KR102274546B1 - Method and apparatus for measuring denitration ratio for an internal combustion engine - Google Patents

Method and apparatus for measuring denitration ratio for an internal combustion engine Download PDF

Info

Publication number
KR102274546B1
KR102274546B1 KR1020150041265A KR20150041265A KR102274546B1 KR 102274546 B1 KR102274546 B1 KR 102274546B1 KR 1020150041265 A KR1020150041265 A KR 1020150041265A KR 20150041265 A KR20150041265 A KR 20150041265A KR 102274546 B1 KR102274546 B1 KR 102274546B1
Authority
KR
South Korea
Prior art keywords
nox
exhaust gas
zirconia
sensor
inlet
Prior art date
Application number
KR1020150041265A
Other languages
Korean (ko)
Other versions
KR20150112848A (en
Inventor
다카히로 후지바야시
료헤이 고바야시
줌페이 시바타
Original Assignee
히다치 조센 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 조센 가부시키가이샤 filed Critical 히다치 조센 가부시키가이샤
Publication of KR20150112848A publication Critical patent/KR20150112848A/en
Application granted granted Critical
Publication of KR102274546B1 publication Critical patent/KR102274546B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • G01N33/0008Details concerning storage of calibration data, e.g. in EEPROM
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

배기가스경로에 있어서의 엔진과 촉매식 탈초장치 사이에서 NOx농도를 검출가능한 제1지르코니아식 NOx센서와, 촉매식 탈초장치와 배기가스 터보차저 사이에서 NOx농도를 검출가능한 제2지르코니아식 NOx센서를 사용하고, 제1센서에 의한 검출치를 NOx·inlet이라고 하고, 제2센서에 의한 검출치를 NOx·outlet이라고 하며, 검출환경에 있어서의 가스압력과 배기가스에 포함되는 SOx가 센서의 검출치에 미치는 영향을 보정하기 위한 보정계수를 α로 하여,
식 (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α를 사용하고 또한 약분에 의하여 α를 소거하여 탈초율을 구한다.
A first zirconia-type NOx sensor capable of detecting the NOx concentration between the engine and the catalytic denitration device in the exhaust gas path, and a second zirconia-type NOx sensor capable of detecting the NOx concentration between the catalytic denitration device and the exhaust gas turbocharger The value detected by the first sensor is referred to as NOx·inlet, and the value detected by the second sensor is referred to as NOx·outlet, and the gas pressure in the detection environment and SOx contained in the exhaust gas affect the detection value of the sensor. Let the correction factor for correcting the influence be α,
Calculate the denitration rate by using the formula (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α and by removing α by chemical powder.

Description

엔진을 위한 탈초율의 측정방법 및 측정장치{METHOD AND APPARATUS FOR MEASURING DENITRATION RATIO FOR AN INTERNAL COMBUSTION ENGINE}Measuring method and measuring device of denitration rate for engine {METHOD AND APPARATUS FOR MEASURING DENITRATION RATIO FOR AN INTERNAL COMBUSTION ENGINE}

본 발명은, 엔진을 위한 탈초율(脫硝率)의 측정방법과 그 방법을 실시하기 위한 측정장치에 관한 것이다.
The present invention relates to a method for measuring a denitration rate for an engine and a measuring device for implementing the method.

선박용의 엔진으로서 2스트로크식(2stroke式)의 디젤엔진이 많이 사용되고 있지만, 그 배기가스에 포함되는 질소산화물(NOx)을 제거하기 위해서 촉매식(觸媒式)의 탈초장치(脫硝裝置)가 사용되고 있다. 이 촉매식 탈초장치를 사용하는 경우에는, 탈초장치내에서 배기가스에 요소수(尿素水)를 분무(噴霧)하고, 분무된 요소성분을 가수분해(加水分解)에 의하여 암모니아화하고, 이 암모니아를 촉매의 작용에 의하여 질소산화물과 반응시켜서 이를 무해한 질소가스와 물로 변환시킨다.Although a two-stroke diesel engine is widely used as an engine for ships, a catalytic denitration device is used to remove nitrogen oxides (NOx) contained in the exhaust gas. is being used In the case of using this catalytic denitration device, urea water is sprayed on the exhaust gas in the denitration device, the sprayed urea component is ammoniated by hydrolysis, and this ammonia reacts with nitrogen oxide by the action of a catalyst to convert it into harmless nitrogen gas and water.

이러한 촉매식의 탈초장치를 사용하는 경우에는, 최종적으로 배출되는 가스에 있어서의 질소산화물의 배출량을 제한값 이하로 하기 위해서 탈초장치에 있어서의 탈초율(脫硝率)을 제어하는 것이 요구된다.In the case of using such a catalytic denitration device, it is required to control the denitration rate in the denitration device so that the amount of nitrogen oxide in the finally discharged gas is below a limit value.

예를 들면 특허문헌1에는, 엔진이 아니라 보일러로부터의 배기가스경로(排氣gas經路)에, 요소가 아니라 암모니아의 공급노즐과 촉매식의 탈초장치를 설치한 계(系)가 개시되어 있다. 이 계에서는, 촉매식 탈초장치보다 상류측 및 하류측에 있어서의 배기가스경로내의 질소산화물 농도를 측정하여, 최종적으로 배출되는 가스에 있어서의 질소산화물의 배출량을 소정의 배출제어값이 되도록 암모니아 공급량을 제어하고 있다.
For example, Patent Document 1 discloses a system in which a supply nozzle for ammonia instead of urea and a catalytic denitration device are installed in the exhaust gas path from the boiler rather than the engine. . In this system, the nitrogen oxide concentration in the exhaust gas path on the upstream and downstream sides of the catalytic denitration device is measured, and the amount of ammonia supplied so that the amount of nitrogen oxide in the finally discharged gas becomes a predetermined emission control value. is controlling

일본국 공개특허 특개2003-290630호 공보Japanese Patent Laid-Open No. 2003-290630

특허문헌1의 기재와 같이 배기가스의 발생원(發生源)이 보일러인 경우에는 문제가 발생하지 않아도, 그 발생원이 엔진인 경우에는 다음과 같은 문제점이 발생한다.As described in Patent Document 1, even if a problem does not occur when the source of generation of exhaust gas is a boiler, the following problems occur when the source of generation of exhaust gas is an engine.

즉, 선박용의 예를 들면 2스트로크 엔진의 경우에는, 엔진으로부터의 배기로에 배기가스 터보차저(排氣gas turbocharger)가 설치되는 것이 일반적이어서, 촉매식 탈초장치는 엔진과 터보차저의 사이, 즉 터보차저의 터빈(turbine)보다 고압측(高壓側)에 설치된다. 이것은, 터보차저의 터빈보다 고압측에 있어서 배기가스온도가 높은 부분이 아니면, 촉매식 탈초장치가 충분히 작동하지 않기 때문이다. 터보차저보다 하류측에서는, 배기가스의 온도가 낮기 때문에 촉매식 탈초장치를 설치해도 충분히 작동하지 않는다.That is, in the case of, for example, a two-stroke engine for ships, an exhaust gas turbocharger is generally provided in the exhaust passage from the engine, and the catalytic denitration device is located between the engine and the turbocharger, that is, It is installed on the high-pressure side rather than the turbine of the turbocharger. This is because the catalytic denitration device does not operate sufficiently unless the exhaust gas temperature is higher on the high-pressure side than the turbocharger turbine. On the downstream side of the turbocharger, since the temperature of the exhaust gas is lower, even if a catalytic denitration device is installed, it does not operate sufficiently.

그 결과, 질소산화물 농도를 검출하기 위한 센서는 고압환경에서 사용된다. 일반적으로는 질소산화물 농도를 검출하기 위한 센서로서 지르코니아식(zirconia式)(ZRDO식(zirconium dioxide式))의 NOx센서가 사용되지만, 이 센서는 압력에 의존하여 그 감도가 변동되는 성질을 갖는다. 이 때문에 통상은 지르코니아식의 센서에 압력센서를 병용하여, 그 압력센서의 검출결과에 의거하여 감도보정(感度補正)을 하는 것이 필요하다. 그러나 그에 따라 계가 복잡하게 되고 또한 고가(高價)로 되는 문제점이 있다.As a result, the sensor for detecting the nitrogen oxide concentration is used in a high-pressure environment. In general, a zirconia type (zirconium dioxide type) NOx sensor is used as a sensor for detecting the nitrogen oxide concentration, but this sensor has a property that its sensitivity varies depending on pressure. For this reason, it is usually necessary to use a pressure sensor together with a zirconia type sensor, and to perform sensitivity correction based on the detection result of the pressure sensor. However, there is a problem in that the system becomes complicated and expensive.

또한 선박용 연료는 유황(硫黃)을 포함하기 때문에, 선박용의 엔진으로부터의 배기가스에는 유황산화물(SOx)이 포함된다. 그러나 지르코니아식의 NOx센서는, 유황산화물의 존재하에서는 그 감도가 떨어져 버린다는 문제점도 있다.Moreover, since marine fuel contains sulfur, sulfur oxide (SOx) is contained in exhaust gas from a marine engine. However, the zirconia-type NOx sensor also has a problem that its sensitivity is lowered in the presence of sulfur oxides.

그래서 본 발명은, 이러한 문제점을 해결하여, 지르코니아식의 NOx센서를 사용하여 엔진의 배기가스경로에 설치된 촉매식 탈초장치의 운전상황을 제어할 때에, 센서감도(sensor感度)의 변동에 의한 측정치 및 제어량의 오차발생을 방지할 수 있도록 하는 것을 목적으로 한다.
Therefore, the present invention solves this problem, and when controlling the operating condition of a catalytic denitration device installed in the exhaust gas path of an engine using a zirconia-type NOx sensor, measured values and The purpose of this is to prevent the occurrence of errors in the control amount.

이 목적을 달성하기 위하여 본 발명의 엔진을 위한 탈초율의 측정방법은, 엔진으로부터의 배기가스경로에 촉매식 탈초장치와 배기가스 터보차저가 이 순서로 배치된 계에서의 탈초율을 측정하는 데에 있어서, 상기 배기가스경로에 있어서의 엔진과 촉매식 탈초장치 사이의 부분에서 NOx농도를 검출가능한 제1지르코니아식 NOx센서와, 상기 배기가스경로에 있어서의 촉매식 탈초장치와 배기가스 터보차저 사이의 부분에서 NOx농도를 검출가능한 제2지르코니아식 NOx센서를 사용하여, 제1지르코니아식 NOx센서에 의한 검출치를 NOx·inlet이라고 하고, 제2지르코니아식 NOx센서에 의한 검출치를 NOx·outlet이라고 하며, 검출환경에 있어서의 가스압력과, 배기가스에 포함되는 SOx가 지르코니아식 NOx센서의 검출치에 미치는 영향을 보정하기 위한 보정계수를 α로 하여, 식 (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α를 사용하고 또한 약분에 의하여 α를 소거하여 탈초율을 구하는 것을 특징으로 한다.In order to achieve this object, the method for measuring the denitration rate for an engine of the present invention is to measure the denitration rate in a system in which a catalytic denitration device and an exhaust gas turbocharger are arranged in this order in the exhaust gas path from the engine. A first zirconia type NOx sensor capable of detecting a NOx concentration in a portion between the engine and the catalytic denitration device in the exhaust gas path, and between the catalytic denitration device and the exhaust gas turbocharger in the exhaust gas path Using the second zirconia-type NOx sensor capable of detecting the NOx concentration in the part, the value detected by the first zirconia-type NOx sensor is called NOx·inlet, and the value detected by the second zirconia-type NOx sensor is called NOx·outlet, A correction factor for correcting the effect of the gas pressure in the detection environment and the SOx contained in the exhaust gas on the detection value of the zirconia-type NOx sensor is taken as α, and the equation (NOx·inlet × α - NOx·outlet × α ) / NOx·inlet × α is used, and the denitration rate is obtained by eliminating α by chemical powder.

본 발명의 엔진을 위한 탈초율의 측정장치는, 엔진으로부터의 배기가스경로에 촉매식 탈초장치와 배기가스 터보차저가 이 순서로 배치되고, 상기 배기가스경로에 있어서의 엔진과 촉매식 탈초장치 사이의 부분에서 NOx농도를 검출가능한 제1지르코니아식 NOx센서와, 상기 배기가스경로에 있어서의 촉매식 탈초장치와 배기가스 터보차저 사이의 부분에서 NOx농도를 검출가능한 제2지르코니아식 NOx센서가 설치되고, 제1지르코니아식 NOx센서에 의한 검출치를 NOx·inlet이라고 하고, 제2지르코니아식 NOx센서에 의한 검출치를 NOx·outlet이라고 하며, 검출환경에 있어서의 가스압력과, 배기가스에 포함되는 SOx가 지르코니아식 NOx센서의 검출치에 미치는 영향을 보정하기 위한 보정계수를 α로 하여, 식 (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α를 사용하고 또한 약분에 의하여 α를 소거하여 탈초율을 측정하는 장치가 설치되는 것을 특징으로 한다.In the apparatus for measuring the denitration rate for an engine of the present invention, a catalytic denitration device and an exhaust gas turbocharger are arranged in this order in an exhaust gas path from the engine, and between the engine and the catalytic denitration device in the exhaust gas path A first zirconia-type NOx sensor capable of detecting the NOx concentration in a portion of the exhaust gas path, and a second zirconia-type NOx sensor capable of detecting the NOx concentration in a portion between the catalytic denitration device and the exhaust gas turbocharger in the exhaust gas path are installed, , the value detected by the first zirconia type NOx sensor is NOx·inlet, and the value detected by the second zirconia type NOx sensor is referred to as NOx·outlet, and the gas pressure in the detection environment and SOx contained in the exhaust gas are zirconia Formula (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α Using the equation (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α, α is reduced by the reduction It is characterized in that a device for measuring the denitration rate is installed.

본 발명에 의하면, 탈초율을 측정하기 위한 제1 및 제2지르코니아식 NOx센서를, 모두 배기가스 터보차저보다 상류측의 배기가스경로, 즉 고압에서 SOx를 포함하는 부분에 설치하여 NOx농도를 검출하기 때문에, 이들 제1 및 제2지르코니아식 NOx센서가 받는 압력 및 SOx의 영향을 같게 할 수 있다. 즉, 상기 식에 있어서의 보정계수(α)의 값을, 상기 식과 같이 제1지르코니아식 NOx센서에 의한 검출치(NOx·inlet)와 제2지르코니아식 NOx센서에 의한 검출치(NOx·outlet)에서 같게 할 수 있다.According to the present invention, both the first and second zirconia-type NOx sensors for measuring the denitration rate are installed in the exhaust gas path upstream of the exhaust gas turbocharger, that is, in the portion containing SOx at high pressure, NOx concentration is detected. For this reason, the pressure and the influence of SOx which these 1st and 2nd zirconia type NOx sensors receive can be made equal. That is, the value of the correction coefficient α in the above equation is the value detected by the first zirconia type NOx sensor (NOx·inlet) and the value detected by the second zirconia type NOx sensor (NOx·outlet) as shown in the above equation. can be made the same in

이 때문에 상기 식에 있어서 α는 약분에 의하여 소거할 수 있고, 결국 상기 식은, 검출환경에 있어서의 가스압력과 배기가스에 포함되는 SOx가 지르코니아식 NOx센서의 검출치에 미치는 영향을 상쇄한, 즉 보정계수(α)를 소거한,For this reason, in the above equation, α can be eliminated by a small fraction, and in the end, the above equation cancels the influence of the gas pressure in the detection environment and the SOx contained in the exhaust gas on the detection value of the zirconia-type NOx sensor, that is, The correction factor (α) has been eliminated,

(NOx·inlet - NOx·outlet) / NOx·inlet의 형태로 변형될 수 있다.(NOx·inlet - NOx·outlet) / It can be transformed into the form of NOx·inlet.

또한, 배기가스가 촉매식 탈초장치를 통과하는 것에 의한 압력손실은 미소(微小)해서 무시할 수 있다. 따라서 배기가스경로에 있어서 촉매식 탈초장치보다 상류측과 하류측의 압력은 동일하다고 생각할 수 있어, 그 전제에 입각하여 상기 식은 성립하고 있다.In addition, the pressure loss caused by exhaust gas passing through the catalytic denitration device is small and negligible. Therefore, it can be considered that the pressures on the upstream side and the downstream side of the exhaust gas path are the same as those of the catalytic denitration device. Based on that premise, the above formula holds.

또, 실제로는 제2지르코니아식 NOx센서의 검출치는 촉매식 탈초장치에서 완전히 반응할 수 없었던 암모니아(리크 암모니아(leak ammonia))의 영향을 받지만, 탈초장치내에 충전되는 촉매의 양이 적절하고 또한 요소수나 암모니아 등의 환원제를 대폭적으로 과잉투여하지 않으면, 리크 암모니아의 농도는 미소하므로, 이것이 지르코니아식 NOx센서의 검출치에 주는 영향도 미소하여 무시할 수 있다.
Also, in reality, the detection value of the second zirconia type NOx sensor is affected by ammonia (leak ammonia) that could not react completely in the catalytic denitration device, but the amount of catalyst charged in the denitration device is appropriate and the urea If a reducing agent such as water or ammonia is not significantly over-administered, the concentration of leak ammonia is very small, so the effect this has on the detection value of the zirconia-type NOx sensor is small and negligible.

본 발명에 의하면, 지르코니아식의 질소산화물 농도센서를 사용하여 촉매식 탈초장치에 있어서의 탈초율을 측정할 때에, 검출환경에 있어서의 배기가스압력과 배기가스에 포함되는 SOx의 영향에 의한 센서감도의 변동에 의거하는 측정치의 오차발생을 방지할 수 있다. 또한 배기가스압력과 배기가스에 포함되는 SOx가 센서감도에 미치는 영향의 정도가 미지(未知)인 경우에 있어서도 탈초율을 측정할 수 있다. 따라서 본 발명에 의하면, 탈초율의 측정치를 사용해서 촉매식 탈초장치의 운전상황을 제어할 때에, 탈초율의 측정오차에 의거하는 제어오차의 발생을 방지할 수 있다.
According to the present invention, when measuring the denitration rate in a catalytic denitration device using a zirconia-type nitrogen oxide concentration sensor, the sensor sensitivity due to the effect of the exhaust gas pressure in the detection environment and SOx contained in the exhaust gas It is possible to prevent the occurrence of error in the measurement value based on the fluctuation of . In addition, the denitration rate can be measured even when the extent of the influence of the exhaust gas pressure and SOx contained in the exhaust gas on the sensor sensitivity is unknown. Therefore, according to the present invention, when the operation condition of the catalytic denitration device is controlled using the measured value of the denitration rate, it is possible to prevent the occurrence of control errors based on the measurement error of the denitration rate.

도1은, 본 발명의 실시형태에 따른 엔진을 위한 탈초율의 측정장치의 구성을 나타내는 도면이다.
도2는, 탈초율의 측정결과를 나타내는 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the measuring apparatus of the denitration rate for the engine which concerns on embodiment of this invention.
2 is a graph showing the measurement result of the denitration rate.

도1에 있어서, 1은 선박용의 2스트로크식 디젤엔진(2stroke式 diesel engine)이며, 2는 엔진(1)으로부터의 배기가스경로(排氣gas經路)이다. 이 경로(2)에는 촉매식 탈초장치(觸媒式 脫硝裝置)(3)가 설치되어 있다. 그리고 탈초장치(3)보다 하류측에 배기가스 터보차저(排氣gas turbocharger)(4)가 설치되어 있다. 배기가스는 터보차저(4)의 터빈(turbine)(4a)에 공급되어 컴프레서(compressor)(4b)에 의하여 흡기가 압축된다.In Fig. 1, reference numeral 1 denotes a two-stroke diesel engine for ships, and reference numeral 2 denotes an exhaust gas path from the engine 1. As shown in Figs. A catalytic denitration device (3) is installed in this path (2). And an exhaust gas turbocharger (4) is provided on the downstream side of the denitration device (3). Exhaust gas is supplied to a turbine 4a of the turbocharger 4 and intake air is compressed by a compressor 4b.

배기가스경로(2)에 있어서 엔진(1)과 탈초장치(3)의 사이에는, 그 부분의 경로(2)에 있어서의 NOx농도를 측정가능한 제1지르코니아식(ZRDO식(zirconium dioxide式)) NOx센서(第1 zirconia式 NOx sensor)(6)가 설치되어 있다. 또 배기가스경로(2)에 있어서 탈초장치(3)와 터보차저(4)의 사이에는, 그 부분의 경로(2)에 있어서의 NOx농도를 측정가능한 제2지르코니아식 NOx센서(7)가 설치되어 있다.Between the engine 1 and the denitration device 3 in the exhaust gas path 2, the first zirconia type (zirconium dioxide type) capable of measuring the NOx concentration in the path 2 of that part NOx sensor (第1 zirconia type NOx sensor) (6) is installed. In the exhaust gas path 2, between the denitration device 3 and the turbocharger 4, a second zirconia type NOx sensor 7 capable of measuring the NOx concentration in the path 2 of that portion is provided. has been

8은 탈초율의 측정부로서, 탈초장치(3)의 입구측에 설치된 제1지르코니아식 NOx센서(6)로부터의 검출신호(NOx·inlet)와, 탈초장치(3)의 출구측에 설치된 제2지르코니아식 NOx센서(7)로부터의 검출신호(NOx·outlet)를 사용하여, 하기의 식에 의하여 탈초장치(3)에 의한 탈초율을 측정할 수 있다.Reference numeral 8 denotes a measurement unit of the denitration rate, a detection signal (NOx·inlet) from the first zirconia-type NOx sensor 6 installed on the inlet side of the denitration device 3 , and a second device installed on the outlet side of the denitration device 3 . Using the detection signal (NOx·outlet) from the 2-zirconia type NOx sensor 7, the denitration rate by the denitration device 3 can be measured by the following equation.

(NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α

이 식에 있어서, α는 보정계수로서, 검출환경에 있어서의 가스압력이나 배기가스에 포함되는 SOx 등이 지르코니아식 NOx센서(6, 7)의 검출치에 미치는 영향을 보정하기 위한 것이다.In this equation, α is a correction coefficient, and is for correcting the influence of gas pressure in the detection environment, SOx contained in exhaust gas, and the like on the detection values of the zirconia-type NOx sensors 6 and 7 .

도면에 나타내는 바와 같이, 제1 및 제2지르코니아식 NOx센서(6, 7)는, 모두 배기가스경로(2)에 있어서 터보차저(4)보다 상류측의 부분, 즉 고압이며 또한 SOx를 포함하는 부분에 설치되어 있다. 또한 배기가스가 탈초장치(3)를 통과하는 것에 의한 압력손실은 미소(微小)해서 무시할 수 있다. 이 때문에 이들 제1 및 제2지르코니아식 NOx센서(6, 7)가 받는 압력 및 SOx의 영향을 동일하게 할 수 있다. 즉, 상기 식에 있어서의 보정계수(α)의 값을, 상기 식과 같이 제1지르코니아식 NOx센서에 의한 검출치(NOx·inlet)와 제2지르코니아식 NOx센서에 의한 검출치(NOx·outlet)에서 동일하게 할 수 있다.As shown in the figure, the first and second zirconia-type NOx sensors 6 and 7 are both a portion upstream of the turbocharger 4 in the exhaust gas path 2, that is, a high pressure, and containing SOx. installed in the part. Further, the pressure loss caused by the exhaust gas passing through the denitration device 3 is small and negligible. For this reason, the pressure and the influence of SOx which these 1st and 2nd zirconia type NOx sensors 6 and 7 receive can be made equal. That is, the value of the correction coefficient α in the above equation is the value detected by the first zirconia type NOx sensor (NOx·inlet) and the value detected by the second zirconia type NOx sensor (NOx·outlet) as shown in the above equation. can do the same in

이 때문에 상기 식의 α는 약분(約分)할 수 있어, 결국 상기 식은, 검출환경에 있어서의 가스압력이나 배기가스에 포함되는 SOx 등이 지르코니아식 NOx센서(6, 7)의 검출치에 미치는 영향을 상쇄한, 즉 보정계수(α)를 소거한,For this reason, α of the above equation can be reduced, and the above equation shows the effect of the gas pressure in the detection environment and SOx contained in the exhaust gas on the detection values of the zirconia type NOx sensors 6 and 7 After canceling the influence, that is, by canceling the correction factor (α),

(NOx·inlet- NOx·outlet)/NOx·inlet의 형태로 변형될 수 있다.It can be transformed into the form of (NOx·inlet- NOx·outlet)/NOx·inlet.

따라서 측정부(8)는, 제1 및 제2지르코니아식 NOx센서(6, 7)의 검출환경에 있어서의 배기가스압력이나 배기가스에 포함되는 SOx 등의 영향에 의한, 센서감도의 변동에 의거하는 오차의 발생을 방지한 다음에 탈초율의 측정치를 구할 수 있다.Accordingly, the measurement unit 8 is configured to measure sensor sensitivity fluctuations due to the influence of the exhaust gas pressure in the detection environment of the first and second zirconia-type NOx sensors 6 and 7, SOx contained in the exhaust gas, and the like. After preventing the occurrence of error, the measured value of the denitration rate can be obtained.

도1에 나타나 있는 계(系)에서는, 촉매탈초장치(3)에서 배기가스에 요소수(尿素水)를 분무하지만, 측정부(8)에 의한 탈초율의 측정치에 의거하여 그 분무량을 제어하는 피드백 제어시스템을 채용함으로써, 최종적으로 배출되는 가스에 있어서의 질소산화물의 배출량을 소정의 배출제어값으로 할 수 있다. 이 때문에, 탈초율을 예를 들면 80%로 설정하여 도시(圖示)된 계를 운전할 수 있다.
In the system shown in Fig. 1, urea water is sprayed on exhaust gas from the catalytic denitration device 3, but the spray amount is controlled based on the measured value of the denitration rate by the measuring unit 8. By employing the feedback control system, it is possible to set the emission amount of nitrogen oxides in the finally exhausted gas to a predetermined emission control value. For this reason, the illustrated system can be operated by setting the denitration rate to, for example, 80%.

[실시예][Example]

상기와 같은 본 발명에 의거하는 측정치를 이용해서 피드백 제어(feedback 制御)를 한 경우와, NOx센서를 사용하지 않는 피드포워드(feedforward 制御) 제어를 한 경우와, 촉매탈초장치의 입구측과 출구측에 지르코니아식 NOx센서를 사용함과 아울러 동(同) 탈초장치에 압력센서를 사용해서 그 NOx센서 신호를 압력보정 처리한 신호를 사용하는 피드백 제어를 한 경우의 구체적인 결과에 대해서 설명한다.The case where feedback control is performed using the measurement values based on the present invention as described above, the case where feedforward control is performed without using the NOx sensor, and the inlet and outlet sides of the catalytic denitration device In addition to using a zirconia-type NOx sensor, a pressure sensor is used in the denitration device to perform feedback control using a signal obtained by pressure correction of the NOx sensor signal will be described.

도2는, 상기한 3가지의 방법으로 탈초율 80%를 목표로 하여 제어를 한 결과의 그래프를 나타낸다. 가로축은 엔진의 부하율을 나타내고 세로축은 달성된 탈초율을 나타낸다.Figure 2 shows a graph of the result of controlling with the target of the denitration rate of 80% by the three methods described above. The horizontal axis represents the load factor of the engine and the vertical axis represents the achieved denitration ratio.

이 그래프에 나타나 있는 바와 같이, 본 발명에 의거하는 측정치를 이용해서 피드백 제어를 한 경우가, 목표치인 80%에 가장 가까운 결과가 되었다.As shown in this graph, when feedback control was performed using the measured value based on the present invention, the result was closest to the target value of 80%.

NOx센서를 사용하지 않는 피드포워드 제어를 한 경우는, 고부하 영역에서 목표치로부터 벗어나는 결과가 되었다. 이 경우는, 엔진을 운전했을 때에 발생한 NOx의 측정치에 대하여, 그것을 80% 삭감하기 위한 요소수의 양을 계산하고 피드포워드 제어에 의하여 실제로 요소수를 투여한다는 제어를 한 것이다. 이것은, 사전에 피드포워드 제어용으로 엔진 본체로부터의 NOx배출량 데이터를 채취했을 때의 기온이나 습도 등의 주위조건과, 본(本) 탈초운전(脫硝運轉)을 했을 때의 주위조건의 차이에 의하여 발생한 제어오차라고 생각된다. 이러한 주위조건의 변화는 선박, 특히 국제해운에 사용되는 선박에 있어서는 빈번하게 일어나고 있는 현상이다.In the case of feedforward control that does not use the NOx sensor, the result deviates from the target value in the high load region. In this case, with respect to the measured value of NOx generated when the engine is operated, the amount of urea water for reducing it by 80% is calculated, and control is performed to actually administer the urea water by feed-forward control. This is due to the difference between the ambient conditions such as temperature and humidity when NOx emission data from the engine body is previously collected for feedforward control and the ambient conditions when the main denitration operation is performed. It is thought to be a control error that occurred. This change in ambient conditions is a phenomenon that occurs frequently in ships, especially ships used for international shipping.

압력보정한 신호를 사용한 피드백 제어를 한 경우는, 전체적으로 목표치로부터 벗어나는 경향이 발생하고, 특히 배기가스압력이 높은 고부하 영역에서 그 경향이 현저했다. 이것은 압력보정계수(α)의 값의 정밀도가 높지 않았기 때문이라고 생각된다.In the case of feedback control using the pressure-corrected signal, there was a tendency to deviate from the target as a whole, and the tendency was particularly remarkable in the high load region where the exhaust gas pressure was high. This is considered to be because the precision of the value of the pressure correction coefficient α was not high.

이상에서 다음의 결론을 도출할 수 있다. 즉 엔진내에서 발생하는 질소산화물(NOx)의 양은, 기후의 변화로 대표되는 엔진 주위의 조건변화나 연료성분의 변화 등의 여러가지 조건변화에 의하여 변동되기 때문에, 이것을 정확하게 예측하는 것은 곤란하다. 이에 대처하기 위해서는 촉매식 탈초장치의 입구 및 출구에 있어서의 NOx의 농도검출치를 사용한 피드백 제어가 유효하다고 판단된다. NOx의 농도검출에는 지르코니아식의 센서가 사용되지만, 이 센서는 그 검출치가 특히 배기가스압력의 영향을 받기 때문에 무엇인가 대책이 필요하다. 그래서 본 발명에서는, 검출치로부터 배기가스압력 등의 영향을 제거하기 위해서, 탈초장치의 입구측의 센서와 출구측의 센서를 모두 가스압이 높은 장소에 설치함으로써 그 영향을 상쇄시키는 것이 가능하다. 이 때문에 탈초율을 측정할 때에, 검출환경에 있어서의 배기가스압력 등의 영향에 의한 센서감도의 변동에 의거하는 측정치의 오차발생을 방지할 수 있다.
From the above, the following conclusions can be drawn. That is, it is difficult to accurately predict the amount of nitrogen oxide (NOx) generated in the engine because it fluctuates due to various condition changes such as changes in conditions around the engine and changes in fuel components, which are typified by changes in climate. In order to cope with this, it is judged that feedback control using the NOx concentration detection value at the inlet and outlet of the catalytic denitration device is effective. A zirconia type sensor is used to detect the concentration of NOx, but since this sensor's detection value is particularly affected by the exhaust gas pressure, some countermeasure is required. Therefore, in the present invention, in order to remove the influence of the exhaust gas pressure or the like from the detected value, it is possible to cancel the influence by installing both the sensor on the inlet side and the sensor on the outlet side of the denitration device in a place with high gas pressure. For this reason, when measuring the denitration rate, it is possible to prevent the occurrence of errors in measurement values based on fluctuations in sensor sensitivity due to the influence of exhaust gas pressure in the detection environment.

1: 디젤엔진
2: 배기가스경로
3: 촉매식 탈초장치
4: 터보차저
4a: 터빈
4b: 컴프레서
6: 제1지르코니아식(ZRDO식) NOx센서
7: 제2지르코니아식(ZRDO식) NOx센서
1: diesel engine
2: exhaust gas path
3: Catalytic denitration device
4: Turbocharger
4a: turbine
4b: Compressor
6: 1st zirconia type (RSD type) NOx sensor
7: Second zirconia type (RSD type) NOx sensor

Claims (2)

엔진으로부터의 배기가스경로(排氣gas經路)에 촉매식 탈초장치(觸媒式 脫硝裝置)와 배기가스 터보차저(排氣gas turbocharger)가 이 순서로 배치된 계(系)에 있어서의 탈초율(脫硝率)을 측정하는 데에 있어서,
상기 배기가스경로에 있어서의 엔진과 촉매식 탈초장치 사이의 부분에서 NOx농도를 검출가능한 제1지르코니아식 NOx센서(第1 zirconia式 NOx sensor)와, 상기 배기가스경로에 있어서의 촉매식 탈초장치와 배기가스 터보차저 사이의 부분에서 NOx농도를 검출가능한 제2지르코니아식 NOx센서(第2 zirconia式 NOx sensor)를 사용하여,
제1지르코니아식 NOx센서에 의한 검출치(檢出値)를 NOx·inlet이라고 하고, 제2지르코니아식 NOx센서에 의한 검출치를 NOx·outlet이라고 하며, 검출환경에 있어서의 가스압력과 배기가스에 포함되는 SOx가 지르코니아식 NOx센서의 검출치에 미치는 영향을 보정하기 위한 보정계수를 α로 하여,
식 (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α
를 사용하고 또한 약분(約分)에 의하여 α를 소거하여 탈초율을 구하는 것을 특징으로 하는 엔진을 위한 탈초율의 측정방법.
In a system in which a catalytic denitration device and an exhaust gas turbocharger are arranged in this order in the exhaust gas path from the engine In measuring the denitration rate (脫硝率),
a first zirconia type NOx sensor capable of detecting the NOx concentration in a portion between the engine and the catalytic denitration device in the exhaust gas path, and a catalytic denitration device in the exhaust gas path; Using a second zirconia type NOx sensor that can detect the NOx concentration in the part between the exhaust gas turbochargers,
The value detected by the first zirconia type NOx sensor is referred to as NOx·inlet, and the value detected by the second zirconia type NOx sensor is referred to as NOx·outlet, and is included in the gas pressure and exhaust gas in the detection environment. A correction factor for correcting the effect of the SOx on the detection value of the zirconia-type NOx sensor as α,
Formula (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α
A method of measuring the denitration rate for an engine, characterized in that the denitration rate is obtained by using and eliminating α by a small fraction.
엔진으로부터의 배기가스경로에 촉매식 탈초장치와 배기가스 터보차저가 이 순서로 배치되고,
상기 배기가스경로에 있어서의 엔진과 촉매식 탈초장치 사이의 부분에서 NOx농도를 검출가능한 제1지르코니아식 NOx센서와, 상기 배기가스경로에 있어서의 촉매식 탈초장치와 배기가스 터보차저 사이의 부분에서 NOx농도를 검출가능한 제2지르코니아식 NOx센서가 설치되고,
제1지르코니아식 NOx센서에 의한 검출치를 NOx·inlet이라고 하고, 제2지르코니아식 NOx센서에 의한 검출치를 NOx·outlet이라고 하며, 검출환경에 있어서의 가스압력과 배기가스에 포함되는 SOx가 지르코니아식 NOx센서의 검출치에 미치는 영향을 보정하기 위한 보정계수를 α로 하여,
식 (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α
를 사용하고 또한 약분에 의하여 α를 소거하여 탈초율을 측정하는 장치가 설치되어 있는 것을 특징으로 하는 엔진을 위한 탈초율의 측정장치.
A catalytic denitration device and an exhaust gas turbocharger are arranged in this order in the exhaust gas path from the engine,
A first zirconia-type NOx sensor capable of detecting the NOx concentration in a portion between the engine and the catalytic denitration device in the exhaust gas path, and a portion between the catalytic denitration device and the exhaust gas turbocharger in the exhaust gas path A second zirconia-type NOx sensor capable of detecting the NOx concentration is installed,
The value detected by the first zirconia type NOx sensor is NOx·inlet, and the value detected by the second zirconia type NOx sensor is referred to as NOx·outlet, and the gas pressure in the detection environment and SOx contained in the exhaust gas are zirconia type NOx Let α be the correction factor for correcting the effect on the detection value of the sensor,
Formula (NOx·inlet × α - NOx·outlet × α) / NOx·inlet × α
A device for measuring the denitration rate for an engine, characterized in that a device for measuring the denitration rate is installed by using and removing α by chemical powder.
KR1020150041265A 2014-03-28 2015-03-25 Method and apparatus for measuring denitration ratio for an internal combustion engine KR102274546B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2014-067319 2014-03-28
JP2014067319A JP6230459B2 (en) 2014-03-28 2014-03-28 Method and apparatus for measuring denitration rate for engine

Publications (2)

Publication Number Publication Date
KR20150112848A KR20150112848A (en) 2015-10-07
KR102274546B1 true KR102274546B1 (en) 2021-07-06

Family

ID=54164836

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150041265A KR102274546B1 (en) 2014-03-28 2015-03-25 Method and apparatus for measuring denitration ratio for an internal combustion engine

Country Status (4)

Country Link
JP (1) JP6230459B2 (en)
KR (1) KR102274546B1 (en)
CN (1) CN104950022B (en)
TW (1) TWI651523B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914246B2 (en) 2017-03-14 2021-02-09 General Electric Company Air-fuel ratio regulation for internal combustion engines
JP7252921B2 (en) * 2019-09-13 2023-04-05 日本特殊陶業株式会社 Gas sensor control device, gas sensor device and internal combustion engine control device
CN114166990B (en) * 2021-12-03 2023-11-14 国网湖南省电力有限公司 Based on NO x Denitrification ammonia injection uniformity detection method for concentration time domain feature analysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210450A (en) 2008-03-05 2009-09-17 Ngk Spark Plug Co Ltd Nox sensor controller and vehicle side controller
JP2013227950A (en) 2012-04-26 2013-11-07 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2014043819A (en) 2012-08-28 2014-03-13 Ihi Corp Denitrification apparatus, and denitrification method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079414B2 (en) * 2002-04-03 2008-04-23 三菱重工業株式会社 Nitrogen oxide processing apparatus and nitrogen oxide processing method
JP4267535B2 (en) * 2004-07-23 2009-05-27 日野自動車株式会社 NOx reduction rate measurement method for exhaust purification system
CN202832772U (en) * 2012-05-03 2013-03-27 天纳克(中国)有限公司 Selective catalytic reduction (SCR) denitration system for large engine
CN103382885A (en) * 2012-05-03 2013-11-06 天纳克(中国)有限公司 Large-scale engine SCR denitration method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210450A (en) 2008-03-05 2009-09-17 Ngk Spark Plug Co Ltd Nox sensor controller and vehicle side controller
JP2013227950A (en) 2012-04-26 2013-11-07 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2014043819A (en) 2012-08-28 2014-03-13 Ihi Corp Denitrification apparatus, and denitrification method

Also Published As

Publication number Publication date
CN104950022B (en) 2019-01-22
TWI651523B (en) 2019-02-21
TW201537157A (en) 2015-10-01
JP6230459B2 (en) 2017-11-15
KR20150112848A (en) 2015-10-07
JP2015190356A (en) 2015-11-02
CN104950022A (en) 2015-09-30

Similar Documents

Publication Publication Date Title
US8915063B2 (en) Method and device for estimating NOx emissions in combustion engines
US9772273B2 (en) Method and device for monitoring a humidity sensor in a combustion engine, using oxygen measurement of other sensors in the engine, such as NOx, lambda and/or oxygen sensors
RU2611546C2 (en) Abnormal frequent regeneration detection method of diesel particulate filter, exhaust gases after treatment system, system and method of warnings
CN104732055B (en) The method for determining the correcting logic for SCR catalyst reaction model
JP4267535B2 (en) NOx reduction rate measurement method for exhaust purification system
EP2588218B1 (en) Control method and arrangement for selective catalytic reduction
JP2013515896A5 (en)
US9790835B1 (en) Catalyst failure detection based combined ammonia to NOx ratios, conversion inefficiency values and ammonia slip values
KR102274546B1 (en) Method and apparatus for measuring denitration ratio for an internal combustion engine
US8584444B2 (en) Model-based controls for selective catalyst reduction system
US7905085B2 (en) Method for operating an internal combustion engine and device for executing the method
US20090139210A1 (en) Gas concentration sensor drift and failure detection system
JP2014005745A (en) Urea water injection device
KR101513804B1 (en) Power plant with selective catalytic reuction system and control method of selective catalytic reduction system
US20170051682A1 (en) System and method for abatement of dynamic property changes with proactive diagnostics and conditioning
KR20140029589A (en) Senser value compensation method of nox sensor
JP6230463B2 (en) Method and apparatus for measuring denitration rate for engine
JP6597001B2 (en) EGR control system for internal combustion engine
JP6032985B2 (en) Reducing agent injection device and denitration device
JP6189044B2 (en) Control device and control method for denitration device, and denitration device provided

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant