境保护研究院有限公司 A kind of the supply adjusting method and SCR system of reducing agent
CN108646794A (en) * 2018-05-03 2018-10-12 山东国电发电工程有限公司 Improve the method and system of denitration ammonia spraying amount monitoring reliability
JP2018161634A (en) * 2017-03-27 2018-10-18 株式会社東芝 Denitration control device and denitration control method
CN109603525A (en) * 2018-12-27 2019-04-12 浙江浙能温州发电有限公司 A kind of denitration subregion spray ammonia control method based on unevenness judgement
CN113750793A (en) * 2020-06-17 2021-12-07 绍兴旗滨玻璃有限公司 Ammonia injection control method and device for flue gas denitration, terminal equipment and storage medium
CN114859841A (en) * 2022-05-16 2022-08-05 西安热工研究院有限公司 Thermal power plant NOx emission monitoring control system and method
CN114870583A (en) * 2022-04-28 2022-08-09 山东电力工程咨询院有限公司 All-condition denitration control system and method based on ammonia escape monitoring
CN114307627B (en) * 2021-11-22 2023-06-20 华能山东发电有限公司白杨河发电厂 Denitration adjusting method based on theoretical ammonia consumption
CN116272358A (en) * 2022-09-07 2023-06-23 浙江大学 Method for intelligent auxiliary ammonia spraying leveling test of flue gas denitration system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523545A (en) * 1991-02-18 1993-02-02 Ebara Corp Waste gas denitrification method and its apparatus
JPH0671138A (en) * 1992-07-09 1994-03-15 Toshiba Corp Denitrification control apparatus
JP2001104755A (en) * 1999-10-05 2001-04-17 Babcock Hitachi Kk Method and apparatus for controlling ammonia injection amount to denitration apparatus
JP2003293743A (en) * 2002-04-03 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
US20030228246A1 (en) * 2002-06-05 2003-12-11 Marsulex Environmental Technologies, Llc Flue gas desulfurization process and apparatus for removing nitrogen oxides
JP2010133354A (en) * 2008-12-05 2010-06-17 Bosch Corp Reducing agent injection control device, control method of reducing agent injection device and exhaust emission control device of internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523545A (en) * 1991-02-18 1993-02-02 Ebara Corp Waste gas denitrification method and its apparatus
JPH0671138A (en) * 1992-07-09 1994-03-15 Toshiba Corp Denitrification control apparatus
JP2001104755A (en) * 1999-10-05 2001-04-17 Babcock Hitachi Kk Method and apparatus for controlling ammonia injection amount to denitration apparatus
JP2003293743A (en) * 2002-04-03 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
US20030228246A1 (en) * 2002-06-05 2003-12-11 Marsulex Environmental Technologies, Llc Flue gas desulfurization process and apparatus for removing nitrogen oxides
JP2010133354A (en) * 2008-12-05 2010-06-17 Bosch Corp Reducing agent injection control device, control method of reducing agent injection device and exhaust emission control device of internal combustion engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101669598B1 (en) * 2015-12-02 2016-10-26 한국남동발전 주식회사 Cascade control method using IDF outlet NOx analyzer for De-NOx process
CN106422709A (en) * 2016-10-24 2017-02-22 大唐韩城第二发电有限责任公司 Ammonia spraying regulation automatic control method for denitrification system of thermal power plant
JP2018161634A (en) * 2017-03-27 2018-10-18 株式会社東芝 Denitration control device and denitration control method
CN108325357A (en) * 2018-03-02 2018-07-27 国电环境保护研究院有限公司 A kind of the supply adjusting method and SCR system of reducing agent
CN108325357B (en) * 2018-03-02 2023-10-24 国电环境保护研究院有限公司 SCR system of power plant boiler and reducing agent supply adjusting method thereof
CN108646794A (en) * 2018-05-03 2018-10-12 山东国电发电工程有限公司 Improve the method and system of denitration ammonia spraying amount monitoring reliability
CN109603525A (en) * 2018-12-27 2019-04-12 浙江浙能温州发电有限公司 A kind of denitration subregion spray ammonia control method based on unevenness judgement
CN109603525B (en) * 2018-12-27 2023-11-03 浙江浙能温州发电有限公司 Denitration partition ammonia spraying control method based on non-uniformity judgment
CN113750793B (en) * 2020-06-17 2023-10-13 绍兴旗滨玻璃有限公司 Ammonia spraying control method and device for flue gas denitration, terminal equipment and storage medium
CN113750793A (en) * 2020-06-17 2021-12-07 绍兴旗滨玻璃有限公司 Ammonia injection control method and device for flue gas denitration, terminal equipment and storage medium
CN114307627B (en) * 2021-11-22 2023-06-20 华能山东发电有限公司白杨河发电厂 Denitration adjusting method based on theoretical ammonia consumption
CN114870583B (en) * 2022-04-28 2023-02-28 山东电力工程咨询院有限公司 All-condition denitration control system and method based on ammonia escape monitoring
CN114870583A (en) * 2022-04-28 2022-08-09 山东电力工程咨询院有限公司 All-condition denitration control system and method based on ammonia escape monitoring
CN114859841A (en) * 2022-05-16 2022-08-05 西安热工研究院有限公司 Thermal power plant NOx emission monitoring control system and method
CN116272358A (en) * 2022-09-07 2023-06-23 浙江大学 Method for intelligent auxiliary ammonia spraying leveling test of flue gas denitration system
CN116272358B (en) * 2022-09-07 2023-12-05 浙江大学 Method for intelligent auxiliary ammonia spraying leveling test of flue gas denitration system

Also Published As

Publication number Publication date
JP6189703B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6189703B2 (en) Ammonia injection amount control device and ammonia injection amount control method
CN105797576B (en) Denitration ammonia injection control method for coal-fired unit
JP5030384B2 (en) Drum water level control method and apparatus for drum type boiler
US20090159018A1 (en) System and method for controlling liquid level in a vessel
US8783013B2 (en) Feedforward selective catalytic reduction system for turbine engines
JP2002070584A (en) Gas turbine plant
US9631776B2 (en) Model-based controls for selective catalyst reduction systems
RU2013125362A (en) SYSTEM AND METHOD OF ACTIVE TEMPERATURE CONTROL IN A STEAM TURBINE
JP2015048975A (en) Denitrification controller
JP5976432B2 (en) Boiler air-fuel ratio control method and air-fuel ratio control apparatus
JP4668852B2 (en) Denitration equipment for combustion equipment
KR101513804B1 (en) Power plant with selective catalytic reuction system and control method of selective catalytic reduction system
JP5190396B2 (en) Denitration equipment
KR102274546B1 (en) Method and apparatus for measuring denitration ratio for an internal combustion engine
JP2018173217A (en) Air preheater pressure difference rise prediction device
JP5240611B2 (en) Exhaust gas denitration treatment system
JP5556627B2 (en) Automatic equipment
JP3955892B2 (en) Gas turbine combustor fuel system
US20110036279A1 (en) NOx reduction control system for boilers
JP7074337B2 (en) Combustion device that detects vibration combustion
JP2011179708A (en) Method and device for controlling water level in boiler
US20150075270A1 (en) Reductant delivery performance diagnostics system
JP2007330835A (en) Denitration device of combustor
JP6330404B2 (en) Boiler system
JP6665144B2 (en) Monitoring device for biomass power generation equipment

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20161006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6189703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350