JP7074337B2 - Combustion device that detects vibration combustion - Google Patents

Combustion device that detects vibration combustion Download PDF

Info

Publication number
JP7074337B2
JP7074337B2 JP2018133809A JP2018133809A JP7074337B2 JP 7074337 B2 JP7074337 B2 JP 7074337B2 JP 2018133809 A JP2018133809 A JP 2018133809A JP 2018133809 A JP2018133809 A JP 2018133809A JP 7074337 B2 JP7074337 B2 JP 7074337B2
Authority
JP
Japan
Prior art keywords
combustion
wind pressure
value
vibration
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018133809A
Other languages
Japanese (ja)
Other versions
JP2020012573A (en
Inventor
一樹 松元
享一 浅尾
Original Assignee
株式会社サムソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サムソン filed Critical 株式会社サムソン
Priority to JP2018133809A priority Critical patent/JP7074337B2/en
Publication of JP2020012573A publication Critical patent/JP2020012573A/en
Application granted granted Critical
Publication of JP7074337B2 publication Critical patent/JP7074337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/002Working-up pitch, asphalt, bitumen by thermal means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/06Working-up pitch, asphalt, bitumen by distillation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/155Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from petroleum pitch

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Textile Engineering (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)

Description

本発明は、燃焼用空気と燃料ガスの供給量を調節することで燃焼量の調節を行うようにしている燃焼装置であって、燃焼量変更時に振動燃焼が発生した場合に振動燃焼の検出を行う燃焼装置に関するものである。 The present invention is a combustion device that adjusts the combustion amount by adjusting the supply amounts of combustion air and fuel gas, and detects vibration combustion when vibration combustion occurs when the combustion amount is changed. It is about the combustion device to be performed.

特開平11-37456号公報に記載があるように、燃焼装置では燃焼反応による圧力変動によって振動燃焼が発生することがある。振動燃焼が発生すると、燃焼室内では大きな圧力変動が短時間で繰り返し発生する。燃焼室内で圧力変動が発生すると、燃焼室へ燃焼用空気を送る送風路内にも圧力変動が伝播するため、送風路に送風経路圧力検出装置を設けておき、送風経路内の圧力を検出することで振動燃焼の発生を検出することができる。 As described in Japanese Patent Application Laid-Open No. 11-37456, vibration combustion may occur in a combustion device due to pressure fluctuation due to a combustion reaction. When oscillating combustion occurs, large pressure fluctuations repeatedly occur in the combustion chamber in a short time. When a pressure fluctuation occurs in the combustion chamber, the pressure fluctuation propagates in the air passage that sends the combustion air to the combustion chamber. Therefore, the occurrence of vibration combustion can be detected.

振動燃焼時には大きな圧力変動が短時間に発生するため、送風経路圧力検出装置によって送風経路内の圧力を検出しておき、所定時間内での変動幅が設定値を超えた場合に振動燃焼が発生していると判定することができる。振動燃焼の判定では、一定の間隔で瞬間における圧力を検出するようにしておき、設定時間内で検出した圧力の最大値と最小値の差を算出して差の値が設定値を超えると、振動燃焼が発生していると判断することができる。 Since large pressure fluctuations occur in a short time during vibration combustion, the pressure in the ventilation path is detected by the blower path pressure detector, and vibration combustion occurs when the fluctuation range within a predetermined time exceeds the set value. It can be determined that it is. In the judgment of vibration combustion, the pressure at the moment is detected at regular intervals, the difference between the maximum value and the minimum value of the detected pressure within the set time is calculated, and when the difference value exceeds the set value, It can be determined that vibration combustion is occurring.

ただし、燃焼用空気供給量と燃料ガス供給量を調節することで燃焼量の調節を行うようにしている燃焼装置の場合には、燃焼量によって送風路内の圧力も変化する。燃焼量を高燃焼・低燃焼のように段階的に設定している場合、燃焼装置の最小と最大燃焼量の比であるターンダウンを1:7とするなど、燃焼量の差を大きく設定することがある。 However, in the case of a combustion device in which the combustion amount is adjusted by adjusting the combustion air supply amount and the fuel gas supply amount, the pressure in the air passage also changes depending on the combustion amount. When the combustion amount is set in stages such as high combustion and low combustion, the difference in combustion amount is set large, such as setting the turndown, which is the ratio of the minimum and maximum combustion amount of the combustion device, to 1: 7. Sometimes.

燃料ガス供給量と燃焼用空気供給量を増加して燃焼量を大きくすると、送風経路内を流れる燃焼用空気量は多くなり、燃焼室内での炉圧も大きくなる。そのため、一定時間内で検出した圧力の最大値と最低値の差を算出しても、その差は燃焼量の変化によるものか、振動燃焼によるものかを区別することができない。そのため燃焼量変更中は振動燃焼の判定を行わないようにしておき、燃焼量の変更を終了した以降に検出した風圧値に基づいて振動燃焼の判定を行うようにしている。しかし、燃焼量変更中に振動燃焼が発生することもあり、その場合には燃焼量変更の終了を待って振動燃焼の発生を判定するようにしていると、振動燃焼の検出が遅くなり、その間は振動燃焼を継続することになって、振動燃焼を発生している時間が長くなる問題があった。 When the fuel gas supply amount and the combustion air supply amount are increased to increase the combustion amount, the amount of combustion air flowing in the ventilation path increases, and the furnace pressure in the combustion chamber also increases. Therefore, even if the difference between the maximum value and the minimum value of the pressure detected within a certain period of time is calculated, it is not possible to distinguish whether the difference is due to a change in the amount of combustion or vibrational combustion. Therefore, the vibration combustion is not determined during the change of the combustion amount, and the vibration combustion is determined based on the wind pressure value detected after the change of the combustion amount is completed. However, vibration combustion may occur while changing the combustion amount. In that case, if the occurrence of vibration combustion is determined after waiting for the end of the combustion amount change, the detection of vibration combustion will be delayed, and during that time. Has a problem that the vibration combustion is continued and the time during which the vibration combustion is generated becomes long.

特開平11-37456号公報Japanese Unexamined Patent Publication No. 11-37456

本発明が解決しようとする課題は、
燃焼用空気供給量と燃料ガス供給量を調節することで燃焼量の調節を行うようにしている燃焼装置であって、燃焼量変更中に振動燃焼が発生した場合、振動燃焼の発生をより早く検出することのできるようにした燃焼装置を提供するものである。
The problem to be solved by the present invention is
It is a combustion device that adjusts the combustion amount by adjusting the combustion air supply amount and the fuel gas supply amount, and if vibration combustion occurs while changing the combustion amount, the vibration combustion occurs earlier. It provides a combustion device that can be detected.

請求項1に記載の発明は、燃焼用空気を送る送風機と、燃料ガスを通す燃料ガス供給配管を持ち、燃焼用空気と燃料ガスを供給しながら燃焼を行う燃焼装置であって、燃焼用空気と燃料ガスの供給量を調節することで燃焼量の変更を可能としている燃焼装置において、燃焼用空気を送る送風経路の途中に、送風経路内の風圧を検出する送風経路圧力検出装置を設置しておき、燃焼量の変更中に送風経路圧力検出装置で検出する風圧値が燃焼量変更方向とは逆行していることを検出した場合、振動燃焼が発生している可能性があるとの判定を行うものであることを特徴とする。 The invention according to claim 1 is a combustion device having a blower for sending combustion air and a fuel gas supply pipe for passing fuel gas, and combusting while supplying combustion air and fuel gas, wherein the combustion air is used. In the combustion device that can change the combustion amount by adjusting the supply amount of fuel gas, a blow path pressure detector that detects the wind pressure in the blow path is installed in the middle of the blow path that sends the combustion air. If it is detected that the wind pressure value detected by the blower path pressure detector is opposite to the direction of the combustion amount change during the change of the combustion amount, it is determined that vibration combustion may have occurred. It is characterized in that it is to perform.

請求項2に記載の発明は、前記振動燃焼の検出を行う燃焼装置において、燃焼量変更方向とは逆行する風圧の変化が検出された風圧値の次以降に検出される風圧値に基づいて風圧値の最大値と最小値を算出するようにしておき、算出した風圧値の最大値と最小値の差が設定値を超えた場合、振動燃焼が発生しているとの判定を行うものであることを特徴とする。 According to the second aspect of the present invention, in the combustion apparatus for detecting the vibration combustion, the wind pressure is based on the wind pressure value detected after the wind pressure value in which the change in the wind pressure opposite to the combustion amount changing direction is detected. The maximum value and the minimum value of the value are calculated, and when the difference between the maximum value and the minimum value of the calculated wind pressure value exceeds the set value, it is determined that vibration combustion is occurring. It is characterized by that.

請求項3に記載の発明は、前記の振動燃焼の検出を行う燃焼装置において、燃焼量変更方向とは逆行する風圧の変化が検出された風圧値の次以降に検出される風圧値データから最大値及び最小値の除いた残りデータでの最大値と最小値を算出するようにしておき、算出した風圧値の最大値と最小値の差が設定値を超えた場合、振動燃焼が発生しているとの判定を行うものであることを特徴とする。 The invention according to claim 3 is the maximum from the wind pressure value data detected after the wind pressure value in which the change in the wind pressure opposite to the combustion amount change direction is detected in the combustion device for detecting the vibration combustion. The maximum value and the minimum value of the remaining data excluding the value and the minimum value are calculated, and if the difference between the maximum value and the minimum value of the calculated wind pressure value exceeds the set value, vibration combustion occurs. It is characterized in that it is determined to be present.

請求項4に記載の発明は、前記の振動燃焼の検出を行う燃焼装置において、振動燃焼の発生を判定する最大値と最小値の算出に使用する風圧値は、移動する設定時間内での最大値と最小値とするが、風圧値の最大値と最小値を算出は、風圧値の検出個数が設定時間分に達するまで待たずに行っておき、最大値と最小値の差が設定値を超えると振動燃焼が発生しているとの判定を行うものであることを特徴とする。 According to the fourth aspect of the present invention, in the combustion device for detecting the vibration combustion, the wind pressure value used for calculating the maximum value and the minimum value for determining the occurrence of the vibration combustion is the maximum within the set time for movement. Although the value and the minimum value are used, the maximum and minimum values of the wind pressure value are calculated without waiting until the number of detected wind pressure values reaches the set time, and the difference between the maximum value and the minimum value is the set value. When it exceeds the limit, it is determined that vibration combustion is occurring.

本発明を実施することで、燃焼量変更途中でも振動燃焼の発生を検出することができるようになり、振動燃焼を早期に検出して対応することで、振動燃焼が継続する時間を短くすることができる。 By implementing the present invention, it becomes possible to detect the occurrence of oscillating combustion even while the combustion amount is being changed, and by detecting and responding to oscillating combustion at an early stage, the time for oscillating combustion to continue can be shortened. Can be done.

本発明を実施している燃焼装置のフロー図Flow chart of the combustion apparatus carrying out the present invention 送風径路内圧力推移の説明図Explanatory diagram of pressure transition in the air flow path 振動燃焼時における送風径路圧力検出状況説明図Explanatory drawing of air flow path pressure detection during vibration combustion 他の実施例での振動燃焼時における送風径路圧力検出状況説明図Explanatory drawing of air passage pressure detection during vibration combustion in other examples

本発明の一実施例を図面を用いて説明する。図1は本発明を実施している燃焼装置のフロー図、図2は送風径路内圧力推移の説明図、図3は振動燃焼時における送風径路圧力検出状況説明図である。バーナ2は、燃料ガス供給配管8を通して供給してきた燃料ガスと、送風機6から送風路1を通して供給してきた燃焼用空気を混合して燃焼を行う。燃料ガスの供給量と燃焼用空気の供給量は、一定の比率となるように調節しており、燃料ガス供給量と燃焼用空気供給量を増減することで燃焼量を変更する。燃焼量の調節には、燃料ガス供給配管8の途中に燃料ガスの供給量を制御する燃料供給制御弁4を設置し、送風機6には供給電源周波数を変更することで送風機6の回転速度を調節するインバータ装置5を設置しておき、燃料供給量と燃焼用空気供給量の調節を行う。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart of a combustion device for carrying out the present invention, FIG. 2 is an explanatory diagram of a pressure transition in a blower path, and FIG. 3 is an explanatory view of a pressure detection status of a blower path during oscillating combustion. The burner 2 burns by mixing the fuel gas supplied through the fuel gas supply pipe 8 and the combustion air supplied from the blower 6 through the air passage 1. The fuel gas supply amount and the combustion air supply amount are adjusted so as to have a constant ratio, and the combustion amount is changed by increasing or decreasing the fuel gas supply amount and the combustion air supply amount. To adjust the combustion amount, a fuel supply control valve 4 for controlling the fuel gas supply amount is installed in the middle of the fuel gas supply pipe 8, and the rotation speed of the blower 6 is adjusted to the blower 6 by changing the supply power supply frequency. An inverter device 5 to be adjusted is installed, and the fuel supply amount and the combustion air supply amount are adjusted.

燃焼装置の運転制御は、運転制御装置7を設置しておいて運転制御装置7によって行う。運転制御装置7は、燃料供給制御弁4やインバータ装置5と接続しておいて、燃料供給制御弁4やインバータ装置5の動作を制御する。また、送風路1には送風機6から供給される燃焼用空気の風圧を検出する送風経路圧力検出装置3を設置しておく。送風経路圧力検出装置3も運転制御装置7と接続しておき、送風経路圧力検出装置3で検出した風圧の値は運転制御装置7に入力するようにしておく。 The operation control of the combustion device is performed by the operation control device 7 with the operation control device 7 installed. The operation control device 7 is connected to the fuel supply control valve 4 and the inverter device 5 to control the operation of the fuel supply control valve 4 and the inverter device 5. Further, a blower path pressure detecting device 3 for detecting the wind pressure of the combustion air supplied from the blower 6 is installed in the blower path 1. The blow path pressure detection device 3 is also connected to the operation control device 7, and the value of the wind pressure detected by the blow path pressure detection device 3 is input to the operation control device 7.

図2には送風路1内の風圧を記載している。図2で記載しているのは、燃焼量を低燃焼から高燃焼に変更する前後での風圧であり、正常に燃焼している場合を破線で示し、振動燃焼が発生したケースでの風圧は実線で示している。振動燃焼は燃焼量変更時の途中で始まっており、それまでは二つの線は重なっているが、振動燃焼開始以降は2つに分かれている。 FIG. 2 shows the wind pressure in the air passage 1. FIG. 2 shows the wind pressure before and after changing the combustion amount from low combustion to high combustion. The case of normal combustion is shown by a broken line, and the wind pressure in the case of vibration combustion is shown. It is shown by a solid line. The oscillating combustion started in the middle of the change of the combustion amount, and the two lines overlapped until then, but after the oscillating combustion started, it is divided into two.

燃焼量が大きくなると、送風機6からバーナ2へ供給する燃焼用空気量が増加し、バーナ2が燃焼を行う燃焼室内の圧力も上昇するため、送風路1における風圧は上昇する。先ず図2で振動燃焼が発生していない場合の風圧に着目すると、燃焼量変更時には低燃焼時の風圧から高燃焼時の風圧となるまで一様に上昇している。燃料供給量を段階的に増減するものであると、燃料供給量を変更するタイミングで風圧の変動が見られるが、燃焼用空気と燃料ガスを比例的に変更することによって燃焼量を変更する場合には、風圧は直線的に変化していく。 When the amount of combustion increases, the amount of combustion air supplied from the blower 6 to the burner 2 increases, and the pressure in the combustion chamber where the burner 2 burns also increases, so that the wind pressure in the air passage 1 increases. First, focusing on the wind pressure when vibration combustion does not occur in FIG. 2, when the combustion amount is changed, the wind pressure uniformly rises from the wind pressure at the time of low combustion to the wind pressure at the time of high combustion. If the fuel supply amount is increased or decreased in stages, the wind pressure will fluctuate at the timing of changing the fuel supply amount, but when the combustion amount is changed by changing the combustion air and fuel gas proportionally. The wind pressure changes linearly.

送風路1内の圧力を検出する送風経路圧力検出装置3では、一定の間隔で各瞬間における風圧を検出して運転制御装置7へ出力する。送風経路圧力検出装置3で検出している各瞬間での風圧は、正常の燃焼が行われている状態で燃焼量を増加している場合には、ある時点で検出した風圧とその次の時点で検出した風圧を比較すると、時間が経過するごとに風圧が増加していくものであるため、検出される風圧値は増加していくはずである。運転制御装置7では、風圧が燃焼量変更の方向へ変化し続けている場合には、振動燃焼は発生していないと判断することができる。 The air passage pressure detection device 3 that detects the pressure in the air passage 1 detects the wind pressure at each moment at regular intervals and outputs the wind pressure to the operation control device 7. The wind pressure at each moment detected by the blower path pressure detection device 3 is the wind pressure detected at one time point and the next time point when the amount of combustion is increasing while normal combustion is being performed. Comparing the wind pressures detected in, the wind pressures increase with the passage of time, so the detected wind pressure values should increase. In the operation control device 7, when the wind pressure continues to change in the direction of changing the combustion amount, it can be determined that the vibration combustion has not occurred.

次に図2で燃焼量変更の途中から振動燃焼が発生している場合の風圧に着目する。振動燃焼が発生する前の風圧は前記の振動燃焼が発生していない場合と同じであり、時間が経過するごとに風圧が増加し、燃焼量増加の途中で風圧が低下することはない。しかし、燃焼量変更の途中で振動燃焼が始まると、振動燃焼発生中は短い周期で大きな風圧変動が発生する。燃焼量増加中に振動燃焼が発生している場合、風圧の中間値は増加していくが、瞬間における風圧値は中間値から上下に大きく触れる。燃焼量増加中に振動燃焼が発生している状態での送風経路圧力検出装置3により検出している送風路1内の風圧値は、前回値と今回値を比較すると、振動燃焼による風圧変動の方が燃焼量増加による風圧変動よりも大きいため、瞬間的な風圧では前回風圧より低い値が検出されることがある。 Next, in FIG. 2, attention is paid to the wind pressure when oscillating combustion occurs from the middle of changing the combustion amount. The wind pressure before the vibration combustion occurs is the same as the case where the vibration combustion does not occur, the wind pressure increases with the passage of time, and the wind pressure does not decrease in the middle of the increase in the combustion amount. However, if vibration combustion starts in the middle of changing the combustion amount, a large wind pressure fluctuation occurs in a short cycle during vibration combustion. When vibration combustion occurs while the amount of combustion is increasing, the median value of the wind pressure increases, but the wind pressure value at the moment touches up and down greatly from the median value. The wind pressure value in the air passage 1 detected by the air flow path pressure detection device 3 in the state where vibration combustion is occurring while the combustion amount is increasing is the wind pressure fluctuation due to the vibration combustion when comparing the previous value and the current value. Since this is larger than the wind pressure fluctuation due to the increase in combustion amount, a value lower than the previous wind pressure may be detected in the instantaneous wind pressure.

運転制御装置7では送風路1内での風圧を監視しておき、燃焼量を増加している状態であるにもかかわらず、検出している送風路1の風圧値が減少していたことを検出すると、振動燃焼発生の可能性があると判定する。運転制御装置7では、この段階で振動燃焼発生と判断するようにしてもよいのであるが、この測定値の検出が異常である可能性もあるため、ここでは振動燃焼発生との判定までは行っておらず、振動燃焼可能性有りとして振動燃焼の監視を行う。その後、運転制御装置7では送風経路圧力検出装置3で検出している送風路内の風圧値を蓄積し、設定時間内で検出した風圧の最大値と最小値の差を算出する。算出した最大値と最小値の差が設定値より大きくなっていた場合、振動燃焼が発生していると判定する。 The operation control device 7 monitors the wind pressure in the air passage 1, and indicates that the detected wind pressure value of the air passage 1 has decreased even though the amount of combustion is increasing. When it is detected, it is determined that vibration combustion may occur. In the operation control device 7, it may be determined that vibration combustion has occurred at this stage, but since there is a possibility that the detection of this measured value is abnormal, the determination of vibration combustion occurrence is performed here. It is not, and the vibration combustion is monitored as there is a possibility of vibration combustion. After that, the operation control device 7 accumulates the wind pressure values in the air passage detected by the air passage pressure detection device 3, and calculates the difference between the maximum value and the minimum value of the wind pressure detected within the set time. If the difference between the calculated maximum value and the minimum value is larger than the set value, it is determined that vibration combustion has occurred.

図3は振動燃焼が発生している状況での送風経路圧力検出装置による風圧検出状況を記載したものである。図3に記載しているように、送風経路圧力検出装置3による風圧の検出は、例えば1秒毎などの間隔を開けて行うようにしており、複数回検出した所定時間内での風圧値を記録しておいてその値に基づき振動燃焼の発生を判定する。図では、1秒ごとに風圧値を検出するものであって、時刻T0から時刻T4の各点で風圧の検出を行っている。時刻T0で検出した風圧の値を風圧P0としており、時刻T1での風圧値は風圧P1、時刻T2では風圧P2、時刻T3では風圧P3、時刻T4では風圧P4としている。時刻T0の段階では、振動燃焼は発生前の状態であり、燃焼量の増加による風圧の上昇はあるが、振動燃焼による大きな風圧変動は発生していない。振動燃焼は時刻T0と時刻T1の間で発生しており、振動燃焼発生中は風圧が大きく変動する。ここでは燃焼量の増加中に振動燃焼が発生しているものであるため、風圧は短周期で大きく変動しつつ風圧の中間値は上昇傾向となっている。 FIG. 3 shows the wind pressure detection status by the blower path pressure detection device in the situation where vibration combustion is occurring. As shown in FIG. 3, the wind pressure is detected by the blower path pressure detecting device 3 at intervals such as every second, and the wind pressure value within a predetermined time detected a plurality of times is measured. Record and determine the occurrence of oscillating combustion based on the value. In the figure, the wind pressure value is detected every second, and the wind pressure is detected at each point from time T0 to time T4. The value of the wind pressure detected at time T0 is defined as wind pressure P0, and the wind pressure value at time T1 is wind pressure P1, wind pressure P2 at time T2, wind pressure P3 at time T3, and wind pressure P4 at time T4. At the stage of time T0, the oscillating combustion is in the state before the occurrence, and the wind pressure increases due to the increase in the combustion amount, but the large wind pressure fluctuation due to the oscillating combustion does not occur. The oscillating combustion occurs between the time T0 and the time T1, and the wind pressure fluctuates greatly during the oscillating combustion. Here, since vibration combustion occurs while the amount of combustion is increasing, the wind pressure fluctuates greatly in a short cycle, and the median value of the wind pressure tends to increase.

ここで時刻T0での風圧P0と時刻T1での風圧P1を比較すると、風圧P1の方が低くなっている。燃焼量を増加している場合、通常は時間の経過によって風圧は増加していくはずであるが、風圧P1が風圧P0より低くなっていることより、振動燃焼が発生している可能性を考えることができる。 Here, when the wind pressure P0 at the time T0 and the wind pressure P1 at the time T1 are compared, the wind pressure P1 is lower. When the amount of combustion is increased, the wind pressure should normally increase with the passage of time, but since the wind pressure P1 is lower than the wind pressure P0, it is considered that vibration combustion may occur. be able to.

なお、送風経路圧力検出装置3での風圧検出は1秒ごとのように比較的長い間隔で検出するものであって、振動燃焼による圧力変動の周期は1秒間に5回若しくはそれ以上の短い周期で行われるものであると、送風経路圧力検出装置3が検出する時点における風圧値は、大きく変動している変動幅のどこかとなり、風圧を検出するタイミングによって風圧値が異なることになる。図3では時刻1の時点での風圧P1は低くなっているが、検出タイミングの僅かな違いにより、例えば大きく変動している風圧のピーク付近である風圧P1’の値を検出することもあり得る。この場合、風圧P1’の値は風圧P0より高い値となるため、この時点では振動燃焼の検出はできないということになる。しかしこの場合であっても、この次の風圧検出タイミングである時刻T2では、高い値が検出されていた風圧P1’よりも小さな値が検出される可能性が高くなる。振動燃焼が発生していない場合に、燃焼量の変更方向に対して逆行する風圧変動が発生する可能性は非常に低いものである反面、振動燃焼が発生している場合には燃焼量の変更方向に逆行する風圧変動が検出される可能性が現れ、振動燃焼が発生しているのに風圧が同じ方向に変化しているものしか検出されないという可能性は低くなる。そのため、燃焼量の変更方向に逆行する風圧が検出されるか否かで振動燃焼発生の有無を推測することができる。 The wind pressure detected by the blower path pressure detecting device 3 is detected at relatively long intervals such as every second, and the cycle of pressure fluctuation due to oscillating combustion is a short cycle of 5 times or more per second. The wind pressure value at the time of detection by the blower path pressure detecting device 3 is somewhere in the fluctuation range that greatly fluctuates, and the wind pressure value differs depending on the timing of detecting the wind pressure. In FIG. 3, the wind pressure P1 at the time of time 1 is low, but it is possible to detect the value of the wind pressure P1'near the peak of the wind pressure that fluctuates greatly, for example, due to a slight difference in the detection timing. .. In this case, since the value of the wind pressure P1'is higher than the wind pressure P0, it means that the vibration combustion cannot be detected at this point. However, even in this case, at the time T2, which is the next wind pressure detection timing, there is a high possibility that a value smaller than the wind pressure P1'where a high value was detected will be detected. When vibration combustion does not occur, it is very unlikely that wind pressure fluctuations that go against the direction of change in combustion amount will occur, but on the other hand, if vibration combustion occurs, the combustion amount will change. There is a possibility that wind pressure fluctuations that go backward in the direction will be detected, and it is less likely that vibration combustion is occurring but only those whose wind pressure is changing in the same direction are detected. Therefore, it is possible to estimate the presence or absence of oscillating combustion depending on whether or not the wind pressure that goes against the changing direction of the combustion amount is detected.

ただし燃焼量変更方向に逆行する風圧値が一度検出されただけで振動燃焼発生と判定すると、風圧値の測定に異常が発生して測定値が異常となった場合に振動燃焼であると誤って検出することがある。この誤検出を防止するため、風圧値を一定時間間隔で複数検出して風圧値が変化した幅を検出することで振動燃焼の判定を行うことで、振動燃焼の判定精度を高めることができる。その場合、風圧値が燃焼量変更に逆行した値が検出されると、その値を除いたその後の所定期間内に検出される風圧値の最大値と最小値を抜き出しておき、その差が設定値を超えた場合に振動燃焼が発生していると判定する。 However, if it is determined that vibration combustion has occurred only once when the wind pressure value that goes against the direction of changing the combustion amount is detected, if an abnormality occurs in the measurement of the wind pressure value and the measured value becomes abnormal, it is mistakenly regarded as vibration combustion. May be detected. In order to prevent this erroneous detection, it is possible to improve the determination accuracy of the vibration combustion by detecting a plurality of wind pressure values at regular time intervals and detecting the width in which the wind pressure value changes to determine the vibration combustion. In that case, when a value whose wind pressure value goes against the change in combustion amount is detected, the maximum and minimum values of the wind pressure value detected within the specified period after excluding that value are extracted and the difference is set. When the value is exceeded, it is determined that vibration combustion has occurred.

振動燃焼の判定に使用する風圧値は、移動していく設定時間内の最大値と最小値を使用する。そして、最大値と最小値の差の算出は、設定時間に達していなくても風圧値が検出されているなかでの最大値と最小値の算出を行い、最大値と最小値の差が設定値を超えると振動燃焼が発生していると判定する。 As the wind pressure value used for determining the vibration combustion, the maximum value and the minimum value within the set time of moving are used. Then, the difference between the maximum value and the minimum value is calculated by calculating the maximum value and the minimum value while the wind pressure value is detected even if the set time has not been reached, and the difference between the maximum value and the minimum value is set. If the value is exceeded, it is determined that vibration combustion is occurring.

図3に基づいて具体的に説明する。時刻T1での風圧P1は時刻T0での風圧P0より低くなっていることを検出すると、振動燃焼が発生していることが考えられるため、振動燃焼の確認を行う。ただし、ここで検出した風圧P1の値が間違えていたことによって風圧P1の値が風圧P0より低くなる場合があり、その場合に風圧P1の値が大幅に小さな値となっていれば、次の風圧P2の値が高くなくても風圧P1と風圧P2の差は非常に大きな値となり、この差によって振動燃焼が発生しているとの判定が行われることになる。そのため、風圧P1の値は振動燃焼の判定には利用せず、次の風圧P2以降の値に基づいて判定する。 A specific description will be given with reference to FIG. When it is detected that the wind pressure P1 at the time T1 is lower than the wind pressure P0 at the time T0, it is considered that the vibration combustion has occurred, so the vibration combustion is confirmed. However, the value of the wind pressure P1 may be lower than the wind pressure P0 due to the wrong value of the wind pressure P1 detected here, and if the value of the wind pressure P1 is significantly smaller in that case, the following Even if the value of the wind pressure P2 is not high, the difference between the wind pressure P1 and the wind pressure P2 becomes a very large value, and it is determined that the vibration combustion is generated by this difference. Therefore, the value of the wind pressure P1 is not used for the determination of the vibration combustion, and the determination is made based on the value after the next wind pressure P2.

時刻T3で風圧P3を検出すると、風圧P2と風圧P3の中から最大値と最小値を取り出す。最大値と最小値を算出する風圧値は、移動していく10秒間での最大値と最小値としていた場合、時刻T2から10秒間となると時刻T11までの間での最大値と最小値となるが、振動燃焼の判定は風圧値が2点検出された時点から開始する。ここでは2つの値しか存在せず、風圧P3が最大値、風圧P2が最小値となり、最大値と最小値の差を検出する。この最大値と最小値の差が設定値を超えるものであると、振動燃焼を発生していると判定する。風圧P3と風圧P2の差は設定値を超えるものではない場合は、この段階では振動燃焼が発生しているとの判定は行わない。その後、時刻T4で風圧P4の検出を行うと、風圧P2から風圧P4の3点から最大値と最小値を算出する。最大値は風圧P4、最小値は風圧P2を抜き出すと、最大値と最小値の差を算出する。ここで風圧P4と風圧P2の差が設定値を超えていた場合、運転制御装置7は振動燃焼が発生していると判定する。 When the wind pressure P3 is detected at the time T3, the maximum value and the minimum value are taken out from the wind pressure P2 and the wind pressure P3. If the wind pressure value for calculating the maximum value and the minimum value is the maximum value and the minimum value in 10 seconds of moving, the maximum value and the minimum value between the time T2 and the time T11 are obtained from the time T2 to the time T11. However, the determination of oscillating combustion starts from the time when two wind pressure values are detected. Here, there are only two values, the wind pressure P3 is the maximum value, the wind pressure P2 is the minimum value, and the difference between the maximum value and the minimum value is detected. If the difference between the maximum value and the minimum value exceeds the set value, it is determined that oscillating combustion is occurring. If the difference between the wind pressure P3 and the wind pressure P2 does not exceed the set value, it is not determined that oscillating combustion is occurring at this stage. After that, when the wind pressure P4 is detected at the time T4, the maximum value and the minimum value are calculated from the three points of the wind pressure P2 and the wind pressure P4. When the maximum value is the wind pressure P4 and the minimum value is the wind pressure P2, the difference between the maximum value and the minimum value is calculated. Here, when the difference between the wind pressure P4 and the wind pressure P2 exceeds the set value, the operation control device 7 determines that vibration combustion has occurred.

運転制御装置7では、振動燃焼が発生しているとの判定を行った場合には、振動燃焼を解消するための操作を行う。振動燃焼が発生した場合には燃焼を一旦停止し、再起動すると多くの場合で振動燃焼は治まることになる。また振動燃焼の発生要因として、燃焼用空気の噴射量が大きくなって燃焼面から火炎がリフトし、燃焼開始点がずれることで発生することがあるため、燃焼量を小さくすることも振動燃焼の修復に有効である。そのため振動燃焼が発生した場合、運転制御装置7は燃料供給量と燃焼用空気供給量を削減することによる燃焼量の減少や、燃料供給を停止して燃焼を停止させ、その後に燃焼の再起動を行うことによって振動燃焼を解消する。 When it is determined that the vibration combustion is occurring, the operation control device 7 performs an operation for eliminating the vibration combustion. When oscillating combustion occurs, the combustion is temporarily stopped, and when it is restarted, the oscillating combustion will be subsided in many cases. In addition, as a factor that causes vibration combustion, the injection amount of combustion air becomes large and the flame lifts from the combustion surface, which may occur when the combustion start point shifts. Therefore, reducing the combustion amount is also possible for vibration combustion. Effective for repair. Therefore, when vibration combustion occurs, the operation control device 7 reduces the amount of combustion by reducing the fuel supply amount and the combustion air supply amount, or stops the fuel supply to stop the combustion, and then restarts the combustion. By doing this, vibration combustion is eliminated.

このようにすることで、燃焼量を変更している時点でも振動燃焼の発生を検出することができ、振動燃焼に対する対応を行うことができる。燃焼量の変更を終了してから振動燃焼の判定を行う場合に比べてより早い段階で振動燃焼に対する対応を行うことができるので、振動燃焼が行われる時間を短くすることができる。 By doing so, it is possible to detect the occurrence of oscillating combustion even when the amount of combustion is changed, and it is possible to take measures against oscillating combustion. Since it is possible to respond to the vibration combustion at an earlier stage than when the vibration combustion is determined after the change of the combustion amount is completed, the time during which the vibration combustion is performed can be shortened.

前記実施例では、燃焼量を増加している状態での振動燃焼を検出するものであったが、燃焼量を減少している状態でも振動燃焼の検出は行える。燃焼量を減少している状態では、燃焼用空気供給量の減少と燃焼室内での炉圧低下により、送風経路圧力検出装置3で検出する風圧値は減少傾向となる。この場合も振動燃焼が発生すると、本来なら減少し続けていく風圧値が途中で逆行して増加する値が検出されると、振動燃焼の発生が疑われることになる。この場合も、検出値の異常によって振動燃焼を誤検出することを防止するためには、最初に逆行する値が検出された風圧値は除いてそれ以降の風圧を記録しておき、記録した風圧値の最大値と最小値の差に基づいて振動燃焼の発生を判定することで、振動燃焼を確実かつ早期に検出することができる。 In the above embodiment, the vibration combustion is detected in the state where the combustion amount is increased, but the vibration combustion can be detected even in the state where the combustion amount is decreased. In a state where the amount of combustion is decreasing, the wind pressure value detected by the blower path pressure detecting device 3 tends to decrease due to the decrease in the amount of air supplied for combustion and the decrease in the furnace pressure in the combustion chamber. In this case as well, when vibration combustion occurs, the occurrence of vibration combustion is suspected when a value is detected in which the wind pressure value, which normally continues to decrease, reverses and increases on the way. In this case as well, in order to prevent erroneous detection of oscillating combustion due to an abnormality in the detected value, the wind pressure after that is recorded except for the wind pressure value at which the reverse value was detected first, and the recorded wind pressure is recorded. By determining the occurrence of oscillating combustion based on the difference between the maximum value and the minimum value, oscillating combustion can be detected reliably and early.

図4は他の実施例での振動燃焼時における送風径路圧力検出状況説明図である。図3の実施例との違いは、燃焼量変更方向とは逆行する風圧の変化が検出された風圧値の次以降に検出される風圧値データから最大値及び最小値の除いた残りデータでの最大値と最小値を算出するようにしておき、算出した風圧値の最大値と最小値の差が設定値を超えた場合、振動燃焼が発生しているとの判定を行うものとしている。 FIG. 4 is an explanatory diagram of the air passage pressure detection status at the time of vibration combustion in another embodiment. The difference from the embodiment of FIG. 3 is the remaining data obtained by removing the maximum value and the minimum value from the wind pressure value data detected after the wind pressure value in which the change in the wind pressure opposite to the combustion amount change direction is detected. The maximum value and the minimum value are calculated, and when the difference between the maximum value and the minimum value of the calculated wind pressure value exceeds the set value, it is determined that vibration combustion is occurring.

図4でも、時刻T1での風圧P1が時刻T0での風圧P0より低くなっていることを検出すると、振動燃焼が発生していることが考えられるため、振動燃焼の確認を行う。ただし、ここで検出した風圧P1の値が間違えていたことによって風圧P1の値が風圧P0より低くなる場合があり、その場合に風圧P1の値が大幅に小さな値となっていれば、次の風圧P2の値が高くなくても風圧P1と風圧P2の差は非常に大きな値となり、この差によって振動燃焼が発生しているとの判定が行われることになる。そのため、風圧P1の値は振動燃焼の判定には利用せず、次の風圧P2以降の値に基づいて判定する。 Also in FIG. 4, when it is detected that the wind pressure P1 at the time T1 is lower than the wind pressure P0 at the time T0, it is considered that the vibration combustion is occurring, so the vibration combustion is confirmed. However, the value of the wind pressure P1 may be lower than the wind pressure P0 due to the wrong value of the wind pressure P1 detected here, and if the value of the wind pressure P1 is significantly smaller in that case, the following Even if the value of the wind pressure P2 is not high, the difference between the wind pressure P1 and the wind pressure P2 becomes a very large value, and it is determined that the vibration combustion is generated by this difference. Therefore, the value of the wind pressure P1 is not used for the determination of the vibration combustion, and the determination is made based on the value after the next wind pressure P2.

時刻T3で風圧P3を検出すると、風圧P2と風圧P3の中から最大値と最小値を取り出す。最大値と最小値を算出する風圧値は、移動していく10秒間での最大値と最小値としていた場合、時刻T2から10秒間となると時刻T11までの間での最大値と最小値となるが、振動燃焼の判定は風圧値が2点検出された時点から開始する。時刻T3の時点では検出した風圧値は2つしか存在せず、風圧P3が最大値、風圧P2が最小値となる。図4の実施例では、ここで検出された最大値と最小値は振動燃焼の判定に使用せず、それ以外の風圧値データでの最大値と最小値から振動燃焼の判定を行うため、この段階では振動燃焼の判定は行わない。その後、時刻T4で風圧P4の検出を行うと、風圧P2から風圧P4の3点から最大値と最小値を算出する。最大値は風圧P4、最小値は風圧P2であるため、風圧P4と風圧P2を除いて残りの風圧値から最大値と最小値を算出する。ここでは残りの値は風圧P3のみであって、最大値と最小値の差はないため、振動燃焼が発生しているとの判定は行わない。 When the wind pressure P3 is detected at the time T3, the maximum value and the minimum value are taken out from the wind pressure P2 and the wind pressure P3. If the wind pressure value for calculating the maximum value and the minimum value is the maximum value and the minimum value in 10 seconds of moving, the maximum value and the minimum value between the time T2 and the time T11 are obtained from the time T2 to the time T11. However, the determination of oscillating combustion starts from the time when two wind pressure values are detected. At the time of time T3, there are only two detected wind pressure values, the wind pressure P3 is the maximum value, and the wind pressure P2 is the minimum value. In the embodiment of FIG. 4, the maximum value and the minimum value detected here are not used for the determination of the vibration combustion, and the vibration combustion is determined from the maximum value and the minimum value in the other wind pressure value data. Vibration combustion is not determined at this stage. After that, when the wind pressure P4 is detected at the time T4, the maximum value and the minimum value are calculated from the three points of the wind pressure P2 and the wind pressure P4. Since the maximum value is the wind pressure P4 and the minimum value is the wind pressure P2, the maximum value and the minimum value are calculated from the remaining wind pressure values excluding the wind pressure P4 and the wind pressure P2. Here, since the remaining value is only the wind pressure P3 and there is no difference between the maximum value and the minimum value, it is not determined that oscillating combustion is occurring.

時刻T5となり、その時点の風圧P5の検出を行うと、風圧P2から風圧P5の4点から最大値と最小値を算出する。最大値は風圧P4、最小値は風圧P2であるため、風圧P4と風圧P2を除いて残りの風圧値から最大値と最小値を算出する。残りの値の最大値は風圧P5、最小値は風圧P3であり、最大値と最小値の差を算出する。ここで風圧P3と風圧P5の差が設定値を超えていた場合、運転制御装置7は振動燃焼が発生していると判定する。 When the time T5 is reached and the wind pressure P5 at that time is detected, the maximum value and the minimum value are calculated from the four points of the wind pressure P5 from the wind pressure P2. Since the maximum value is the wind pressure P4 and the minimum value is the wind pressure P2, the maximum value and the minimum value are calculated from the remaining wind pressure values excluding the wind pressure P4 and the wind pressure P2. The maximum value of the remaining values is the wind pressure P5, the minimum value is the wind pressure P3, and the difference between the maximum value and the minimum value is calculated. Here, when the difference between the wind pressure P3 and the wind pressure P5 exceeds the set value, the operation control device 7 determines that vibration combustion has occurred.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications can be made by a person having ordinary knowledge in the art within the technical idea of the present invention.

1 送風路
2 バーナ
3 送風経路圧力検出装置
4 燃料供給制御弁
5 インバータ装置
6 送風機
7 運転制御装置
8 燃料ガス供給配管
1 Blower
2 Burner 3 Blower path pressure detector 4 Fuel supply control valve 5 Inverter device 6 Blower 7 Operation control device 8 Fuel gas supply piping

Claims (4)

燃焼用空気を送る送風機と、燃料ガスを通す燃料ガス供給配管を持ち、燃焼用空気と燃料ガスを供給しながら燃焼を行う燃焼装置であって、燃焼用空気と燃料ガスの供給量を調節することで燃焼量の変更を可能としている燃焼装置において、燃焼用空気を送る送風経路の途中に、送風経路内の風圧を検出する送風経路圧力検出装置を設置しておき、燃焼量の変更中に送風経路圧力検出装置で検出する風圧値が燃焼量変更方向とは逆行していることを検出した場合、振動燃焼が発生している可能性があるとの判定を行うものであることを特徴とする振動燃焼の検出を行う燃焼装置。 It is a combustion device that has a blower that sends combustion air and a fuel gas supply pipe that passes fuel gas, and burns while supplying combustion air and fuel gas, and regulates the supply amount of combustion air and fuel gas. In the combustion device that enables the change of the combustion amount, a blow path pressure detection device that detects the wind pressure in the blow path is installed in the middle of the blow path for sending the combustion air, and the combustion amount is being changed. When it is detected that the wind pressure value detected by the blower path pressure detector is opposite to the direction of changing the combustion amount, it is determined that vibration combustion may have occurred. A combustion device that detects vibration combustion. 請求項1に記載の振動燃焼の検出を行う燃焼装置において、燃焼量変更方向とは逆行する風圧の変化が検出された風圧値の次以降に検出される風圧値に基づいて風圧値の最大値と最小値を算出するようにしておき、算出した風圧値の最大値と最小値の差が設定値を超えた場合、振動燃焼が発生しているとの判定を行うものであることを特徴とする振動燃焼の検出を行う燃焼装置。 In the combustion device for detecting vibration combustion according to claim 1, the maximum value of the wind pressure value is based on the wind pressure value detected after the wind pressure value in which the change in the wind pressure opposite to the combustion amount change direction is detected. When the difference between the maximum value and the minimum value of the calculated wind pressure value exceeds the set value, it is determined that vibration combustion is occurring. A combustion device that detects vibrational combustion. 請求項1に記載の振動燃焼の検出を行う燃焼装置において、燃焼量変更方向とは逆行する風圧の変化が検出された風圧値の次以降に検出される風圧値データから最大値及び最小値の除いた残りデータでの最大値と最小値を算出するようにしておき、算出した風圧値の最大値と最小値の差が設定値を超えた場合、振動燃焼が発生しているとの判定を行うものであることを特徴とする振動燃焼の検出を行う燃焼装置。 In the combustion device for detecting the vibration combustion according to claim 1, the maximum value and the minimum value are obtained from the wind pressure value data detected after the wind pressure value in which the change in the wind pressure opposite to the combustion amount change direction is detected. The maximum and minimum values of the remaining data after excluding are calculated, and if the difference between the maximum and minimum values of the calculated wind pressure value exceeds the set value, it is determined that vibration combustion is occurring. A combustion device that detects vibrational combustion, which is characterized by the fact that it is performed. 請求項2または3に記載の振動燃焼の検出を行う燃焼装置において、振動燃焼の発生を判定する最大値と最小値の算出に使用する風圧値は、移動する設定時間内での最大値と最小値とするが、風圧値の最大値と最小値を算出は、風圧値の検出個数が設定時間分に達するまで待たずに行っておき、最大値と最小値の差が設定値を超えると振動燃焼が発生しているとの判定を行うものであることを特徴とする振動燃焼の検出を行う燃焼装置。



In the combustion device that detects vibration combustion according to claim 2 or 3, the wind pressure value used for calculating the maximum value and the minimum value for determining the occurrence of vibration combustion is the maximum value and the minimum value within the set time for movement. Although it is a value, the maximum and minimum values of the wind pressure value are calculated without waiting until the number of detected wind pressure values reaches the set time, and vibration occurs when the difference between the maximum value and the minimum value exceeds the set value. A combustion device that detects vibrational combustion, which is characterized in that it determines that combustion is occurring.



JP2018133809A 2018-07-17 2018-07-17 Combustion device that detects vibration combustion Active JP7074337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018133809A JP7074337B2 (en) 2018-07-17 2018-07-17 Combustion device that detects vibration combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018133809A JP7074337B2 (en) 2018-07-17 2018-07-17 Combustion device that detects vibration combustion

Publications (2)

Publication Number Publication Date
JP2020012573A JP2020012573A (en) 2020-01-23
JP7074337B2 true JP7074337B2 (en) 2022-05-24

Family

ID=69170846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018133809A Active JP7074337B2 (en) 2018-07-17 2018-07-17 Combustion device that detects vibration combustion

Country Status (1)

Country Link
JP (1) JP7074337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220021177A (en) * 2020-08-13 2022-02-22 최창균 Source-pitch continuous charge and reformed pitch continuous discharge of Pitch Reformer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227219A (en) 1999-02-03 2000-08-15 Harman Co Ltd Combustion device
JP2004301412A (en) 2003-03-31 2004-10-28 Samson Co Ltd Gas fuel combustion device for combustion control based on burner head pressure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101061U (en) * 1987-12-24 1989-07-06
JP2973849B2 (en) * 1994-12-19 1999-11-08 三浦工業株式会社 Method for determining air volume switching in combustion device
JP3707186B2 (en) * 1997-02-25 2005-10-19 株式会社ノーリツ Vibration combustion detection method and combustion apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227219A (en) 1999-02-03 2000-08-15 Harman Co Ltd Combustion device
JP2004301412A (en) 2003-03-31 2004-10-28 Samson Co Ltd Gas fuel combustion device for combustion control based on burner head pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220021177A (en) * 2020-08-13 2022-02-22 최창균 Source-pitch continuous charge and reformed pitch continuous discharge of Pitch Reformer

Also Published As

Publication number Publication date
JP2020012573A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US9081388B2 (en) Flow rate control device
CA2679632C (en) Method and apparatus for generalized performance evaluation of equipment using achievable performance derived from statistics and real-time data
JP2015075277A (en) Ammonia injection quantity control device and ammonia injection quantity control method
EP3779376B1 (en) Gas safety device
JP7074337B2 (en) Combustion device that detects vibration combustion
JP5184764B2 (en) Electronic gas meter
JP2007120785A (en) Multi-can installed boiler for performing number control
JP4529731B2 (en) Boiler control method
JP2007192435A (en) Multitubular installation system for boiler
JP3955892B2 (en) Gas turbine combustor fuel system
JP2007278610A (en) Control method for gas water heater, and gas water heater for carrying out the control method
JP2016114311A (en) Hot water boiler
JP6433203B2 (en) Multi-can boiler
JP2000329302A (en) Number controller for multiple can installation boiler
JP2009168703A (en) Flow rate measuring apparatus and program of same
JP6289119B2 (en) Multi-can boiler with air supply valve
JP6580340B2 (en) Multi-can boiler
JP6490949B2 (en) CO detection combustion equipment
KR102475160B1 (en) Combustion control method when blocking heating pipe of boiler
JPH10231739A (en) Gas turbine combustion monitor
JP4015048B2 (en) Gas fuel combustion system with combustion control based on burner head pressure
JP6399579B2 (en) Multi-can boiler
JP6413416B2 (en) Boiler equipment
JP4296915B2 (en) Gas shut-off device
JP6485187B2 (en) Boiler system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7074337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150