WO2021157240A1 - Prediction device, plant, prediction method, program, and configuration program - Google Patents

Prediction device, plant, prediction method, program, and configuration program Download PDF

Info

Publication number
WO2021157240A1
WO2021157240A1 PCT/JP2020/048257 JP2020048257W WO2021157240A1 WO 2021157240 A1 WO2021157240 A1 WO 2021157240A1 JP 2020048257 W JP2020048257 W JP 2020048257W WO 2021157240 A1 WO2021157240 A1 WO 2021157240A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
deterioration
catalyst
degree
data
Prior art date
Application number
PCT/JP2020/048257
Other languages
French (fr)
Japanese (ja)
Inventor
耕次 東野
野地 勝己
杉山 友章
浩美 青田
恵理子 新川
大輔 向井
博 加古
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020106496A external-priority patent/JP2021125196A/en
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to DE112020006667.3T priority Critical patent/DE112020006667T5/en
Priority to CN202080092582.4A priority patent/CN114929366A/en
Publication of WO2021157240A1 publication Critical patent/WO2021157240A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8696Controlling the catalytic process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present disclosure relates to predictors, plants, prediction methods, programs, and configuration programs.
  • the present application claims priority over Japanese Patent Application No. 2020-017156 filed in Japan on February 4, 2020 and Japanese Patent Application No. 2020-106496 filed in Japan on June 19, 2020. The contents are used here.
  • Patent Document 1 discloses a technique for predicting the degree of deterioration of a catalyst as a related technique.
  • the present disclosure aims to provide a prediction device, a plant, a prediction method, a program, and a configuration program capable of solving the above problems.
  • the deterioration prediction device includes learning data including first data related to a catalyst in the past operation of the first plant and second data related to the past operation state. Based on the model generation unit that generates the first prediction model that predicts the deterioration degree of the catalyst in the second plant different from the first plant, and the first prediction model generated by the model generation unit, the first It is provided with a deterioration degree prediction unit for predicting the deterioration degree in the two plants.
  • the differential pressure prediction device includes the deterioration prediction device, a differential pressure estimation unit that estimates the differential pressure between the input and output of the air preheater based on the deterioration degree predicted by the deterioration prediction device, and the differential pressure estimation unit. To be equipped.
  • the plant according to the present disclosure is a plant in which a catalyst is used, and includes an apparatus for causing deterioration of the catalyst and the above-mentioned deterioration prediction apparatus for predicting the degree of deterioration of the catalyst.
  • the deterioration prediction method is based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state, and the first plant. It includes generating a first prediction model for predicting the degree of deterioration of a catalyst in a different second plant, and predicting the degree of deterioration in the second plant based on the generated first prediction model.
  • the differential pressure prediction method is based on learning data including first data relating to a catalyst in the past operation of the first plant and second data relating to the past operating state of the first plant. It was predicted that the first prediction model for predicting the deterioration degree of the catalyst in the second plant different from the above was generated, and that the deterioration degree in the second plant was predicted based on the generated first prediction model. It includes estimating the differential pressure between the input and output of the air preheater based on the degree of deterioration.
  • the program according to the present disclosure is based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state in the computer, and the first plant.
  • the program for causing the computer to execute the configuration process according to the present disclosure is training data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. Based on the model generation unit that generates the first prediction model that predicts the deterioration degree of the catalyst in the second plant different from the first plant, and the first prediction model generated by the model generation unit.
  • Each of the deterioration degree prediction units for predicting the deterioration degree in the two plants is configured as hardware.
  • the user of the plant can know the degree of deterioration of the catalyst without performing complicated processing.
  • the deterioration prediction system predicts the deterioration state of the denitration device 20 included in the plant 1 based on the operation data of the plant 1 to be predicted.
  • the deterioration prediction system includes a data server device 50 and a deterioration prediction device 40.
  • the data server device 50 is a device that stores the data of the plant 1.
  • the data of the plant 1 is data including, for example, fuel properties, operation data, and the like.
  • the deterioration prediction device 40 predicts the deterioration state of the denitration device 20 included in the plant 1 based on the data stored in the data server device 50.
  • the plant 1 (an example of the second plant, an example of the plant) according to the first embodiment will be described.
  • the plant 1 according to the first embodiment is a plant that predicts the degree of deterioration of the catalyst performance with respect to the total operating time of the plant 1.
  • the plant 1 includes a boiler 10, a denitration device 20 (an example of a device in which catalyst deterioration occurs), and a sensor device 30.
  • Boiler 10 is a boiler that uses coal or the like as fuel.
  • the boiler 10 discharges the combustion gas when the fuel is burned to the denitration device 20.
  • the denitration device 20 is a device that reduces the NOx concentration in the combustion gas by decomposing NOx contained in the combustion gas. For stable operation of the plant 1, it is preferable to keep the denitration rate of the denitration device 20 substantially constant. For example, the denitration device 20 keeps the denitration rate, which tends to decrease due to deterioration of the catalyst performance due to the poisonous component , constant by injecting ammonia (NH 3) at the inlet of the denitration device 20.
  • the poisonous component is a component that comes in from the outside, which is different from the main component of the catalyst. Toxic components enter the denitration device 20 from the outside. Therefore, in the denitration device 20, the active sites decrease as the poisoning component increases.
  • the plant 1 according to the first embodiment is a target for predicting the degree of deterioration of the performance of this catalyst.
  • the sensor device 30 includes a first sensor 301, a second sensor 302, a third sensor 303, and a fourth sensor 304.
  • the sensor device 30 is provided at the entrance of the denitration device 20.
  • the first sensor 301 detects the dust concentration at the inlet of the denitration device 20.
  • the second sensor 302 detects the NOx concentration at the inlet of the denitration device 20.
  • the third sensor 303 detects the SOx (socks) concentration at the inlet of the denitration device 20.
  • the fourth sensor 304 detects the O2 (oxygen) concentration at the inlet of the denitration device 20.
  • the data measured by the sensor device 30 is transmitted to the data server device 50 via a network such as the Internet. As a result, the data of the plant 1 is accumulated in the data server device 50.
  • the deterioration prediction device 40 is a device that predicts the degree of deterioration of the catalyst performance with respect to the total operating time of the plant 1. As shown in FIG. 3, the deterioration prediction device 40 includes a storage unit 401, a planned value acquisition unit 402, a plant data acquisition unit 403, a first model generation unit 404 (an example of a model generation unit), and a second model generation unit 405 (an example of the model generation unit). A model generation unit), a post-poisoning data acquisition unit 406, and a catalyst deterioration degree acquisition unit 407 (an example of a deterioration degree prediction unit) are provided.
  • the storage unit 401 stores various information necessary for the processing of the deterioration prediction device 40.
  • the storage unit 401 stores past actual data D1 in various plants (an example of the first plant).
  • the storage unit 401 stores, for example, the planned value shown in FIG. 4, the plant data, and the catalyst data after poisoning.
  • the storage unit 401 stores the data that changes with the passage of time in association with the time.
  • the planned values include catalyst performance, catalyst specifications, and device specifications.
  • catalyst performance are the initial value K0 of the reaction rate constant, the ratio of the reaction rate constant K to the initial value K0 of the reaction rate constant after a certain operating time has elapsed (K / K0) (degree of deterioration of the reaction rate constant). That is, the degree of deterioration of the catalyst) and the like.
  • the initial value K0 of the reaction rate constant is a value given in advance.
  • catalyst specifications include the initial specific surface area of the catalyst, the initial pore volume of the catalyst, and the initial composition of the catalyst (for example, TIO2 (titania), WO3 (tungsten trioxide), V2O5 (vanadium pentoxide)). , SiO2 (silica), etc.) and the like.
  • the catalyst specifications can be obtained, for example, by sampling and analyzing an actual catalyst.
  • Examples of device specifications include the flow velocity, the dust concentration at the inlet of the denitration device 20, the NOx (knox) concentration at the inlet of the denitration device 20, the SOx (socks) concentration at the inlet of the denitration device 20, and the inlet of the denitration device 20.
  • Examples include O2 (oxygen) concentration.
  • the flow velocity is a value determined for each device.
  • the dust concentration at the inlet of the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, and the O2 concentration at the inlet of the denitration device 20 are sensors provided at the inlet of the denitration device 20. It is a value measured by the device 30.
  • the dust concentration at the inlet of the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, and the O2 concentration at the inlet of the denitration device 20 are calculated from the fuel properties. May be good.
  • the fuel properties here are data indicating the amount of each component in the ash flowing into the catalyst, and are data possessed by analyzing the fuel for each plant.
  • the plant data includes fuel properties and operation data.
  • fuel properties include the amount of inflow of components in fly ash such as SiO2 and Al2O3 into the catalyst.
  • the operation data the operation time of the plant can be mentioned.
  • the catalyst data after poisoning includes the catalyst physical characteristics after poisoning and the catalyst composition after poisoning.
  • the catalyst physical characteristics after poisoning include the specific surface area of the catalyst after poisoning, the pore volume of the catalyst after poisoning, and the like.
  • the ratio of TIO2 in the catalyst after poisoning is normalized by the ratio of WO3 (TiO2 / WO3), and the ratio of SiO2 in the catalyst after poisoning is the ratio of WO3. Examples thereof include values normalized by (SiO2 / WO3).
  • the catalyst data after poisoning is the data of the catalyst inside the denitration device 20, and is difficult to acquire during the operation of the plant. Therefore, the catalyst data after poisoning will be acquired at the time of maintenance and inspection of the plant 1.
  • the storage unit 401 stores the required degree of catalyst deterioration (that is, ratio (K / K0)) for past plant operations.
  • the storage unit 401 stores data used when predicting the degree of deterioration of the catalyst in the plant 1 using the model.
  • the storage unit 401 includes a first model (an example of a second prediction model) generated using the past actual data D1 and a second model (first) generated using the past actual data D1.
  • An example of a prediction model the catalyst performance of the plant 1, the catalyst specifications of the plant 1, the equipment specifications of the plant 1, and the fuel properties of the plant 1 are stored.
  • the first model is a model for predicting catalyst data after poisoning in plant 1.
  • the second model is a model that predicts the degree of deterioration of the catalyst from the catalyst data after poisoning predicted by the first model.
  • Each of the first model and the second model is a trained model trained using past performance data in various plants.
  • An example of the catalytic performance of the plant 1 is the initial value K0 of the reaction rate constant of the plant 1.
  • the catalyst specifications of the plant 1 include the initial specific surface area of the catalyst in the plant 1, the initial pore volume of the catalyst in the plant 1, and the like.
  • the device specifications of the plant 1 the flow velocity in the plant 1 and the like can be mentioned.
  • the inflow amount of the component in the ash into the catalyst in the plant 1 for example, the inflow amount into the catalyst such as TiO2 and SiO2 can be mentioned.
  • the generation of the first model and the generation of the second model will be described later.
  • the planned value acquisition unit 402 acquires the planned value of the plant 1. For example, the planned value acquisition unit 402 reads out the catalyst performance of the plant 1, the catalyst specifications of the plant 1, and the device specifications of the plant 1 from the storage unit 401. Specifically, the planned value acquisition unit 402 stores the initial value K0 of the reaction rate constant of the plant 1, the initial specific surface area of the catalyst, the initial pore volume of the catalyst, the initial composition of the catalyst, the flow velocity, and the like. Read from 401.
  • the planned value acquisition unit 402 includes the dust concentration detected by the sensor device 30, the NOx (knox) concentration at the inlet of the denitration device 20, the SOx (sox) concentration at the inlet of the denitration device 20, and the inlet of the denitration device 20.
  • the detected values of each O2 (oxygen) concentration are acquired from the sensor device 30.
  • the detected value acquired by the planned value acquisition unit 402 may be stored in the storage unit 401, and the stored detected value may be used as actual data when determining the degree of deterioration of the catalyst in another plant. ..
  • the plant data acquisition unit 403 acquires the plant data of the plant 1 from the data server device 50, and records the acquired plant data in the storage unit 401.
  • the first model generation unit 404 generates the first model.
  • Examples of the first model include machine learning models such as neural networks, random forests, and support vector machines. In the following description, the generation of the first model will be described using a neural network as an example.
  • the first model generation unit 404 has already learned the modeled neural network by machine learning the past actual data (planned value, plant data, catalyst data after poisoning) in various plants as learning data. Generate the first model.
  • the neural network is, for example, a folding neural network having an input layer, an intermediate layer, and an output layer.
  • the learning data here is data in which the planned value, the plant data, and the catalyst data after poisoning are associated with each other on a one-to-one basis.
  • the first model generation unit 404 divides a plurality of learning data (planned value, plant data, catalyst data after poisoning) into training data, evaluation data, and test data. As shown in FIG. 5, the first model generation unit 404 inputs the planned value of the training data and the plant data to the neural network.
  • the neural network (first model before learning in FIG. 5) outputs catalyst data after poisoning.
  • the first model generation unit 404 performs backpropagation according to the output of the planned value of the training data and the plant data every time the planned value and the plant data are input to the neural network and the catalyst data after poisoning is output from the neural network. Changes the weighting of data joins between nodes (ie, changes the model of the neural network).
  • the first model generation unit 404 inputs the planned value of the evaluation data and the plant data into the neural network of the model changed by the planned value of the training data and the plant data.
  • the neural network outputs the catalyst data after poisoning according to the input planned value and plant data.
  • the first model generation unit 404 changes the weighting of the data combination between the nodes based on the output of the neural network as needed.
  • the neural network generated by the first model generation unit 404 in this way is the trained first model.
  • the first model generation unit 404 inputs the planned value of the test data and the plant data into the trained neural network of the first model.
  • the trained neural network of the first model outputs the catalyst data after poisoning according to the planned value of the input test data and the plant data.
  • the post-poisoning catalyst data output by the trained first model neural network is the post-poisoning catalyst data associated with the input test data planned values and plant data. If it is within a predetermined error range, it is determined that the trained neural network of the first model is the desired model. In addition, even in one of the test data, the post-poisoning catalyst data output by the trained neural network of the first model is associated with the input test data planned value and plant data after poisoning. If it is not within a predetermined error range with respect to the catalyst data of the above, a trained first model is generated using the new training data. The generation of the trained model by the first model generation unit 404 is repeated until a desired trained first model is obtained. The first model generation unit 404 writes the generated learned first model to the storage unit 401.
  • the second model generation unit 405 generates the second model. For example, the second model generation unit 405 machine-learns the modeled neural network using past actual data (planned value, plant data, catalyst data after poisoning, catalyst deterioration data) in various plants as learning data. By doing so, a trained second model is generated.
  • the neural network is, for example, a folding neural network having an input layer, an intermediate layer, and an output layer.
  • the learning data here is data in which the planned value, the plant data, the catalyst data after poisoning, and the catalyst deterioration data are associated with each other on a one-to-one basis.
  • the second model generation unit 405 divides a plurality of training data (planned value, plant data, catalyst data after poisoning, catalyst deterioration data) into training data, evaluation data, and test data. .. As shown in FIG. 5, the second model generation unit 405 inputs the planned value of the training data, the plant data, and the catalyst data after poisoning to the neural network. The neural network outputs catalyst deterioration data. Then, as in the case where the first model generation unit 404 generates the first model, the second model generation unit 405 uses the catalyst deterioration output by the trained neural network of the second model for all the test data.
  • training data planned value, plant data, catalyst data after poisoning, catalyst deterioration data
  • a trained second model neural network if the data is within a predetermined error with respect to the input planned values, plant data, and catalyst degradation data associated with post-poisoning catalyst data. Is determined to be the desired model.
  • the catalyst deterioration data output by the trained neural network of the second model is associated with the planned value of the input test data, the plant data, and the catalyst data after poisoning. If the catalyst deterioration data is not within a predetermined error range, a trained second model is generated using the new training data. The generation of the trained model by the second model generation unit 405 is repeated until a desired trained second model is obtained. The second model generation unit 405 writes the generated and learned second model to the storage unit 401.
  • the post-poisoning data acquisition unit 406 acquires the post-poisoning catalyst data based on the planned value, the plant data, and the trained first model.
  • the post-poisoning data acquisition unit 406 uses the catalyst performance of the plant 1 (for example, the initial value K0 of the reaction rate constant of the plant 1), the catalyst specifications of the plant 1 (for example, the initial specific surface area of the catalyst in the plant 1, the plant).
  • Initial pore volume of catalyst in 1) is read from the storage unit 401.
  • the post-poisoning data acquisition unit 406 may use the dust concentration at the inlet of the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, and the inlet of the denitration device 20 during the operation of the plant 1.
  • Information indicating each of the O2 concentrations in the above is acquired from the sensor device 30.
  • the post-poisoning data acquisition unit 406 reads from the catalyst performance of the plant 1, the catalyst specifications of the plant 1, the device specifications of the plant 1, the fuel properties of the plant 1, and the sensor device 30 read from the storage unit 401.
  • the post-poisoning data acquisition unit 406 acquires the post-poisoning catalyst data (for example, the catalyst physical characteristics after poisoning and the catalyst composition after poisoning) output by the trained first model.
  • This post-poisoning catalyst data acquired by the post-poisoning data acquisition unit 406 is the poisoning obtained by the prediction when the plant 1 is operated for the time indicated by the plant data under the conditions indicated by the planned value and the plant data. Later catalyst data.
  • the catalyst deterioration degree acquisition unit 407 acquires catalyst deterioration data based on the planned value, plant data, catalyst data after poisoning, and the learned second model.
  • the catalyst deterioration degree acquisition unit 407 includes catalyst specifications of plant 1 (for example, initial specific surface area of catalyst in plant 1, initial pore volume of catalyst in plant 1, etc.), equipment specifications of plant 1 (for example, plant).
  • the second model that has been learned (such as the flow velocity in 1) is read out from the storage unit 401.
  • the catalyst deterioration degree acquisition unit 407 includes a dust concentration at the inlet of the denitration device 20, a NOx concentration at the inlet of the denitration device 20, an SOx concentration at the inlet of the denitration device 20, and a denitration device 20 at the inlet.
  • Information indicating each of the O2 concentrations is acquired from the sensor device 30.
  • the catalyst deterioration degree acquisition unit 407 acquires the post-poisoning catalyst data predicted by the post-poisoning data acquisition unit 406 from the post-poisoning data acquisition unit 406. As shown in FIG. 6, the catalyst deterioration degree acquisition unit 407 includes the catalyst specifications of the plant 1, the device specifications of the plant 1, the fuel properties of the plant 1, and the inlet of the denitration device 20 acquired from the sensor device 30 as shown in FIG.
  • the catalyst data and the information indicating the operation time are input to the trained second model.
  • the catalyst deterioration degree acquisition unit 407 acquires the catalyst deterioration data output by the trained second model.
  • the catalyst deterioration data acquired by the catalyst deterioration degree acquisition unit 407 is the catalyst deterioration data obtained by the prediction when the plant 1 is operated for the time indicated by the plant data under the conditions indicated by the planned value and the plant data.
  • the manager or the like of the deterioration prediction device 40 acquires the catalyst deterioration data of the catalyst of the denitration device 20 included in the plant at the time of maintenance and inspection of a plant different from the plant 1 to be predicted in advance.
  • the catalyst deterioration data is obtained by measuring the NOx concentration of gas at the input end and the NOx concentration of gas at the output end of the denitration device 20.
  • the manager of the deterioration prediction device 40 acquires post-poisoning catalyst data including catalyst physical characteristics and catalyst composition by destructive inspection at the time of maintenance and inspection of a plant different from the prediction target plant 1 in advance. Keep it.
  • the catalyst data after poisoning is the data of the catalyst inside the denitration device 20, and is difficult to obtain during the operation of the plant.
  • the first model generation unit 404 causes the first model, which is a machine learning model, to perform machine learning using past actual data (planned value, plant data, catalyst data after poisoning) in various plants as learning data.
  • the planned value and the plant data are acquired from the data server device 50.
  • the first model generation unit 404 generates training data using the planned value and the plant data as input samples and the catalyst data after poisoning as the output sample among the actual data.
  • the first model generation unit 404 trains the first model so as to output the predicted value of the state of the catalyst after poisoning by inputting the planned value and the plant data based on the training data.
  • the first model generation unit 404 writes the learned first model to the storage unit 401.
  • the second model generation unit 405 uses the past actual data (planned value, plant data, catalyst data after poisoning, catalyst deterioration data) in various plants as learning data for the second model, which is a machine learning model. Let them learn. Specifically, the second model generation unit 405 generates training data in which the planned value, the plant data, and the catalyst data after poisoning are input samples, and the catalyst deterioration data is an output sample, among the actual data. The second model generation unit 405 learns the second model so as to output the predicted value of the catalyst deterioration data by inputting the planned value, the plant data and the catalyst data after poisoning based on the training data. Let me. The second model generation unit 405 writes the learned second model to the storage unit 401.
  • the deterioration prediction device 40 predicts the catalyst data after poisoning based on the planned value and the plant data, and predicts the catalyst deterioration data using the predicted catalyst data after poisoning.
  • the post-poisoning data acquisition unit 406 uses the catalyst performance of plant 1 (for example, the initial value K0 of the reaction rate constant of plant 1), the catalyst specifications of plant 1 (for example, the initial specific surface area of the catalyst in plant 1, and the initial specific surface area of the catalyst in plant 1).
  • the initial pore volume of the catalyst, etc. the equipment specifications of the plant 1 (for example, the flow velocity in the plant 1), the fuel properties of the plant 1 (for example, the inflow amount of the components in the ash into the catalyst in the plant 1), and learned.
  • the first model is read from the storage unit 401 (step S1).
  • the post-poisoning data acquisition unit 406 determines the dust concentration at the inlet of the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, and the O2 at the inlet of the denitration device 20.
  • Information indicating each of the concentrations is acquired from the sensor device 30 (step S2).
  • the post-poisoning data acquisition unit 406 uses the catalyst performance of the plant 1 read from the storage unit 401, the catalyst specifications of the plant 1, the device specifications of the plant 1, the fuel properties of the plant 1, and the inlet of the denitration device 20 acquired from the sensor device 30.
  • Information indicating each of the dust concentration in the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, the O2 concentration at the inlet of the denitration device 20, and the information indicating the operation time have been learned.
  • Input to the model step S3.
  • the post-poisoning data acquisition unit 406 acquires the post-poisoning catalyst data (for example, the catalyst physical characteristics after poisoning and the catalyst composition after poisoning) output by the trained first model (step S4).
  • the post-poisoning catalyst data for example, the catalyst physical characteristics after poisoning and the catalyst composition after poisoning
  • the deterioration prediction device 40 predicts the catalyst deterioration data based on the planned value, the plant data, the catalyst data after poisoning, and the learned second model. Will be explained.
  • the catalyst deterioration degree acquisition unit 407 includes catalyst specifications of plant 1 (for example, initial specific surface area of catalyst in plant 1, initial pore volume of catalyst in plant 1, etc.), equipment specifications of plant 1 (for example, in plant 1). (Flow velocity, etc.), the learned second model is read out from the storage unit 401 (step S11).
  • the catalyst deterioration degree acquisition unit 407 includes dust concentration at the inlet of the denitration device 20, NOx concentration at the inlet of the denitration device 20, SOx concentration at the inlet of the denitration device 20, and O2 concentration at the inlet of the denitration device 20.
  • Information indicating each of the above is acquired from the sensor device 30 (step S12).
  • the catalyst deterioration degree acquisition unit 407 acquires the post-poisoning catalyst data predicted by the post-poisoning data acquisition unit 406 from the post-poisoning data acquisition unit 406 (step S13).
  • the catalyst deterioration degree acquisition unit 407 includes the catalyst specifications of the plant 1, the device specifications of the plant 1, the fuel properties of the plant 1, and the inlet of the denitration device 20 acquired from the sensor device 30 as shown in FIG.
  • the catalyst data and the information indicating the operation time are input to the trained second model (step S14).
  • the catalyst deterioration degree acquisition unit 407 acquires the catalyst deterioration data output by the trained second model (step S15).
  • the deterioration degree of the catalyst was predicted by the deterioration prediction device 40 according to the first embodiment of the present disclosure described above, and compared with the actual measurement of the deterioration degree of the catalyst in the plant.
  • 127 data were prepared for 11 plants with different manufacturing years and operating hours, 70% of which was used as learning data and 30% was used as data for accuracy verification.
  • FIG. 9 shows a comparison result between the prediction of the degree of deterioration of the catalyst and the actual measurement of the degree of deterioration of the catalyst.
  • the horizontal axis is the operating time.
  • the vertical axis is the degree of deterioration of the catalyst.
  • the degree of deterioration of the catalyst is a value obtained by dividing the reaction rate constant K at each operating time by the initial reaction rate constant K0.
  • the accuracy of predicting the degree of deterioration of the catalyst was RMSE (Root Mean Squared Error) 0.05.
  • the deterioration prediction device (40) includes a model generation unit (404, 405) and a deterioration degree prediction unit (407).
  • the model generation unit is a second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state.
  • a first prediction model for predicting the degree of deterioration of the catalyst in (1) is generated.
  • the deterioration degree prediction unit (407) predicts the deterioration degree in the second plant (1) based on the first prediction model generated by the model generation unit (404, 405).
  • the degree of deterioration of the catalyst in the second plant (1) can be predicted only by inputting the data about the second plant (1) into the first prediction model.
  • the user of the second plant (1) can know the degree of deterioration of the catalyst without performing a complicated analysis on the catalyst.
  • the deterioration prediction system predicts the deterioration state of the denitration device 20 included in the plant 1 based on the operation data of the plant 1 to be predicted, and air preheating described later from the predicted deterioration state. Predict the differential pressure between the input and output of the device 60.
  • the deterioration prediction system includes a data server device 50 and a differential pressure prediction device 70.
  • the differential pressure prediction device 70 is a device that predicts the differential pressure of the air preheater 60 based on the predicted degree of deterioration of the catalyst performance. As shown in FIG. 10, the differential pressure prediction device 70 includes a scale-up factor estimation unit 701, a leak estimation unit 702, a blockage degree estimation unit 703, and a differential pressure estimation unit 704 in addition to the deterioration prediction device 40.
  • the scale-up factor estimation unit 701 obtains a correction coefficient for correcting the difference between the performance characteristics of the catalyst obtained in the laboratory and the performance characteristics of the catalyst in the actual plant 1.
  • This correction coefficient is the scale-up factor.
  • the scale-up factor estimation unit 701 determines a scale-up factor that corrects the equation that indicates the performance characteristics of the catalyst acquired in the laboratory so that the equation can be applied to the actual plant 1.
  • the scale-up factor is determined by an empirical rule obtained from the performance characteristics of the catalyst acquired in the laboratory and the performance characteristics of the catalyst in the actual plant 1.
  • the leak estimation unit 702 uses an empirical formula obtained by applying a scale-up factor to an equation showing the performance characteristics of the catalyst acquired in the laboratory, a NOx concentration at the inlet of the denitration device 20, a NOx concentration at the outlet of the denitration device 20, and catalyst deterioration data. Based on this, the amount of leaked ammonia is estimated.
  • the performance characteristics of the catalyst are obtained from an empirical formula, and the amount of unreacted ammonia is estimated from the performance characteristics and the NOx concentration at the input / output of the denitration device 20.
  • the blockage estimation unit 703 uses an empirical formula obtained based on the differential pressure data when the differential pressure of the air preheater 60 in the actual plant 1 is rising and the operation data of the plant 1, and the air.
  • the degree of obstruction in the preheater 60 is estimated. For example, when the differential pressure of the air preheater 60 in the actual plant 1 is increasing, the differential pressure between the input and output in the element of the air preheater 60 is monitored and the differential pressure is calculated. The closing speed is calculated from the differential pressure, and an empirical formula is obtained using the operation data of the plant 1 at that time.
  • the differential pressure estimation unit 704 is based on the amount of leak ammonia estimated by the leak estimation unit 702 and the blockage degree in the element of the air preheater 60 estimated by the blockage degree estimation unit 703, between the input and output of the air preheater 60. Estimate the differential pressure of.
  • the plant 1 according to the second embodiment includes a boiler 10, a denitration device 20, a sensor device 30, and an air preheater 60.
  • the air preheater 60 is a device for preheating the combustion air to improve the combustion efficiency of the boiler.
  • SO3 sulfur trioxide
  • the leaked ammonia reacts with sulfur trioxide (SO3) in the combustion gas in the air preheater 60 to generate acidic ammonium sulfate.
  • SO3 sulfur trioxide
  • Precipitation of acidic ammonium sulfate causes clogging.
  • the deterioration prediction device 40 executes the processes shown in steps S11 to S15 to acquire catalyst deterioration data.
  • the scale-up factor estimation unit 701 obtains a scale-up factor that corrects the difference between the catalyst performance characteristics obtained in the laboratory and the catalyst performance characteristics in the actual plant 1 (step S21).
  • the leak estimation unit 702 uses an empirical formula obtained by applying a scale-up factor to an equation showing the performance characteristics of the catalyst acquired in the laboratory, a NOx concentration at the inlet of the denitration device 20, a NOx concentration at the outlet of the denitration device 20, and catalyst deterioration data. Based on this, the amount of leaked ammonia is estimated (step S22).
  • the blockage estimation unit 703 uses an empirical formula obtained based on the differential pressure data when the differential pressure of the air preheater 60 in the actual plant 1 is rising and the operation data of the plant 1, and the air.
  • the degree of occlusion in the preheater 60 is estimated (step S23).
  • the differential pressure estimation unit 704 is based on the amount of leak ammonia estimated by the leak estimation unit 702 and the blockage degree in the element of the air preheater 60 estimated by the blockage degree estimation unit 703, between the input and output of the air preheater 60. Estimate the differential pressure of (step S24).
  • the differential pressure estimation unit 704 may notify the person involved in the catalyst work or the person in charge of the plant 1 of the estimated differential pressure. Based on this notification, catalyst replacement work planning and plant 1 operation support may be performed.
  • FIG. 14 shows a comparison result between the prediction of the differential pressure in the plant and the actual measurement.
  • the horizontal axis is the operating time.
  • the vertical axis is the differential pressure between the input and output of the air preheater 60.
  • the air preheater 60 is shown as an AH (Air Heater). Then, the air preheater 60 is washed once with water.
  • the differential pressure prediction device 70 predicted the differential pressure between the input and output of the air preheater 60, and obtained a result close to the measured value.
  • the differential pressure prediction device (70) includes a deterioration prediction device (40), a scale-up factor estimation unit (701), a leak estimation unit (702), a blockage degree estimation unit (703), and a differential pressure estimation unit (704).
  • the scale-up factor estimation unit (701) obtains a scale-up factor that corrects the difference between the performance characteristics of the catalyst obtained in the laboratory and the performance characteristics of the catalyst in the actual plant (1).
  • the leak estimation unit (702) is an empirical formula obtained by applying a scale-up factor to an equation showing the performance characteristics of the catalyst acquired in the laboratory, the NOx concentration at the inlet of the denitration device (20), and the NOx at the outlet of the denitration device (20).
  • the amount of leaked ammonia is estimated based on the concentration and catalyst deterioration data.
  • the blockage estimation unit (703) is obtained based on the differential pressure data when the differential pressure of the air preheater (60) in the actual plant (1) is increasing and the operation data of the plant (1).
  • the degree of blockage in the air preheater 60 is estimated using the empirical formula.
  • the differential pressure estimation unit (704) is based on the amount of leaked ammonia estimated by the leak estimation unit (702) and the blockage degree in the element of the air preheater (60) estimated by the blockage degree estimation unit (703).
  • the differential pressure between the input and output of the air preheater (60) is estimated.
  • This differential pressure predictor (70) estimates the differential pressure between the input and output of the air preheater (60) when leaked ammonia occurs in the denitration device (20). As a result, the catalyst replacement work can be planned and the operation support of the plant 1 can be performed at an appropriate timing.
  • processing in the embodiment of the present disclosure may change the order of processing within the range in which appropriate processing is performed.
  • the storage unit 401, other storage devices (including registers and latches) in each embodiment of the present invention may be provided anywhere within a range in which appropriate information is transmitted and received. Further, there may be a plurality of storage units 401, other storage devices, and the like within a range in which appropriate information is transmitted and received, and the data may be distributed and stored.
  • the first model generation unit 404 has been described as generating the trained first model as software and storing it in the storage unit 401.
  • the second model generation unit 405 has been described as generating the learned second model as software and storing it in the storage unit 401.
  • each of the trained first model and the trained second model may be realized as hardware.
  • the first model generation unit 404 writes a configuration program for realizing the processing performed by the learned first model stored in the storage unit 401 to programmable hardware such as FPGA (Field-Programmable Gate Array). It may be a thing.
  • a configuration program in which the second model generation unit 405 realizes the processing performed by the learned second model stored in the storage unit 401 is programmable hardware such as FPGA (Field-Programmable Gate Array). It may be written in.
  • FIG. 10 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 5 includes a CPU 6, a main memory 7, a storage 8, and an interface 9.
  • each of the above-mentioned deterioration prediction device 40, differential pressure prediction device 70, and other control devices is mounted on the computer 5.
  • each processing unit described above is stored in the storage 8 in the form of a program.
  • the CPU 6 reads the program from the storage 8, expands it into the main memory 7, and executes the above processing according to the program. Further, the CPU 6 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 7 according to the program.
  • the storage 8 examples include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical magnetic disk, CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk) , Semiconductor memory and the like.
  • the storage 8 may be internal media directly connected to the bus of computer 5, or external media connected to computer 5 via an interface 9 or a communication line. When this program is distributed to the computer 5 via a communication line, the distributed computer 5 may expand the program in the main memory 7 and execute the above processing.
  • the storage 8 is a non-temporary tangible storage medium.
  • the above program may realize a part of the above-mentioned functions.
  • the program may be a file that can realize the above-mentioned functions in combination with a program already recorded in the computer device, that is, a so-called difference file (difference program).
  • the deterioration prediction device 40, the plant 1, the deterioration prediction method, the program, and the program for causing the computer to execute the processing of the configuration described in each embodiment of the present disclosure are grasped as follows, for example.
  • the deterioration prediction device (40) is A catalyst in a second plant (1) different from the first plant based on learning data including first data relating to a catalyst in the past operation of the first plant and second data relating to the past operating state.
  • Model generators (404, 405) that generate the first prediction model that predicts the degree of deterioration of A deterioration degree prediction unit (407) that predicts the deterioration degree in the second plant (1) based on the first prediction model generated by the model generation units (404, 405). To be equipped.
  • the degree of deterioration of the catalyst in the second plant (1) can be predicted only by inputting the data about the second plant (1) into the first prediction model.
  • the user of the second plant (1) can know the degree of deterioration of the catalyst without performing a complicated analysis on the catalyst.
  • the deterioration prediction device (40) is the deterioration prediction device (40) of (1).
  • the training data includes data relating to the catalyst after poisoning in the past operation of the first plant and data relating to the degree of deterioration in the past operation of the first plant.
  • the model generators (404, 405) A first model generation unit (404) that generates a second prediction model that predicts data related to the catalyst after poisoning in the second plant (1) based on the training data. Based on the data relating to the catalyst after poisoning in the second plant (1) predicted by the second prediction model, the first prediction model for predicting the degree of deterioration in the second plant (1) is generated.
  • this deterioration prediction device (40) it is possible to predict data related to the catalyst in the device, which is difficult to predict for the second plant (1). As a result, the user of the second plant (1) can easily determine which data affects the degree of deterioration of the catalyst in the second plant (1).
  • the differential pressure prediction device (70) according to the third aspect is Deterioration prediction device (40) according to the first aspect or the second aspect, and A differential pressure estimation unit (704) that estimates the differential pressure between the input and output of the air preheater (60) based on the deterioration degree predicted by the deterioration prediction device (40). To be equipped.
  • This differential pressure predictor (70) estimates the differential pressure between the input and output of the air preheater (60) when leaked ammonia occurs in the denitration device (20). As a result, it becomes possible to plan the catalyst replacement work and support the operation of the plant 1 at an appropriate timing.
  • the differential pressure prediction device (70) is the differential pressure prediction device (70) of (3).
  • the blockage degree estimation unit (703) which estimates the blockage degree in the air preheater (60) based on the deterioration degree predicted by the deterioration prediction device (40), With The differential pressure estimation unit (704) Based on the degree of blockage estimated by the degree of blockage estimation unit (703), the differential pressure between the input and output of the air preheater (60) is estimated.
  • the differential pressure prediction device (70) makes the configuration of the differential pressure prediction device (70) clearer, and when leak ammonia occurs in the denitration device (20), it is between the input and output of the air preheater (60). Estimate the differential pressure. As a result, it becomes possible to plan the catalyst replacement work and support the operation of the plant 1 at an appropriate timing.
  • the differential pressure prediction device (70) is the differential pressure prediction device (70) of (3) or (4).
  • the leak estimation unit (702) which estimates the amount of leak ammonia based on the degree of deterioration predicted by the deterioration prediction device (40), With The differential pressure estimation unit (704) The differential pressure between the input and output of the air preheater (60) is estimated based on the amount of the leaked ammonia estimated by the leak estimation unit (702).
  • the differential pressure prediction device (70) makes the configuration of the differential pressure prediction device (70) clearer, and when leak ammonia occurs in the denitration device (20), it is between the input and output of the air preheater (60). Estimate the differential pressure. As a result, it becomes possible to plan the catalyst replacement work and support the operation of the plant 1 at an appropriate timing.
  • the differential pressure prediction device (70) according to the fifth aspect is the differential pressure prediction device (70) according to any one of (3) to (5).
  • a scale-up factor estimation unit (701) that obtains a scale-up factor based on the degree of deterioration predicted by the deterioration prediction device (40).
  • the differential pressure estimation unit (704) Based on the scale-up factor obtained by the scale-up factor estimation unit (701), the differential pressure between the input and output of the air preheater (60) is estimated.
  • the differential pressure prediction device (70) makes the configuration of the differential pressure prediction device (70) clearer, and when leak ammonia occurs in the denitration device (20), it is between the input and output of the air preheater (60). Estimate the differential pressure. As a result, it becomes possible to plan the catalyst replacement work and support the operation of the plant 1 at an appropriate timing.
  • the plant (1) according to the seventh aspect is A plant that uses catalysts The device (20) for deteriorating the catalyst and The deterioration predictor (40) of (1) or (2) for predicting the degree of deterioration of the catalyst, and To be equipped.
  • the deterioration prediction method is Deterioration of the catalyst in the second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. To generate a first prediction model that predicts Predicting the degree of deterioration in the second plant based on the generated first prediction model, and including.
  • the program according to the tenth aspect is On the computer Deterioration of the catalyst in the second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. To generate a first prediction model that predicts Predicting the degree of deterioration in the second plant based on the generated first prediction model, and To execute.
  • the program for causing the computer to execute the configuration process according to the eleventh aspect is A catalyst in a second plant (1) different from the first plant based on learning data including first data relating to a catalyst in the past operation of the first plant and second data relating to the past operating state.
  • Model generators (404, 405) which generate a first prediction model for predicting the degree of deterioration of A deterioration degree prediction unit (407) that predicts the deterioration degree in the second plant (1) based on the first prediction model generated by the model generation units (404, 405). Configure each of these as hardware.
  • a program for causing a computer to perform this configuration process predicts the degree of catalyst deterioration in the second plant (1) simply by inputting data about the second plant (1) into the first prediction model. Can be done. As a result, the user of the second plant (1) can know the degree of deterioration of the catalyst without performing a complicated analysis on the catalyst.
  • the user of the plant can know the degree of deterioration of the catalyst without performing complicated processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A deterioration prediction device of the present invention comprises: a model generation unit that generates, on the basis of learning data including first data related to a catalyst in a past operation of a first plant and second data related to the status of the past operation, a first prediction model for predicting a degree of deterioration of the catalyst in a second plant which is different from the first plant; and a deterioration degree prediction unit that predicts, on the basis of the first prediction model generated by the model generation unit, the degree of deterioration in the second plant.

Description

予測装置、プラント、予測方法、プログラム、及び、コンフィギュレーションプログラムPredictor, plant, forecast method, program, and configuration program
 本開示は、予測装置、プラント、予測方法、プログラム、及び、コンフィギュレーションプログラムに関する。
 本願は、2020年2月4日に日本に出願された特願2020-017156号、及び、2020年6月19日に日本に出願された特願2020-106496号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to predictors, plants, prediction methods, programs, and configuration programs.
The present application claims priority over Japanese Patent Application No. 2020-017156 filed in Japan on February 4, 2020 and Japanese Patent Application No. 2020-106496 filed in Japan on June 19, 2020. The contents are used here.
 ボイラなどを備えるプラントでは、触媒が使用される。触媒が使用されるプラントでは、プラントを運転するにつれて、触媒が劣化する。そのため、触媒が使用されるプラントでは、触媒の劣化度を把握することが望まれる。
 特許文献1には、関連する技術として、触媒の劣化度を予測する技術が開示されている。
In plants equipped with boilers and the like, catalysts are used. In plants where catalysts are used, the catalysts deteriorate as the plant is operated. Therefore, in a plant where a catalyst is used, it is desirable to grasp the degree of deterioration of the catalyst.
Patent Document 1 discloses a technique for predicting the degree of deterioration of a catalyst as a related technique.
日本国特許第6278296号公報Japanese Patent No. 6278296
 ところで、プラントにおける触媒の劣化度を予測するには、一般的にプラントのユーザが予測するときに、毎回排ガスの性状を分析するなど複雑な処理を行う必要がある。
 そのため、プラントでは、ユーザが複雑な処理を実行することなく、触媒の劣化度を知ることができる技術が求められている。
By the way, in order to predict the degree of deterioration of the catalyst in the plant, it is generally necessary to perform a complicated process such as analyzing the properties of the exhaust gas every time the user of the plant makes a prediction.
Therefore, in a plant, there is a demand for a technique that allows a user to know the degree of deterioration of a catalyst without performing complicated processing.
 本開示は、上記の課題を解決することのできる予測装置、プラント、予測方法、プログラム、及び、コンフィギュレーションプログラムを提供することを目的としている。 The present disclosure aims to provide a prediction device, a plant, a prediction method, a program, and a configuration program capable of solving the above problems.
 上記課題を解決するために、本開示に係る劣化予測装置は、第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成するモデル生成部と、前記モデル生成部が生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測する劣化度予測部と、を備える。 In order to solve the above problems, the deterioration prediction device according to the present disclosure includes learning data including first data related to a catalyst in the past operation of the first plant and second data related to the past operation state. Based on the model generation unit that generates the first prediction model that predicts the deterioration degree of the catalyst in the second plant different from the first plant, and the first prediction model generated by the model generation unit, the first It is provided with a deterioration degree prediction unit for predicting the deterioration degree in the two plants.
 本開示に係る差圧予測装置は、上記の劣化予測装置と、前記劣化予測装置が予測した前記劣化度に基づいて、空気予熱器の入出力間の差圧を推定する差圧推定部と、を備える。 The differential pressure prediction device according to the present disclosure includes the deterioration prediction device, a differential pressure estimation unit that estimates the differential pressure between the input and output of the air preheater based on the deterioration degree predicted by the deterioration prediction device, and the differential pressure estimation unit. To be equipped.
 本開示に係るプラントは、触媒が用いられるプラントであって、前記触媒の劣化が起こる装置と、前記触媒の劣化度を予測する上記の劣化予測装置と、を備える。 The plant according to the present disclosure is a plant in which a catalyst is used, and includes an apparatus for causing deterioration of the catalyst and the above-mentioned deterioration prediction apparatus for predicting the degree of deterioration of the catalyst.
 本開示に係る劣化予測方法は、第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成することと、生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測することと、を含む。 The deterioration prediction method according to the present disclosure is based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state, and the first plant. It includes generating a first prediction model for predicting the degree of deterioration of a catalyst in a different second plant, and predicting the degree of deterioration in the second plant based on the generated first prediction model.
 本開示に係る差圧予測方法は、第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成することと、生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測することと、予測した前記劣化度に基づいて、空気予熱器の入出力間の差圧を推定することと、を含む。 The differential pressure prediction method according to the present disclosure is based on learning data including first data relating to a catalyst in the past operation of the first plant and second data relating to the past operating state of the first plant. It was predicted that the first prediction model for predicting the deterioration degree of the catalyst in the second plant different from the above was generated, and that the deterioration degree in the second plant was predicted based on the generated first prediction model. It includes estimating the differential pressure between the input and output of the air preheater based on the degree of deterioration.
 本開示に係るプログラムは、コンピュータに、第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成することと、生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測することと、を実行させる。 The program according to the present disclosure is based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state in the computer, and the first plant. To generate a first prediction model for predicting the degree of deterioration of the catalyst in the second plant different from the above, and to predict the degree of deterioration in the second plant based on the generated first prediction model. Let me.
 本開示に係るコンフィギュレーションの処理をコンピュータに実行させるためのプログラムは、第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成するモデル生成部、前記モデル生成部が生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測する劣化度予測部のそれぞれをハードウェアとして構成させる。 The program for causing the computer to execute the configuration process according to the present disclosure is training data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. Based on the model generation unit that generates the first prediction model that predicts the deterioration degree of the catalyst in the second plant different from the first plant, and the first prediction model generated by the model generation unit. Each of the deterioration degree prediction units for predicting the deterioration degree in the two plants is configured as hardware.
 本開示の実施形態による予測装置、プラント、予測方法、プログラム、及び、コンフィギュレーションプログラムによれば、プラントのユーザが複雑な処理を実行することなく、触媒の劣化度を知ることができる。 According to the prediction device, the plant, the prediction method, the program, and the configuration program according to the embodiment of the present disclosure, the user of the plant can know the degree of deterioration of the catalyst without performing complicated processing.
本開示の第1実施形態によるプラントの構成の一例を示す図である。It is a figure which shows an example of the structure of the plant by 1st Embodiment of this disclosure. 本開示の第1実施形態によるセンサ装置の構成の一例を示す図である。It is a figure which shows an example of the structure of the sensor device by 1st Embodiment of this disclosure. 本開示の第1実施形態による劣化予測装置の構成の一例を示す図である。It is a figure which shows an example of the structure of the deterioration prediction apparatus by 1st Embodiment of this disclosure. 本開示の第1実施形態におけるさまざまなプラントにおける過去の実績データの一例を示す図である。It is a figure which shows an example of the past performance data in various plants in 1st Embodiment of this disclosure. 本開示の第1実施形態における第1モデル及び第2モデルの生成を説明するための図である。It is a figure for demonstrating the generation of the 1st model and the 2nd model in 1st Embodiment of this disclosure. 本開示の第1実施形態における第1モデル及び第2モデルからへのデータの入力の一例を示す図である。It is a figure which shows an example of the input of the data from the 1st model and the 2nd model in the 1st Embodiment of this disclosure. 本開示の第1実施形態による劣化予測装置の処理フローを示す第1の図である。It is the first figure which shows the processing flow of the deterioration prediction apparatus by 1st Embodiment of this disclosure. 本開示の第1実施形態による劣化予測装置の処理フローを示す第2の図である。It is the 2nd figure which shows the processing flow of the deterioration prediction apparatus by 1st Embodiment of this disclosure. 本開示の第1実施形態における実施例の比較結果の一例を示す図である。It is a figure which shows an example of the comparative result of the Example in 1st Embodiment of this disclosure. 本開示の第2実施形態による差圧予測装置の構成の一例を示す図である。It is a figure which shows an example of the structure of the differential pressure prediction apparatus by 2nd Embodiment of this disclosure. 本開示の第2実施形態によるプラントの構成の一例を示す図である。It is a figure which shows an example of the structure of the plant by 2nd Embodiment of this disclosure. 本開示の第2実施形態による差圧予測装置の処理フローを示す図である。It is a figure which shows the processing flow of the differential pressure prediction apparatus by 2nd Embodiment of this disclosure. 本開示の第2実施形態による差圧予測装置の処理を説明するための図である。It is a figure for demonstrating the processing of the differential pressure prediction apparatus by the 2nd Embodiment of this disclosure. 本開示の第2実施形態における実施例の比較結果の一例を示す図である。It is a figure which shows an example of the comparative result of the Example in the 2nd Embodiment of this disclosure. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on at least one Embodiment.
<第1実施形態>
 以下、図面を参照しながら実施形態について詳しく説明する。
 本開示の第1実施形態に係る劣化予測システムは、予測対象のプラント1の運転データに基づいて、当該プラント1が備える脱硝装置20の劣化状態を予測する。劣化予測システムは、データサーバ装置50および劣化予測装置40を備える。データサーバ装置50は、プラント1のデータを記憶する装置である。プラント1のデータは、例えば、燃料性状、運転データなどを含むデータである。劣化予測装置40は、データサーバ装置50が記憶するデータに基づいて、プラント1が備える脱硝装置20の劣化状態を予測する。
<First Embodiment>
Hereinafter, embodiments will be described in detail with reference to the drawings.
The deterioration prediction system according to the first embodiment of the present disclosure predicts the deterioration state of the denitration device 20 included in the plant 1 based on the operation data of the plant 1 to be predicted. The deterioration prediction system includes a data server device 50 and a deterioration prediction device 40. The data server device 50 is a device that stores the data of the plant 1. The data of the plant 1 is data including, for example, fuel properties, operation data, and the like. The deterioration prediction device 40 predicts the deterioration state of the denitration device 20 included in the plant 1 based on the data stored in the data server device 50.
(プラントの構成)
 第1実施形態によるプラント1(第2プラントの一例、プラントの一例)の構成について説明する。
 第1実施形態によるプラント1は、プラント1の総運転時間に対する触媒の性能の劣化度を予測するプラントである。
 プラント1は、図1に示すように、ボイラ10、脱硝装置20(触媒の劣化が起こる装置の一例)、センサ装置30を備える。
(Plant configuration)
The configuration of the plant 1 (an example of the second plant, an example of the plant) according to the first embodiment will be described.
The plant 1 according to the first embodiment is a plant that predicts the degree of deterioration of the catalyst performance with respect to the total operating time of the plant 1.
As shown in FIG. 1, the plant 1 includes a boiler 10, a denitration device 20 (an example of a device in which catalyst deterioration occurs), and a sensor device 30.
 ボイラ10は、石炭などを燃料とするボイラである。ボイラ10は、燃料を焚いたときの燃焼ガスを脱硝装置20に排出する。 Boiler 10 is a boiler that uses coal or the like as fuel. The boiler 10 discharges the combustion gas when the fuel is burned to the denitration device 20.
 脱硝装置20は、燃焼ガスに含まれるNOx(ノックス)を分解することで、燃焼ガスにおけるNOx濃度を低減させる装置。プラント1の安定的な稼働のために、脱硝装置20の脱硝率をほぼ一定に保つことが好ましい。
 例えば、脱硝装置20は、被毒成分による触媒の性能の劣化によって低下傾向となる脱硝率を、脱硝装置20の入口でアンモニア(NH)を注入することにより、その脱硝率を一定に保つ。被毒成分とは、触媒の主成分とは異なる、外部から入ってくる成分である。
 脱硝装置20には、外部から被毒成分が入ってくる。そのため、脱硝装置20では、被毒成分の増加に伴って、活性点が減少する。その結果、触媒の性能の高さ(良さ)を示す反応速度定数Kの値が低下する。すなわち、触媒の性能が劣化する。
 第1実施形態によるプラント1は、この触媒の性能の劣化度の予測対象である。
The denitration device 20 is a device that reduces the NOx concentration in the combustion gas by decomposing NOx contained in the combustion gas. For stable operation of the plant 1, it is preferable to keep the denitration rate of the denitration device 20 substantially constant.
For example, the denitration device 20 keeps the denitration rate, which tends to decrease due to deterioration of the catalyst performance due to the poisonous component , constant by injecting ammonia (NH 3) at the inlet of the denitration device 20. The poisonous component is a component that comes in from the outside, which is different from the main component of the catalyst.
Toxic components enter the denitration device 20 from the outside. Therefore, in the denitration device 20, the active sites decrease as the poisoning component increases. As a result, the value of the reaction rate constant K, which indicates the high performance (goodness) of the catalyst, decreases. That is, the performance of the catalyst deteriorates.
The plant 1 according to the first embodiment is a target for predicting the degree of deterioration of the performance of this catalyst.
 センサ装置30は、図2に示すように、第1センサ301、第2センサ302、第3センサ303、第4センサ304を備える。センサ装置30は、脱硝装置20の入口に備えられる。
 第1センサ301は、脱硝装置20の入口におけるダスト濃度を検出する。
 第2センサ302は、脱硝装置20の入口におけるNOx(ノックス)濃度を検出する。
 第3センサ303は、脱硝装置20の入口におけるSOx(ソックス)濃度を検出する。
 第4センサ304は、脱硝装置20の入口におけるO2(酸素)濃度を検出する。
 センサ装置30が計測したデータは、インターネット等のネットワークを介してデータサーバ装置50に送信される。これにより、データサーバ装置50にはプラント1のデータが蓄積される。
As shown in FIG. 2, the sensor device 30 includes a first sensor 301, a second sensor 302, a third sensor 303, and a fourth sensor 304. The sensor device 30 is provided at the entrance of the denitration device 20.
The first sensor 301 detects the dust concentration at the inlet of the denitration device 20.
The second sensor 302 detects the NOx concentration at the inlet of the denitration device 20.
The third sensor 303 detects the SOx (socks) concentration at the inlet of the denitration device 20.
The fourth sensor 304 detects the O2 (oxygen) concentration at the inlet of the denitration device 20.
The data measured by the sensor device 30 is transmitted to the data server device 50 via a network such as the Internet. As a result, the data of the plant 1 is accumulated in the data server device 50.
(劣化予測装置の構成)
 劣化予測装置40は、プラント1の総運転時間に対する触媒の性能の劣化度を予測する装置である。
 劣化予測装置40は、図3に示すように、記憶部401、計画値取得部402、プラントデータ取得部403、第1モデル生成部404(モデル生成部の一例)、第2モデル生成部405(モデル生成部の一例)、被毒後データ取得部406、触媒劣化度取得部407(劣化度予測部の一例)を備える。
(Configuration of deterioration prediction device)
The deterioration prediction device 40 is a device that predicts the degree of deterioration of the catalyst performance with respect to the total operating time of the plant 1.
As shown in FIG. 3, the deterioration prediction device 40 includes a storage unit 401, a planned value acquisition unit 402, a plant data acquisition unit 403, a first model generation unit 404 (an example of a model generation unit), and a second model generation unit 405 (an example of the model generation unit). A model generation unit), a post-poisoning data acquisition unit 406, and a catalyst deterioration degree acquisition unit 407 (an example of a deterioration degree prediction unit) are provided.
 記憶部401は、劣化予測装置40の処理に必要な種々の情報を記憶する。
 例えば、記憶部401は、さまざまなプラント(第1プラントの一例)における過去の実績データD1を記憶する。
 具体的には、記憶部401は、例えば、図4に示す計画値、プラントデータ、被毒後の触媒データを記憶する。
 なお、時間の経過に伴って変化するデータについては、記憶部401は、時刻と関連付けて記憶している。
The storage unit 401 stores various information necessary for the processing of the deterioration prediction device 40.
For example, the storage unit 401 stores past actual data D1 in various plants (an example of the first plant).
Specifically, the storage unit 401 stores, for example, the planned value shown in FIG. 4, the plant data, and the catalyst data after poisoning.
The storage unit 401 stores the data that changes with the passage of time in association with the time.
 図4に示すように、計画値には、触媒性能、触媒仕様、装置仕様が含まれる。
 触媒性能の例としては、反応速度定数の初期値K0、ある運転時間が経過した後の反応速度定数Kと反応速度定数の初期値K0との比(K/K0)(反応速度定数の劣化度、すなわち、触媒の劣化度)などが挙げられる。なお、反応速度定数の初期値K0は、予め与えられる値である。
As shown in FIG. 4, the planned values include catalyst performance, catalyst specifications, and device specifications.
Examples of catalyst performance are the initial value K0 of the reaction rate constant, the ratio of the reaction rate constant K to the initial value K0 of the reaction rate constant after a certain operating time has elapsed (K / K0) (degree of deterioration of the reaction rate constant). That is, the degree of deterioration of the catalyst) and the like. The initial value K0 of the reaction rate constant is a value given in advance.
 また、触媒仕様の例としては、触媒の初期の比表面積、触媒の初期の細孔容積、触媒の初期の組成(例えば、TiO2(チタニア)、WO3(三酸化タングステン)、V2O5(五酸化バナジウム)、SiO2(シリカ)など)などが挙げられる。なお、触媒の仕様は、例えば、実際の触媒をサンプリングし、分析することによって得られる。 Examples of catalyst specifications include the initial specific surface area of the catalyst, the initial pore volume of the catalyst, and the initial composition of the catalyst (for example, TIO2 (titania), WO3 (tungsten trioxide), V2O5 (vanadium pentoxide)). , SiO2 (silica), etc.) and the like. The catalyst specifications can be obtained, for example, by sampling and analyzing an actual catalyst.
 また、装置仕様の例としては、流速、脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx(ノックス)濃度、脱硝装置20の入口におけるSOx(ソックス)濃度、脱硝装置20の入口におけるO2(酸素)濃度などが挙げられる。
 なお、流速は、装置ごとに決まる値である。脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれは、脱硝装置20の入口に設けられているセンサ装置30によって測定された値である。脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれについては、燃料性状から計算により求めるものであってもよい。ここでの燃料性状は、灰中の各成分の触媒への流入量を示すデータであり、プラントごとに燃料を分析して、所持されているデータである。
Examples of device specifications include the flow velocity, the dust concentration at the inlet of the denitration device 20, the NOx (knox) concentration at the inlet of the denitration device 20, the SOx (socks) concentration at the inlet of the denitration device 20, and the inlet of the denitration device 20. Examples include O2 (oxygen) concentration.
The flow velocity is a value determined for each device. The dust concentration at the inlet of the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, and the O2 concentration at the inlet of the denitration device 20 are sensors provided at the inlet of the denitration device 20. It is a value measured by the device 30. The dust concentration at the inlet of the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, and the O2 concentration at the inlet of the denitration device 20 are calculated from the fuel properties. May be good. The fuel properties here are data indicating the amount of each component in the ash flowing into the catalyst, and are data possessed by analyzing the fuel for each plant.
 また、図4に示すように、プラントデータには、燃料性状、運転データが含まれる。
 燃料性状の例としては、SiO2、Al2O3などのフライアッシュ中成分の触媒への流入量が挙げられる。
 また、運転データの例としては、プラントの運転時間が挙げられる。
Further, as shown in FIG. 4, the plant data includes fuel properties and operation data.
Examples of fuel properties include the amount of inflow of components in fly ash such as SiO2 and Al2O3 into the catalyst.
Further, as an example of the operation data, the operation time of the plant can be mentioned.
 また、図4に示すように、被毒後の触媒データには、被毒後の触媒物性、被毒後の触媒組成が含まれる。
 被毒後の触媒物性の例としては、被毒後の触媒の比表面積、被毒後の触媒の細孔容積などが挙げられる。
 また、被毒後の触媒組成の例としては、被毒後の触媒におけるTiO2の割合をWO3の割合で正規化した値(TiO2/WO3)、被毒後の触媒におけるSiO2の割合をWO3の割合で正規化した値(SiO2/WO3)などが挙げられる。
 なお、被毒後の触媒データは、脱硝装置20の内部における触媒のデータであり、プラントの運転中に取得することは困難なデータである。そのため、被毒後の触媒データは、プラント1の保守点検時などに取得されることになる。
Further, as shown in FIG. 4, the catalyst data after poisoning includes the catalyst physical characteristics after poisoning and the catalyst composition after poisoning.
Examples of the catalyst physical characteristics after poisoning include the specific surface area of the catalyst after poisoning, the pore volume of the catalyst after poisoning, and the like.
As an example of the catalyst composition after poisoning, the ratio of TIO2 in the catalyst after poisoning is normalized by the ratio of WO3 (TiO2 / WO3), and the ratio of SiO2 in the catalyst after poisoning is the ratio of WO3. Examples thereof include values normalized by (SiO2 / WO3).
The catalyst data after poisoning is the data of the catalyst inside the denitration device 20, and is difficult to acquire during the operation of the plant. Therefore, the catalyst data after poisoning will be acquired at the time of maintenance and inspection of the plant 1.
 また、具体的には、記憶部401は、過去のプラントの運転について、求められた触媒の劣化度(すなわち、比(K/K0))を記憶する。 Specifically, the storage unit 401 stores the required degree of catalyst deterioration (that is, ratio (K / K0)) for past plant operations.
 また、例えば、記憶部401は、モデルを用いてプラント1における触媒の劣化度を予測するときに用いるデータを記憶する。
 具体的には、記憶部401は、過去の実績データD1を用いて生成された第1モデル(第2予測モデルの一例)、過去の実績データD1を用いて生成された第2モデル(第1予測モデルの一例)、プラント1の触媒性能、プラント1の触媒仕様、プラント1の装置仕様、プラント1の燃料性状を記憶する。第1モデルは、プラント1における被毒後の触媒データを予測するモデルである。第2モデルは、第1モデルが予測した被毒後の触媒データから触媒の劣化度を予測するモデルである。第1モデルと第2モデルのそれぞれは、さまざまなプラントにおける過去の実績データを用いて学習した学習済みモデルである。
 プラント1の触媒性能の例としては、プラント1の反応速度定数の初期値K0が挙げられる。
 また、プラント1の触媒仕様の例としては、プラント1における触媒の初期の比表面積、プラント1における触媒の初期の細孔容積などが挙げられる。
 また、プラント1の装置仕様の例としては、プラント1における流速などが挙げられる。
 また、プラント1の燃料性状の例としては、プラント1における灰中成分の触媒への流入量(例えば、TiO2、SiO2などの触媒への流入量)が挙げられる。
 なお、第1モデルの生成、第2モデルの生成については、後述する。
Further, for example, the storage unit 401 stores data used when predicting the degree of deterioration of the catalyst in the plant 1 using the model.
Specifically, the storage unit 401 includes a first model (an example of a second prediction model) generated using the past actual data D1 and a second model (first) generated using the past actual data D1. An example of a prediction model), the catalyst performance of the plant 1, the catalyst specifications of the plant 1, the equipment specifications of the plant 1, and the fuel properties of the plant 1 are stored. The first model is a model for predicting catalyst data after poisoning in plant 1. The second model is a model that predicts the degree of deterioration of the catalyst from the catalyst data after poisoning predicted by the first model. Each of the first model and the second model is a trained model trained using past performance data in various plants.
An example of the catalytic performance of the plant 1 is the initial value K0 of the reaction rate constant of the plant 1.
Examples of the catalyst specifications of the plant 1 include the initial specific surface area of the catalyst in the plant 1, the initial pore volume of the catalyst in the plant 1, and the like.
Further, as an example of the device specifications of the plant 1, the flow velocity in the plant 1 and the like can be mentioned.
Further, as an example of the fuel property of the plant 1, the inflow amount of the component in the ash into the catalyst in the plant 1 (for example, the inflow amount into the catalyst such as TiO2 and SiO2) can be mentioned.
The generation of the first model and the generation of the second model will be described later.
 計画値取得部402は、プラント1の計画値を取得する。
 例えば、計画値取得部402は、プラント1の触媒性能、プラント1の触媒仕様、プラント1の装置仕様を記憶部401から読み出す。
 具体的には、計画値取得部402は、プラント1の反応速度定数の初期値K0、触媒の初期の比表面積、触媒の初期の細孔容積、触媒の初期の組成、流速などを、記憶部401から読み出す。
The planned value acquisition unit 402 acquires the planned value of the plant 1.
For example, the planned value acquisition unit 402 reads out the catalyst performance of the plant 1, the catalyst specifications of the plant 1, and the device specifications of the plant 1 from the storage unit 401.
Specifically, the planned value acquisition unit 402 stores the initial value K0 of the reaction rate constant of the plant 1, the initial specific surface area of the catalyst, the initial pore volume of the catalyst, the initial composition of the catalyst, the flow velocity, and the like. Read from 401.
 また、例えば、計画値取得部402は、センサ装置30が検出したダスト濃度、脱硝装置20の入口におけるNOx(ノックス)濃度、脱硝装置20の入口におけるSOx(ソックス)濃度、脱硝装置20の入口におけるO2(酸素)濃度それぞれの検出値を、センサ装置30から取得する。
 なお、計画値取得部402が取得した検出値を記憶部401に記憶し、別のプラントにおける触媒の劣化度を求めるときに、その記憶した検出値を実績データとして使用するものであってもよい。
Further, for example, the planned value acquisition unit 402 includes the dust concentration detected by the sensor device 30, the NOx (knox) concentration at the inlet of the denitration device 20, the SOx (sox) concentration at the inlet of the denitration device 20, and the inlet of the denitration device 20. The detected values of each O2 (oxygen) concentration are acquired from the sensor device 30.
The detected value acquired by the planned value acquisition unit 402 may be stored in the storage unit 401, and the stored detected value may be used as actual data when determining the degree of deterioration of the catalyst in another plant. ..
 プラントデータ取得部403は、データサーバ装置50からプラント1のプラントデータを取得し、取得したプラントデータを記憶部401に記録する。 The plant data acquisition unit 403 acquires the plant data of the plant 1 from the data server device 50, and records the acquired plant data in the storage unit 401.
(第1モデルの生成)
 第1モデル生成部404は、第1モデルを生成する。第1モデルの例としては、ニューラルネットワーク、ランダムフォレスト、サポートベクターマシンなどの機械学習モデルが挙げられる。なお、以下の説明では、ニューラルネットワークを例に第1モデルの生成について説明する。
(Generation of the first model)
The first model generation unit 404 generates the first model. Examples of the first model include machine learning models such as neural networks, random forests, and support vector machines. In the following description, the generation of the first model will be described using a neural network as an example.
 第1モデル生成部404は、モデル化されたニューラルネットワークを、さまざまなプラントにおける過去の実績データ(計画値、プラントデータ、被毒後の触媒データ)を学習データとして機械学習することにより学習済みの第1モデルを生成する。
 ニューラルネットワークは、例えば、入力層と、中間層と、出力層とを有する折り畳みニューラルネットワークである。また、ここでの学習データは、計画値、プラントデータ、被毒後の触媒データのそれぞれが一対一で対応付けられたデータである。
The first model generation unit 404 has already learned the modeled neural network by machine learning the past actual data (planned value, plant data, catalyst data after poisoning) in various plants as learning data. Generate the first model.
The neural network is, for example, a folding neural network having an input layer, an intermediate layer, and an output layer. Further, the learning data here is data in which the planned value, the plant data, and the catalyst data after poisoning are associated with each other on a one-to-one basis.
 具体的には、第1モデル生成部404は、複数の学習データ(計画値、プラントデータ、被毒後の触媒データ)を、訓練データと、評価データと、テストデータとに分ける。第1モデル生成部404は、図5に示すように、訓練データの計画値及びプラントデータをニューラルネットワークに入力する。ニューラルネットワーク(図5における学習前の第1モデル)は、被毒後の触媒データを出力する。第1モデル生成部404は、訓練データの計画値及びプラントデータがニューラルネットワークに入力され、被毒後の触媒データがニューラルネットワークから出力される度に、その出力に応じてバックプロパゲーションを行うことにより、ノード間のデータの結合の重み付けを変更する(すなわち、ニューラルネットワークのモデルを変更する)。次に、第1モデル生成部404は、訓練データの計画値及びプラントデータによって変更されたモデルのニューラルネットワークに、評価データの計画値及びプラントデータを入力する。ニューラルネットワークは、入力された計画値及びプラントデータに応じた被毒後の触媒データを出力する。第1モデル生成部404は、必要に応じてニューラルネットワークの出力に基づいてノード間のデータの結合の重み付けを変更する。このように第1モデル生成部404によって生成されたニューラルネットワークが、学習済みの第1モデルである。次に、第1モデル生成部404は、最終確認として、学習済みの第1モデルのニューラルネットワークに、テストデータの計画値及びプラントデータを入力する。学習済みの第1モデルのニューラルネットワークは、入力されたテストデータの計画値及びプラントデータに応じた被毒後の触媒データを出力する。すべてのテストデータに対して、学習済みの第1モデルのニューラルネットワークが出力する被毒後の触媒データが、入力されたテストデータの計画値及びプラントデータに関連付けられている被毒後の触媒データに対して所定の誤差の範囲内にある場合、学習済みの第1モデルのニューラルネットワークが所望のモデルであると判定する。また、テストデータのうちの1つでも、学習済みの第1モデルのニューラルネットワークが出力する被毒後の触媒データが、入力されたテストデータの計画値及びプラントデータに関連付けられている被毒後の触媒データに対して所定の誤差の範囲内にない場合、新たな学習データを用いて学習済みの第1モデルを生成する。
 上記の第1モデル生成部404による学習済みモデルの生成は、所望の学習済みの第1モデルが得られるまで繰り返される。
 第1モデル生成部404は、生成した学習済みの第1モデルを記憶部401に書き込む。
Specifically, the first model generation unit 404 divides a plurality of learning data (planned value, plant data, catalyst data after poisoning) into training data, evaluation data, and test data. As shown in FIG. 5, the first model generation unit 404 inputs the planned value of the training data and the plant data to the neural network. The neural network (first model before learning in FIG. 5) outputs catalyst data after poisoning. The first model generation unit 404 performs backpropagation according to the output of the planned value of the training data and the plant data every time the planned value and the plant data are input to the neural network and the catalyst data after poisoning is output from the neural network. Changes the weighting of data joins between nodes (ie, changes the model of the neural network). Next, the first model generation unit 404 inputs the planned value of the evaluation data and the plant data into the neural network of the model changed by the planned value of the training data and the plant data. The neural network outputs the catalyst data after poisoning according to the input planned value and plant data. The first model generation unit 404 changes the weighting of the data combination between the nodes based on the output of the neural network as needed. The neural network generated by the first model generation unit 404 in this way is the trained first model. Next, as a final confirmation, the first model generation unit 404 inputs the planned value of the test data and the plant data into the trained neural network of the first model. The trained neural network of the first model outputs the catalyst data after poisoning according to the planned value of the input test data and the plant data. For all test data, the post-poisoning catalyst data output by the trained first model neural network is the post-poisoning catalyst data associated with the input test data planned values and plant data. If it is within a predetermined error range, it is determined that the trained neural network of the first model is the desired model. In addition, even in one of the test data, the post-poisoning catalyst data output by the trained neural network of the first model is associated with the input test data planned value and plant data after poisoning. If it is not within a predetermined error range with respect to the catalyst data of the above, a trained first model is generated using the new training data.
The generation of the trained model by the first model generation unit 404 is repeated until a desired trained first model is obtained.
The first model generation unit 404 writes the generated learned first model to the storage unit 401.
(第2モデルの生成)
 第2モデル生成部405は、第2モデルを生成する。
 例えば、第2モデル生成部405は、モデル化されたニューラルネットワークを、さまざまなプラントにおける過去の実績データ(計画値、プラントデータ、被毒後の触媒データ、触媒劣化データ)を学習データとして機械学習することにより学習済みの第2モデルを生成する。
 ニューラルネットワークは、例えば、入力層と、中間層と、出力層とを有する折り畳みニューラルネットワークである。また、ここでの学習データは、計画値、プラントデータ、被毒後の触媒データ、触媒劣化データのそれぞれが一対一で対応付けられたデータである。
(Generation of the second model)
The second model generation unit 405 generates the second model.
For example, the second model generation unit 405 machine-learns the modeled neural network using past actual data (planned value, plant data, catalyst data after poisoning, catalyst deterioration data) in various plants as learning data. By doing so, a trained second model is generated.
The neural network is, for example, a folding neural network having an input layer, an intermediate layer, and an output layer. Further, the learning data here is data in which the planned value, the plant data, the catalyst data after poisoning, and the catalyst deterioration data are associated with each other on a one-to-one basis.
 具体的には、第2モデル生成部405は、複数の学習データ(計画値、プラントデータ、被毒後の触媒データ、触媒劣化データ)を、訓練データと、評価データと、テストデータとに分ける。第2モデル生成部405は、図5に示すように、訓練データの計画値、プラントデータ、及び、被毒後の触媒データをニューラルネットワークに入力する。ニューラルネットワークは、触媒劣化データを出力する。そして、第1モデル生成部404が第1モデルを生成する場合と同様に、第2モデル生成部405は、すべてのテストデータに対して、学習済みの第2モデルのニューラルネットワークが出力する触媒劣化データが、入力された計画値、プラントデータ、及び、被毒後の触媒データに関連付けられている触媒劣化データに対して所定の誤差の範囲内にある場合、学習済みの第2モデルのニューラルネットワークが所望のモデルであると判定する。また、テストデータのうちの1つでも、学習済みの第2モデルのニューラルネットワークが出力する触媒劣化データが、入力されたテストデータの計画値、プラントデータ、及び、被毒後の触媒データに関連付けられている触媒劣化データに対して所定の誤差の範囲内にない場合、新たな学習データを用いて学習済みの第2モデルを生成する。
 上記の第2モデル生成部405による学習済みモデルの生成は、所望の学習済みの第2モデルが得られるまで繰り返される。
 第2モデル生成部405は、生成した学習済みの第2モデルを記憶部401に書き込む。
Specifically, the second model generation unit 405 divides a plurality of training data (planned value, plant data, catalyst data after poisoning, catalyst deterioration data) into training data, evaluation data, and test data. .. As shown in FIG. 5, the second model generation unit 405 inputs the planned value of the training data, the plant data, and the catalyst data after poisoning to the neural network. The neural network outputs catalyst deterioration data. Then, as in the case where the first model generation unit 404 generates the first model, the second model generation unit 405 uses the catalyst deterioration output by the trained neural network of the second model for all the test data. A trained second model neural network if the data is within a predetermined error with respect to the input planned values, plant data, and catalyst degradation data associated with post-poisoning catalyst data. Is determined to be the desired model. In addition, even in one of the test data, the catalyst deterioration data output by the trained neural network of the second model is associated with the planned value of the input test data, the plant data, and the catalyst data after poisoning. If the catalyst deterioration data is not within a predetermined error range, a trained second model is generated using the new training data.
The generation of the trained model by the second model generation unit 405 is repeated until a desired trained second model is obtained.
The second model generation unit 405 writes the generated and learned second model to the storage unit 401.
 被毒後データ取得部406は、計画値と、プラントデータと、学習済みの第1モデルとに基づいて、被毒後の触媒データを取得する。 The post-poisoning data acquisition unit 406 acquires the post-poisoning catalyst data based on the planned value, the plant data, and the trained first model.
 例えば、被毒後データ取得部406は、プラント1の触媒性能(例えば、プラント1の反応速度定数の初期値K0)、プラント1の触媒仕様(例えば、プラント1における触媒の初期の比表面積、プラント1における触媒の初期の細孔容積など)、プラント1の装置仕様(例えば、プラント1における流速など)、プラント1の燃料性状(例えば、プラント1における灰中成分の触媒への流入量)、学習済みの第1モデルを記憶部401から読み出す。
 また、被毒後データ取得部406は、プラント1の運転中に、脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれを示す情報を、センサ装置30から取得する。
 被毒後データ取得部406は、図6に示すように、記憶部401から読み出したプラント1の触媒性能、プラント1の触媒仕様、プラント1の装置仕様、プラント1の燃料性状、センサ装置30から取得した脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれを示す情報、及び、運転時間を示す情報を、学習済みの第1モデルに入力する。
 そして、被毒後データ取得部406は、学習済みの第1モデルが出力する被毒後の触媒データ(例えば、被毒後の触媒物性、被毒後の触媒組成)を取得する。
 被毒後データ取得部406が取得するこの被毒後の触媒データが、計画値及びプラントデータによって示される条件でプラントデータによって示される時間だけプラント1を運転した場合の予測によって得られた被毒後の触媒データである。
For example, the post-poisoning data acquisition unit 406 uses the catalyst performance of the plant 1 (for example, the initial value K0 of the reaction rate constant of the plant 1), the catalyst specifications of the plant 1 (for example, the initial specific surface area of the catalyst in the plant 1, the plant). Initial pore volume of catalyst in 1), equipment specifications of plant 1 (for example, flow velocity in plant 1), fuel properties of plant 1 (for example, amount of inflow of components in ash into catalyst in plant 1), learning The completed first model is read from the storage unit 401.
Further, the post-poisoning data acquisition unit 406 may use the dust concentration at the inlet of the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, and the inlet of the denitration device 20 during the operation of the plant 1. Information indicating each of the O2 concentrations in the above is acquired from the sensor device 30.
As shown in FIG. 6, the post-poisoning data acquisition unit 406 reads from the catalyst performance of the plant 1, the catalyst specifications of the plant 1, the device specifications of the plant 1, the fuel properties of the plant 1, and the sensor device 30 read from the storage unit 401. Information indicating each of the acquired dust concentration at the inlet of the denitration device 20, NOx concentration at the inlet of the denitration device 20, SOx concentration at the inlet of the denitration device 20, O2 concentration at the inlet of the denitration device 20, and information indicating the operation time. Is input to the trained first model.
Then, the post-poisoning data acquisition unit 406 acquires the post-poisoning catalyst data (for example, the catalyst physical characteristics after poisoning and the catalyst composition after poisoning) output by the trained first model.
This post-poisoning catalyst data acquired by the post-poisoning data acquisition unit 406 is the poisoning obtained by the prediction when the plant 1 is operated for the time indicated by the plant data under the conditions indicated by the planned value and the plant data. Later catalyst data.
 触媒劣化度取得部407は、計画値と、プラントデータと、被毒後の触媒データと、学習済みの第2モデルとに基づいて、触媒劣化データを取得する。 The catalyst deterioration degree acquisition unit 407 acquires catalyst deterioration data based on the planned value, plant data, catalyst data after poisoning, and the learned second model.
 例えば、触媒劣化度取得部407は、プラント1の触媒仕様(例えば、プラント1における触媒の初期の比表面積、プラント1における触媒の初期の細孔容積など)、プラント1の装置仕様(例えば、プラント1における流速など)、学習済みの第2モデルを記憶部401から読み出す。
 また、触媒劣化度取得部407は、プラント1の運転中に、脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれを示す情報を、センサ装置30から取得する。
 また、触媒劣化度取得部407は、被毒後データ取得部406が予測した被毒後の触媒データを、被毒後データ取得部406から取得する。
 触媒劣化度取得部407は、図6に示すように、記憶部401から読み出したプラント1の触媒仕様、プラント1の装置仕様、プラント1の燃料性状、センサ装置30から取得した脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれを示す情報、被毒後データ取得部406が予測した被毒後の触媒データ、及び、運転時間を示す情報を、学習済みの第2モデルに入力する。
 そして、触媒劣化度取得部407は、学習済みの第2モデルが出力する触媒劣化データを取得する。
 触媒劣化度取得部407が取得するこの触媒劣化データが、計画値、プラントデータによって示される条件でプラントデータによって示される時間だけプラント1を運転した場合の予測によって得られた触媒劣化データである。
For example, the catalyst deterioration degree acquisition unit 407 includes catalyst specifications of plant 1 (for example, initial specific surface area of catalyst in plant 1, initial pore volume of catalyst in plant 1, etc.), equipment specifications of plant 1 (for example, plant). The second model that has been learned (such as the flow velocity in 1) is read out from the storage unit 401.
Further, during the operation of the plant 1, the catalyst deterioration degree acquisition unit 407 includes a dust concentration at the inlet of the denitration device 20, a NOx concentration at the inlet of the denitration device 20, an SOx concentration at the inlet of the denitration device 20, and a denitration device 20 at the inlet. Information indicating each of the O2 concentrations is acquired from the sensor device 30.
Further, the catalyst deterioration degree acquisition unit 407 acquires the post-poisoning catalyst data predicted by the post-poisoning data acquisition unit 406 from the post-poisoning data acquisition unit 406.
As shown in FIG. 6, the catalyst deterioration degree acquisition unit 407 includes the catalyst specifications of the plant 1, the device specifications of the plant 1, the fuel properties of the plant 1, and the inlet of the denitration device 20 acquired from the sensor device 30 as shown in FIG. Information indicating each of the dust concentration in the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, the O2 concentration at the inlet of the denitration device 20, and the post-poisoning data acquisition unit 406 predicted after detoxification. The catalyst data and the information indicating the operation time are input to the trained second model.
Then, the catalyst deterioration degree acquisition unit 407 acquires the catalyst deterioration data output by the trained second model.
The catalyst deterioration data acquired by the catalyst deterioration degree acquisition unit 407 is the catalyst deterioration data obtained by the prediction when the plant 1 is operated for the time indicated by the plant data under the conditions indicated by the planned value and the plant data.
(モデルの学習処理)
 以下、劣化予測装置40の動作について説明する。まず、劣化予測装置40が触媒の劣化を予測するために用いる機械学習モデルの学習処理について説明する。
 劣化予測装置40の管理者等は、予め、予測対象のプラント1とは異なるプラントの保守点検の際に、当該プラントが備える脱硝装置20の触媒の触媒劣化データを取得しておく。触媒劣化データは、脱硝装置20の入力端におけるガスのNOx濃度と出力端におけるガスのNOx濃度を計測することによって求められる。また、劣化予測装置40の管理者等は、予め、予測対象のプラント1とは異なるプラントの保守点検の際に、破壊検査によって、触媒物性および触媒組成を含む被毒後の触媒データを取得しておく。被毒後の触媒データは、脱硝装置20の内部における触媒のデータであり、プラントの運転中に取得することは困難なデータである。
(Model learning process)
Hereinafter, the operation of the deterioration prediction device 40 will be described. First, the learning process of the machine learning model used by the deterioration prediction device 40 to predict the deterioration of the catalyst will be described.
The manager or the like of the deterioration prediction device 40 acquires the catalyst deterioration data of the catalyst of the denitration device 20 included in the plant at the time of maintenance and inspection of a plant different from the plant 1 to be predicted in advance. The catalyst deterioration data is obtained by measuring the NOx concentration of gas at the input end and the NOx concentration of gas at the output end of the denitration device 20. In addition, the manager of the deterioration prediction device 40 acquires post-poisoning catalyst data including catalyst physical characteristics and catalyst composition by destructive inspection at the time of maintenance and inspection of a plant different from the prediction target plant 1 in advance. Keep it. The catalyst data after poisoning is the data of the catalyst inside the denitration device 20, and is difficult to obtain during the operation of the plant.
 第1モデル生成部404は、機械学習モデルである第1モデルに対し、さまざまなプラントにおける過去の実績データ(計画値、プラントデータ、被毒後の触媒データ)を学習データとして機械学習させる。計画値およびプラントデータは、データサーバ装置50から取得される。
 具体的には、第1モデル生成部404は、実績データのうち、計画値およびプラントデータを入力サンプルとし、被毒後の触媒データを出力サンプルとする訓練データを生成する。第1モデル生成部404は、当該訓練データに基づいて、計画値およびプラントデータを入力することで、被毒後の触媒の状態の予測値を出力するように、第1モデルを学習させる。
 第1モデル生成部404は、学習済みの第1モデルを記憶部401に書き込む。
The first model generation unit 404 causes the first model, which is a machine learning model, to perform machine learning using past actual data (planned value, plant data, catalyst data after poisoning) in various plants as learning data. The planned value and the plant data are acquired from the data server device 50.
Specifically, the first model generation unit 404 generates training data using the planned value and the plant data as input samples and the catalyst data after poisoning as the output sample among the actual data. The first model generation unit 404 trains the first model so as to output the predicted value of the state of the catalyst after poisoning by inputting the planned value and the plant data based on the training data.
The first model generation unit 404 writes the learned first model to the storage unit 401.
 第2モデル生成部405は、機械学習モデルである第2モデルに対し、さまざまなプラントにおける過去の実績データ(計画値、プラントデータ、被毒後の触媒データ、触媒劣化データ)を学習データとして機械学習させる。
 具体的には、第2モデル生成部405は、実績データのうち、計画値、プラントデータおよび被毒後の触媒データを入力サンプルとし、触媒劣化データを出力サンプルとする訓練データを生成する。第2モデル生成部405は、当該訓練データに基づいて、計画値、プラントデータおよび被毒後の触媒データを入力することで、触媒劣化データの予測値を出力するように、第2モデルを学習させる。
 第2モデル生成部405は、学習済みの第2モデルを記憶部401に書き込む。
The second model generation unit 405 uses the past actual data (planned value, plant data, catalyst data after poisoning, catalyst deterioration data) in various plants as learning data for the second model, which is a machine learning model. Let them learn.
Specifically, the second model generation unit 405 generates training data in which the planned value, the plant data, and the catalyst data after poisoning are input samples, and the catalyst deterioration data is an output sample, among the actual data. The second model generation unit 405 learns the second model so as to output the predicted value of the catalyst deterioration data by inputting the planned value, the plant data and the catalyst data after poisoning based on the training data. Let me.
The second model generation unit 405 writes the learned second model to the storage unit 401.
(触媒の劣化予測処理)
 次に、図7及び図8に示す劣化予測装置40の処理フローを用いて劣化予測装置40が触媒の劣化を予測する処理について説明する。劣化予測装置40は、計画値とプラントデータとに基づいて被毒後の触媒データを予測し、予測された被毒後の触媒データを用いて触媒劣化データを予測する。
(Catalyst deterioration prediction processing)
Next, a process in which the deterioration prediction device 40 predicts the deterioration of the catalyst will be described using the processing flow of the deterioration prediction device 40 shown in FIGS. 7 and 8. The deterioration prediction device 40 predicts the catalyst data after poisoning based on the planned value and the plant data, and predicts the catalyst deterioration data using the predicted catalyst data after poisoning.
(被毒後の触媒データを予測する処理)
 まず、劣化予測装置40が、計画値と、プラントデータと、学習済みの第1モデルとに基づいて、被毒後の触媒データを予測する処理について、図7を参照して説明する。
(Processing to predict catalyst data after poisoning)
First, a process in which the deterioration prediction device 40 predicts the catalyst data after poisoning based on the planned value, the plant data, and the learned first model will be described with reference to FIG. 7.
 被毒後データ取得部406は、プラント1の触媒性能(例えば、プラント1の反応速度定数の初期値K0)、プラント1の触媒仕様(例えば、プラント1における触媒の初期の比表面積、プラント1における触媒の初期の細孔容積など)、プラント1の装置仕様(例えば、プラント1における流速など)、プラント1の燃料性状(例えば、プラント1における灰中成分の触媒への流入量)、学習済みの第1モデルを記憶部401から読み出す(ステップS1)。 The post-poisoning data acquisition unit 406 uses the catalyst performance of plant 1 (for example, the initial value K0 of the reaction rate constant of plant 1), the catalyst specifications of plant 1 (for example, the initial specific surface area of the catalyst in plant 1, and the initial specific surface area of the catalyst in plant 1). The initial pore volume of the catalyst, etc.), the equipment specifications of the plant 1 (for example, the flow velocity in the plant 1), the fuel properties of the plant 1 (for example, the inflow amount of the components in the ash into the catalyst in the plant 1), and learned. The first model is read from the storage unit 401 (step S1).
 被毒後データ取得部406は、プラント1の運転中に、脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれを示す情報を、センサ装置30から取得する(ステップS2)。 During the operation of the plant 1, the post-poisoning data acquisition unit 406 determines the dust concentration at the inlet of the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, and the O2 at the inlet of the denitration device 20. Information indicating each of the concentrations is acquired from the sensor device 30 (step S2).
 被毒後データ取得部406は、記憶部401から読み出したプラント1の触媒性能、プラント1の触媒仕様、プラント1の装置仕様、プラント1の燃料性状、センサ装置30から取得した脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれを示す情報、及び、運転時間を示す情報を、学習済みの第1モデルに入力する(ステップS3)。 The post-poisoning data acquisition unit 406 uses the catalyst performance of the plant 1 read from the storage unit 401, the catalyst specifications of the plant 1, the device specifications of the plant 1, the fuel properties of the plant 1, and the inlet of the denitration device 20 acquired from the sensor device 30. Information indicating each of the dust concentration in the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, the O2 concentration at the inlet of the denitration device 20, and the information indicating the operation time have been learned. Input to the model (step S3).
 被毒後データ取得部406は、学習済みの第1モデルが出力する被毒後の触媒データ(例えば、被毒後の触媒物性、被毒後の触媒組成)を取得する(ステップS4)。 The post-poisoning data acquisition unit 406 acquires the post-poisoning catalyst data (for example, the catalyst physical characteristics after poisoning and the catalyst composition after poisoning) output by the trained first model (step S4).
(触媒劣化データを予測する処理)
 次に、劣化予測装置40が、計画値と、プラントデータと、被毒後の触媒データと、学習済みの第2モデルとに基づいて、触媒劣化データを予測する処理について、図8を参照して説明する。
(Processing for predicting catalyst deterioration data)
Next, with reference to FIG. 8, the deterioration prediction device 40 predicts the catalyst deterioration data based on the planned value, the plant data, the catalyst data after poisoning, and the learned second model. Will be explained.
 触媒劣化度取得部407は、プラント1の触媒仕様(例えば、プラント1における触媒の初期の比表面積、プラント1における触媒の初期の細孔容積など)、プラント1の装置仕様(例えば、プラント1における流速など)、学習済みの第2モデルを記憶部401から読み出す(ステップS11)。 The catalyst deterioration degree acquisition unit 407 includes catalyst specifications of plant 1 (for example, initial specific surface area of catalyst in plant 1, initial pore volume of catalyst in plant 1, etc.), equipment specifications of plant 1 (for example, in plant 1). (Flow velocity, etc.), the learned second model is read out from the storage unit 401 (step S11).
 触媒劣化度取得部407は、プラント1の運転中に、脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれを示す情報を、センサ装置30から取得する(ステップS12)。 During the operation of the plant 1, the catalyst deterioration degree acquisition unit 407 includes dust concentration at the inlet of the denitration device 20, NOx concentration at the inlet of the denitration device 20, SOx concentration at the inlet of the denitration device 20, and O2 concentration at the inlet of the denitration device 20. Information indicating each of the above is acquired from the sensor device 30 (step S12).
 触媒劣化度取得部407は、被毒後データ取得部406が予測した被毒後の触媒データを、被毒後データ取得部406から取得する(ステップS13)。 The catalyst deterioration degree acquisition unit 407 acquires the post-poisoning catalyst data predicted by the post-poisoning data acquisition unit 406 from the post-poisoning data acquisition unit 406 (step S13).
 触媒劣化度取得部407は、図6に示すように、記憶部401から読み出したプラント1の触媒仕様、プラント1の装置仕様、プラント1の燃料性状、センサ装置30から取得した脱硝装置20の入口におけるダスト濃度、脱硝装置20の入口におけるNOx濃度、脱硝装置20の入口におけるSOx濃度、脱硝装置20の入口におけるO2濃度のそれぞれを示す情報、被毒後データ取得部406が予測した被毒後の触媒データ、及び、運転時間を示す情報を、学習済みの第2モデルに入力する(ステップS14)。 As shown in FIG. 6, the catalyst deterioration degree acquisition unit 407 includes the catalyst specifications of the plant 1, the device specifications of the plant 1, the fuel properties of the plant 1, and the inlet of the denitration device 20 acquired from the sensor device 30 as shown in FIG. Information indicating each of the dust concentration in the denitration device 20, the NOx concentration at the inlet of the denitration device 20, the SOx concentration at the inlet of the denitration device 20, the O2 concentration at the inlet of the denitration device 20, and the post-poisoning data acquisition unit 406 predicted after detoxification. The catalyst data and the information indicating the operation time are input to the trained second model (step S14).
 触媒劣化度取得部407は、学習済みの第2モデルが出力する触媒劣化データを取得する(ステップS15)。 The catalyst deterioration degree acquisition unit 407 acquires the catalyst deterioration data output by the trained second model (step S15).
(実施例)
 あるプラントについて、上述の本開示の第1実施形態による劣化予測装置40による触媒の劣化度の予測を行い、そのプラントにおける触媒の劣化度の実測と比較した。
 製造年と運転時間の異なる11のプラントについての127のデータを用意し、そのうちの7割を学習データとし、3割を精度検証用のデータとした。
 図9は、触媒の劣化度の予測と触媒の劣化度の実測との比較結果である。
 図9において、横軸は、運転時間である。また、縦軸は、触媒の劣化度である。なお、触媒の劣化度は、各運転時間における反応速度定数Kを初期の反応速度定数K0で除算して求めた値である。
 触媒の劣化度の予測の精度は、RMSE(Root Mean Squared Error;二乗平均平方根誤差)0.05という結果が得られた。
(Example)
For a certain plant, the deterioration degree of the catalyst was predicted by the deterioration prediction device 40 according to the first embodiment of the present disclosure described above, and compared with the actual measurement of the deterioration degree of the catalyst in the plant.
127 data were prepared for 11 plants with different manufacturing years and operating hours, 70% of which was used as learning data and 30% was used as data for accuracy verification.
FIG. 9 shows a comparison result between the prediction of the degree of deterioration of the catalyst and the actual measurement of the degree of deterioration of the catalyst.
In FIG. 9, the horizontal axis is the operating time. The vertical axis is the degree of deterioration of the catalyst. The degree of deterioration of the catalyst is a value obtained by dividing the reaction rate constant K at each operating time by the initial reaction rate constant K0.
The accuracy of predicting the degree of deterioration of the catalyst was RMSE (Root Mean Squared Error) 0.05.
 以上、本開示の第1実施形態によるプラント1について説明した。
 劣化予測装置(40)は、モデル生成部(404、405)、劣化度予測部(407)を備える。
 モデル生成部は、第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラント(1)における触媒の劣化度を予測する第1予測モデルを生成する。
 劣化度予測部(407)は、前記モデル生成部(404、405)が生成した前記第1予測モデルに基づいて、前記第2プラント(1)における前記劣化度を予測する。
The plant 1 according to the first embodiment of the present disclosure has been described above.
The deterioration prediction device (40) includes a model generation unit (404, 405) and a deterioration degree prediction unit (407).
The model generation unit is a second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. A first prediction model for predicting the degree of deterioration of the catalyst in (1) is generated.
The deterioration degree prediction unit (407) predicts the deterioration degree in the second plant (1) based on the first prediction model generated by the model generation unit (404, 405).
 この劣化予測装置(40)により、第2プラント(1)についてのデータを第1予測モデルに入力するだけで、第2プラント(1)における触媒の劣化度を予測することができる。その結果、第2プラント(1)のユーザは、触媒についての複雑な解析を実行することなく、触媒の劣化度を知ることができる。 With this deterioration prediction device (40), the degree of deterioration of the catalyst in the second plant (1) can be predicted only by inputting the data about the second plant (1) into the first prediction model. As a result, the user of the second plant (1) can know the degree of deterioration of the catalyst without performing a complicated analysis on the catalyst.
<第2実施形態>
 本開示の第2実施形態に係る劣化予測システムは、予測対象のプラント1の運転データに基づいて、当該プラント1が備える脱硝装置20の劣化状態を予測し、予測した劣化状態から後述する空気予熱器60の入出力間の差圧を予測する。劣化予測システムは、データサーバ装置50および差圧予測装置70を備える。
<Second Embodiment>
The deterioration prediction system according to the second embodiment of the present disclosure predicts the deterioration state of the denitration device 20 included in the plant 1 based on the operation data of the plant 1 to be predicted, and air preheating described later from the predicted deterioration state. Predict the differential pressure between the input and output of the device 60. The deterioration prediction system includes a data server device 50 and a differential pressure prediction device 70.
(差圧予測装置の構成)
 差圧予測装置70は、予測した触媒の性能の劣化度に基づいて空気予熱器60の差圧を予測する装置である。
 差圧予測装置70は、図10に示すように、劣化予測装置40に加えて、スケールアップファクタ推定部701、リーク推定部702、閉塞度推定部703、差圧推定部704を備える。
(Configuration of differential pressure prediction device)
The differential pressure prediction device 70 is a device that predicts the differential pressure of the air preheater 60 based on the predicted degree of deterioration of the catalyst performance.
As shown in FIG. 10, the differential pressure prediction device 70 includes a scale-up factor estimation unit 701, a leak estimation unit 702, a blockage degree estimation unit 703, and a differential pressure estimation unit 704 in addition to the deterioration prediction device 40.
 スケールアップファクタ推定部701は、実験室において求めた触媒の性能特性と、実際のプラント1における触媒の性能特性との差を補正する補正係数を求める。この補正係数がスケールアップファクタである。
 例えば、さまざまなガス温度、ガス濃度、酸素濃度の組み合わせに対して実験室において触媒の性能特性を取得している。そして、取得した触媒の性能特性をガス温度、ガス濃度、酸素濃度を含む式によって表す。ただし、実際のプラント1では、実験室において取得した触媒の性能特性に対して触媒の性能が低下する。スケールアップファクタ推定部701は、実験室において取得した触媒の性能特性を示す式を実際のプラント1に適用できるようにするためにその式を補正するスケールアップファクタを決定する。なお、スケールアップファクタは、実験室において取得した触媒の性能特性と実際のプラント1における触媒の性能特性とから得られる経験則によって求められる。
The scale-up factor estimation unit 701 obtains a correction coefficient for correcting the difference between the performance characteristics of the catalyst obtained in the laboratory and the performance characteristics of the catalyst in the actual plant 1. This correction coefficient is the scale-up factor.
For example, we have acquired the performance characteristics of catalysts in the laboratory for various combinations of gas temperature, gas concentration, and oxygen concentration. Then, the performance characteristics of the acquired catalyst are expressed by an equation including the gas temperature, the gas concentration, and the oxygen concentration. However, in the actual plant 1, the performance of the catalyst deteriorates with respect to the performance characteristics of the catalyst acquired in the laboratory. The scale-up factor estimation unit 701 determines a scale-up factor that corrects the equation that indicates the performance characteristics of the catalyst acquired in the laboratory so that the equation can be applied to the actual plant 1. The scale-up factor is determined by an empirical rule obtained from the performance characteristics of the catalyst acquired in the laboratory and the performance characteristics of the catalyst in the actual plant 1.
 リーク推定部702は、実験室において取得した触媒の性能特性を示す式にスケールアップファクタを適用した経験式、脱硝装置20の入口におけるNOx濃度、脱硝装置20の出口におけるNOx濃度、触媒劣化データに基づいて、リークアンモニアの量を推定する。これは、経験式から触媒の性能特性を求め、その性能特性と脱硝装置20の入出力におけるNOx濃度から未反応のアンモニアの量を推定するものである。 The leak estimation unit 702 uses an empirical formula obtained by applying a scale-up factor to an equation showing the performance characteristics of the catalyst acquired in the laboratory, a NOx concentration at the inlet of the denitration device 20, a NOx concentration at the outlet of the denitration device 20, and catalyst deterioration data. Based on this, the amount of leaked ammonia is estimated. In this method, the performance characteristics of the catalyst are obtained from an empirical formula, and the amount of unreacted ammonia is estimated from the performance characteristics and the NOx concentration at the input / output of the denitration device 20.
 閉塞度推定部703は、実際のプラント1における空気予熱器60の差圧が上昇しているときの差圧データと、プラント1の運転データとに基づいて求められた経験式を用いて、空気予熱器60における閉塞度を推定する。
 例えば、実際のプラント1における空気予熱器60の差圧が上昇しているときに空気予熱器60のエレメントにおける入出力間の差圧をモニタし、差圧を計算する。その差圧から閉速度を計算し、そのときのプラント1の運転データを用いて経験式を求める。
 これは、運転データからリークアンモニア濃度がどのくらいかを推定でき、このリークアンモニアは空気予熱器60に酸性硫安(NH4HSO4)として析出されるものとすれば、酸性硫安の量と空気予熱器60の閉塞度とに相関関係があるため、空気予熱器60のエレメントにおける閉塞度が推定できるという考えに基づくものである。
The blockage estimation unit 703 uses an empirical formula obtained based on the differential pressure data when the differential pressure of the air preheater 60 in the actual plant 1 is rising and the operation data of the plant 1, and the air. The degree of obstruction in the preheater 60 is estimated.
For example, when the differential pressure of the air preheater 60 in the actual plant 1 is increasing, the differential pressure between the input and output in the element of the air preheater 60 is monitored and the differential pressure is calculated. The closing speed is calculated from the differential pressure, and an empirical formula is obtained using the operation data of the plant 1 at that time.
This can be estimated from the operation data, and if this leaked ammonia is deposited on the air preheater 60 as acidic ammonium sulfate (NH4HSO4), the amount of acidic ammonium sulfate and the blockage of the air preheater 60 It is based on the idea that the degree of blockage in the element of the air preheater 60 can be estimated because there is a correlation with the degree.
 差圧推定部704は、リーク推定部702が推定したリークアンモニアの量と、閉塞度推定部703が推定した空気予熱器60のエレメントにおける閉塞度とに基づいて、空気予熱器60の入出力間の差圧を推定する。 The differential pressure estimation unit 704 is based on the amount of leak ammonia estimated by the leak estimation unit 702 and the blockage degree in the element of the air preheater 60 estimated by the blockage degree estimation unit 703, between the input and output of the air preheater 60. Estimate the differential pressure of.
(プラントの構成)
 第2実施形態によるプラント1の構成について説明する。
 第2実施形態によるプラント1は、図11に示すように、ボイラ10、脱硝装置20、センサ装置30、空気予熱器60を備える。
 空気予熱器60は、燃焼用空気を事前に温めて、ボイラの燃焼効率を向上させるための機器である。脱硝装置20においてリークアンモニアが生じると、そのリークアンモニアが空気予熱器60における燃焼ガス中の三酸化硫黄(SO3)と反応し、酸性硫安が生成される。酸性硫安の析出が閉塞の要因になる。なお、この酸性硫安を除去するためには、プラント1を停止し、空気予熱器60を水で洗浄する必要がある。
(Plant configuration)
The configuration of the plant 1 according to the second embodiment will be described.
As shown in FIG. 11, the plant 1 according to the second embodiment includes a boiler 10, a denitration device 20, a sensor device 30, and an air preheater 60.
The air preheater 60 is a device for preheating the combustion air to improve the combustion efficiency of the boiler. When leaked ammonia is generated in the denitration device 20, the leaked ammonia reacts with sulfur trioxide (SO3) in the combustion gas in the air preheater 60 to generate acidic ammonium sulfate. Precipitation of acidic ammonium sulfate causes clogging. In order to remove this acidic ammonium sulfate, it is necessary to stop the plant 1 and wash the air preheater 60 with water.
(空気予熱器60における差圧を予測する処理)
 次に、差圧予測装置70が、空気予熱器60の入出力間の差圧を予測する処理について、図12、図13を参照して説明する。
 劣化予測装置40は、ステップS11~ステップS15に示す処理を実行して、触媒劣化データを取得する。
(Process for predicting the differential pressure in the air preheater 60)
Next, the process of predicting the differential pressure between the input and output of the air preheater 60 by the differential pressure prediction device 70 will be described with reference to FIGS. 12 and 13.
The deterioration prediction device 40 executes the processes shown in steps S11 to S15 to acquire catalyst deterioration data.
 スケールアップファクタ推定部701は、実験室において求めた触媒の性能特性と、実際のプラント1における触媒の性能特性との差を補正するスケールアップファクタを求める(ステップS21)。 The scale-up factor estimation unit 701 obtains a scale-up factor that corrects the difference between the catalyst performance characteristics obtained in the laboratory and the catalyst performance characteristics in the actual plant 1 (step S21).
 リーク推定部702は、実験室において取得した触媒の性能特性を示す式にスケールアップファクタを適用した経験式、脱硝装置20の入口におけるNOx濃度、脱硝装置20の出口におけるNOx濃度、触媒劣化データに基づいて、リークアンモニアの量を推定する(ステップS22)。 The leak estimation unit 702 uses an empirical formula obtained by applying a scale-up factor to an equation showing the performance characteristics of the catalyst acquired in the laboratory, a NOx concentration at the inlet of the denitration device 20, a NOx concentration at the outlet of the denitration device 20, and catalyst deterioration data. Based on this, the amount of leaked ammonia is estimated (step S22).
 閉塞度推定部703は、実際のプラント1における空気予熱器60の差圧が上昇しているときの差圧データと、プラント1の運転データとに基づいて求められた経験式を用いて、空気予熱器60における閉塞度を推定する(ステップS23)。 The blockage estimation unit 703 uses an empirical formula obtained based on the differential pressure data when the differential pressure of the air preheater 60 in the actual plant 1 is rising and the operation data of the plant 1, and the air. The degree of occlusion in the preheater 60 is estimated (step S23).
 差圧推定部704は、リーク推定部702が推定したリークアンモニアの量と、閉塞度推定部703が推定した空気予熱器60のエレメントにおける閉塞度とに基づいて、空気予熱器60の入出力間の差圧を推定する(ステップS24)。
 なお、差圧推定部704は、推定した差圧を触媒工事の関係者やプラント1の担当者に報知するものであってもよい。この報知に基づいて、触媒交換工事の計画やプラント1の運転支援が行われてもよい。
The differential pressure estimation unit 704 is based on the amount of leak ammonia estimated by the leak estimation unit 702 and the blockage degree in the element of the air preheater 60 estimated by the blockage degree estimation unit 703, between the input and output of the air preheater 60. Estimate the differential pressure of (step S24).
The differential pressure estimation unit 704 may notify the person involved in the catalyst work or the person in charge of the plant 1 of the estimated differential pressure. Based on this notification, catalyst replacement work planning and plant 1 operation support may be performed.
(実施例)
 あるプラントについて、上述の本開示の第2実施形態による差圧予測装置70により空気予熱器60の入出力間の差圧を推定した。
 図14は、そのプラントにおける差圧の予測と実測との比較結果である。
 図14において、横軸は、運転時間である。また、縦軸は、空気予熱器60の入出力間の差圧である。なお、図14では、空気予熱器60はAH(Air Heater、エアヒータ)と示されている。そして、空気予熱器60は、1度水で洗浄されている。
 図14からわかるように、差圧予測装置70により空気予熱器60の入出力間の差圧の予測は、実測値に近い結果が得られた。
(Example)
For a plant, the differential pressure between the input and output of the air preheater 60 was estimated by the differential pressure predictor 70 according to the second embodiment of the present disclosure described above.
FIG. 14 shows a comparison result between the prediction of the differential pressure in the plant and the actual measurement.
In FIG. 14, the horizontal axis is the operating time. The vertical axis is the differential pressure between the input and output of the air preheater 60. In FIG. 14, the air preheater 60 is shown as an AH (Air Heater). Then, the air preheater 60 is washed once with water.
As can be seen from FIG. 14, the differential pressure prediction device 70 predicted the differential pressure between the input and output of the air preheater 60, and obtained a result close to the measured value.
 以上、本開示の第2実施形態によるプラント1について説明した。
 差圧予測装置(70)は、劣化予測装置(40)、スケールアップファクタ推定部(701)、リーク推定部(702)、閉塞度推定部(703)、差圧推定部(704)を備える。
 スケールアップファクタ推定部(701)は、実験室において求めた触媒の性能特性と、実際のプラント(1)における触媒の性能特性との差を補正するスケールアップファクタを求める。リーク推定部(702)は、実験室において取得した触媒の性能特性を示す式にスケールアップファクタを適用した経験式、脱硝装置(20)の入口におけるNOx濃度、脱硝装置(20)の出口におけるNOx濃度、触媒劣化データに基づいて、リークアンモニアの量を推定する。閉塞度推定部(703)は、実際のプラント(1)における空気予熱器(60)の差圧が上昇しているときの差圧データと、プラント(1)の運転データとに基づいて求められた経験式を用いて、空気予熱器60における閉塞度を推定する。差圧推定部(704)は、リーク推定部(702)が推定したリークアンモニアの量と、閉塞度推定部(703)が推定した空気予熱器(60)のエレメントにおける閉塞度とに基づいて、空気予熱器(60)の入出力間の差圧を推定する。
The plant 1 according to the second embodiment of the present disclosure has been described above.
The differential pressure prediction device (70) includes a deterioration prediction device (40), a scale-up factor estimation unit (701), a leak estimation unit (702), a blockage degree estimation unit (703), and a differential pressure estimation unit (704).
The scale-up factor estimation unit (701) obtains a scale-up factor that corrects the difference between the performance characteristics of the catalyst obtained in the laboratory and the performance characteristics of the catalyst in the actual plant (1). The leak estimation unit (702) is an empirical formula obtained by applying a scale-up factor to an equation showing the performance characteristics of the catalyst acquired in the laboratory, the NOx concentration at the inlet of the denitration device (20), and the NOx at the outlet of the denitration device (20). The amount of leaked ammonia is estimated based on the concentration and catalyst deterioration data. The blockage estimation unit (703) is obtained based on the differential pressure data when the differential pressure of the air preheater (60) in the actual plant (1) is increasing and the operation data of the plant (1). The degree of blockage in the air preheater 60 is estimated using the empirical formula. The differential pressure estimation unit (704) is based on the amount of leaked ammonia estimated by the leak estimation unit (702) and the blockage degree in the element of the air preheater (60) estimated by the blockage degree estimation unit (703). The differential pressure between the input and output of the air preheater (60) is estimated.
 この差圧予測装置(70)により、脱硝装置(20)においてリークアンモニアが発生した場合に、空気予熱器(60)の入出力間の差圧を推定する。その結果、触媒交換工事の計画やプラント1の運転支援を適切なタイミングで行うことができる。 This differential pressure predictor (70) estimates the differential pressure between the input and output of the air preheater (60) when leaked ammonia occurs in the denitration device (20). As a result, the catalyst replacement work can be planned and the operation support of the plant 1 can be performed at an appropriate timing.
 なお、本開示の実施形態における処理は、適切な処理が行われる範囲において、処理の順番が入れ替わってもよい。 Note that the processing in the embodiment of the present disclosure may change the order of processing within the range in which appropriate processing is performed.
 なお、本発明の各実施形態における記憶部401、その他の記憶装置等(レジスタ、ラッチを含む)は、適切な情報の送受信が行われる範囲においてどこに備えられていてもよい。また、記憶部401、その他の記憶装置等は、適切な情報の送受信が行われる範囲において複数存在しデータを分散して記憶していてもよい。 The storage unit 401, other storage devices (including registers and latches) in each embodiment of the present invention may be provided anywhere within a range in which appropriate information is transmitted and received. Further, there may be a plurality of storage units 401, other storage devices, and the like within a range in which appropriate information is transmitted and received, and the data may be distributed and stored.
 なお、本開示の各実施形態では、第1モデル生成部404は、学習済みの第1モデルをソフトウェアとして生成し、記憶部401に記憶するものとして説明した。また、本開示の各実施形態では、第2モデル生成部405は、学習済みの第2モデルをソフトウェアとして生成し、記憶部401に記憶するものとして説明した。
 しかしながら、本開示の別の実施形態では、学習済みの第1モデル、学習済みの第2モデルのそれぞれをハードウェアとして実現するものであってもよい。
 例えば、第1モデル生成部404が、記憶部401の記憶する学習済みの第1モデルが行う処理を実現させるコンフィギュレーションプログラムを、FPGA(Field-Programmable Gate Array)などのプログラム可能なハードウェアに書き込むものであってもよい。
 また、例えば、第2モデル生成部405が、記憶部401の記憶する学習済みの第2モデルが行う処理を実現させるコンフィギュレーションプログラムを、FPGA(Field-Programmable Gate Array)などのプログラム可能なハードウェアに書き込むものであってもよい。
In each embodiment of the present disclosure, the first model generation unit 404 has been described as generating the trained first model as software and storing it in the storage unit 401. Further, in each embodiment of the present disclosure, the second model generation unit 405 has been described as generating the learned second model as software and storing it in the storage unit 401.
However, in another embodiment of the present disclosure, each of the trained first model and the trained second model may be realized as hardware.
For example, the first model generation unit 404 writes a configuration program for realizing the processing performed by the learned first model stored in the storage unit 401 to programmable hardware such as FPGA (Field-Programmable Gate Array). It may be a thing.
Further, for example, a configuration program in which the second model generation unit 405 realizes the processing performed by the learned second model stored in the storage unit 401 is programmable hardware such as FPGA (Field-Programmable Gate Array). It may be written in.
 本開示の実施形態について説明したが、上述の劣化予測装置40、差圧予測装置70、その他の制御装置は内部に、コンピュータ装置を有していてもよい。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。コンピュータの具体例を以下に示す。
 図10は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ5は、図10に示すように、CPU6、メインメモリ7、ストレージ8、インターフェース9を備える。
 例えば、上述の劣化予測装置40、差圧予測装置70、その他の制御装置のそれぞれは、コンピュータ5に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ8に記憶されている。CPU6は、プログラムをストレージ8から読み出してメインメモリ7に展開し、当該プログラムに従って上記処理を実行する。また、CPU6は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ7に確保する。
Although the embodiment of the present disclosure has been described, the deterioration prediction device 40, the differential pressure prediction device 70, and other control devices described above may have a computer device inside. The process of the above-mentioned processing is stored in a computer-readable recording medium in the form of a program, and the above-mentioned processing is performed by the computer reading and executing this program. A specific example of a computer is shown below.
FIG. 10 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
As shown in FIG. 10, the computer 5 includes a CPU 6, a main memory 7, a storage 8, and an interface 9.
For example, each of the above-mentioned deterioration prediction device 40, differential pressure prediction device 70, and other control devices is mounted on the computer 5. The operation of each processing unit described above is stored in the storage 8 in the form of a program. The CPU 6 reads the program from the storage 8, expands it into the main memory 7, and executes the above processing according to the program. Further, the CPU 6 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 7 according to the program.
 ストレージ8の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ8は、コンピュータ5のバスに直接接続された内部メディアであってもよいし、インターフェース9または通信回線を介してコンピュータ5に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ5に配信される場合、配信を受けたコンピュータ5が当該プログラムをメインメモリ7に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ8は、一時的でない有形の記憶媒体である。 Examples of the storage 8 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical magnetic disk, CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk) , Semiconductor memory and the like. The storage 8 may be internal media directly connected to the bus of computer 5, or external media connected to computer 5 via an interface 9 or a communication line. When this program is distributed to the computer 5 via a communication line, the distributed computer 5 may expand the program in the main memory 7 and execute the above processing. In at least one embodiment, the storage 8 is a non-temporary tangible storage medium.
 また、上記プログラムは、前述した機能の一部を実現してもよい。さらに、上記プログラムは、前述した機能をコンピュータ装置にすでに記録されているプログラムとの組み合わせで実現できるファイル、いわゆる差分ファイル(差分プログラム)であってもよい。 Further, the above program may realize a part of the above-mentioned functions. Further, the program may be a file that can realize the above-mentioned functions in combination with a program already recorded in the computer device, that is, a so-called difference file (difference program).
 本開示のいくつかの実施形態を説明したが、これらの実施形態は、例であり、開示の範囲を限定しない。これらの実施形態は、開示の要旨を逸脱しない範囲で、種々の追加、種々の省略、種々の置き換え、種々の変更を行ってよい。 Although some embodiments of the present disclosure have been described, these embodiments are examples and do not limit the scope of disclosure. These embodiments may be subject to various additions, various omissions, various replacements, and various modifications without departing from the gist of the disclosure.
<付記>
 本開示の各実施形態に記載の劣化予測装置40、プラント1、劣化予測方法、プログラム、及び、コンフィギュレーションの処理をコンピュータに実行させるためのプログラムは、例えば以下のように把握される。
<Additional notes>
The deterioration prediction device 40, the plant 1, the deterioration prediction method, the program, and the program for causing the computer to execute the processing of the configuration described in each embodiment of the present disclosure are grasped as follows, for example.
(1)第1の態様に係る劣化予測装置(40)は、
 第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラント(1)における触媒の劣化度を予測する第1予測モデルを生成するモデル生成部(404、405)と、
 前記モデル生成部(404、405)が生成した前記第1予測モデルに基づいて、前記第2プラント(1)における前記劣化度を予測する劣化度予測部(407)と、
 を備える。
(1) The deterioration prediction device (40) according to the first aspect is
A catalyst in a second plant (1) different from the first plant based on learning data including first data relating to a catalyst in the past operation of the first plant and second data relating to the past operating state. Model generators (404, 405) that generate the first prediction model that predicts the degree of deterioration of
A deterioration degree prediction unit (407) that predicts the deterioration degree in the second plant (1) based on the first prediction model generated by the model generation units (404, 405).
To be equipped.
 この劣化予測装置(40)により、第2プラント(1)についてのデータを第1予測モデルに入力するだけで、第2プラント(1)における触媒の劣化度を予測することができる。その結果、第2プラント(1)のユーザは、触媒についての複雑な解析を実行することなく、触媒の劣化度を知ることができる。 With this deterioration prediction device (40), the degree of deterioration of the catalyst in the second plant (1) can be predicted only by inputting the data about the second plant (1) into the first prediction model. As a result, the user of the second plant (1) can know the degree of deterioration of the catalyst without performing a complicated analysis on the catalyst.
(2)第2の態様に係る劣化予測装置(40)は、(1)の劣化予測装置(40)であって、
 前記学習データは、前記第1プラントの過去の運転における被毒後の触媒に係るデータと、前記第1プラントの過去の運転における前記劣化度に係るデータとを含み、
 前記モデル生成部(404、405)は、
 前記学習データに基づいて、前記第2プラント(1)における前記被毒後の触媒に係るデータを予測する第2予測モデルを生成する第1モデル生成部(404)と、
 前記第2予測モデルが予測した前記第2プラント(1)における前記被毒後の触媒に係るデータに基づいて、前記第2プラント(1)における前記劣化度を予測する前記第1予測モデルを生成する第2モデル生成部(405)と、
 を備え、
 前記劣化度予測部(407)は、
 前記第1予測モデルと、前記第2予測モデルとに基づいて、前記第2プラント(1)における前記劣化度を予測する。
(2) The deterioration prediction device (40) according to the second aspect is the deterioration prediction device (40) of (1).
The training data includes data relating to the catalyst after poisoning in the past operation of the first plant and data relating to the degree of deterioration in the past operation of the first plant.
The model generators (404, 405)
A first model generation unit (404) that generates a second prediction model that predicts data related to the catalyst after poisoning in the second plant (1) based on the training data.
Based on the data relating to the catalyst after poisoning in the second plant (1) predicted by the second prediction model, the first prediction model for predicting the degree of deterioration in the second plant (1) is generated. Second model generator (405)
With
The deterioration degree prediction unit (407)
Based on the first prediction model and the second prediction model, the degree of deterioration in the second plant (1) is predicted.
 この劣化予測装置(40)により、第2プラント(1)について予測困難な装置内における触媒に係るデータを予測することができる。その結果、第2プラント(1)のユーザは、第2プラント(1)における触媒の劣化度に対してどのデータが影響を及ぼすかを容易に判定することができるようになる。 With this deterioration prediction device (40), it is possible to predict data related to the catalyst in the device, which is difficult to predict for the second plant (1). As a result, the user of the second plant (1) can easily determine which data affects the degree of deterioration of the catalyst in the second plant (1).
(3)第3の態様に係る差圧予測装置(70)は、
 第1の態様または第2の態様に係る劣化予測装置(40)と、
 前記劣化予測装置(40)が予測した前記劣化度に基づいて、空気予熱器(60)の入出力間の差圧を推定する差圧推定部(704)と、
 を備える。
(3) The differential pressure prediction device (70) according to the third aspect is
Deterioration prediction device (40) according to the first aspect or the second aspect, and
A differential pressure estimation unit (704) that estimates the differential pressure between the input and output of the air preheater (60) based on the deterioration degree predicted by the deterioration prediction device (40).
To be equipped.
 この差圧予測装置(70)により、脱硝装置(20)においてリークアンモニアが発生した場合に、空気予熱器(60)の入出力間の差圧を推定する。その結果、触媒交換工事の計画やプラント1の運転支援を適切なタイミングで行うことができるようになる。 This differential pressure predictor (70) estimates the differential pressure between the input and output of the air preheater (60) when leaked ammonia occurs in the denitration device (20). As a result, it becomes possible to plan the catalyst replacement work and support the operation of the plant 1 at an appropriate timing.
(4)第4の態様に係る差圧予測装置(70)は、(3)の差圧予測装置(70)であって、
 前記劣化予測装置(40)が予測した前記劣化度に基づいて、前記空気予熱器(60)における閉塞度を推定する閉塞度推定部(703)、
 を備え、
 前記差圧推定部(704)は、
 前記閉塞度推定部(703)が推定した前記閉塞度に基づいて、前記空気予熱器(60)の入出力間の差圧を推定する。
(4) The differential pressure prediction device (70) according to the fourth aspect is the differential pressure prediction device (70) of (3).
The blockage degree estimation unit (703), which estimates the blockage degree in the air preheater (60) based on the deterioration degree predicted by the deterioration prediction device (40),
With
The differential pressure estimation unit (704)
Based on the degree of blockage estimated by the degree of blockage estimation unit (703), the differential pressure between the input and output of the air preheater (60) is estimated.
 この差圧予測装置(70)により、差圧予測装置(70)の構成がより明確になり、脱硝装置(20)においてリークアンモニアが発生した場合に、空気予熱器(60)の入出力間の差圧を推定する。その結果、触媒交換工事の計画やプラント1の運転支援を適切なタイミングで行うことができるようになる。 The differential pressure prediction device (70) makes the configuration of the differential pressure prediction device (70) clearer, and when leak ammonia occurs in the denitration device (20), it is between the input and output of the air preheater (60). Estimate the differential pressure. As a result, it becomes possible to plan the catalyst replacement work and support the operation of the plant 1 at an appropriate timing.
(5)第5の態様に係る差圧予測装置(70)は、(3)または(4)の差圧予測装置(70)であって、
 前記劣化予測装置(40)が予測した前記劣化度に基づいて、リークアンモニアの量を推定するリーク推定部(702)、
 を備え、
 前記差圧推定部(704)は、
 前記リーク推定部(702)が推定した前記リークアンモニアの量に基づいて、前記空気予熱器(60)の入出力間の差圧を推定する。
(5) The differential pressure prediction device (70) according to the fifth aspect is the differential pressure prediction device (70) of (3) or (4).
The leak estimation unit (702), which estimates the amount of leak ammonia based on the degree of deterioration predicted by the deterioration prediction device (40),
With
The differential pressure estimation unit (704)
The differential pressure between the input and output of the air preheater (60) is estimated based on the amount of the leaked ammonia estimated by the leak estimation unit (702).
 この差圧予測装置(70)により、差圧予測装置(70)の構成がより明確になり、脱硝装置(20)においてリークアンモニアが発生した場合に、空気予熱器(60)の入出力間の差圧を推定する。その結果、触媒交換工事の計画やプラント1の運転支援を適切なタイミングで行うことができるようになる。 The differential pressure prediction device (70) makes the configuration of the differential pressure prediction device (70) clearer, and when leak ammonia occurs in the denitration device (20), it is between the input and output of the air preheater (60). Estimate the differential pressure. As a result, it becomes possible to plan the catalyst replacement work and support the operation of the plant 1 at an appropriate timing.
(6)第5の態様に係る差圧予測装置(70)は、(3)から(5)のいずれかの差圧予測装置(70)であって、
 前記劣化予測装置(40)が予測した前記劣化度に基づいて、スケールアップファクタを求めるスケールアップファクタ推定部(701)、
 を備え、
 前記差圧推定部(704)は、
 前記スケールアップファクタ推定部(701)が求めた前記スケールアップファクタに基づいて、前記空気予熱器(60)の入出力間の差圧を推定する。
(6) The differential pressure prediction device (70) according to the fifth aspect is the differential pressure prediction device (70) according to any one of (3) to (5).
A scale-up factor estimation unit (701) that obtains a scale-up factor based on the degree of deterioration predicted by the deterioration prediction device (40).
With
The differential pressure estimation unit (704)
Based on the scale-up factor obtained by the scale-up factor estimation unit (701), the differential pressure between the input and output of the air preheater (60) is estimated.
 この差圧予測装置(70)により、差圧予測装置(70)の構成がより明確になり、脱硝装置(20)においてリークアンモニアが発生した場合に、空気予熱器(60)の入出力間の差圧を推定する。その結果、触媒交換工事の計画やプラント1の運転支援を適切なタイミングで行うことができるようになる。 The differential pressure prediction device (70) makes the configuration of the differential pressure prediction device (70) clearer, and when leak ammonia occurs in the denitration device (20), it is between the input and output of the air preheater (60). Estimate the differential pressure. As a result, it becomes possible to plan the catalyst replacement work and support the operation of the plant 1 at an appropriate timing.
(7)第7の態様に係るプラント(1)は、
 触媒が用いられるプラントであって、
 前記触媒を劣化させる装置(20)と、
 前記触媒の劣化度を予測する(1)または(2)の劣化予測装置(40)と、
 を備える。
(7) The plant (1) according to the seventh aspect is
A plant that uses catalysts
The device (20) for deteriorating the catalyst and
The deterioration predictor (40) of (1) or (2) for predicting the degree of deterioration of the catalyst, and
To be equipped.
 このプラント(1)により、プラント(1)についてのデータを第1予測モデルに入力するだけで、プラント(1)における触媒の劣化度を予測することができる。その結果、プラント(1)のユーザは、触媒についての複雑な解析を実行することなく、触媒の劣化度を知ることができる。 With this plant (1), it is possible to predict the degree of deterioration of the catalyst in the plant (1) simply by inputting the data about the plant (1) into the first prediction model. As a result, the user of the plant (1) can know the degree of deterioration of the catalyst without performing a complicated analysis on the catalyst.
(8)第8の態様に係る劣化予測方法は、
 第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成することと、
 生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測することと、
 を含む。
(8) The deterioration prediction method according to the eighth aspect is
Deterioration of the catalyst in the second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. To generate a first prediction model that predicts
Predicting the degree of deterioration in the second plant based on the generated first prediction model, and
including.
 この劣化予測方法により、第2プラント(1)についてのデータを第1予測モデルに入力するだけで、第2プラント(1)における触媒の劣化度を予測することができる。その結果、第2プラント(1)のユーザは、触媒についての複雑な解析を実行することなく、触媒の劣化度を知ることができる。 With this deterioration prediction method, it is possible to predict the degree of deterioration of the catalyst in the second plant (1) simply by inputting the data about the second plant (1) into the first prediction model. As a result, the user of the second plant (1) can know the degree of deterioration of the catalyst without performing a complicated analysis on the catalyst.
(9)第10の態様に係るプログラムは、
 コンピュータに、
 第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成することと、
 生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測することと、
 を実行させる。
(9) The program according to the tenth aspect is
On the computer
Deterioration of the catalyst in the second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. To generate a first prediction model that predicts
Predicting the degree of deterioration in the second plant based on the generated first prediction model, and
To execute.
 このプログラムにより、第2プラント(1)についてのデータを第1予測モデルに入力するだけで、第2プラント(1)における触媒の劣化度を予測することができる。その結果、第2プラント(1)のユーザは、触媒についての複雑な解析を実行することなく、触媒の劣化度を知ることができる。 With this program, it is possible to predict the degree of deterioration of the catalyst in the second plant (1) simply by inputting the data about the second plant (1) into the first prediction model. As a result, the user of the second plant (1) can know the degree of deterioration of the catalyst without performing a complicated analysis on the catalyst.
(10)第11の態様に係るコンフィギュレーションの処理をコンピュータに実行させるためのプログラムは、
 第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラント(1)における触媒の劣化度を予測する第1予測モデルを生成するモデル生成部(404、405)、
 前記モデル生成部(404、405)が生成した前記第1予測モデルに基づいて、前記第2プラント(1)における前記劣化度を予測する劣化度予測部(407)、
 のそれぞれをハードウェアとして構成させる。
(10) The program for causing the computer to execute the configuration process according to the eleventh aspect is
A catalyst in a second plant (1) different from the first plant based on learning data including first data relating to a catalyst in the past operation of the first plant and second data relating to the past operating state. Model generators (404, 405), which generate a first prediction model for predicting the degree of deterioration of
A deterioration degree prediction unit (407) that predicts the deterioration degree in the second plant (1) based on the first prediction model generated by the model generation units (404, 405).
Configure each of these as hardware.
 このコンフィギュレーションの処理をコンピュータに実行させるためのプログラムにより、第2プラント(1)についてのデータを第1予測モデルに入力するだけで、第2プラント(1)における触媒の劣化度を予測することができる。その結果、第2プラント(1)のユーザは、触媒についての複雑な解析を実行することなく、触媒の劣化度を知ることができる。 A program for causing a computer to perform this configuration process predicts the degree of catalyst deterioration in the second plant (1) simply by inputting data about the second plant (1) into the first prediction model. Can be done. As a result, the user of the second plant (1) can know the degree of deterioration of the catalyst without performing a complicated analysis on the catalyst.
 本開示の実施形態による予測装置、プラント、予測方法、プログラム、及び、コンフィギュレーションプログラムによれば、プラントのユーザが複雑な処理を実行することなく、触媒の劣化度を知ることができる。 According to the prediction device, the plant, the prediction method, the program, and the configuration program according to the embodiment of the present disclosure, the user of the plant can know the degree of deterioration of the catalyst without performing complicated processing.
1・・・プラント
5・・・コンピュータ
6・・・CPU
7・・・メインメモリ
8・・・ストレージ
9・・・インターフェース
10・・・ボイラ
20・・・脱硝装置
30・・・センサ装置
40・・・劣化予測装置
50・・・データサーバ装置
60・・・空気予熱器
70・・・差圧予測装置
301・・・第1センサ
302・・・第2センサ
303・・・第3センサ
304・・・第4センサ
401・・・記憶部
402・・・計画値取得部
403・・・プラントデータ取得部
404・・・第1モデル生成部
405・・・第2モデル生成部
406・・・被毒後データ取得部
407・・・触媒劣化度取得部
701・・・スケールアップファクタ推定部
702・・・リーク推定部
703・・・閉塞度推定部
704・・・差圧推定部
1 ... Plant 5 ... Computer 6 ... CPU
7 ... Main memory 8 ... Storage 9 ... Interface 10 ... Boiler 20 ... Denitration device 30 ... Sensor device 40 ... Deterioration prediction device 50 ... Data server device 60 ...・ Air preheater 70 ・ ・ ・ Differential pressure prediction device 301 ・ ・ ・ 1st sensor 302 ・ ・ ・ 2nd sensor 303 ・ ・ ・ 3rd sensor 304 ・ ・ ・ 4th sensor 401 ・ ・ ・ Storage unit 402 ・ ・ ・Planned value acquisition unit 403 ... Plant data acquisition unit 404 ... First model generation unit 405 ... Second model generation unit 406 ... Post-poisoning data acquisition unit 407 ... Catalyst deterioration degree acquisition unit 701 ... Scale-up factor estimation unit 702 ... Leak estimation unit 703 ... Blockage degree estimation unit 704 ... Differential pressure estimation unit

Claims (11)

  1.  第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成するモデル生成部と、
     前記モデル生成部が生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測する劣化度予測部と、
     を備える劣化予測装置。
    Deterioration of the catalyst in the second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. A model generator that generates a first prediction model that predicts
    Based on the first prediction model generated by the model generation unit, the deterioration degree prediction unit that predicts the deterioration degree in the second plant, and the deterioration degree prediction unit.
    Deterioration prediction device including.
  2.  前記学習データは、前記第1プラントの過去の運転における被毒後の触媒に係るデータと、前記第1プラントの過去の運転における前記劣化度に係るデータとを含み、
     前記モデル生成部は、
     前記学習データに基づいて、前記第2プラントにおける前記被毒後の触媒に係るデータを予測する第2予測モデルを生成する第1モデル生成部と、
     前記第2予測モデルが予測した前記第2プラントにおける前記被毒後の触媒に係るデータに基づいて、前記第2プラントにおける前記劣化度を予測する前記第1予測モデルを生成する第2モデル生成部と、
     を備え、
     前記劣化度予測部は、
     前記第1予測モデルと、前記第2予測モデルとに基づいて、前記第2プラントにおける前記劣化度を予測する、
     請求項1に記載の劣化予測装置。
    The training data includes data relating to the catalyst after poisoning in the past operation of the first plant and data relating to the degree of deterioration in the past operation of the first plant.
    The model generator
    A first model generation unit that generates a second prediction model that predicts data related to the catalyst after poisoning in the second plant based on the training data.
    A second model generator that generates the first prediction model that predicts the degree of deterioration in the second plant based on the data related to the catalyst after poisoning in the second plant predicted by the second prediction model. When,
    With
    The deterioration degree prediction unit
    Based on the first prediction model and the second prediction model, the degree of deterioration in the second plant is predicted.
    The deterioration prediction device according to claim 1.
  3.  請求項1または請求項2に記載の劣化予測装置と、
     前記劣化予測装置が予測した前記劣化度に基づいて、空気予熱器の入出力間の差圧を推定する差圧推定部と、
     を備える差圧予測装置。
    The deterioration prediction device according to claim 1 or 2,
    A differential pressure estimation unit that estimates the differential pressure between the input and output of the air preheater based on the degree of deterioration predicted by the deterioration prediction device.
    A differential pressure predictor.
  4.  前記劣化予測装置が予測した前記劣化度に基づいて、前記空気予熱器における閉塞度を推定する閉塞度推定部、
     を備え、
     前記差圧推定部は、
     前記閉塞度推定部が推定した前記閉塞度に基づいて、前記空気予熱器の入出力間の差圧を推定する、
     請求項3に記載の差圧予測装置。
    An obstruction degree estimation unit that estimates the obstruction degree in the air preheater based on the deterioration degree predicted by the deterioration predictor.
    With
    The differential pressure estimation unit
    Based on the degree of occlusion estimated by the degree of occlusion estimation unit, the differential pressure between the input and output of the air preheater is estimated.
    The differential pressure prediction device according to claim 3.
  5.  前記劣化予測装置が予測した前記劣化度に基づいて、リークアンモニアの量を推定するリーク推定部、
     を備え、
     前記差圧推定部は、
     前記リーク推定部が推定した前記リークアンモニアの量に基づいて、前記空気予熱器の入出力間の差圧を推定する、
     請求項3または請求項4に記載の差圧予測装置。
    A leak estimation unit that estimates the amount of leaked ammonia based on the degree of deterioration predicted by the deterioration predictor.
    With
    The differential pressure estimation unit
    Based on the amount of leaked ammonia estimated by the leak estimation unit, the differential pressure between the input and output of the air preheater is estimated.
    The differential pressure predictor according to claim 3 or 4.
  6.  前記劣化予測装置が予測した前記劣化度に基づいて、スケールアップファクタを求めるスケールアップファクタ推定部、
     を備え、
     前記差圧推定部は、
     前記スケールアップファクタ推定部が求めた前記スケールアップファクタに基づいて、前記空気予熱器の入出力間の差圧を推定する、
     請求項3から請求項5の何れか一項に記載の差圧予測装置。
    A scale-up factor estimation unit that obtains a scale-up factor based on the degree of deterioration predicted by the deterioration prediction device.
    With
    The differential pressure estimation unit
    Based on the scale-up factor obtained by the scale-up factor estimation unit, the differential pressure between the input and output of the air preheater is estimated.
    The differential pressure prediction device according to any one of claims 3 to 5.
  7.  触媒が用いられるプラントであって、
     前記触媒の劣化が起こる装置と、
     前記触媒の劣化度を予測する請求項1または請求項2に記載の劣化予測装置と、
     を備えるプラント。
    A plant that uses catalysts
    The device in which the catalyst deteriorates and
    The deterioration prediction device according to claim 1 or 2, which predicts the degree of deterioration of the catalyst.
    Plant equipped with.
  8.  第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成することと、
     生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測することと、
     を含む劣化予測方法。
    Deterioration of the catalyst in the second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. To generate a first prediction model that predicts
    Predicting the degree of deterioration in the second plant based on the generated first prediction model, and
    Deterioration prediction method including.
  9.  第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成することと、
     生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測することと、
     予測した前記劣化度に基づいて、空気予熱器の入出力間の差圧を推定することと、
     を含む差圧予測方法。
    Deterioration of the catalyst in the second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. To generate a first prediction model that predicts
    Predicting the degree of deterioration in the second plant based on the generated first prediction model, and
    Estimating the differential pressure between the input and output of the air preheater based on the predicted degree of deterioration,
    Differential pressure prediction method including.
  10.  コンピュータに、
     第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成することと、
     生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測することと、
     を実行させるプログラム。
    On the computer
    Deterioration of the catalyst in the second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. To generate a first prediction model that predicts
    Predicting the degree of deterioration in the second plant based on the generated first prediction model, and
    A program that executes.
  11.  第1プラントの過去の運転における触媒に係る第1データと、前記過去の運転の状態に係る第2データとを含む学習データに基づいて、前記第1プラントと異なる第2プラントにおける触媒の劣化度を予測する第1予測モデルを生成するモデル生成部、前記モデル生成部が生成した前記第1予測モデルに基づいて、前記第2プラントにおける前記劣化度を予測する劣化度予測部のそれぞれをハードウェアとして構成させる、
     コンフィギュレーションの処理をコンピュータに実行させるためのプログラム。
    Deterioration of the catalyst in the second plant different from the first plant based on the learning data including the first data related to the catalyst in the past operation of the first plant and the second data related to the past operation state. Each of the model generation unit that generates the first prediction model that predicts the degree of deterioration and the degree of deterioration prediction unit that predicts the degree of deterioration in the second plant based on the first prediction model generated by the model generation unit are hardware. Configure as,
    A program that lets a computer perform configuration processing.
PCT/JP2020/048257 2020-02-04 2020-12-23 Prediction device, plant, prediction method, program, and configuration program WO2021157240A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020006667.3T DE112020006667T5 (en) 2020-02-04 2020-12-23 Prediction device, plant, prediction method, program and configuration program
CN202080092582.4A CN114929366A (en) 2020-02-04 2020-12-23 Prediction device, plant, prediction method, program, and configuration program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-017156 2020-02-04
JP2020017156 2020-02-04
JP2020106496A JP2021125196A (en) 2020-02-04 2020-06-19 Estimation device, plant, estimation method, program, and configuration program
JP2020-106496 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021157240A1 true WO2021157240A1 (en) 2021-08-12

Family

ID=77200147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048257 WO2021157240A1 (en) 2020-02-04 2020-12-23 Prediction device, plant, prediction method, program, and configuration program

Country Status (3)

Country Link
CN (1) CN114929366A (en)
DE (1) DE112020006667T5 (en)
WO (1) WO2021157240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117196109A (en) * 2023-09-15 2023-12-08 中煤科工集团重庆研究院有限公司 Underground coal mine dust concentration prediction correction method based on multi-source information fusion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242127A (en) * 1988-03-18 1989-09-27 Mitsubishi Heavy Ind Ltd Apparatus for controlling performance of stack gas denitrification plant
JP2016126728A (en) * 2015-01-08 2016-07-11 三菱重工業株式会社 Availability factor prediction apparatus and availability factor prediction method
JP6278296B2 (en) * 2013-07-17 2018-02-14 三菱重工環境・化学エンジニアリング株式会社 Exhaust gas treatment facility management apparatus, exhaust gas treatment facility, exhaust gas treatment facility management method and program
JP2018173217A (en) * 2017-03-31 2018-11-08 中国電力株式会社 Air preheater pressure difference rise prediction device
WO2019159883A1 (en) * 2018-02-13 2019-08-22 三菱日立パワーシステムズ株式会社 Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017156A (en) 2018-07-27 2020-01-30 富士通株式会社 Character recognition device, character recognition program, and character recognition method
JP2020106496A (en) 2018-12-28 2020-07-09 日本製鉄株式会社 Quality prediction device, quality prediction method and program
CN110094251B (en) * 2019-05-05 2020-06-02 东南大学 SCR catalyst performance degradation analysis method based on time-interval multi-model modeling
CN110082474B (en) * 2019-05-24 2022-01-25 国家能源投资集团有限责任公司 Performance diagnosis system and performance diagnosis method of denitration catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242127A (en) * 1988-03-18 1989-09-27 Mitsubishi Heavy Ind Ltd Apparatus for controlling performance of stack gas denitrification plant
JP6278296B2 (en) * 2013-07-17 2018-02-14 三菱重工環境・化学エンジニアリング株式会社 Exhaust gas treatment facility management apparatus, exhaust gas treatment facility, exhaust gas treatment facility management method and program
JP2016126728A (en) * 2015-01-08 2016-07-11 三菱重工業株式会社 Availability factor prediction apparatus and availability factor prediction method
JP2018173217A (en) * 2017-03-31 2018-11-08 中国電力株式会社 Air preheater pressure difference rise prediction device
WO2019159883A1 (en) * 2018-02-13 2019-08-22 三菱日立パワーシステムズ株式会社 Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117196109A (en) * 2023-09-15 2023-12-08 中煤科工集团重庆研究院有限公司 Underground coal mine dust concentration prediction correction method based on multi-source information fusion
CN117196109B (en) * 2023-09-15 2024-04-05 中煤科工集团重庆研究院有限公司 Underground coal mine dust concentration prediction correction method based on multi-source information fusion

Also Published As

Publication number Publication date
DE112020006667T5 (en) 2023-03-09
CN114929366A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
CN101073007B (en) Computer-implemented system and method for analyzing mixtures of gases
CN102565274B (en) Modifying method for catalyst activity in power plant SCR (selective catalytic reduction) denitration system
US10612444B2 (en) System and method for fault diagnosis in emission control system
WO2021157240A1 (en) Prediction device, plant, prediction method, program, and configuration program
KR102283207B1 (en) Exhaust gas treating method for thermal power plant using AI and exhaust gas treating apparatus for thermal power plant using AI
JP2012128800A (en) State prediction method for process and process control unit using the same
JP2021125196A (en) Estimation device, plant, estimation method, program, and configuration program
Soleimani et al. Reliability challenges for automotive aftertreatment systems: A state-of-the-art perspective
Tarpø et al. Data‐driven virtual sensing and dynamic strain estimation for fatigue analysis of offshore wind turbine using principal component analysis
Hasnen et al. Semi-supervised adaptive PLS soft-sensor with PCA-based drift correction method for online valuation of NOx emission in industrial water-tube boiler
Arsie et al. Real-time estimation of engine NOx emissions via recurrent neural networks
JP2011069296A (en) Deterioration predicting method of denitration catalyst, deterioration countermeasures method, deterioration countermeasures system, and design method of exhaust gas treatment system
JP5656746B2 (en) Denitration catalyst deterioration judgment method
Qiu et al. An energy‐efficiency evaluation method for high‐sulfur natural gas purification system using artificial neural networks and particle swarm optimization
KR102337026B1 (en) Apparatus for treating exhaust gas comprising nitrogen oxide in thermal power plant and Method for treating exhaust gas comprising nitrogen oxide in thermal power plant
Bastani Relational programs: An architecture for robust real-time safety-critical process-control systems
US11204838B2 (en) Runtime model validation for partially-observable hybrid systems
Arsie et al. Development and Experimental Validation of a Control Oriented Model of SCR for Automotive Application
CN111927606B (en) Determination of evaluation time point for diagnosis
JP6278296B2 (en) Exhaust gas treatment facility management apparatus, exhaust gas treatment facility, exhaust gas treatment facility management method and program
Gupta et al. Physics-Assisted Long-Short-Term-Memory Network for Forecasting of Fouling in a Regenerative Heat Exchanger
Krejza et al. Cascade mpc approach to automotive scr multi-brick systems
Mandloi et al. An Optimization-Based Framework for Dynamic Model Development for a Three-Way Catalytic Converter Suitable for Urban Driving Condition
TWI811167B (en) Method for predicting nitrogen oxide
JP2006329005A (en) Catalytic deterioration diagnostic method and catalytic deterioration diagnostic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917920

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20917920

Country of ref document: EP

Kind code of ref document: A1