JP3955892B2 - Gas turbine combustor fuel system - Google Patents

Gas turbine combustor fuel system Download PDF

Info

Publication number
JP3955892B2
JP3955892B2 JP2001357549A JP2001357549A JP3955892B2 JP 3955892 B2 JP3955892 B2 JP 3955892B2 JP 2001357549 A JP2001357549 A JP 2001357549A JP 2001357549 A JP2001357549 A JP 2001357549A JP 3955892 B2 JP3955892 B2 JP 3955892B2
Authority
JP
Japan
Prior art keywords
fuel
flow rate
fuel system
gas turbine
turbine combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357549A
Other languages
Japanese (ja)
Other versions
JP2003161168A (en
Inventor
康彦 大築
和利 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001357549A priority Critical patent/JP3955892B2/en
Publication of JP2003161168A publication Critical patent/JP2003161168A/en
Application granted granted Critical
Publication of JP3955892B2 publication Critical patent/JP3955892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feeding And Controlling Fuel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン燃焼器での異常を早期に検知できるガスタービン燃焼器燃料系統に関する。
【0002】
【従来の技術】
発電等に用いられる二つ以上の燃料系統をもつガスタービンに付属する燃焼器での異常検知する従来の方法は燃焼振動・排ガス温度の偏差・排出NOx(窒素酸化物)濃度等の値を監視することによって、燃焼異常の有無を検出していた。この検出方法は燃焼器内で異常が発生した後に起きる事象を捉えるものであった。一方で、昨今のガスタービン燃焼器では排出NOxの低減を図るために、運転が許容される燃料配分範囲が狭く、わずかな燃料配分のズレが燃焼異常を引き起こす可能性が増加している。このため、複数の燃料系統の燃料配分を高精度で制御することが求められている。
【0003】
【発明が解決しようとする課題】
従来の技術による燃焼異常監視方法は、燃焼器内で異常が発生した後に起きる事象を捉えることで燃焼異常を検出しているために、当該監視方法にて燃焼異常と判断された後にガスタービンを停止したとしても、燃焼器部品に大きな損傷を与えてしまっていることが多くあり、修理のためのガスタービンの長期停止が余儀なくされ、運用を大きく阻害することとなり、大きなデメリットとなっていた。
【0004】
燃焼異常が発生する前にその事象を捉える技術は、例えば特開平11−218034号公報に開示されている。この技術は、複数の燃料系統をもつ燃焼器の各燃料系統の差圧を監視し、系統圧損を計測して、当該系統に流れている燃料流量を大まかに算出し、これが安定燃焼を保証できない値を示したら、警報を出すというものである。しかしながら、差圧だけによる監視では精度として不十分であった。
【0005】
本発明は、二つ以上の燃料系統をもつガスタービン燃焼器の燃焼異常に伴う燃料配分異常を早期に判断し、警報を発報もしくはガスタービン停止とさせ、燃焼器の損傷を防止または抑制することを目的とする。
【0008】
【課題を解決するための手段】
この発明は上記目的を達成するものであって、請求項の発明は、一つのガスタービン燃焼器に対して、それぞれに燃料制御弁を有する互いに平行な複数の燃料系統から燃料を供給するガスタービン燃焼器燃料系統であって、前記複数の燃料系統から供給されるべき燃料の合計流量の指令に基づいて各燃料系統への設定流量を決定する手段と、前記各燃料系統の設定流量に応じて前記各燃料制御弁の設定開度を決定する手段と、前記設定開度に基づいて前記各燃料制御弁の開度を調整する手段と、前記各燃料制御弁の開度を検出する手段と、前記検出された前記各燃料制御弁の開度に基づいて前記各燃料系統の実際の流量配分を表す信号を求める手段と、前記各燃料系統の設定流量に基づいて前記各燃料系統の設定流量配分を表す信号を求める手段と、前記各燃料系統の設定流量配分を表す信号と前記各燃料系統の実際の流量配分を表す信号とを比較して、それらの偏差が所定の範囲を逸脱したときに異常を表わす信号を発する手段と、を有することを特徴とする。
【0009】
請求項の発明によれば、各燃料系統燃料制御弁の実開度の測定値に基づいて、燃料配分異常を早期に判断し、燃焼器の異常燃焼を防止または抑制することができる。弁開度を監視するので、精度がよく、流量や圧力などのプロセス値を監視するよりも設備を簡素化することができる。さらに、流量配分を基準にして異常判断を行なうので、異常判断が的確に行なえる。
【0012】
また、請求項の発明は、一つのガスタービン燃焼器に対して、それぞれに燃料制御弁を有する互いに平行な複数の燃料系統から燃料を供給するガスタービン燃焼器燃料系統であって、前記複数の燃料系統から供給されるべき燃料の合計流量の指令に基づいて各燃料系統の設定流量を決定する手段と、前記各燃料系統の設定流量に応じて前記各燃料制御弁の設定開度を決定する手段と、前記設定開度に基づいて前記各燃料制御弁の開度を調整する手段と、前記各燃料系統の流量を計測する手段と、前記計測された前記各燃料系統の流量に基づいて前記各燃料系統の実際の流量配分を表す信号を求める手段と、前記各燃料系統の設定流量に基づいて前記各燃料系統の設定流量配分を表す信号を求める手段と、前記各燃料系統の設定流量配分を表す信号と前記各燃料系統の実際の流量配分を表す信号とを比較して、それらの偏差が所定の範囲を逸脱したときに異常を表わす信号を発する手段と、を有することを特徴とする。
【0013】
請求項の発明によれば、各燃料系統燃料流量の流量の測定に基づいて、燃焼器の異常燃焼を防止または抑制することができる。さらに、流量配分を基準にして異常判断を行なうので、異常判断が的確に行なえる。
【0014】
また、請求項の発明は、請求項またはに記載のガスタービン燃焼器燃料系統において、前記所定の範囲は、前記ガスタービン燃焼器での燃焼温度を加味して決定されること、を特徴とする。
【0015】
請求項の発明によれば、請求項またはの発明の作用・効果が得られるほか、燃焼器の燃焼状態に応じて的確な許容燃料配分範囲に合わせて監視することができる。
【0016】
また、請求項の発明は、請求項1ないしのいずれかに記載のガスタービン燃焼器燃料系統において、前記所定の範囲は、前記ガスタービン燃焼器での試験運転の結果に基づいて決定されること、を特徴とする。
【0017】
請求項の発明によれば、請求項1ないしのいずれかの発明の作用・効果が得られるほか、燃焼器各々の個体差による燃焼異常を起こす燃料配分のバラツキを考慮することができ、さらに精度良く燃焼異常を防止・抑制できる。
【0018】
【発明の実施の形態】
[第1の実施の形態
図1に、本発明に係るガスタービン燃焼器燃料系統の第1の実施の形態を示す。図示のように、燃料系統主配管1は、例えば2系統に分岐されて、一つのガスタービン燃焼器8に燃料を供給できるように接続されている。分岐された燃料系統それぞれに燃料制御弁2が取り付けられている。各燃料制御弁2には開度検出器6が設置されている。
【0019】
ガスタービン燃焼器8へ投入される全体燃料流量と等価信号である燃料流量指令を受け、設定配分関数発生器4にて各燃料系統の燃料流量指令を演算する。この指令値を受け、各燃料制御弁2の弁開度と燃料流量指令の関係を表す弁開度関数発生器5によって、各燃料制御弁2の開度指令が演算され、その開度指令に見合うように各燃料制御弁2の動作が行われる。
【0020】
一方、各開度検出器6により、各燃料制御弁2の実開度が検出される。この実開度と開度指令値の差A、Bを取り、これらの差A、Bがそれぞれ、許容開度偏差設定器9の上限設定SG1、SG3よりも大きい場合もしくは下限設定SG2、SG4よりも小さい場合には、警報発報もしくはガスタービン停止させることにより、燃焼異常発生を回避することが可能となる。
【0021】
また、この実施の形態では、各燃料系統の燃料制御弁実開度を監視しているので、差圧を監視するよりも、精度よく流量を反映しており、しかも流量や圧力などの実機のプロセス値を計測することなく、燃料配分を監視しできるので、設備を複雑に構成することなく、燃焼異常を未然に防止することが可能である。
【0022】
上・下限設定SG1、SG2、SG3、SG4は、例えば、個々のガスタービン燃焼器の試験運転結果より、許容される範囲を予め求めておく。このようにすれば、ガスタービン燃焼器の個体差による燃焼異常を起こす燃料配分のバラツキを考慮することが可能となる。
【0023】
[第2の実施の形態](請求項等に対応)
図2に、本発明に係るガスタービン燃焼器燃料系統の第2の実施の形態を示す。ここで、図1と共通または類似の部分には同一の符号を付して、重複説明は適宜省略する。図2に示すように、ガスタービン燃焼器8へ投入される全体燃料流量と等価信号である燃料流量指令を受け、設定配分関数発生器4にて各燃料系統の燃料流量指令を演算する。この指令値を受け、各燃料制御弁2の弁開度と燃料流量指令の関係を表す弁開度関数発生器5によって、各燃料制御弁2の開度指令が演算され、その開度指令に見合うように各燃料制御弁2の動作が行われる。
ここで、設定配分関数発生器4による設定配分関数は、好ましくは、燃焼器8の燃焼温度に基づいて決定される。
【0024】
一方、各燃料制御弁2に付属されている開度検出器6により、弁開度が検出され、その弁開度から弁開度関数発生器5の逆関数である燃料流量指令関数発生器17により、各燃料制御弁2がガスタービン燃焼器8に送り込んでいる燃料流量G、Hが演算される。演算された各燃料制御弁6の燃料流量G、Hから、燃料配分(J=G/I=G/(G+H))が計算される。この燃料配分が、上限燃料配分関数発生器18による設定Dを超えた場合または下限燃料配分関数発生器19による設定Fよりも低下した場合に、警報発報またはガスタービン停止を行なうことにより、燃焼異常発生を回避することが可能となる。
【0025】
ここで、上限燃料配分関数発生器18による上限燃料配分関数および下限燃料配分関数発生器19による下限燃料配分関数は、好ましくは、燃焼器8の燃焼温度に基づいて決定される。
【0026】
また、各燃焼温度における燃料配分の上・下限設定値は、例えば、個々のガスタービン燃焼器の試験運転結果より、許容される範囲を予め求めておく。このようにすれば、ガスタービン燃焼器の個体差による燃焼異常を起こす燃料配分のバラツキを考慮することが可能となる。
なお、異常判断対象とする燃料配分としては、上記J=G/Iのほか、例えば、I/G、G/Hなどを使うことも可能である。
【0027】
[第3の実施の形態](請求項2、3、4等に対応)
図3に、本発明に係るガスタービン燃焼器燃料系統の第3の実施の形態を示す。ここで、図1または図2と共通または類似の部分には同一の符号を付して、重複説明は適宜省略する。図3に示すように、ガスタービン燃焼器8へ投入する全燃料流量と等価信号である燃料流量指令を設定配分関数発生器4にて各燃料系統の燃料流量指令を演算する。この指令値を受け、各燃料制御弁2の弁開度と燃料流量指令の関係を表す弁開度関数発生器5によって、各燃料制御弁2の開度指令が演算され、その開度指令に見合うように各燃料制御弁2の動作が行われる。
ここで、設定配分関数発生器4による設定配分関数は、好ましくは、燃焼器8の燃焼温度に基づいて決定される。
【0028】
一方、各燃料系統に付属されたオリフィス26周りに設置された温度計27、圧力計28、差圧計29の計測値から流量演算器30によって、各燃料系統の燃料流量M、Nが算出される。算出された燃料流量M、Nから、各燃料系統の燃料制御弁2の燃料配分(Q=M/P=M/(M+N))が計算される。この燃料配分Qが、上限燃料配分関数発生器31による設定Jを超えた場合または下限燃料配分関数発生器32による設定Lよりも低下した場合に、警報発報またはガスタービン停止を行なうことにより、燃焼異常発生を回避することが可能となる。また、燃料温度およびオリフィス前圧を計測することで、実機に適用するに十分な精度をもって燃料配分を監視し、燃焼異常を未然に防止することが可能である。
【0029】
ここで、上限燃料配分関数発生器31による上限燃料配分関数および下限燃料配分関数発生器32による下限燃料配分関数は、好ましくは、燃焼器8の燃焼温度に基づいて決定される。
【0030】
また、各燃焼温度における燃料配分の上・下限設定値は、例えば、個々のガスタービン燃焼器の試験運転結果より、許容される範囲を予め求めておく。このようにすれば、ガスタービン燃焼器の個体差による燃焼異常を起こす燃料配分のバラツキを考慮することが可能となる。
なお、異常判断対象とする燃料配分としては、上記Q=M/Pのほか、例えば、P/M、M/Nなどを使うことも可能である。
【0031】
さらに、ここで説明した実施の形態では異常判断対象として流量配分を採用したが、第1の実施の形態との対比から類推されるように、各燃料系統の流量そのものを異常判断対象として、それぞれの上・下限設定値を設定しておいて、これらとの比較を行なうことも可能である(図示せず)。
【0032】
【発明の効果】
以上説明したように、本発明によれば、二つ以上の燃料系統をもつ、ガスタービン燃焼器での異常を早期に検知して、燃焼器の異常燃焼を防止または抑制することができる。
【図面の簡単な説明】
【図1】本発明に係るガスタービン燃焼器燃料系統の第1の実施の形態の系統図。
【図2】本発明に係るガスタービン燃焼器燃料系統の第2の実施の形態の系統図。
【図3】本発明に係るガスタービン燃焼器燃料系統の第3の実施の形態の系統図。
【符号の説明】
1…燃料系統主配管、2…燃料制御弁、4…設定配分関数発生器、5…弁開度関数発生器、6…開度検出器、8…ガスタービン燃焼器、9…許容開度偏差設定器、17…燃料流量指令関数発生器、18…上限配分関数発生器、19…下限配分関数発生器、26…オリフィス、27…温度計、28…圧力計、29…差圧計、30…流量演算器、31…上限配分関数発生器、32…下限配分関数発生器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas turbine combustor fuel system that can detect an abnormality in a gas turbine combustor at an early stage.
[0002]
[Prior art]
Conventional methods for detecting abnormalities in a combustor attached to a gas turbine with two or more fuel systems used for power generation, etc. monitor values such as combustion vibration, exhaust gas temperature deviation, exhaust NOx (nitrogen oxide) concentration, etc. By doing so, the presence or absence of combustion abnormality was detected. This detection method captured the event that occurred after an abnormality occurred in the combustor. On the other hand, in recent gas turbine combustors, in order to reduce exhaust NOx, the fuel distribution range in which operation is permitted is narrow, and there is an increased possibility that slight deviations in fuel distribution cause combustion abnormalities. For this reason, it is required to control the fuel distribution of a plurality of fuel systems with high accuracy.
[0003]
[Problems to be solved by the invention]
The combustion abnormality monitoring method according to the prior art detects a combustion abnormality by capturing an event that occurs after an abnormality has occurred in the combustor. Therefore, after the combustion abnormality is determined by the monitoring method, the gas turbine is turned off. Even if the engine is stopped, the combustor parts are often damaged greatly, and the gas turbine for repairing is forced to be stopped for a long period of time.
[0004]
For example, Japanese Patent Application Laid-Open No. 11-218034 discloses a technique for capturing an event before a combustion abnormality occurs. This technology monitors the differential pressure of each fuel system of a combustor with multiple fuel systems, measures the system pressure loss, and roughly calculates the flow rate of fuel flowing through the system, which cannot guarantee stable combustion If a value is indicated, an alarm is issued. However, monitoring with only the differential pressure is not sufficient for accuracy.
[0005]
The present invention determines at an early stage a fuel distribution abnormality accompanying a combustion abnormality of a gas turbine combustor having two or more fuel systems, issues an alarm or stops a gas turbine, and prevents or suppresses damage to the combustor. For the purpose.
[0008]
[Means for Solving the Problems]
The present invention achieves the above object, and the invention according to claim 1 is a gas for supplying fuel to a gas turbine combustor from a plurality of parallel fuel systems each having a fuel control valve. A turbine combustor fuel system, a unit for determining a set flow rate to each fuel system based on a command for a total flow rate of fuel to be supplied from the plurality of fuel systems, and according to the set flow rate of each fuel system Means for determining the set opening of each fuel control valve, means for adjusting the opening of each fuel control valve based on the set opening, and means for detecting the opening of each fuel control valve; Means for obtaining a signal representing an actual flow rate distribution of each fuel system based on the detected opening of each fuel control valve; and a set flow rate of each fuel system based on a set flow rate of each fuel system Find signal representing distribution And a signal indicating the set flow rate distribution of each fuel system and a signal indicating the actual flow rate distribution of each fuel system, and a signal indicating an abnormality when the deviation deviates from a predetermined range. And means for emitting.
[0009]
According to the first aspect of the present invention, the fuel distribution abnormality can be determined at an early stage based on the measured value of the actual opening of each fuel system fuel control valve, and the abnormal combustion of the combustor can be prevented or suppressed. Since the valve opening is monitored, the accuracy can be improved and the equipment can be simplified compared to monitoring process values such as flow rate and pressure. Furthermore, since the abnormality determination is performed based on the flow rate distribution, the abnormality determination can be performed accurately.
[0012]
The invention of claim 2 is a gas turbine combustor fuel system for supplying fuel from a plurality of parallel fuel systems each having a fuel control valve to one gas turbine combustor, Means for determining a set flow rate of each fuel system based on a command of a total flow rate of fuel to be supplied from the fuel system, and a set opening degree of each fuel control valve according to the set flow rate of each fuel system Means for adjusting the opening of each fuel control valve based on the set opening, means for measuring the flow of each fuel system, and based on the measured flow of each fuel system Means for obtaining a signal representing an actual flow rate distribution of each fuel system; means for obtaining a signal representing a set flow rate distribution of each fuel system based on a set flow rate of each fuel system; and a set flow rate of each fuel system Distribution table By comparing the signal representative of the signal and the actual flow distribution of the fuel system, their deviation and having a means for emitting a signal representing the abnormality when deviating from the predetermined range.
[0013]
According to invention of Claim 2 , abnormal combustion of a combustor can be prevented or suppressed based on the measurement of the flow volume of each fuel system fuel flow rate. Furthermore, since the abnormality determination is performed based on the flow rate distribution, the abnormality determination can be performed accurately.
[0014]
According to a third aspect of the present invention, in the gas turbine combustor fuel system according to the first or second aspect , the predetermined range is determined in consideration of a combustion temperature in the gas turbine combustor. Features.
[0015]
According to the invention of claim 3 , in addition to the effects and advantages of the invention of claim 1 or 2 , it is possible to monitor in accordance with an appropriate allowable fuel distribution range according to the combustion state of the combustor.
[0016]
According to a fourth aspect of the present invention, in the gas turbine combustor fuel system according to any one of the first to third aspects, the predetermined range is determined based on a test operation result in the gas turbine combustor. It is characterized by.
[0017]
According to the invention of claim 4 , in addition to the effects and advantages of the invention of any one of claims 1 to 3 , it is possible to take into account variations in fuel distribution that cause combustion abnormalities due to individual differences in each combustor, Furthermore, combustion abnormality can be prevented and suppressed with high accuracy.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment ]
FIG. 1 shows a first embodiment of a gas turbine combustor fuel system according to the present invention. As shown in the figure, the fuel system main pipe 1 is branched into, for example, two systems and connected so that fuel can be supplied to one gas turbine combustor 8. A fuel control valve 2 is attached to each of the branched fuel systems. Each fuel control valve 2 is provided with an opening degree detector 6.
[0019]
A fuel flow rate command that is an equivalent signal to the total fuel flow rate input to the gas turbine combustor 8 is received, and the setting distribution function generator 4 calculates the fuel flow rate command of each fuel system. In response to this command value, an opening degree command for each fuel control valve 2 is calculated by a valve opening function generator 5 representing the relationship between the opening degree of each fuel control valve 2 and the fuel flow rate command. The operation of each fuel control valve 2 is performed as appropriate.
[0020]
On the other hand, the actual opening of each fuel control valve 2 is detected by each opening detector 6. Differences A and B between the actual opening and the opening command value are taken, and when these differences A and B are larger than the upper limit settings SG1 and SG3 of the allowable opening deviation setter 9, or from the lower limit settings SG2 and SG4, respectively. If it is smaller, it is possible to avoid the occurrence of abnormal combustion by issuing an alarm or stopping the gas turbine.
[0021]
In this embodiment, since the actual opening of the fuel control valve of each fuel system is monitored, the flow rate is reflected more accurately than the differential pressure is monitored, and the actual flow rate, pressure, etc. Since the fuel distribution can be monitored without measuring the process value, it is possible to prevent a combustion abnormality in advance without composing a facility.
[0022]
For the upper / lower limit settings SG1, SG2, SG3, SG4, for example, an allowable range is obtained in advance from the test operation result of each gas turbine combustor. In this way, it is possible to take into account variations in fuel distribution that cause combustion abnormalities due to individual differences in gas turbine combustors.
[0023]
[Second Embodiment] (corresponding to claims 1 , 3 , 4, etc.)
FIG. 2 shows a second embodiment of a gas turbine combustor fuel system according to the present invention. Here, parts that are the same as or similar to those in FIG. As shown in FIG. 2, a fuel flow rate command that is an equivalent signal to the total fuel flow rate input to the gas turbine combustor 8 is received, and the setting distribution function generator 4 calculates a fuel flow rate command for each fuel system. In response to this command value, an opening degree command for each fuel control valve 2 is calculated by a valve opening function generator 5 representing the relationship between the opening degree of each fuel control valve 2 and the fuel flow rate command. The operation of each fuel control valve 2 is performed as appropriate.
Here, the setting distribution function by the setting distribution function generator 4 is preferably determined based on the combustion temperature of the combustor 8.
[0024]
On the other hand, a valve opening degree is detected by an opening degree detector 6 attached to each fuel control valve 2, and a fuel flow rate command function generator 17 that is an inverse function of the valve opening degree function generator 5 from the valve opening degree. Thus, the fuel flow rates G and H sent from the fuel control valves 2 to the gas turbine combustor 8 are calculated. Fuel distribution (J = G / I = G / (G + H)) is calculated from the calculated fuel flow rates G and H of each fuel control valve 6. When this fuel distribution exceeds the setting D set by the upper limit fuel distribution function generator 18 or falls below the setting F set by the lower limit fuel distribution function generator 19, an alarm is issued or the gas turbine is stopped to perform combustion. Abnormality can be avoided.
[0025]
Here, the upper limit fuel distribution function by the upper limit fuel distribution function generator 18 and the lower limit fuel distribution function by the lower limit fuel distribution function generator 19 are preferably determined based on the combustion temperature of the combustor 8.
[0026]
In addition, for the upper and lower limit set values of fuel distribution at each combustion temperature, for example, an allowable range is obtained in advance from the test operation result of each gas turbine combustor. In this way, it is possible to take into account variations in fuel distribution that cause combustion abnormalities due to individual differences in gas turbine combustors.
In addition to the above-mentioned J = G / I, for example, I / G, G / H, etc. can be used as the fuel distribution to be determined as abnormality.
[0027]
[Third Embodiment] (corresponding to claims 2, 3, 4 etc.)
FIG. 3 shows a third embodiment of a gas turbine combustor fuel system according to the present invention. Here, parts that are the same as or similar to those in FIG. 1 or FIG. As shown in FIG. 3, a fuel flow rate command for each fuel system is calculated by a setting distribution function generator 4 using a fuel flow rate command that is an equivalent signal to the total fuel flow rate to be supplied to the gas turbine combustor 8. In response to this command value, an opening degree command for each fuel control valve 2 is calculated by a valve opening function generator 5 representing the relationship between the opening degree of each fuel control valve 2 and the fuel flow rate command. The operation of each fuel control valve 2 is performed as appropriate.
Here, the setting distribution function by the setting distribution function generator 4 is preferably determined based on the combustion temperature of the combustor 8.
[0028]
On the other hand, the fuel flow rates M and N of each fuel system are calculated by the flow rate calculator 30 from the measured values of the thermometer 27, pressure gauge 28 and differential pressure gauge 29 installed around the orifice 26 attached to each fuel system. . From the calculated fuel flow rates M and N, the fuel distribution (Q = M / P = M / (M + N)) of the fuel control valve 2 of each fuel system is calculated. When the fuel distribution Q exceeds the setting J set by the upper limit fuel distribution function generator 31 or falls below the setting L set by the lower limit fuel distribution function generator 32, an alarm is issued or the gas turbine is stopped. It is possible to avoid occurrence of abnormal combustion. In addition, by measuring the fuel temperature and the orifice pre-pressure, it is possible to monitor the fuel distribution with sufficient accuracy to be applied to the actual machine and prevent combustion abnormalities.
[0029]
Here, the upper limit fuel distribution function by the upper limit fuel distribution function generator 31 and the lower limit fuel distribution function by the lower limit fuel distribution function generator 32 are preferably determined based on the combustion temperature of the combustor 8.
[0030]
In addition, for the upper and lower limit set values of fuel distribution at each combustion temperature, for example, an allowable range is obtained in advance from the test operation result of each gas turbine combustor. In this way, it is possible to take into account variations in fuel distribution that cause combustion abnormalities due to individual differences in gas turbine combustors.
In addition to the above Q = M / P, for example, P / M, M / N, etc. can be used as the fuel distribution to be determined as abnormal.
[0031]
Further, in the embodiment described here, the flow distribution is adopted as the abnormality determination target, but as inferred from the comparison with the first embodiment, the flow rate of each fuel system itself is set as the abnormality determination target. It is also possible to set the upper and lower limit set values and compare them with each other (not shown).
[0032]
【The invention's effect】
As described above, according to the present invention, abnormality in a gas turbine combustor having two or more fuel systems can be detected at an early stage, and abnormal combustion in the combustor can be prevented or suppressed.
[Brief description of the drawings]
FIG. 1 is a system diagram of a first embodiment of a gas turbine combustor fuel system according to the present invention.
FIG. 2 is a system diagram of a second embodiment of a gas turbine combustor fuel system according to the present invention.
FIG. 3 is a system diagram of a third embodiment of a gas turbine combustor fuel system according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fuel system main piping, 2 ... Fuel control valve, 4 ... Setting distribution function generator, 5 ... Valve opening degree function generator, 6 ... Opening degree detector, 8 ... Gas turbine combustor, 9 ... Allowable opening degree deviation Setting device, 17 ... Fuel flow rate command function generator, 18 ... Upper limit distribution function generator, 19 ... Lower limit distribution function generator, 26 ... Orifice, 27 ... Thermometer, 28 ... Pressure gauge, 29 ... Differential pressure gauge, 30 ... Flow rate Arithmetic unit, 31 ... upper limit allocation function generator, 32 ... lower limit allocation function generator.

Claims (4)

一つのガスタービン燃焼器に対して、それぞれに燃料制御弁を有する互いに平行な複数の燃料系統から燃料を供給するガスタービン燃焼器燃料系統であって、
前記複数の燃料系統から供給されるべき燃料の合計流量の指令に基づいて各燃料系統への設定流量を決定する手段と、
前記各燃料系統の設定流量に応じて前記各燃料制御弁の設定開度を決定する手段と、
前記設定開度に基づいて前記各燃料制御弁の開度を調整する手段と、
前記各燃料制御弁の開度を検出する手段と、
前記検出された前記各燃料制御弁の開度に基づいて前記各燃料系統の実際の流量配分を表す信号を求める手段と、
前記各燃料系統の設定流量に基づいて前記各燃料系統の設定流量配分を表す信号を求める手段と、
前記各燃料系統の設定流量配分を表す信号と前記各燃料系統の実際の流量配分を表す信号とを比較して、それらの偏差が所定の範囲を逸脱したときに異常を表わす信号を発する手段と、
を有することを特徴とするガスタービン燃焼器燃料系統。
A gas turbine combustor fuel system that supplies fuel from a plurality of parallel fuel systems each having a fuel control valve to one gas turbine combustor,
Means for determining a set flow rate to each fuel system based on a command of a total flow rate of fuel to be supplied from the plurality of fuel systems;
Means for determining a set opening of each fuel control valve in accordance with a set flow rate of each fuel system;
Means for adjusting the opening of each fuel control valve based on the set opening;
Means for detecting the opening of each fuel control valve;
Means for obtaining a signal representing an actual flow rate distribution of each fuel system based on the detected opening of each fuel control valve;
Means for obtaining a signal representing the set flow rate distribution of each fuel system based on the set flow rate of each fuel system;
Means for comparing a signal representing a set flow rate distribution of each fuel system with a signal representing an actual flow rate distribution of each fuel system and generating a signal representing an abnormality when the deviation deviates from a predetermined range; ,
A gas turbine combustor fuel system comprising:
一つのガスタービン燃焼器に対して、それぞれに燃料制御弁を有する互いに平行な複数の燃料系統から燃料を供給するガスタービン燃焼器燃料系統であって、
前記複数の燃料系統から供給されるべき燃料の合計流量の指令に基づいて各燃料系統の設定流量を決定する手段と、
前記各燃料系統の設定流量に応じて前記各燃料制御弁の設定開度を決定する手段と、
前記設定開度に基づいて前記各燃料制御弁の開度を調整する手段と、
前記各燃料系統の流量を計測する手段と、
前記計測された前記各燃料系統の流量に基づいて前記各燃料系統の実際の流量配分を表す信号を求める手段と、
前記各燃料系統の設定流量に基づいて前記各燃料系統の設定流量配分を表す信号を求める手段と、
前記各燃料系統の設定流量配分を表す信号と前記各燃料系統の実際の流量配分を表す信号とを比較して、それらの偏差が所定の範囲を逸脱したときに異常を表わす信号を発する手段と、
を有することを特徴とするガスタービン燃焼器燃料系統。
A gas turbine combustor fuel system that supplies fuel from a plurality of parallel fuel systems each having a fuel control valve to one gas turbine combustor,
Means for determining a set flow rate of each fuel system based on a command of a total flow rate of fuel to be supplied from the plurality of fuel systems;
Means for determining a set opening of each fuel control valve in accordance with a set flow rate of each fuel system;
Means for adjusting the opening of each fuel control valve based on the set opening;
Means for measuring the flow rate of each fuel system;
Means for obtaining a signal representing an actual flow rate distribution of each fuel system based on the measured flow rate of each fuel system;
Means for obtaining a signal representing the set flow rate distribution of each fuel system based on the set flow rate of each fuel system;
Means for comparing a signal representing a set flow rate distribution of each fuel system with a signal representing an actual flow rate distribution of each fuel system and generating a signal representing an abnormality when the deviation deviates from a predetermined range; ,
A gas turbine combustor fuel system comprising:
請求項またはに記載のガスタービン燃焼器燃料系統において、
前記所定の範囲は、前記ガスタービン燃焼器での燃焼温度を加味して決定されること、を特徴とするガスタービン燃焼器燃料系統。
The gas turbine combustor fuel system according to claim 1 or 2 ,
The gas turbine combustor fuel system, wherein the predetermined range is determined in consideration of a combustion temperature in the gas turbine combustor.
請求項1ないしのいずれかに記載のガスタービン燃焼器燃料系統において、前記所定の範囲は、前記ガスタービン燃焼器での試験運転の結果に基づいて決定されること、を特徴とするガスタービン燃焼器燃料系統。The gas turbine combustor fuel system according to any one of claims 1 to 3 , wherein the predetermined range is determined based on a result of a test operation in the gas turbine combustor. Combustor fuel system.
JP2001357549A 2001-11-22 2001-11-22 Gas turbine combustor fuel system Expired - Fee Related JP3955892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357549A JP3955892B2 (en) 2001-11-22 2001-11-22 Gas turbine combustor fuel system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357549A JP3955892B2 (en) 2001-11-22 2001-11-22 Gas turbine combustor fuel system

Publications (2)

Publication Number Publication Date
JP2003161168A JP2003161168A (en) 2003-06-06
JP3955892B2 true JP3955892B2 (en) 2007-08-08

Family

ID=19168879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357549A Expired - Fee Related JP3955892B2 (en) 2001-11-22 2001-11-22 Gas turbine combustor fuel system

Country Status (1)

Country Link
JP (1) JP3955892B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090025396A1 (en) 2007-07-24 2009-01-29 General Electric Company Parallel turbine fuel control valves
JP5241811B2 (en) * 2010-12-15 2013-07-17 中国電力株式会社 Gap amount monitoring device
JP5841490B2 (en) * 2012-05-21 2016-01-13 三菱日立パワーシステムズ株式会社 Gas turbine combustor, control device for gas turbine combustor, and abnormality detection method for gas turbine combustor
CN103277197B (en) * 2013-03-09 2015-05-13 马钢(集团)控股有限公司 Gas turbine generating set low-calorific-value combustion control method
JPWO2015046177A1 (en) * 2013-09-25 2017-03-09 株式会社Ihi Fuel system

Also Published As

Publication number Publication date
JP2003161168A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP4866682B2 (en) Abnormality detection method for fluid supply system using flow control device with pressure sensor
US9366192B2 (en) Hazardous gas detection system for a gas turbine enclosure
US5878566A (en) Gas turbine and a gas turbine control method
JP6189703B2 (en) Ammonia injection amount control device and ammonia injection amount control method
EP2469041A1 (en) Method of detecting a predetermined condition in a gas turbine and failure detection system for a gas turbine
US20080275619A1 (en) Ignition detecting method for gas turbine
JPH11218034A (en) Method for monitoring feed system of gas turbine having multiburner system and device for executing the method
JP2002070584A (en) Gas turbine plant
US11434833B2 (en) Methods and systems for detection of control sensor override
JP3955892B2 (en) Gas turbine combustor fuel system
US8720201B2 (en) Method of monitoring an electronic engine control (EEC) to detect a loss of fuel screen open area
JP2010025747A (en) Remaining life measuring system
JP4742548B2 (en) Method and apparatus for monitoring a liquefied gas tank
JPH07128098A (en) Remote diagnostic system for instrumentation facility
US20150323365A1 (en) Flow meter device
JP2543549B2 (en) Gas turbine combustion monitoring method and monitoring device
JP4064735B2 (en) Gas turbine monitoring device
KR102165881B1 (en) Apparatus for detecting combustor instability and method thereof)
JPH0326829A (en) Automatic inspection device for turbine inlet temperature controller
JP2001082173A (en) Gas turbine combustion abnormality-monitoring/ controlling device
JP3446074B2 (en) Gas turbine combustion monitoring device
JP2005301692A (en) Massflow controller and monitoring devie for massflow controller
JPH06294500A (en) Gas leak position automatic cutoff device
US20210123834A1 (en) Method of detecting flameout in a combustor and turbine system
JPH10231739A (en) Gas turbine combustion monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R151 Written notification of patent or utility model registration

Ref document number: 3955892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees