JP2018173217A - Air preheater pressure difference rise prediction device - Google Patents

Air preheater pressure difference rise prediction device Download PDF

Info

Publication number
JP2018173217A
JP2018173217A JP2017071000A JP2017071000A JP2018173217A JP 2018173217 A JP2018173217 A JP 2018173217A JP 2017071000 A JP2017071000 A JP 2017071000A JP 2017071000 A JP2017071000 A JP 2017071000A JP 2018173217 A JP2018173217 A JP 2018173217A
Authority
JP
Japan
Prior art keywords
differential pressure
prediction
month
air preheater
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071000A
Other languages
Japanese (ja)
Other versions
JP6909425B2 (en
Inventor
貴史 中野
Takashi Nakano
貴史 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2017071000A priority Critical patent/JP6909425B2/en
Publication of JP2018173217A publication Critical patent/JP2018173217A/en
Application granted granted Critical
Publication of JP6909425B2 publication Critical patent/JP6909425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air preheater pressure difference rise prediction device capable of surely performing long-term prediction of necessity of maintenance of an air preheater.SOLUTION: An air preheater pressure difference rise prediction device includes a first pressure difference rise prediction portion 11 for predicting a first pressure difference rise by clogging progress prediction in a prediction target month, a second pressure difference rise prediction portion 12 for predicting a second pressure difference rise by gas flow change in accompany with air temperature change in the prediction target month, and a pressure difference prediction portion 13 for predicting pressure difference ΔPof an air preheater in the prediction target month on the basis of the first and second pressure difference rise predicted by the first and second pressure difference rise prediction portions 11, 12. The pressure difference rise prediction portion 11 includes a clogging progress prediction portion 11a for calculating a product of a clogging coefficient a and a predicted leakage ammonia concentration ybefore the prediction target month by one month, and a first pressure difference rise value calculation portion 11b for calculating a first pressure difference rise value by determining the sum of the products obtained by the clogging progress prediction portion 11a by one or several month unit to the prediction target month.SELECTED DRAWING: Figure 1

Description

本発明は、火力発電プラントのボイラ通風系統で使用されている空気予熱器(AH)の閉塞状況を監視するのに好適な空気予熱器差圧上昇予測装置に関する。   The present invention relates to an air preheater differential pressure increase prediction device suitable for monitoring the blockage of an air preheater (AH) used in a boiler ventilation system of a thermal power plant.

火力発電プラントのボイラ通風系統110は、図3に示すように、発電機タービン(不図示)と連結されたボイラ111と、ボイラ111と連結された脱硝装置112と、ボイラ111および脱硝装置112と連結された空気予熱器113と、空気予熱器113と連結されたガス・ガス・ヒータ熱回収器114(以下、「GGH熱回収器114」と称する。)と、GGH熱回収器114と連結された電気式集塵装置(EP)115と、電気式集塵装置115と誘引通風機(IDF)116を介して連結された脱硫装置117と、脱硫装置117と連結されたガス・ガス・ヒータ再加熱器118(以下、「GGH再加熱器118」と称する。)と、GGH再加熱器118と脱硫通風機(BUF)119を介して連結された煙突120と、燃焼用空気を空気予熱器113を介してボイラ111に送り込むための押込通風機(FDF)121とを備える。   As shown in FIG. 3, a boiler ventilation system 110 of a thermal power plant includes a boiler 111 connected to a generator turbine (not shown), a denitration device 112 connected to the boiler 111, a boiler 111, and a denitration device 112. The connected air preheater 113, the gas / heater heat recovery device 114 connected to the air preheater 113 (hereinafter referred to as “GGH heat recovery device 114”), and the GGH heat recovery device 114 are connected. The electric dust collector (EP) 115, the desulfurizer 117 connected via the electric dust collector 115 and the induction fan (IDF) 116, and the gas / gas heater connected to the desulfurizer 117 A heater 118 (hereinafter referred to as “GGH reheater 118”), a chimney 120 connected to the GGH reheater 118 via a desulfurization ventilator (BUF) 119, and a combustion The air through the air preheater 113 and a forced draft fan (FDF) 121 for feeding the boiler 111.

ボイラ111から排出された排ガスは、脱硝装置112で窒素酸化物等が除去されたのち、空気予熱器113でボイラ111に供給される燃焼用空気と熱交換される。空気予熱器113で熱が回収された排ガスは、GGH熱回収器114で熱が更に回収されたのち、電気式集塵装置115に送られる。電気式集塵装置115に送られた排ガスは、その中に含まれる媒塵が捕集されたのちに、誘引通風機116を介して脱硫装置117に送られて無害化される。脱硫装置117で無害化された排ガスは、GGH再加熱器118で再加熱されたのち、煙突120から大気に放出される。   The exhaust gas discharged from the boiler 111 is subjected to heat exchange with combustion air supplied to the boiler 111 by the air preheater 113 after nitrogen oxides and the like are removed by the denitration device 112. The exhaust gas whose heat has been recovered by the air preheater 113 is further recovered by the GGH heat recovery device 114 and then sent to the electric dust collector 115. The exhaust gas sent to the electric dust collector 115 is sent to the desulfurization device 117 via the induction fan 116 and detoxified after the dust contained therein is collected. The exhaust gas detoxified by the desulfurization device 117 is reheated by the GGH reheater 118 and then released from the chimney 120 to the atmosphere.

ここで、ボイラ111の排ガスに含まれる窒素酸化物を除去するためにアンモニアを脱硝装置112で注入するが、未反応のアンモニア(以下、「リークアンモニア」と称する。)が発生すると排ガス中の硫黄酸化物が反応して酸性硫安を生成する。   Here, in order to remove nitrogen oxides contained in the exhaust gas of the boiler 111, ammonia is injected by the denitration device 112. When unreacted ammonia (hereinafter referred to as “leak ammonia”) is generated, sulfur in the exhaust gas is emitted. The oxide reacts to produce acidic ammonium sulfate.

この酸性硫安は空気予熱器113の伝熱面に付着して排ガス中のダストを堆積させるため、空気予熱器113を閉塞させてしまい、発電機の出力を抑制して運転せざるを得ない状況となる。そのため、1年に1回程度の定期的なメンテナンスが必要となるが、メンテナンスの機会は数ヶ月間発電所を停止する大規模な点検期間に限られる。   Since this acidic ammonium sulfate adheres to the heat transfer surface of the air preheater 113 and deposits dust in the exhaust gas, the air preheater 113 is blocked, and the output of the generator must be suppressed to operate. It becomes. Therefore, regular maintenance is required once a year, but the maintenance opportunity is limited to a large-scale inspection period in which the power plant is stopped for several months.

空気予熱器113のメンテナンス要否を判断するために、差圧(空気予熱器113の排ガス入口と排ガス出口との圧力差)が次回のメンテナンス機会までにどれだけ上昇するかを予測することが必要となる。   In order to determine whether or not the air preheater 113 needs to be maintained, it is necessary to predict how much the differential pressure (pressure difference between the exhaust gas inlet and the exhaust gas outlet of the air preheater 113) will increase by the next maintenance opportunity. It becomes.

そこで、従来では、気温変化に伴うガス流量の変化によって差圧がどれだけ上昇するかを計算し、求めた差圧に基づいて水洗等の判断を行っている。
すなわち、図2(b)に予測式(2)で示すように、基準月(メンテナンス実行月の翌月)における平均差圧ΔP0[kPa](以下、「基準月平均差圧ΔP0」と称する。)と基準月のAH入口ガス温度とAH出口ガス温度との平均値T0[K](以下、「基準月ガス温度平均値T0」と称する。)を予測対象月(基準月からnヶ月後の月(n≧1と定義する))のAH入口ガス温度とAH出口ガス温度との平均値の予測値Tn[K](以下、「予測対象月ガス温度予測平均値Tn」と称する。)で割った値(=T0/Tn)と予測対象月の予測IDFガス流量の予測値Qn[sccm](以下、「予測対象月IDFガス予測流量Qn」と称する。)を基準月のIDFガス流量Q0[sccm]以下、「基準月IDFガス流量Q0」と称する。)で割った値の2乗(=(Qn/Q02)との積で表した予測式を用いて、予測対象月の差圧ΔPnを予測している。
Therefore, conventionally, how much the differential pressure increases due to a change in the gas flow rate accompanying a change in temperature is calculated, and a decision such as washing with water is made based on the obtained differential pressure.
That is, as shown by the prediction formula (2) in FIG. 2B, the average differential pressure ΔP 0 [kPa] (hereinafter referred to as “reference monthly average differential pressure ΔP 0 ”) in the reference month (the month following the maintenance execution month). ) And the average value T 0 [K] (hereinafter referred to as “reference month gas temperature average value T 0 ”) of the AH inlet gas temperature and the AH outlet gas temperature in the reference month (hereinafter referred to as “reference month gas temperature average value T 0 ”). Predicted value T n [K] of average value of AH inlet gas temperature and AH outlet gas temperature of the month after month (defined as n ≧ 1) (hereinafter, “predicted target gas temperature average value T n ”) The value divided by (= T 0 / T n ) and the predicted value of predicted IDF gas flow rate Q n [sccm] (hereinafter referred to as “predicted target IDF gas predicted flow rate Q n ”). ) Is referred to as “reference month IDF gas flow rate Q 0 ” below the reference month IDF gas flow rate Q 0 [sccm]. . ) Is used to predict the differential pressure ΔP n of the prediction target month using a prediction formula represented by the product of the square of the value divided by () (= (Q n / Q 0 ) 2 ).

なお、本出願人は、下記の特許文献1において、空気予熱器の空気供給口と空気排出口との差圧である空気側差圧および排ガス供給口と排ガス排出口との差圧である排ガス側差圧を記憶し、記憶した過去の空気側差圧および排ガス側差圧を用いて空気側差圧上昇予測線および排ガス側差圧上昇予測線を作成し、空気予熱器の現状の断面積および初期断面積に基づいて空気予熱器の閉塞率を計算することにより、メンテナンス要否を判断するようにした空気予熱器管理装置を提案している。   In addition, in the following Patent Document 1, the applicant of the present application discloses an air side differential pressure that is a differential pressure between an air supply port and an air discharge port of an air preheater and an exhaust gas that is a differential pressure between an exhaust gas supply port and an exhaust gas discharge port. The side differential pressure is memorized, the air side differential pressure rise prediction line and the exhaust gas side differential pressure rise prediction line are created using the stored past air side differential pressure and exhaust gas side differential pressure, and the current cross-sectional area of the air preheater is created. And the air preheater management apparatus which judged the necessity of maintenance by calculating the obstruction | occlusion rate of an air preheater based on initial stage cross-sectional area is proposed.

特開2010−196949号公報JP 2010-196949 A

しかしながら、従来の予測式(2)は、気温変化に伴うガス流量の変化によって差圧がどれだけ上昇するかにのみ着目しており、空気予熱器113の詰り進行予測が考慮されていないため、図2(c)に示すように、詰り進行がほとんどない短期的な未来(3ヶ月程度)であれば概ね予測することができるが、長期的な予測(1年程度)では詰り進行の影響が大きく、実際の差圧との間に大きな乖離が生じて(×印で示す「従来の予測値」および〇印で示す「実測値」参照)、正確な予測ができずにメンテナンス要否の判断を誤り、不必要なメンテナンス費用が発生する恐れや発電機出力を確保できない状況になり得るという問題があった。   However, the conventional prediction formula (2) focuses only on how much the differential pressure increases due to the change in the gas flow rate due to the temperature change, and does not take into account the clogging progress prediction of the air preheater 113. As shown in FIG. 2 (c), a short-term future (about 3 months) with little progress of clogging can be roughly predicted, but a long-term prediction (about 1 year) has an effect of clogging progress. Large, large deviation from the actual differential pressure (see “Conventional predicted value” indicated by “X” and “Measured value” indicated by “X”), and judgment of necessity of maintenance is not possible because accurate prediction cannot be made. There is a problem in that unnecessary maintenance costs may occur and the generator output cannot be secured.

本発明の目的は、空気予熱器のメンテナンス要否の長期的な予測を的確に行うことができる空気予熱器差圧上昇予測装置および空気予熱器管理装置を提供することにある。   An object of the present invention is to provide an air preheater differential pressure increase prediction device and an air preheater management device capable of accurately performing long-term prediction of whether or not maintenance of an air preheater is necessary.

本発明の空気予熱器差圧上昇予測装置は、ボイラ通風系統(110)で使用されている空気予熱器(113)の排ガス入口および排ガス出口の圧力差である差圧の上昇を基準月から1または数ヶ月単位で予測して該空気予熱器の閉塞状況を監視するための空気予熱器差圧上昇予測装置(10)であって、予測対象月における詰り進行予測による第1の差圧上昇を予測するための第1の差圧上昇予測部(11)と、前記予測対象月における気温変化に伴うガス流量変化による第2の差圧上昇を予測するための第2の差圧上昇予測部(12)と、前記第1および第2の差圧上昇予測部で予測された前記第1および第2の差圧上昇に基づいて前記予測対象月における前記空気予熱器の差圧(ΔPn)を予測するための差圧予測部(13)とを具備することを特徴とする。
ここで、ボイラ(111)と前記空気予熱器との間に脱硝装置(112)が設けられており、前記第1の差圧上昇予測部が、所定の詰り係数(a)と前記予測対象月の1ヶ月前における前記脱硝装置の出口での予測リークアンモニア濃度(yi)との積を計算するための詰り進行予測部(11a)と、前記予測対象月までの1または数ヶ月単位で前記詰り進行予測部によって求められた前記積の和を求めて前記第1の差圧上昇値を計算するための第1の差圧上昇値計算部(11b)とを備えてもよい。
前記空気予熱器の後段に誘引通風機(116)が設けられており、第2の差圧上昇予測部が、前記基準月における前記空気予熱器の入口ガス温度および出口ガス温度の平均値である基準月ガス温度平均値(T0)を前記予測対象月における該空気予熱器の入口ガス温度および出口ガス温度の予測平均値である予測対象月ガス温度予測平均値(Tn)で割ったガス温度比(T0/Tn)を計算するためのガス温度比演算部(12a)と、前記予測対象月における前記誘引通風機の予測ガス流量である予測対象月IDFガス予測流量(Qn)を前記基準月における該誘引通風機のガス流量である基準月IDFガス流量(Q0)で割った値の2乗である予測対象月ガス流量比((Qn/Q02)を計算するためのガス流量比演算部(12b)と、前記基準月における前記空気予熱器の平均差圧である基準月平均差圧(ΔP0)と前記ガス温度比演算部で求められた前記ガス温度比と前記ガス流量比演算部で求められた前記予測対象月ガス流量比とを乗算して前記第2の差圧上昇値を計算するための第2の差圧上昇値計算部(12c)とを備えてもよい。
外部の端末装置(20)に接続されており、前記詰り係数、前記予測リークアンモニア濃度、前記基準月平均差圧、前記基準月ガス温度平均値、前記予測対象月ガス温度予測平均値、前記基準月IDFガス流量および前記予測対象月IDFガス予測流量が、前記端末装置から入力されてもよい。
前記予測対象月が前記基準月から1ヶ月または数ヶ月ごとの月であってもよい。
前記基準月が前記空気予熱器のメンテナンス実行月の翌月であってもよい。
前記差圧予測部で予測された前記差圧と所定の要メンテナンス差圧とを比較して、該比較の結果に基づいて警告を発するための警告手段を更に具備してもよい。
The air preheater differential pressure increase predicting apparatus of the present invention can increase the differential pressure, which is the pressure difference between the exhaust gas inlet and the exhaust gas outlet of the air preheater (113) used in the boiler ventilation system (110), from the reference month. Or an air preheater differential pressure increase prediction device (10) for predicting the blockage of the air preheater in units of several months, wherein the first differential pressure increase due to the clogging progress prediction in the prediction target month A first differential pressure increase prediction unit (11) for prediction, and a second differential pressure increase prediction unit (11) for predicting a second differential pressure increase due to a change in gas flow rate accompanying a change in temperature in the prediction target month ( 12) and the differential pressure (ΔP n ) of the air preheater in the prediction target month based on the first and second differential pressure increases predicted by the first and second differential pressure increase prediction units. A differential pressure prediction unit (13) for prediction It is characterized in.
Here, a denitration device (112) is provided between the boiler (111) and the air preheater, and the first differential pressure increase prediction unit is configured to determine a predetermined clogging coefficient (a) and the prediction target month. The clogging progress prediction unit (11a) for calculating the product of the predicted leaked ammonia concentration (y i ) at the outlet of the denitration apparatus one month before the denitration apparatus, and the unit in one or several months until the prediction target month You may provide the 1st differential pressure | voltage rise value calculation part (11b) for calculating | requiring the said 1st differential pressure | voltage rise value by calculating | requiring the sum of the said product calculated | required by the clogging progress prediction part.
An induction ventilator (116) is provided downstream of the air preheater, and the second differential pressure increase prediction unit is an average value of the inlet gas temperature and the outlet gas temperature of the air preheater in the reference month. Gas obtained by dividing the reference monthly gas temperature average value (T 0 ) by the predicted target month gas temperature predicted average value (T n ) that is the predicted average value of the inlet gas temperature and the outlet gas temperature of the air preheater in the predicted target month. A gas temperature ratio calculation unit (12a) for calculating a temperature ratio (T 0 / T n ), and a prediction target month IDF gas predicted flow rate (Q n ) that is a predicted gas flow rate of the induction fan in the prediction target month Of the target gas flow rate ((Q n / Q 0 ) 2 ) that is the square of the value obtained by dividing the gas flow rate by the reference month IDF gas flow rate (Q 0 ) that is the gas flow rate of the induction fan in the reference month A gas flow ratio calculation unit (12b) for The obtained in the air mean difference standard monthly average differential pressure is pressure of the preheater ([Delta] P 0) and the gas temperature ratio the gas temperature ratio determined by the arithmetic unit in the serial base month and the gas flow ratio calculating section You may provide the 2nd differential pressure | voltage rise value calculation part (12c) for multiplying the prediction object monthly gas flow rate ratio and calculating the said 2nd differential pressure | voltage rise value.
Connected to an external terminal device (20), the clogging coefficient, the predicted leak ammonia concentration, the reference monthly average differential pressure, the reference monthly gas temperature average value, the prediction target monthly gas temperature predicted average value, the reference The monthly IDF gas flow rate and the prediction target month IDF gas predicted flow rate may be input from the terminal device.
The prediction target month may be one month or every several months from the reference month.
The reference month may be a month following a maintenance execution month of the air preheater.
A warning means for comparing the differential pressure predicted by the differential pressure prediction unit with a predetermined maintenance required differential pressure and issuing a warning based on the comparison result may be further provided.

本発明の空気予熱器差圧上昇予測装置は、以下の効果を奏する。
(1)空気予熱器のメンテナンス要否の長期的な予測を的確に行うことができる。
(2)空気予熱器の不要なメンテナンスを行わなくて済むようにできる。
(3)メンテナンス要否を早期に判断できるため、空気予熱器のメンテナンス計画をこれまでよりも早く立てることができる。
The air preheater differential pressure increase prediction device of the present invention has the following effects.
(1) Long-term prediction of whether or not the air preheater needs to be maintained can be accurately performed.
(2) It is possible to avoid unnecessary maintenance of the air preheater.
(3) Since the necessity of maintenance can be determined at an early stage, a maintenance plan for the air preheater can be made earlier than before.

本発明の一実施例による空気予熱器差圧上昇予測装置10について説明するための図であり、It is a figure for demonstrating the air preheater differential pressure rise prediction apparatus 10 by one Example of this invention, 本発明の予測式と従来の予測式との比較について説明するための図であり、(a)は本発明の予測式を示す図であり、(b)は従来の予測式を示す図であり、(c)は実測値、本発明の予測値および従来の予測値の一例を示すグラフである。It is a figure for demonstrating the comparison with the prediction formula of this invention, and the conventional prediction formula, (a) is a figure which shows the prediction formula of this invention, (b) is a figure which shows the conventional prediction formula. (C) is a graph which shows an example of a measured value, a predicted value of the present invention, and a conventional predicted value. 火力発電プラントのボイラ通風系統110について説明するための図である。It is a figure for demonstrating the boiler ventilation system 110 of a thermal power plant.

上記の目的を、詰り進行予測も考慮して空気予熱器の差圧を予測することによりに実現した。   The above objective was realized by predicting the differential pressure of the air preheater in consideration of clogging progress prediction.

以下、本発明の空気予熱器差圧上昇予測装置の実施例について、図面を参照して説明する。
本発明の空気予熱器差圧上昇予測装置は、図2(a)に示す予測式(1)を用いて空気予熱器113(図3参照)の差圧上昇を予測することを特徴とする。
Embodiments of an air preheater differential pressure increase prediction apparatus according to the present invention will be described below with reference to the drawings.
The air preheater differential pressure increase prediction apparatus of the present invention is characterized by predicting the differential pressure increase of the air preheater 113 (see FIG. 3) using the prediction formula (1) shown in FIG.

そのため、本発明の一実施例による空気予熱器差圧上昇予測装置10(以下、「AH差圧上昇予測装置10」と称する。)は、図1に示すように、第1および第2の差圧上昇予測部11,12と、差圧予測部13とを具備する。   For this reason, the air preheater differential pressure increase prediction device 10 (hereinafter referred to as “AH differential pressure increase prediction device 10”) according to an embodiment of the present invention, as shown in FIG. Pressure rise prediction units 11 and 12 and a differential pressure prediction unit 13 are provided.

ここで、第1の差圧上昇予測部11は、AH差圧上昇予測装置10と接続された端末装置20から入力される詰り係数aおよび予測対象月の1ヶ月前における予測リークアンモニア濃度y(i=0〜n−1)に基づいて、基準月の翌月から基準月の12ヶ月後における詰り進行予測による第1の差圧上昇を1ヶ月ごとに予測するためのものであり、詰り進行予測部11aと第1の差圧上昇値計算部11bとを備える。 Here, the first differential pressure increase prediction unit 11 includes the clogging coefficient a input from the terminal device 20 connected to the AH differential pressure increase prediction device 10 and the predicted leak ammonia concentration y i one month before the prediction target month. Based on (i = 0 to n-1), the first differential pressure increase due to the prediction of clogging progress from the month following the reference month to 12 months after the reference month is predicted every month, and clogging progresses A prediction unit 11a and a first differential pressure increase value calculation unit 11b are provided.

詰り進行予測11aは、詰り係数aと予測対象月の1ヶ月前における予測リークアンモニア濃度y(i=0〜n−1)との積(=ay)を計算するためのものである。
第1の差圧上昇値計算部11bは、図2(a)の予測式(1)の第1項に示すように、予測対象月までの詰り進行予測部11aで求められた積の和を求めて第1の差圧上昇値を計算するためのものである。
The clogging progress prediction 11a is for calculating the product (= ay i ) of the clogging coefficient a and the predicted leakage ammonia concentration y i (i = 0 to n−1) one month before the prediction target month.
As shown in the first term of the prediction formula (1) in FIG. 2A, the first differential pressure increase value calculation unit 11b calculates the sum of products obtained by the clogging progress prediction unit 11a up to the prediction target month. This is for calculating the first differential pressure increase value.

なお、詰り係数aは、例えば0.012[kPa/ppm]というように、所定の値のものである。
また、各予測対象月における予測リークアンモニア濃度yについては、リークアンモニア濃度は脱硝装置112(図3参照)の触媒の劣化に略比例して大きくなることが経験上分かっているため、例えば、過去のデータに基づいて作成した触媒の劣化とリークアンモニア濃度との関係を直線式で表したグラフを参考に予測した値を用いる。
The clogging coefficient a has a predetermined value, for example, 0.012 [kPa / ppm].
In addition, as for the predicted leak ammonia concentration y i in each prediction target month, it has been empirically known that the leak ammonia concentration increases substantially in proportion to the deterioration of the catalyst of the denitration device 112 (see FIG. 3). A value predicted with reference to a graph representing a linear expression of the relationship between the deterioration of the catalyst and the leaked ammonia concentration prepared based on the past data is used.

第2の差圧上昇予測部12は、端末装置20から入力される基準月平均差圧ΔP0、基準月ガス温度平均値T0、予測対象月ガス温度予測平均値Tn、基準月IDFガス流量Q0および予測対象月IDFガス予測流量Qnに基づいて従来の予測方法と同様に基準月の翌月から基準月の12ヶ月後における気温変化に伴うガス流量変化による第2の差圧上昇を予測するためのものであり(図2(a),(b)に示した予測式(1),(2)参照)、ガス温度比演算部12aとガス流量比演算部12bと第2の差圧上昇値計算部12cとを備える。 The second differential pressure rise prediction unit 12 receives the reference monthly average differential pressure ΔP 0 , the reference month gas temperature average value T 0 , the prediction target month gas temperature predicted average value T n , and the reference month IDF gas input from the terminal device 20. Based on the flow rate Q 0 and the prediction target month IDF gas predicted flow rate Q n , the second differential pressure increase due to the gas flow rate change due to the temperature change from the month following the reference month to the 12th month after the reference month is performed as in the conventional prediction method. This is for prediction (see prediction formulas (1) and (2) shown in FIGS. 2A and 2B), and the second difference between the gas temperature ratio calculation unit 12a and the gas flow rate ratio calculation unit 12b. And a pressure increase value calculation unit 12c.

ガス温度比演算部12aは、基準月ガス温度平均値T0を予測対象月ガス温度予測平均値Tnで割ったガス温度比T0/Tnを計算するためのものである。
ガス流量比演算部12bは、予測対象月IDFガス予測流量Qnを基準月IDFガス流量Q0で割った値の2乗(=(Qn/Q02)(以下、「予測対象月ガス流量比」と称する。)を計算するためのものである。
第2の差圧上昇値計算部12cは、基準月平均差圧ΔP0とガス温度比演算部12aで求められたガス温度比T0/Tnとガス流量比演算部12bで求められた予測対象月ガス流量比(=(Qn/Q02)とを乗算して第2の差圧上昇値を計算するためのものである。
The gas temperature ratio calculation unit 12a is for calculating a gas temperature ratio T 0 / T n obtained by dividing the reference month gas temperature average value T 0 by the prediction target month gas temperature predicted average value T n .
The gas flow rate ratio calculation unit 12b calculates the square of the value obtained by dividing the prediction target month IDF gas predicted flow rate Q n by the reference month IDF gas flow rate Q 0 (= (Q n / Q 0 ) 2 ) (hereinafter “prediction target month”). This is referred to as “gas flow ratio”.
The second differential pressure increase value calculation unit 12c calculates the reference monthly average differential pressure ΔP 0 , the gas temperature ratio T 0 / T n obtained by the gas temperature ratio calculation unit 12a, and the prediction obtained by the gas flow rate calculation unit 12b. This is for calculating the second differential pressure increase value by multiplying the target monthly gas flow rate ratio (= (Q n / Q 0 ) 2 ).

なお、基準月平均差圧ΔP0、基準月ガス温度平均値T0および基準月IDFガス流量Q0については、基準月において実測した値を用いる。
また、予測対象月ガス温度予測平均値Tnおよび予測対象月IDFガス予測流量Qnについては、予測対象月における過去の実測データ等に基づいて予測した値を用いる。
For the reference monthly average differential pressure ΔP 0 , the reference month gas temperature average value T 0, and the reference month IDF gas flow rate Q 0 , values actually measured in the reference month are used.
For the prediction target month gas temperature prediction average value T n and the prediction target month IDF gas prediction flow rate Q n , values predicted based on past actual measurement data and the like in the prediction target month are used.

差圧予測部13は、第1および第2の差圧上昇予測部11,12で計算された第1および第2の差圧上昇値を加算して予測対象月(基準月の翌月から基準月の12ヶ月後までの各月)における空気予熱器113の差圧ΔP(n=1〜12)を予測するためのものである。
差圧予測部13は、予測した差圧ΔPを示す予測差圧データを端末装置20に出力する。
The differential pressure prediction unit 13 adds the first and second differential pressure increase values calculated by the first and second differential pressure increase prediction units 11 and 12, and adds a prediction target month (from the month following the reference month to the reference month). This is for predicting the differential pressure ΔP n (n = 1 to 12) of the air preheater 113 in each month up to 12 months later.
The differential pressure prediction unit 13 outputs predicted differential pressure data indicating the predicted differential pressure ΔP n to the terminal device 20.

これにより、管理者は、端末装置20において、図2(c)に示すように、差圧予測部13から入力される予測差圧データに基づいて縦軸を差圧ΔPとし経過月数を横軸としたグラフを作成するとともに、作成したグラフに「要メンテナンス差圧」を示す破線を加えることにより、空気予熱器113のメンテナンス要否を容易に把握できる。
また、本実施例によるAH差圧上昇予測装置10では、空気予熱器113の詰り進行予測を考慮しているため、長期的な予測も正確に行えるので(〇印で示す実測値および□印で示す予測値を参照)、空気予熱器113のメンテナンス要否を早期に判断できる。
Thereby, the administrator uses the terminal device 20 as shown in FIG. 2C to set the vertical axis as the differential pressure ΔP n based on the predicted differential pressure data input from the differential pressure predicting unit 13, and to determine the elapsed months. By creating a graph with the horizontal axis and adding a broken line indicating “maintenance differential pressure” to the created graph, it is possible to easily grasp whether the air preheater 113 needs to be maintained.
In addition, since the AH differential pressure increase prediction device 10 according to the present embodiment takes into account the clogging progress prediction of the air preheater 113, long-term prediction can be performed accurately (in actual values indicated by ◯ and □). It is possible to quickly determine whether or not the air preheater 113 needs to be maintained.

なお、差圧予測部13で予測された差圧ΔPと要メンテナンス差圧とを比較して、この比較結果に基づいて警告を発するための警告部を更に具備させて、例えば図2(c)に示すように基準日から11ヶ月後の差圧ΔPが要メンテナンス差圧以上となると、「11ヶ月後が空気予熱器のメンテナンス時期です。」という警告を端末装置20に発するようにしてもよい。 The differential pressure ΔP n predicted by the differential pressure predicting unit 13 is compared with the maintenance required differential pressure, and a warning unit for issuing a warning based on the comparison result is further provided, for example, FIG. ) When the differential pressure ΔPn 11 months after the reference date is equal to or higher than the required maintenance differential pressure, a warning “11 months later is the air preheater maintenance time” is issued to the terminal device 20. Also good.

また、空気予熱器113の差圧上昇を基準月から1ヶ月単位で予測したが、数ヶ月単位で予測してもよい。
なお、mヶ月単位で予測する場合には、詰り係数aは例えば0.012×m[kPa/ppm]とする。
Moreover, although the differential pressure | voltage rise of the air preheater 113 was estimated per month from the reference | standard month, you may estimate per several months.
In the case of prediction in units of m months, the clogging coefficient a is, for example, 0.012 × m [kPa / ppm].

さらに、空気予熱器113の差圧上昇を基準月から日ごとに予測して、予測対象月における空気予熱器113の差圧上昇を予測してもよい。
この場合には、詰り係数aは例えば0.0004[kPa/ppm]とする。
Furthermore, the differential pressure increase of the air preheater 113 may be predicted every day from the reference month, and the differential pressure increase of the air preheater 113 in the prediction target month may be predicted.
In this case, the clogging coefficient a is, for example, 0.0004 [kPa / ppm].

10 AH差圧上昇予測装置
11 第1の差圧上昇予測部
11a 詰り進行予測部
11b 第1の差圧上昇値計算部
12 第2の差圧上昇予測部
12a ガス温度比演算部
12b ガス流量比演算部
12c 第2の差圧上昇値計算部
13 差圧予測部
110 ボイラ通風系統
111 ボイラ
112 脱硝装置
113 空気予熱器
114 GGH熱回収器
115 電気式集塵装置
116 誘引通風機
117 脱硫装置
118 GGH再加熱器
119 脱硫通風機
120 煙突
121 押込通風機
a 詰り係数
予測リークアンモニア濃度
ΔPn 差圧
ΔP0 基準月平均差圧
0 基準月ガス温度平均値
n 予測対象月ガス温度予測平均値
0 基準月IDFガス流量
n 予測対象月IDFガス予測流量
10 AH differential pressure increase prediction device 11 first differential pressure increase prediction unit 11a clogging progress prediction unit 11b first differential pressure increase value calculation unit 12 second differential pressure increase prediction unit 12a gas temperature ratio calculation unit 12b gas flow rate ratio Calculation unit 12c Second differential pressure increase value calculation unit 13 Differential pressure prediction unit 110 Boiler ventilation system 111 Boiler 112 Denitration device 113 Air preheater 114 GGH heat recovery device 115 Electric dust collector 116 Induction ventilator 117 Desulfurization device 118 GGH Reheater 119 Desulfurization ventilator 120 Chimney 121 Push-in ventilator a Clogging factor y i Prediction leak ammonia concentration ΔP n differential pressure ΔP 0 standard monthly average differential pressure T 0 standard monthly gas temperature average T n target monthly gas temperature predicted average Value Q 0 Base month IDF gas flow rate Q n Forecast target month IDF gas predicted flow rate

Claims (8)

ボイラ通風系統(110)で使用されている空気予熱器(113)の排ガス入口および排ガス出口の圧力差である差圧の上昇を基準月から1または数ヶ月単位で予測して該空気予熱器の閉塞状況を監視するための空気予熱器差圧上昇予測装置(10)であって、
予測対象月における詰り進行予測による第1の差圧上昇を予測するための第1の差圧上昇予測部(11)と、
前記予測対象月における気温変化に伴うガス流量変化による第2の差圧上昇を予測するための第2の差圧上昇予測部(12)と、
前記第1および第2の差圧上昇予測部で予測された前記第1および第2の差圧上昇に基づいて前記予測対象月における前記空気予熱器の差圧(ΔPn)を予測するための差圧予測部(13)と、
を具備することを特徴とする、空気予熱器差圧上昇予測装置。
An increase in the differential pressure, which is the pressure difference between the exhaust gas inlet and the exhaust gas outlet of the air preheater (113) used in the boiler ventilation system (110), is predicted in units of one or several months from the reference month, and the air preheater An air preheater differential pressure increase prediction device (10) for monitoring a blockage state,
A first differential pressure increase prediction unit (11) for predicting a first differential pressure increase due to clogging progress prediction in the prediction target month;
A second differential pressure increase prediction unit (12) for predicting a second differential pressure increase due to a gas flow rate change accompanying a temperature change in the prediction target month;
For predicting the differential pressure (ΔP n ) of the air preheater in the prediction target month based on the first and second differential pressure increases predicted by the first and second differential pressure increase prediction units. A differential pressure prediction unit (13);
An air preheater differential pressure rise prediction apparatus, comprising:
ボイラ(111)と前記空気予熱器との間に脱硝装置(112)が設けられており、
前記第1の差圧上昇予測部が、
所定の詰り係数(a)と前記予測対象月の1ヶ月前における前記脱硝装置の出口での予測リークアンモニア濃度(yi)との積を計算するための詰り進行予測部(11a)と、
前記予測対象月までの1または数ヶ月単位で前記詰り進行予測部によって求められた前記積の和を求めて前記第1の差圧上昇値を計算するための第1の差圧上昇値計算部(11b)とを備える、
ことを特徴とする、請求項1記載の空気予熱器差圧上昇予測装置。
A denitration device (112) is provided between the boiler (111) and the air preheater,
The first differential pressure rise prediction unit is
A clogging progress prediction unit (11a) for calculating a product of a predetermined clogging coefficient (a) and a predicted leakage ammonia concentration (y i ) at the outlet of the denitration device one month before the prediction target month;
A first differential pressure increase value calculation unit for calculating the first differential pressure increase value by calculating the sum of the products determined by the clogging progress prediction unit in units of one or several months until the prediction target month (11b)
The air preheater differential pressure rise prediction apparatus according to claim 1, wherein:
前記空気予熱器の後段に誘引通風機(116)が設けられており、
第2の差圧上昇予測部が、
前記基準月における前記空気予熱器の入口ガス温度および出口ガス温度の平均値である基準月ガス温度平均値(T0)を前記予測対象月における該空気予熱器の入口ガス温度および出口ガス温度の予測平均値である予測対象月ガス温度予測平均値(Tn)で割ったガス温度比(T0/Tn)を計算するためのガス温度比演算部(12a)と、
前記予測対象月における前記誘引通風機の予測ガス流量である予測対象月IDFガス予測流量(Qn)を前記基準月における該誘引通風機のガス流量である基準月IDFガス流量(Q0)で割った値の2乗である予測対象月ガス流量比((Qn/Q02)を計算するためのガス流量比演算部(12b)と、
前記基準月における前記空気予熱器の平均差圧である基準月平均差圧(ΔP0)と前記ガス温度比演算部で求められた前記ガス温度比と前記ガス流量比演算部で求められた前記予測対象月ガス流量比とを乗算して前記第2の差圧上昇値を計算するための第2の差圧上昇値計算部(12c)とを備える、
ことを特徴とする、請求項1または2記載の空気予熱器差圧上昇予測装置。
An induction fan (116) is provided downstream of the air preheater,
The second differential pressure rise prediction unit
A reference month gas temperature average value (T 0 ), which is an average value of the inlet gas temperature and the outlet gas temperature of the air preheater in the reference month, is calculated as an inlet gas temperature and an outlet gas temperature of the air preheater in the prediction target month. A gas temperature ratio calculation unit (12a) for calculating a gas temperature ratio (T 0 / T n ) divided by a prediction target monthly gas temperature predicted average value (T n ) that is a predicted average value;
The prediction target month IDF gas predicted flow rate (Q n ) that is the predicted gas flow rate of the induction fan in the prediction target month is the reference month IDF gas flow rate (Q 0 ) that is the gas flow rate of the induction fan in the reference month. A gas flow ratio calculation unit (12b) for calculating a prediction target gas flow ratio ((Q n / Q 0 ) 2 ) that is the square of the divided value;
The reference monthly average differential pressure (ΔP 0 ), which is the average differential pressure of the air preheater in the reference month, the gas temperature ratio determined by the gas temperature ratio calculation unit, and the gas flow rate ratio calculation unit A second differential pressure increase value calculation unit (12c) for calculating the second differential pressure increase value by multiplying by the prediction target monthly gas flow rate ratio;
The air preheater differential pressure rise prediction apparatus according to claim 1 or 2, characterized in that
外部の端末装置(20)に接続されており、
前記詰り係数、前記予測リークアンモニア濃度、前記基準月平均差圧、前記基準月ガス温度平均値、前記予測対象月ガス温度予測平均値、前記基準月IDFガス流量および前記予測対象月IDFガス予測流量が、前記端末装置から入力される、
ことを特徴とする、請求項3記載の空気予熱器差圧上昇予測装置。
Connected to an external terminal device (20),
The clogging coefficient, the predicted leak ammonia concentration, the reference monthly average differential pressure, the reference month gas temperature average value, the prediction target month gas temperature predicted average value, the reference month IDF gas flow rate, and the prediction target month IDF gas predicted flow rate Is input from the terminal device,
The air preheater differential pressure rise prediction apparatus according to claim 3, wherein:
前記予測対象月の前記予測リークアンモニア濃度として、前記脱硝装置の触媒の劣化に基づいて予測した値を用いることを特徴とする、請求項2乃至4いずれかに記載の空気予熱器差圧上昇予測装置。   5. The air preheater differential pressure increase prediction according to claim 2, wherein a value predicted based on deterioration of the catalyst of the denitration device is used as the predicted leaked ammonia concentration in the prediction target month. apparatus. 前記予測対象月が前記基準月から1ヶ月または数ヶ月ごとの月であることを特徴とする、請求項1乃至5いずれかに記載の空気予熱器差圧上昇予測装置。   6. The air preheater differential pressure increase prediction device according to claim 1, wherein the prediction target month is a month every one month or every several months from the reference month. 前記基準月が前記空気予熱器のメンテナンス実行月の翌月であることを特徴とする、請求項1乃至6いずれかに記載の空気予熱器差圧上昇予測装置。   The air preheater differential pressure increase prediction device according to any one of claims 1 to 6, wherein the reference month is a month following a maintenance execution month of the air preheater. 前記差圧予測部で予測された前記差圧と所定の要メンテナンス差圧とを比較して、該比較の結果に基づいて警告を発するための警告手段を更に具備することを特徴とする、請求項1乃至7いずれかに記載の空気予熱器差圧上昇予測装置。   The apparatus further comprises warning means for comparing the differential pressure predicted by the differential pressure prediction unit with a predetermined maintenance required differential pressure and issuing a warning based on the comparison result. Item 8. The air preheater differential pressure increase prediction device according to any one of Items 1 to 7.
JP2017071000A 2017-03-31 2017-03-31 Air preheater differential pressure rise predictor Active JP6909425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071000A JP6909425B2 (en) 2017-03-31 2017-03-31 Air preheater differential pressure rise predictor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071000A JP6909425B2 (en) 2017-03-31 2017-03-31 Air preheater differential pressure rise predictor

Publications (2)

Publication Number Publication Date
JP2018173217A true JP2018173217A (en) 2018-11-08
JP6909425B2 JP6909425B2 (en) 2021-07-28

Family

ID=64108432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071000A Active JP6909425B2 (en) 2017-03-31 2017-03-31 Air preheater differential pressure rise predictor

Country Status (1)

Country Link
JP (1) JP6909425B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111964928A (en) * 2020-06-24 2020-11-20 华电电力科学研究院有限公司 Unilateral exhaust smoke temperature rise test method for treating blockage of air preheater
WO2021157240A1 (en) * 2020-02-04 2021-08-12 三菱パワー株式会社 Prediction device, plant, prediction method, program, and configuration program
JP7333473B2 (en) 2019-10-09 2023-08-24 タタ コンサルタンシー サービシズ リミテッド Method and system for monitoring and predicting air preheating equipment contamination in real time

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298719A (en) * 1989-05-11 1990-12-11 Babcock Hitachi Kk Performance diagnosis method for air preheater
JP2010196949A (en) * 2009-02-24 2010-09-09 Chugoku Electric Power Co Inc:The Device and method for controlling air preheater
WO2016098173A1 (en) * 2014-12-15 2016-06-23 中国電力株式会社 Air pre-heater cleaning time predicting method and air pre-heater cleaning time predicting apparatus
JP2017067414A (en) * 2015-10-01 2017-04-06 中国電力株式会社 Abnormality discrimination device for air preheater, and abnormality discrimination method for air preheater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298719A (en) * 1989-05-11 1990-12-11 Babcock Hitachi Kk Performance diagnosis method for air preheater
JP2010196949A (en) * 2009-02-24 2010-09-09 Chugoku Electric Power Co Inc:The Device and method for controlling air preheater
WO2016098173A1 (en) * 2014-12-15 2016-06-23 中国電力株式会社 Air pre-heater cleaning time predicting method and air pre-heater cleaning time predicting apparatus
JP2017067414A (en) * 2015-10-01 2017-04-06 中国電力株式会社 Abnormality discrimination device for air preheater, and abnormality discrimination method for air preheater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7333473B2 (en) 2019-10-09 2023-08-24 タタ コンサルタンシー サービシズ リミテッド Method and system for monitoring and predicting air preheating equipment contamination in real time
WO2021157240A1 (en) * 2020-02-04 2021-08-12 三菱パワー株式会社 Prediction device, plant, prediction method, program, and configuration program
CN114929366A (en) * 2020-02-04 2022-08-19 三菱重工业株式会社 Prediction device, plant, prediction method, program, and configuration program
CN111964928A (en) * 2020-06-24 2020-11-20 华电电力科学研究院有限公司 Unilateral exhaust smoke temperature rise test method for treating blockage of air preheater
CN111964928B (en) * 2020-06-24 2022-02-18 华电电力科学研究院有限公司 Unilateral exhaust smoke temperature rise test method for treating blockage of air preheater

Also Published As

Publication number Publication date
JP6909425B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US7383790B2 (en) Method and apparatus for controlling soot blowing using statistical process control
EP2444869B1 (en) Method and apparatus for generalized performance evaluation of equipment using achievable performance derived from statistics and real-time data
EP2063211B1 (en) Dual model approach for boiler section cleanliness calculation
US8140296B2 (en) Method and apparatus for generalized performance evaluation of equipment using achievable performance derived from statistics and real-time data
JP4838870B2 (en) Heat transfer tube monitoring device
US7109446B1 (en) Method and apparatus for improving steam temperature control
JP2018173217A (en) Air preheater pressure difference rise prediction device
CN103267684B (en) A kind of station boiler pressure restraining element life consumption acquisition methods and system
JPH0211811B2 (en)
JP6251201B2 (en) Occupancy rate prediction device and availability rate prediction method
JP2015075277A (en) Ammonia injection quantity control device and ammonia injection quantity control method
JP6416610B2 (en) Plant equipment maintenance planning system and method
US20180307997A1 (en) Systems and methods for improved quantification of uncertainty in turbomachinery
JP2016080286A (en) Monitoring device of heat exchanger and monitoring method of heat exchanger
JP2009198137A (en) Control device and control method for boiler
JP2011256734A (en) Diagnosis method and diagnosis apparatus for service life of high temperature component
JP2008039224A (en) Structure of constant pressure once-through boiler and operating method therefor
JP2010196949A (en) Device and method for controlling air preheater
JPH01181013A (en) Air preheater performance diagnostic method
JP2021185339A (en) Boiler plant and power generating unit
Sharma et al. Data driven approach to analyzing the impact of power plant cycling on air preheater degradation and remaining useful life
JP2014159910A (en) Soot blower warming device and soot blower warming method
JP2023072363A (en) Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method
JP7249165B2 (en) Monitoring device, monitoring method and program
JP2015001215A (en) Gas turbine system control device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210617

R150 Certificate of patent or registration of utility model

Ref document number: 6909425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150