WO2019159883A1 - Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon - Google Patents

Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon Download PDF

Info

Publication number
WO2019159883A1
WO2019159883A1 PCT/JP2019/004829 JP2019004829W WO2019159883A1 WO 2019159883 A1 WO2019159883 A1 WO 2019159883A1 JP 2019004829 W JP2019004829 W JP 2019004829W WO 2019159883 A1 WO2019159883 A1 WO 2019159883A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
plant
new
creation method
model creation
Prior art date
Application number
PCT/JP2019/004829
Other languages
French (fr)
Japanese (ja)
Inventor
相木 英鋭
馬越 龍太郎
一彦 斉藤
裕基 芳川
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to JP2020500478A priority Critical patent/JP6799708B2/en
Publication of WO2019159883A1 publication Critical patent/WO2019159883A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention creates a model of operation simulation of a target plant by utilizing the results of a preceding plant, and relates to the use of the model, a model creation method, a plant operation support method, a model creation device, a model, a program, And a recording medium on which the program is recorded.
  • an operation simulator that simulates the plant is configured and used for operation control, or operators are trained.
  • Patent Document 1 is known as a simulation technique incorporated into plant operation control.
  • a plant control device uses a statistical model that estimates the value of a measurement signal acquired when a control signal is given to the plant. If the data used to construct the statistical model is modified, the plant is corrected. The model is updated using the collected data.
  • Patent Document 1 describes only a point where data is corrected in the same plant, and does not describe a response when plant specifications or fuel changes.
  • a model for operating simulation of the target plant is created efficiently or accurately by effectively utilizing the results of the preceding plant, or a model using this It is an object to provide a creation method, a plant operation support method, a model creation device, and a model, a program, and a recording medium on which the program is recorded.
  • a model creation method for creating a model that shows the relationship between the input parameter of the target plant and the process value by utilizing the results of the preceding plant A model creation method comprising: a reading step to read; and a model creation step of creating a new model by adding a physical parameter related to the plant specification of the target plant to an input parameter of the existing model in the preceding plant ".
  • a plant operation support method using a new model generated by a model creation method, a simulation step of calculating a process value using new operation data and a new model of a target plant, and a predetermined condition The plant operation support method further includes an operation instruction step of calculating an operation instruction value of the target plant based on a process value satisfying the above.
  • a model creation device that creates a model indicating the relationship between the input parameter of the target plant and the process value by utilizing the results of the preceding plant, and reads the existing model in the preceding plant.
  • a model creating apparatus characterized in that a new model is created by adding physical parameters related to the plant specifications of the target plant to the input parameters of the existing model at the preceding plant.
  • a model indicating the relationship between the input parameter of the target plant and the process value, created by utilizing the results of the preceding plant, the input parameter of the existing model in the preceding plant "A model created by adding physical parameters related to the plant specifications of the target plant so that they can be identified.”
  • a new model is obtained by acquiring an existing model indicating a relationship between an input parameter of a preceding plant and a process value, and adding a physical parameter related to the plant specification of the target plant to the input parameter of the existing model. Is a program that causes a computer to execute the process of creating the ".”
  • a recording medium on which a program is recorded is used.
  • the operation simulation model of the target plant can be created efficiently and accurately by effectively utilizing the results of the preceding plant.
  • the flowchart which shows the process flow about a model preparation method.
  • indication flow which gives the result of the simulation using a model as a driving
  • the figure which shows the example of whole structure of the operation control apparatus of the boiler plant incorporating the model.
  • a model simulating the operation when a plant is a boiler plant will be described.
  • a configuration example of a typical boiler plant and a model creation method will be described.
  • the configuration of the driving support device and the driving control device to which the created model is applied will be described.
  • a description will be given of configuring a driving support system by a plurality of driving support devices.
  • FIG. 1 is a schematic configuration example diagram of a typical boiler plant to be modeled.
  • a boiler plant 100 shown in FIG. 1 is equipment used for power generation and heat supply, and uses pulverized coal obtained by pulverizing coal as pulverized fuel (solid fuel) for burning solid fuel.
  • the pulverized coal is used as a furnace 11. This is a coal fired boiler capable of generating steam by exchanging heat generated by this combustion with feed water and steam.
  • the fuel is not limited to coal, and may be other solid fuel that can be burned in a boiler, such as biomass. Further, various kinds of solid fuels may be mixed and used.
  • the boiler plant 100 includes a furnace 11, a combustion device 12, and a flue 13.
  • the furnace 11 is installed along the vertical direction, for example, in a hollow shape of a square tube.
  • the wall surface is comprised by the fin which connects an evaporation pipe (heat-transfer pipe) and an evaporation pipe, and is suppressing the temperature rise of a furnace wall by heat-exchanging with water supply or a vapor
  • a plurality of evaporator tubes are arranged, for example, along the vertical direction and arranged side by side in the horizontal direction.
  • the fin closes between the evaporation pipe and the evaporation pipe.
  • the furnace 11 is provided with an inclined surface 62 on the furnace bottom, and a furnace bottom evaporation pipe 70 is provided on the inclined surface 62 to become a bottom surface.
  • the combustion device 12 is provided on the vertical lower side of the furnace wall constituting the furnace 11.
  • the combustion device 12 has a plurality of burners (eg, 21, 22, 23, 24, 25) mounted on the furnace wall.
  • a plurality of the burners 21, 22, 23, 24, 25 are arranged at equal intervals along the circumferential direction of the furnace 11.
  • the shape of the furnace, the arrangement of the burners, the number of burners in one stage, and the number of stages are not limited to this embodiment.
  • the burners 21, 22, 23, 24, 25 are connected to pulverizers (pulverized coal machines / mills) 31, 32, 33, 34, 35 through pulverized coal supply pipes 26, 27, 28, 29, 30. Has been.
  • pulverizers pulverized coal machines / mills
  • the pulverized coal can be supplied from the pulverized coal supply pipes 26, 27, 28, 29, 30 to the burners 21, 22, 23, 24, 25.
  • the furnace 11 is provided with a wind box 36 at the mounting position of each burner 21, 22, 23, 24, 25.
  • One end of an air duct 37b is connected to the wind box 36, and the other end is It is connected to an air duct 37a for supplying air at a connection point 37d.
  • the conveying air (primary air) and the combustion air (secondary air) from the air duct 37b are introduced into the furnace 11.
  • a flue 13 is connected vertically above the furnace 11, and a plurality of heat exchangers (41, 42, 43, 44, 45, 46, 47) for generating steam in the flue 13 are provided. Is arranged. Therefore, a flame is formed by the burners 21, 22, 23, 24, 25 injecting a mixture of pulverized coal fuel and combustion air into the furnace 11, combustion gas is generated, and flows into the flue 13. Then, the heated water or steam that flows through the furnace wall and the heat exchanger (41, 42, 43, 44, 45, 46, 47) is heated or superheated by the combustion gas to generate superheated steam, and the generated superheated steam is supplied. Then, a steam turbine (not shown) is driven to rotate, and a generator (not shown) connected to the rotating shaft of the steam turbine is driven to rotate to generate power.
  • an exhaust gas passage 48 is connected to the flue 13, a denitration device 50 for purifying the combustion gas, air sent from the forced blower 38 a to the air duct 37 a, and exhaust gas sent through the exhaust passage 48
  • An air heater 49, a dust processing device 51, an induction blower 52, etc. are provided for heat exchange between them, and a chimney 53 is provided at the downstream end.
  • the denitration device 50 may not be provided as long as the exhaust gas standard is satisfied.
  • the air for conveying pulverized coal (primary air) is blown from the primary air blower 38b by an air duct 37g in which an air duct 37e passing through the air heater 49 and an air duct 37f bypassing the air heater 49 are coupled. Yes. After the air flow rate of both the air ducts 37e and 37f is adjusted, they are merged and sent to the pulverizers (pulverized coal machine / mill) 31, 32, 33, 34, and 35 via the air duct 37g. The air for conveying charcoal (primary air) is adjusted to a predetermined temperature or the like.
  • the combustion air (primary air) and the combustion air (secondary air) supplied from the wind box 36 to the furnace 11 are excessively combusted and then newly burned air (
  • This is a so-called two-stage combustion furnace in which after-air is introduced to perform lean fuel combustion. Therefore, the furnace 11 is provided with an after air port 39, one end of an air duct 37c is connected to the after air port 39, and the other end is connected to an air duct 37a for supplying air at a connecting point 37d. If the two-stage combustion method is not adopted, the after-air port 39 may not be provided.
  • the air sent from the primary air blower 38b to the air duct 37a is heated by the air heater 49 by heat exchange with the combustion gas, and the secondary air led to the wind box 36 through the air duct 37b at the connection point 37d. Then, the air branches to the after air led to the after air port 39 via the air duct 37c.
  • a typical boiler plant 100 is as shown in FIG. 1, and in the following, the construction of a model of the boiler plant 100 will be described.
  • FIG. 2 illustrates a processing flow for the model creation method.
  • the operation data of the preceding plant and the target plant the reading step S1 for reading the existing model in the preceding plant, and adding the physical parameters related to the plant specifications to the input parameters of the existing model, It comprises a model creation step S2 to be created, a verification step S3 for verifying the accuracy of the created new model using operation data, and an output step S4 for outputting the new model whose accuracy has been verified.
  • the reading step S1 is processed according to the following concept.
  • step S1 first, all operation data of the preceding plant and the target plant and the existing model in the preceding plant are read.
  • a boiler plant is illustrated as an example of a power plant, and the following description is based on the assumption of a boiler plant.
  • the plant is not limited to this, and is widely applied to plants that produce industrial products and materials. Needless to say, it is applicable.
  • a combustion plant for burning fuel a steam supply plant and an iron manufacturing plant are exemplified in addition to a power generation plant.
  • Other than the combustion plant chemical and papermaking plants are exemplified.
  • the preceding plant is an existing plant with a track record of creating a model
  • the existing model is a model created at the preceding plant.
  • the model indicates the relationship between plant input parameters (inputs) and process values (outputs). Input parameters are input to the model and used to predict (simulate) process values.
  • a model is created for each process value, but the present invention is not limited to this, and a plurality of process values may be output by one model.
  • step S21 1 is first added to the number N of model creations (initial value is 0).
  • model creation conditions and additional parameter candidates are read.
  • the model creation conditions are a model creation target (process value), a method (function formula), an allowable error, and the like.
  • the additional parameter candidate is an input parameter addition candidate to be described later.
  • step S23 the difference in plant specifications and fuel properties between the preceding plant and the target plant is confirmed.
  • step S23 If the plant specifications are different as a result of the confirmation in step S23, the process proceeds to step S24, and physical parameters related to the plant specifications are added to the input parameters of the existing model.
  • the physical parameter is a parameter related to the structure, performance and / or design conditions of the plant. By adding physical parameters, appropriate parameters representing plant specifications can be selected.
  • step S23 if the fuel properties are different, the process proceeds to step S25, and the fuel parameters related to the fuel properties are added to the input parameters of the existing model.
  • the fuel parameter is a parameter related to any of fuel adjustment, combustion, environmental load, and moisture.
  • step S23 If, as a result of the confirmation in step S23, there is no difference in either the plant specifications or the fuel properties, the process proceeds to step S26, and no input parameters are added.
  • step S23 indicates that the input parameters of the existing model are different to the extent that it is necessary to add physical parameters and fuel parameters, respectively.
  • the boiler dimensions are different among the plant specifications and the physical parameters related to the boiler dimensions are already included in the input parameters of the existing model, it is not necessary to add new input parameters. In such a case, it is determined in step S23 that there is no difference in plant specifications.
  • step S31 the accuracy of the created new model is verified using all operation data.
  • step S32 the validity of the new model is determined. For example, an actual value (actual process value) of a process value in all operation data is compared with a simulation value (virtual process value) of a process value calculated using a model, and an error is confirmed. Incidentally, if the error is within the allowable error, the model is judged to be appropriate.
  • step S32 If it is determined in step S32 that the error exceeds the allowable error, it is confirmed in step S33 whether the number N is equal to or less than the allowable number Nth. If the number N is less than or equal to the allowable number Nth, the process returns to the model creation step S2 again, and the model creation conditions and additional parameter candidates are changed to correct the new model.
  • the relationship between the input and output (trend) of the theory or the operator's experience is verified by verifying the relationship between the typical input parameter of the new model and the process value based on a predetermined criterion. By verifying the validity from the viewpoint, the accuracy of the model can be further increased.
  • step S41 when it is determined that the model is valid, in step S41, the new model is output to an output or a database to be described later.
  • step S33 if the above-mentioned number N exceeds the allowable number Nth, a model creation error is output to the input / output unit 309. In this way, the model creation flow ends after outputting either a new model or a model creation error.
  • the operator can confirm again the relationship (trend) between the input and the output.
  • FIG. 2 the plant model creation method has been described, but the model created in this way is used by being incorporated in, for example, a plant operation control device.
  • the concept of configuring the plant operation control device will be described with reference to FIGS.
  • FIG. 3 is a flowchart showing an operation instruction flow for giving a result of simulation using the model created in FIG. 2 as an operation instruction to the operation control device.
  • step S5 new operation data and a new model of the target plant are read.
  • simulation is performed in simulation step S6.
  • simulation conditions are set.
  • a simulation condition is a set of input parameters.
  • step S62 the input parameter set is input to the new model created in the process of FIG. As a result of the simulation, a virtual process value can be obtained.
  • step S7 an operation instruction value for the operation control device is created.
  • step S71 the simulation result is evaluated.
  • step S72 it is determined whether or not the virtual process value obtained by the simulation is optimal (predetermined conditions are satisfied). If it is not optimal, the process returns to step S61 to reset the simulation conditions and instruct to calculate a new virtual process value.
  • evaluation may be conversion of each virtual process value into a score (non-dimensional) with a predetermined conversion coefficient.
  • “optimal” may be a case where the total value of the calculated scores is equal to or greater than a predetermined value.
  • a simulation may be performed in a plurality of cases (simulation conditions), and the result may be the highest score or the operator may determine that the highest number of cases is optimal.
  • a case with a higher score may be automatically searched using a genetic algorithm or particle swarm optimization technique, and it may be determined whether or not the result is optimal.
  • step S72 a driving instruction value is calculated based on the simulation conditions and results determined to be optimal, and the results are output to an output screen or the like to be described later.
  • FIG. 4 is a diagram showing an example of the overall configuration of an operation control apparatus for a boiler plant incorporating a model.
  • FIG. 4 shows a boiler plant 100 that is a control target when roughly classified, and an operation control device 200 that controls the boiler plant 100.
  • the boiler plant 100 has a system configuration as shown in FIG. 1 in detail, but the sensor SR and the operation end OP are typically described therein.
  • the operation end OP refers to a valve or a damper.
  • the sensor SR detects operation data such as process values of each part of the boiler plant 100.
  • the operation control apparatus 200 obtains the operation data from the sensor SR installed in the boiler plant 100 as an input, and finally gives an operation amount at each operation end OP in the boiler plant 100 as an output. Is.
  • the operation control device 200 is based on the concept of automatic control that consistently processes from input to output, but the operation support device 300 can be configured by omitting the operation control unit 201.
  • the parameter that the driving support device 300 presents is determined based on the operator M or a predetermined rule base and then a parameter value that is considered appropriate is transmitted to the driving control unit 201.
  • operation control of the boiler plant 100 is performed.
  • the operation control unit 201 obtains an appropriate feedback signal for the set parameter, and executes automatic control by so-called feedback control.
  • the driving support apparatus 300 handles a lot of data, and therefore has various databases DB.
  • the database DB adopted by the driving support device 300 and the stored contents are as follows.
  • the past operation database DB1 stores operation data in the preceding plant.
  • a data configuration example of the past operation database DB1 is shown in FIG. 8 and will be described later.
  • the new operation database DB2 stores new operation data acquired in the target plant.
  • the data configuration example of the new operation database DB2 is basically the same as the data configuration example of the past operation database DB1.
  • the existing model database DB3 stores the existing model created in the preceding plant.
  • a data configuration example of the existing model database DB3 is shown in FIG. 9 and will be described later.
  • the plant specification database DB4 stores plant specifications of the preceding plant and the target plant.
  • a data configuration example of the plant specification database DB4 is shown in FIG. 10 and will be described later.
  • the fuel property database DB5 stores the properties of the fuel used in the preceding plant and the target plant.
  • a data configuration example of the fuel property database DB5 is shown in FIG. 11 and will be described later.
  • the new model database DB6 stores the created new model.
  • the driving support apparatus 300 shown in FIG. 4 works as follows using the data stored in the database.
  • the data acquisition unit 301 acquires new operation data from the boiler plant (target plant) 100 and stores it in the new operation database DB2.
  • the data extraction / conversion unit 302 extracts data necessary for model creation and operation control (new operation data, past operation data) from the new operation database DB2 and the past operation database DB1, and complements and converts the format as necessary.
  • An example of the conversion here is a process of estimating and identifying operation data that cannot be directly measured by the sensor SR from other data. Since the estimation process is executed in software using a computer, the estimated value is called a soft sensor value.
  • the model creation device 303 will be described in detail with reference to FIG. 5.
  • the outline of the model creation device 303 is new operation data from the data extraction / conversion unit 302, past operation data, existing model data from the existing model database DB3, and plant from the plant specification database DB4.
  • a model (new model) indicating the input / output relationship of the boiler plant 100 is created using the specification data and the fuel property data from the fuel property database DB5.
  • the created new model is stored in the new model database DB6.
  • the simulation unit 306 calculates a virtual process value using the new operation data output from the data extraction conversion unit 302 and the new model output from the new model database DB6, and outputs the calculation result to the optimization unit 307.
  • the optimization unit 307 determines whether or not the virtual process value is optimal. If it is determined to be optimal, the optimization unit 307 outputs the virtual process value to the operation instruction unit 308. If it is determined that the virtual process value is not optimal, the simulation condition is reset. It outputs to the simulation part 306 so that it may simulate again.
  • the driving instruction unit 308 calculates a driving instruction value based on the simulation conditions and results determined to be optimal, and outputs them to the driving control unit 201. Further, the driving instruction unit 308 outputs the simulation result output from the optimization unit 307 and the calculated driving instruction value to the input / output unit 309. The details here are the same as those described in the operation instruction step S7 of FIG.
  • the input / output unit 309 displays a new model creation / verification result, a simulation evaluation result, and a driving instruction proposal screen, and receives an instruction from the operator M for each. Further, if there is input of additional information for the past operation database DB1, the existing model database DB3, the plant specification database DB4, and the fuel property database DB5, the input result is output to each.
  • the operation control device can be configured by providing the operation control value given by the operation support device 300 to the operation control unit 201.
  • the operation control unit 201 controls the operation (valve opening degree, etc.) of each operation end OP of the boiler based on the operation instruction value.
  • the operation control may be performed automatically based on the operation instruction value or may be performed after the operator M's consent at the input / output unit 309. Further, even if the operation instruction value from the operation support apparatus 300 is added as a bias value to the operation instruction value from the existing boiler plant control apparatus (not shown), the final operation instruction value is instructed. Good.
  • model creation device 303 new operation data from the data extraction conversion unit 302, past operation data, existing model data from the existing model database DB3, plant specification data from the plant specification database DB4, and fuel properties from the fuel property database DB5.
  • a model (new model) indicating the input / output relationship of the boiler plant is created using the data, additional parameter candidate data from the additional parameter candidate database DB7, and sensitivity data from the sensitivity database DB8.
  • the created new model is stored in the new model database DB6.
  • the additional parameter candidate data and sensitivity data are data set and input via the input / output unit 309, such as existing model data, plant specification data, and fuel property data.
  • an additional parameter candidate database DB7 and a sensitivity database DB8 are newly added to the model creation device 303.
  • the additional parameter candidate database DB7 stores additional candidates for input parameters, and is a sensitivity database.
  • the DB 8 stores criteria for verifying the relationship (change tendency) between typical input parameters and process values.
  • An example of the configuration of the additional parameter candidate database DB7 is illustrated in FIG. 12, and an example of the configuration of the sensitivity database DB8 is illustrated in FIG.
  • the model creation device 303 creates a model indicating the relationship between the input parameters of the target plant and the process value by utilizing the results of the preceding plant, and includes all the operation data of the preceding plant and the target plant, and the preceding plant.
  • the model verification unit 3033 performs accuracy verification using data, and the model output unit 3034 outputs a new model whose accuracy has been verified.
  • Each part of the model creation device 303 in FIG. 5 functions in detail as follows.
  • the data reading unit 3031 reads all the operation data (past operation data and new operation data) extracted by the data extraction / conversion unit 302 and the existing model stored in the existing model database DB3.
  • the model correction unit 3032 corrects the existing model read from the existing model database DB3 based on the model creation conditions stored inside. At that time, the difference between the preceding plant and the target plant is confirmed for the plant specifications read from the plant specification database DB4 and the fuel properties read from the fuel property database DB5. Further, input parameter addition candidates are read from the additional parameter candidate database DB7. From these addition candidates, a physical parameter is selected if the plant specification is different, and a fuel parameter is selected if the fuel property parameter is different, and added to the input parameter. This detail is shown in the model creation step S3 of FIG.
  • the model verification unit 3033 verifies the accuracy of the new model read from the model correction unit 3032. For accuracy verification, the following two items are implemented.
  • Item 1 of accuracy verification is to perform accuracy verification of the created new model using all operation data.
  • the actual measurement value (actual process value) of the process value in all the operation data is compared with the simulation value (virtual process value) of the process value calculated using the model, and the prediction error is calculated. Then, accuracy is verified by comparing the calculated prediction error with the allowable error stored in the model verification unit 3033 in advance.
  • Item 2 of accuracy verification verifies the relationship between typical input parameters and process values of the new model based on the criteria read from the sensitivity database DB8.
  • the accuracy of the model can be further improved by verifying the validity of the relationship (trend) between input and output from the viewpoint of the theory or the experience of the operator M.
  • the model output unit 3034 reads the verified new model from the model verification unit 3033 and outputs it to the new model database DB 6 and the input / output unit 309.
  • the total operation data is past operation data and new operation data obtained from the data extraction / conversion unit 302.
  • the past operation data is the operation data in the plants A and B that are the preceding plants.
  • the new operation data is operation data in the plant C that is the target plant.
  • the operation data includes test operation data and actual operation data.
  • the plant B model is created using both the plant A test operation data and the actual operation data (data acquired during the operation control period) and the plant B test operation data.
  • the model creation process for the plant B has been completed, the operation is started, and the actual operation data is acquired.
  • a model suitable for plant B is created by adding the physical and fuel parameters of plant B.
  • the new plant C model will be created now.
  • a model suitable for the plant C is created by adding the physical and fuel parameters of the plant C using the trial operation data and actual operation data of the plants A and B and the trial operation data of the plant C. Become.
  • Fig. 7 is a schematic diagram showing the relationship between model inputs and outputs.
  • the input parameters (inputs) of the model include physical parameters and / or fuel parameters in addition to parameters for the operation end.
  • the parameter for the operation end is a parameter indicating an instruction value (valve opening degree or the like) to the operation end OP.
  • a model is created for each process value.
  • the process value is an output obtained in the boiler plant 100 as a result of the control in the operation control unit 201 in FIG. 4, and most of them are monitoring items (or monitoring control items) for monitoring and controlling the boiler plant 100. Is shown. These are, for example, the NOx value of exhaust gas discharged into the atmosphere for environmental monitoring, the temperature and pressure of steam given to a steam turbine, etc., and the control target amounts to be controlled by various devices and auxiliary equipment, and the sensor SR Is detected. Therefore, the model defines a relationship such as correlation established between each of a plurality of process values that are the output of the boiler plant 100 and an input parameter that affects the process value.
  • FIG. 8 shows an example of a data format in the past operation database DB1.
  • the horizontal axis is divided by plant name, fuel used, number of operation cases, and the like.
  • the vertical axis is divided by data relating to each of the input parameter and the process value.
  • the new operation database DB2 basically has the same configuration as the data format in the past operation database DB1.
  • FIG. 9 shows an example of the data format in the existing model database DB3.
  • the horizontal axis is divided by plant by creation date, function, input parameters, and model details.
  • the function describes the method of modeling. Examples of the modeling method include, but are not limited to, stepwise method, random forest, k-nearest neighbor method (KNN), neural network method, deep learning, reinforcement learning, and the like.
  • KNN k-nearest neighbor method
  • neural network method deep learning
  • reinforcement learning and the like.
  • each item of the model formula F shown below is described. Or you may describe the quotation destination of another DB in which each item was described.
  • model PR1 is updated and represented as a model PR1 ′.
  • FIG. 10 shows an example of a data format in the plant specification database DB4.
  • the horizontal axis is divided by plant name. List plant names that cover all preceding and target plants.
  • the vertical axis is divided by items representing plant specifications.
  • the structural specifications are dimensions, and boiler dimensions are exemplified.
  • the performance specification is a value representing the performance of the plant, and examples thereof include exhaust gas temperature and steam temperature.
  • the structure specification and performance specification may describe not only the representative value of the measurement result but also the value of the design condition.
  • FIG. 11 shows an example of a data format in the fuel property database DB5.
  • the horizontal axis is divided by fuel. List the fuels that cover all the preceding and target plants.
  • the vertical axis is divided by items representing fuel properties.
  • the fuel properties include industrial analysis (fuel ratio, etc.) and elemental analysis (carbon amount, etc.).
  • the fuel ratio is the ratio of fixed carbon to volatile matter.
  • FIG. 12 shows an example of the data format in the additional parameter candidate database DB7.
  • the horizontal axis is divided according to the data acquisition method and applicable conditions.
  • the data acquisition method not only measured values but also calculated values (soft sensor values) calculated by combining a plurality of measured values may be used. If there is no measured value of an appropriate parameter that represents the plant specification, a calculated value can be substituted.
  • the vertical axis is divided by physical parameters and fuel parameters.
  • Some physical parameters are obtained from boiler specifications such as structural dimensions, and others are obtained from measured values or calculated values such as gas temperature and steam temperature. The latter may be set with reference to the design value from the boiler specification.
  • the physical parameter may be a soft sensor value calculated by combining a plurality of measurement values. By treating the soft sensor value as a physical parameter, a calculated value can be substituted when there is no measurement value of an appropriate parameter representing the plant specification.
  • the fuel parameter is an item used when evaluating the characteristics of the fuel, and is the motor current value, hydraulic pressure, differential pressure, etc. of the pulverizer (pulverized coal machine / mil) for coal pulverization, and fuel consumption for coal combustion. Quantity (call flow), absorbed heat quantity of the heat transfer surface, boiler output, etc., NOx value in exhaust gas with respect to environmental load, SO2 value, etc., and inlet air temperature of pulverizer, etc. with respect to moisture.
  • a fuel parameter as an additional parameter, it is possible to create an operation model that takes into account differences in fuel properties. Further, by using a parameter relating to any of fuel adjustment, combustion, environmental load, and moisture as the fuel parameter, an appropriate parameter representing the fuel property can be selected.
  • the operation data regarding a grinder when the boiler plant 100 is equipped with two or more grinders, it is preferable to create a new model using operation data of two or more grinders as input parameters.
  • the operation data of one pulverizer when calculating the virtual process value, the operation data of one pulverizer is used as a representative, and when the pulverizer stops, the operation data is switched to another pulverizer operation data. This is because even if one pulverizer stops due to maintenance or the like, operation support can be continued using operation data of another pulverizer.
  • What is necessary is just to select a grinder according to the burner position which supplies an operation rate and pulverized coal.
  • FIG. 13 shows an example of the data format in the sensitivity database DB8.
  • the horizontal axis is divided by typical process values. Although steam temperature, metal temperature, and NOx value are illustrated, it is not restricted to this.
  • the vertical axis is classified by typical input parameters. Although a burner angle and an air damper opening degree are illustrated, it is not restricted to this.
  • the sensitivity confirmation criterion is indicated by a linear change tendency such as proportional, inversely proportional, or constant, or a non-linear change tendency such as upward or downward, with respect to the relationship between the input parameter and the process value.
  • FIG. 14 is a display example of the sensitivity confirmation screen.
  • the vertical axis represents a typical process value, and the horizontal axis represents a typical input parameter.
  • the relationship between the two data is displayed.
  • the model verification unit 3033 compares this result with the confirmation criteria stored in the sensitivity database DB8 to verify the validity of the new model.
  • the operator M confirms the validity on the confirmation screen of the input / output unit.
  • operation control device 200 may be remotely or on the cloud and connected to the boiler plant 100 via the Internet line.
  • FIG. 17 is a diagram illustrating an example of a hardware configuration of the operation control apparatus 200.
  • the operation control device 200 includes a CPU (CPU (Central Processing Unit) 601, a RAM (Random Access Memory) 602, a ROM (Read Only Memory) 603, an HDD (Hard Disk Drive) 604, an input I / F 605, and an output I / F 605, 6. These are configured using computers connected to each other via a bus 607.
  • the hardware configuration of the operation control device 200 is not limited to the above, and is configured by a combination of a control circuit and a storage device.
  • the operation control apparatus 200 is configured by a computer executing programs that realize the functions of the operation control apparatus 200, and these programs are stored in the cloud 1601 or the recording medium 1602. .
  • the program stored in the recording medium 1602 is, for example, a program having the function of the flowchart shown in FIG. 2, acquires an existing model indicating the relationship between the input parameter of the preceding plant and the process value, and sets the input parameter of the existing model as It is good also as a program (new model creation program) which adds the physical parameter relevant to the plant specification of a target plant, and makes a computer perform the process which creates a new model.
  • the program stored in the recording medium 1602 is a program having the function of the flowchart shown in FIG. 3, for example, acquires a new model generated by the new model creation program, acquires new operation data of the target plant, It is good also as a program (driving support program) which calculates a process value using new operation data and a new model, and makes a computer perform the process which calculates the operation instruction value of a target plant based on the process value which satisfy
  • the operation control apparatus 200 also includes an external communication device 608, for example, a wireless LAN communication device such as a 4G or 5G line communication device or Wi-Fi (registered trademark), and the CPU 601 executes a program from the cloud 1601 via the external communication device 608. May be read and loaded into the RAM 602 for execution.
  • the operation control apparatus 200 may include a driver 609 for reading data on the recording medium 1602, and the CPU 601 may read a program from the recording medium 1602, load it into the RAM 602, and execute it.
  • various recording media such as an SD card, a USB memory, an external HDD, and the like depending on the capacity of the program can be used.
  • FIG. 18 is a diagram illustrating an example of a hardware configuration of the driving support device 300. While taking the same configuration as the operation control device 200 described above, from the output I / F 606 to an output unit (input / output unit 309) such as a monitor or a printer, a new model creation / verification result, a simulation evaluation result, It is configured to output (display) a driving instruction proposal screen.
  • an output unit input / output unit 309
  • a new model creation / verification result such as a monitor or a printer
  • simulation evaluation result It is configured to output (display) a driving instruction proposal screen.
  • Example 2 it will be described that a driving support system that supports model creation is configured by collectively combining a plurality of boiler plants.
  • FIG. 15 is a diagram illustrating an example of the overall configuration of a driving support system 500 that supports model creation.
  • a driving support system 500 that supports model creation includes, for example, a plurality of local support systems 300A, 300B, and 300C provided for each of a plurality of boiler plants 100A, 100B, and 100C, and local support systems 300A, 300B, and 300C.
  • a remote support system 400 capable of communicating via the network N.
  • FIG. 16 is a diagram illustrating a detailed configuration example of the driving support system 500 that supports model creation.
  • the configuration of the local support system 300A is illustrated as a representative configuration example.
  • the local support systems 300B and 300C have the same configuration as the local support system 300A.
  • the local support system 300A includes a driving support device 300 and a first transmission / reception unit 301.
  • the driving control device 200 may be used instead of the driving support device 300.
  • the remote support system 400 includes a second transmission / reception unit 401 and a common model database DB10.
  • the first transmission / reception unit 301 sends the update result of the new model and the new driving data created by the model creation device 303 in the driving support device 300 to the second transmission / reception unit 401 at regular intervals or by an instruction from the second transmission / reception unit 401. Send.
  • the second transmission / reception unit 401 receives new operation data and new model update results transmitted from the local support systems 300A, 300B, and 300C. When a new update result is received, it is transmitted to the first transmission / reception units 301 of all other local support systems 300A, 300B, and 300C as update results of all the operation data and the existing model at any time or at a constant cycle.
  • the first transmission / reception unit 301 When the first transmission / reception unit 301 receives new operation data and an update result of the existing model, the first transmission / reception unit 301 transmits the update result of the entire operation data to the past operation database DB1 and the update result of the existing model to the existing model database DB3. .
  • the driving support system that supports model creation illustrated in FIGS. 15 and 16 includes a plurality of local support systems 300A, 300B, and 300C including the model creation device 303, the local support systems 300A, 300B, and 300C, and the network N.
  • the local support systems 300A, 300B, and 300C transmit new driving data and new model update results to the remote support system 400 and are transmitted from the remote support system 400.
  • the remote support system 400 includes a first transmission / reception unit 301 that receives all the driving data in other local support systems and the update result of the existing model.
  • the remote support system 400 includes new driving data transmitted from the respective local systems 300A, 300B, and 300C.
  • New model Which receives the result of the update, all local system 300A the update result of the other, 300B, is to have a second transceiver 401 that transmits a result of updating existing models and all operation data to 300C.
  • the local systems 300A, 300B, and 300C are configured to transmit signals via the remote support system 400. However, this is for direct transmission / reception between the local systems 300A, 300B, and 300C. May be.
  • the present invention can be widely applied not only to coal-fired power plants but also to general plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

The objective of the present invention is to provide a model creation method, a plant operation support method, a model creating device, a model, a program, and recording medium having program recorded thereon, which efficiently and accurately create or utilize an operation simulation model of a target plant by making effective use of actual results from a preceding plant, even if the plant specifications differ from those of the preceding plant. This model creation method which utilizes actual results of a preceding plant to create a model representing a relationship between an input parameter and a process value of a target plant is characterized by including a reading step of reading an existing model of the preceding plant, and a model creating step of adding a physical parameter relating to the plant specification of the target plant to input parameters of the existing model of the preceding plant, to create a new model.

Description

モデル作成方法、プラントの運転支援方法、モデル作成装置、モデル、プログラム、及びプログラムを記録した記録媒体Model creation method, plant operation support method, model creation device, model, program, and recording medium recording program
 本発明は、先行プラントの実績を活用して対象プラントの運転シミュレーションのモデルを作成するとともに、モデルを利用することに係り、モデル作成方法、プラントの運転支援方法、モデル作成装置並びにモデル、プログラム、及びプログラムを記録した記録媒体を構成することに関する。 The present invention creates a model of operation simulation of a target plant by utilizing the results of a preceding plant, and relates to the use of the model, a model creation method, a plant operation support method, a model creation device, a model, a program, And a recording medium on which the program is recorded.
 従来から各種のプラントにおいては、プラントを模擬する運転シミュレータを構成して運転制御に活用し、あるいは運転員の教育が行われている。 Conventionally, in various plants, an operation simulator that simulates the plant is configured and used for operation control, or operators are trained.
 例えばプラントの運転制御にシミュレーション技術を取り入れたものとして特許文献1が知られている。特許文献1では、プラントの制御装置において、プラントに制御信号を与えた時に取得する計測信号の値を推定する統計モデルを用いており、統計モデルの構築に用いるデータが修正された場合、修正されたデータを用いてモデルを更新している。 For example, Patent Document 1 is known as a simulation technique incorporated into plant operation control. In Patent Document 1, a plant control device uses a statistical model that estimates the value of a measurement signal acquired when a control signal is given to the plant. If the data used to construct the statistical model is modified, the plant is corrected. The model is updated using the collected data.
特許第5378288号Japanese Patent No. 5378288
 モデルを作成・更新する場合に、使用するデータは多い方が対象プラントの特性を高精度に模擬することができる。このため、対象プラントのデータが不足する場合は、先行プラントのデータやモデル作成履歴(以下単に実績と呼ぶ)を参照し、データ数を増やすことが有効である。 When creating / updating a model, more data can be used to simulate the characteristics of the target plant with high accuracy. For this reason, when the data of the target plant is insufficient, it is effective to increase the number of data by referring to the data of the preceding plant and the model creation history (hereinafter simply referred to as the results).
 先行プラントの実績を活用する場合、現行プラントとは仕様が変化することが想定される。しかしこの点に関して、特許文献1は同一プラント内でデータが修正された点のみ記載され、プラント仕様や燃料が変化した場合の対応は記載されていない。 When using the results of the preceding plant, it is assumed that the specifications will change from the current plant. However, regarding this point, Patent Document 1 describes only a point where data is corrected in the same plant, and does not describe a response when plant specifications or fuel changes.
 そこで本発明においては、先行プラントとプラント仕様が異なる場合であっても、先行プラントの実績を有効活用して効率的かつ精度よく対象プラントの運転シミュレーションのモデルを作成し、あるいはこれを利用するモデル作成方法、プラントの運転支援方法、モデル作成装置、並びに、モデル、プログラム、及びプログラムを記録した記録媒体を提供することを目的とする。 Accordingly, in the present invention, even if the preceding plant and the plant specifications are different, a model for operating simulation of the target plant is created efficiently or accurately by effectively utilizing the results of the preceding plant, or a model using this It is an object to provide a creation method, a plant operation support method, a model creation device, and a model, a program, and a recording medium on which the program is recorded.
 以上のことから本発明においては、「先行プラントの実績を活用して、対象プラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成方法であって、先行プラントでの既存モデルを読み込む読込ステップと、前記先行プラントでの既存モデルの入力パラメータに前記対象プラントのプラント仕様に関係する物理パラメータを追加して、新規モデルを作成するモデル作成ステップを有することを特徴とするモデル作成方法」としたものである。 From the above, in the present invention, “a model creation method for creating a model that shows the relationship between the input parameter of the target plant and the process value by utilizing the results of the preceding plant, A model creation method comprising: a reading step to read; and a model creation step of creating a new model by adding a physical parameter related to the plant specification of the target plant to an input parameter of the existing model in the preceding plant ".
 また本発明においては、「モデル作成方法により生成された新規モデルを用いるプラントの運転支援方法であって、対象プラントの新規運転データと新規モデルを用いてプロセス値を算出するシミュレーションステップと、所定条件を満たすプロセス値に基づき対象プラントの運転指示値を算出する運転指示ステップをさらに備えることを特徴とするプラントの運転支援方法」としたものである。 Further, in the present invention, “a plant operation support method using a new model generated by a model creation method, a simulation step of calculating a process value using new operation data and a new model of a target plant, and a predetermined condition” The plant operation support method further includes an operation instruction step of calculating an operation instruction value of the target plant based on a process value satisfying the above.
 また本発明においては、「先行プラントの実績を活用して、対象プラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成装置であって、先行プラントでの既存モデルを読み込むデータ読込部と、前記先行プラントでの既存モデルの入力パラメータに前記対象プラントのプラント仕様に関係する物理パラメータを追加して、新規モデルを作成することを特徴とするモデル作成装置」としたものである。 Further, in the present invention, “a model creation device that creates a model indicating the relationship between the input parameter of the target plant and the process value by utilizing the results of the preceding plant, and reads the existing model in the preceding plant. And a model creating apparatus characterized in that a new model is created by adding physical parameters related to the plant specifications of the target plant to the input parameters of the existing model at the preceding plant.
 また本発明においては、「先行プラントの実績を活用して作成された、対象プラントの入力パラメータとプロセス値との関係を示すモデルであって、前記先行プラントでの既存モデルの入力パラメータに、前記対象プラントのプラント仕様に関係する物理パラメータを識別可能に追加して作成されたモデル。」としたものである。 Further, in the present invention, “a model indicating the relationship between the input parameter of the target plant and the process value, created by utilizing the results of the preceding plant, the input parameter of the existing model in the preceding plant, "A model created by adding physical parameters related to the plant specifications of the target plant so that they can be identified."
 また本発明においては、「先行プラントの入力パラメータとプロセス値との関係を示す既存モデルを取得し、既存モデルの入力パラメータに、対象プラントのプラント仕様に関係する物理パラメータを追加して、新規モデルを作成する処理をコンピュータに実行させるプログラム。」としたものである。 Further, in the present invention, “a new model is obtained by acquiring an existing model indicating a relationship between an input parameter of a preceding plant and a process value, and adding a physical parameter related to the plant specification of the target plant to the input parameter of the existing model. Is a program that causes a computer to execute the process of creating the "."
 また本発明においては、「プログラムを記録した記録媒体。」としたものである。 In the present invention, “a recording medium on which a program is recorded” is used.
 対象プラントのプラント仕様が先行プラントと異なる場合であっても、先行プラントの実績を有効活用して効率的かつ精度よく対象プラントの運転シミュレーションのモデルを作成できる。 Even if the plant specifications of the target plant are different from those of the preceding plant, the operation simulation model of the target plant can be created efficiently and accurately by effectively utilizing the results of the preceding plant.
モデル化の対象となる典型的なボイラプラントの概略構成図。The schematic block diagram of the typical boiler plant used as the object of modeling. モデル作成手法についての処理流れを示すフローチャート。The flowchart which shows the process flow about a model preparation method. モデルを用いたシミュレーションの結果を、運転制御装置に対する運転指示として与える運転指示流れを示したフローチャート。The flowchart which showed the driving | operation instruction | indication flow which gives the result of the simulation using a model as a driving | operation instruction | indication with respect to an operation control apparatus. モデルを組み込んだボイラプラントの運転制御装置の全体構成例を示す図。The figure which shows the example of whole structure of the operation control apparatus of the boiler plant incorporating the model. モデル作成装置の詳細構成例を示す図。The figure which shows the detailed structural example of a model production apparatus. モデル作成用の全運転データの一例を示す図。The figure which shows an example of all the operation data for model creation. モデルのインプットとアウトプットの関係を表す模式図。Schematic diagram showing the relationship between model inputs and outputs. 過去運転データベースにおけるデータフォーマット例を示す図。The figure which shows the data format example in a past driving | operation database. 既存モデルデータベースにおけるデータフォーマット例を示す図。The figure which shows the data format example in the existing model database. プラント仕様データベースにおけるデータフォーマット例を示す図。The figure which shows the data format example in a plant specification database. 燃料性状データベースにおけるデータフォーマット例を示す図。The figure which shows the data format example in a fuel property database. 追加パラメータ候補データベースにおけるデータフォーマット例を示す図。The figure which shows the data format example in an additional parameter candidate database. センシティビティデータベースにおけるデータフォーマット例を示す図。The figure which shows the data format example in a sensitivity database. センシティビティの確認画面の表示例を示す図。The figure which shows the example of a display of the confirmation screen of sensitivity. モデル作成を支援する運転支援システムの全体構成例を示す図。The figure which shows the example of whole structure of the driving assistance system which assists model creation. モデル作成を支援する運転支援システムの詳細構成例を示す図。The figure which shows the detailed structural example of the driving assistance system which assists model creation. 運転制御装置のハードウェア構成を示す図。The figure which shows the hardware constitutions of an operation control apparatus. 運転支援装置のハードウェア構成を示す図。The figure which shows the hardware constitutions of a driving assistance device.
 以下本発明の実施例について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の実施例では、プラントがボイラプラントである場合に、その動作を模擬するモデルを構成する事例について説明する。まず実施例1では、典型的なボイラプラントの構成例と、モデルの作成手法について説明する。また作成したモデルを適用した運転支援装置さらには運転制御装置を構成することについて説明する。実施例2では複数の運転支援装置により運転支援システムを構成することについて説明する。 In the embodiment of the present invention, an example in which a model simulating the operation when a plant is a boiler plant will be described. First, in a first embodiment, a configuration example of a typical boiler plant and a model creation method will be described. The configuration of the driving support device and the driving control device to which the created model is applied will be described. In the second embodiment, a description will be given of configuring a driving support system by a plurality of driving support devices.
 まず、ボイラプラントの構成例と、その動作を模擬するモデルの構成手法について説明する。 First, a configuration example of a boiler plant and a model configuration method that simulates its operation will be described.
 図1は、モデル化の対象となる典型的なボイラプラントの概略構成例図である。 FIG. 1 is a schematic configuration example diagram of a typical boiler plant to be modeled.
 図1に示すボイラプラント100は、発電や熱供給に用いられる設備であり、固体燃料を燃焼させるものとして、石炭を粉砕した微粉炭を微粉燃料(固体燃料)として用い、この微粉炭を火炉11のバーナにより燃焼させ、この燃焼により発生した熱を給水や蒸気と熱交換して蒸気を生成することが可能な石炭焚きボイラである。なお、燃料は石炭に限られず、バイオマス等、ボイラで燃焼可能な他の個体燃料であってもよい。さらに多種の個体燃料を混合して使用してもよい。 A boiler plant 100 shown in FIG. 1 is equipment used for power generation and heat supply, and uses pulverized coal obtained by pulverizing coal as pulverized fuel (solid fuel) for burning solid fuel. The pulverized coal is used as a furnace 11. This is a coal fired boiler capable of generating steam by exchanging heat generated by this combustion with feed water and steam. The fuel is not limited to coal, and may be other solid fuel that can be burned in a boiler, such as biomass. Further, various kinds of solid fuels may be mixed and used.
 ボイラプラント100は、火炉11と燃焼装置12と煙道13を有している。 The boiler plant 100 includes a furnace 11, a combustion device 12, and a flue 13.
 このうち火炉11は、例えば四角筒の中空形状をなして鉛直方向に沿って設置されている。火炉11は、壁面が、蒸発管(伝熱管)と蒸発管を接続するフィンとで構成され、給水や蒸気と熱交換することにより火炉壁の温度上昇を抑制している。具体的には、火炉11の側壁面には、複数の蒸発管が例えば鉛直方向に沿って配置され、水平方向に並んで配置されている。フィンは、蒸発管と蒸発管との間を閉塞している。火炉11は、炉底に傾斜面62が設けられており、傾斜面62に炉底蒸発管70が設けられて底面となる。 Among these, the furnace 11 is installed along the vertical direction, for example, in a hollow shape of a square tube. As for the furnace 11, the wall surface is comprised by the fin which connects an evaporation pipe (heat-transfer pipe) and an evaporation pipe, and is suppressing the temperature rise of a furnace wall by heat-exchanging with water supply or a vapor | steam. Specifically, on the side wall surface of the furnace 11, a plurality of evaporator tubes are arranged, for example, along the vertical direction and arranged side by side in the horizontal direction. The fin closes between the evaporation pipe and the evaporation pipe. The furnace 11 is provided with an inclined surface 62 on the furnace bottom, and a furnace bottom evaporation pipe 70 is provided on the inclined surface 62 to become a bottom surface.
 燃焼装置12は、この火炉11を構成する火炉壁の鉛直下部側に設けられている。図1の実施形態では、この燃焼装置12は、火炉壁に装着された複数のバーナ(例えば21、22、23、24、25)を有している。例えば、このバーナ21、22、23、24、25は、火炉11の周方向に沿って均等間隔で複数配設されている。但し、火炉の形状、バーナの配置や一つの段におけるバーナの数、段数はこの実施形態に限定されるものではない。 The combustion device 12 is provided on the vertical lower side of the furnace wall constituting the furnace 11. In the embodiment of FIG. 1, the combustion device 12 has a plurality of burners (eg, 21, 22, 23, 24, 25) mounted on the furnace wall. For example, a plurality of the burners 21, 22, 23, 24, 25 are arranged at equal intervals along the circumferential direction of the furnace 11. However, the shape of the furnace, the arrangement of the burners, the number of burners in one stage, and the number of stages are not limited to this embodiment.
 この各バーナ21、22、23、24、25は、微粉炭供給管26、27、28、29、30を介して粉砕機(微粉炭機/ミル)31、32、33、34、35に連結されている。石炭が図示しない搬送系統で搬送されて、この粉砕機31、32、33、34、35に投入されると、ここで所定の微粉の大きさに粉砕され、搬送用空気(1次空気)と共に微粉炭供給管26、27、28、29、30からバーナ21、22、23、24、25に粉砕された石炭(微粉炭)を供給することができる。 The burners 21, 22, 23, 24, 25 are connected to pulverizers (pulverized coal machines / mills) 31, 32, 33, 34, 35 through pulverized coal supply pipes 26, 27, 28, 29, 30. Has been. When coal is transported by a transport system (not shown) and put into the pulverizers 31, 32, 33, 34, and 35, it is pulverized into a predetermined fine powder size and together with transport air (primary air). The pulverized coal (pulverized coal) can be supplied from the pulverized coal supply pipes 26, 27, 28, 29, 30 to the burners 21, 22, 23, 24, 25.
 また、火炉11は、各バーナ21、22、23、24、25の装着位置に風箱36が設けられており、この風箱36に空気ダクト37bの一端部が連結されて、他端部は空気を供給する空気ダクト37aに連結点37dにおいて連結される。この結果、火炉11には搬送用空気(1次空気)と空気ダクト37bからの燃焼用空気(2次空気)が導入されることになる。 Further, the furnace 11 is provided with a wind box 36 at the mounting position of each burner 21, 22, 23, 24, 25. One end of an air duct 37b is connected to the wind box 36, and the other end is It is connected to an air duct 37a for supplying air at a connection point 37d. As a result, the conveying air (primary air) and the combustion air (secondary air) from the air duct 37b are introduced into the furnace 11.
 また、火炉11の鉛直方向上方には煙道13が連結されており、この煙道13に蒸気を生成するための複数の熱交換器(41、42、43、44、45、46、47)が配置されている。そのため、バーナ21、22、23、24、25が火炉11内に微粉炭燃料と燃焼用空気との混合気を噴射することで火炎が形成され、燃焼ガスを生成されて煙道13に流れる。そして、燃焼ガスにより火炉壁及び熱交換器(41、42、43、44、45、46、47)を流れる給水や蒸気を加熱または過熱して過熱蒸気が生成され、生成された過熱蒸気を供給して図示しない蒸気タービンを回転駆動させ、蒸気タービンの回転軸に連結した図示しない発電機を回転駆動して発電を行うことができる。 Further, a flue 13 is connected vertically above the furnace 11, and a plurality of heat exchangers (41, 42, 43, 44, 45, 46, 47) for generating steam in the flue 13 are provided. Is arranged. Therefore, a flame is formed by the burners 21, 22, 23, 24, 25 injecting a mixture of pulverized coal fuel and combustion air into the furnace 11, combustion gas is generated, and flows into the flue 13. Then, the heated water or steam that flows through the furnace wall and the heat exchanger (41, 42, 43, 44, 45, 46, 47) is heated or superheated by the combustion gas to generate superheated steam, and the generated superheated steam is supplied. Then, a steam turbine (not shown) is driven to rotate, and a generator (not shown) connected to the rotating shaft of the steam turbine is driven to rotate to generate power.
 また、この煙道13には、排ガス通路48が連結され、燃焼ガスの浄化を行うための脱硝装置50、押込送風機38aから空気ダクト37aへ送気する空気と排ガス通路48を送気する排ガスとの間で熱交換を行うエアヒータ49、煤塵処理装置51、誘引送風機52などが設けられ、下流端部に煙突53が設けられている。なお、脱硝装置50は排ガス基準を満足できれば設けなくてもよい。 Further, an exhaust gas passage 48 is connected to the flue 13, a denitration device 50 for purifying the combustion gas, air sent from the forced blower 38 a to the air duct 37 a, and exhaust gas sent through the exhaust passage 48 An air heater 49, a dust processing device 51, an induction blower 52, etc. are provided for heat exchange between them, and a chimney 53 is provided at the downstream end. The denitration device 50 may not be provided as long as the exhaust gas standard is satisfied.
 また、微粉炭の搬送用空気(1次空気)は、1次空気送風機38bからエアヒータ49を通過する空気ダクト37eと、エアヒータ49をバイパスする空気ダクト37fが結合された空気ダクト37gにより送風されている。両方の空気ダクト37e、37fの送風量が調整された後合流し、空気ダクト37gを経由して粉砕機(微粉炭機/ミル)31、32、33、34、35に送られることにより、微粉炭の搬送用空気(1次空気)が所定の温度等になるように調整されている。 Also, the air for conveying pulverized coal (primary air) is blown from the primary air blower 38b by an air duct 37g in which an air duct 37e passing through the air heater 49 and an air duct 37f bypassing the air heater 49 are coupled. Yes. After the air flow rate of both the air ducts 37e and 37f is adjusted, they are merged and sent to the pulverizers (pulverized coal machine / mill) 31, 32, 33, 34, and 35 via the air duct 37g. The air for conveying charcoal (primary air) is adjusted to a predetermined temperature or the like.
 実施例1の火炉11は、微粉炭の搬送用空気(1次空気)及び風箱36から火炉11に投入される燃焼用空気(2次空気)による燃料過剰燃焼後、新たに燃焼用空気(アフタエア)を投入して燃料希薄燃焼を行わせる、所謂2段燃焼方式の火炉である。そのため、火炉11にはアフタエアポート39が備えられ、アフタエアポート39に空気ダクト37cの一端部が連結され、他端部は連結点37dにおいて空気を供給する空気ダクト37aに連結される。なお、2段燃焼方式を採用しない場合、アフタエアポート39は設けなくてもよい。 In the furnace 11 of the first embodiment, the combustion air (primary air) and the combustion air (secondary air) supplied from the wind box 36 to the furnace 11 are excessively combusted and then newly burned air ( This is a so-called two-stage combustion furnace in which after-air is introduced to perform lean fuel combustion. Therefore, the furnace 11 is provided with an after air port 39, one end of an air duct 37c is connected to the after air port 39, and the other end is connected to an air duct 37a for supplying air at a connecting point 37d. If the two-stage combustion method is not adopted, the after-air port 39 may not be provided.
 1次空気送風機38bから空気ダクト37aに送気された空気は、エアヒータ49で燃焼ガスと熱交換により温められ、連結点37dにおいて空気ダクト37bを経由して風箱36へ導かれる2次空気と、空気ダクト37cを経由してアフタエアポート39へと導かれるアフタエアとに分岐する。 The air sent from the primary air blower 38b to the air duct 37a is heated by the air heater 49 by heat exchange with the combustion gas, and the secondary air led to the wind box 36 through the air duct 37b at the connection point 37d. Then, the air branches to the after air led to the after air port 39 via the air duct 37c.
 典型的なボイラプラント100は、図1に示されたようなものであり、以下においてはボイラプラント100のモデルを構成することについて説明する。 A typical boiler plant 100 is as shown in FIG. 1, and in the following, the construction of a model of the boiler plant 100 will be described.
 ここでは、先行プラントの実績、経験を活用して、対象プラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成手法について説明する。図2には、モデル作成手法についての処理フローが例示されている。 Here, a model creation method for creating a model that shows the relationship between the input parameters of the target plant and the process value using the results and experience of the preceding plant will be described. FIG. 2 illustrates a processing flow for the model creation method.
 このモデル作成手法は、先行プラントおよび対象プラントの運転データと、先行プラントでの既存モデルを読み込む読込ステップS1と、既存モデルの入力パラメータにプラント仕様に関係する物理パラメータを追加して、新規モデルを作成するモデル作成ステップS2と、作成された新規モデルを、運転データを用いて精度検証する検証ステップS3と、精度検証された新規モデルを出力する出力ステップS4とから構成されている。 In this model creation method, the operation data of the preceding plant and the target plant, the reading step S1 for reading the existing model in the preceding plant, and adding the physical parameters related to the plant specifications to the input parameters of the existing model, It comprises a model creation step S2 to be created, a verification step S3 for verifying the accuracy of the created new model using operation data, and an output step S4 for outputting the new model whose accuracy has been verified.
 係る処理の流れとすることにより、プラント仕様の差異を考慮できる動作モデルを作成することができる。 By using this process flow, an operation model that can take into account differences in plant specifications can be created.
 図2のモデル作成手法についてさらに詳細に説明する。まず読込ステップS1は、以下の考え方により処理される。 The model creation method in Fig. 2 will be described in more detail. First, the reading step S1 is processed according to the following concept.
 読込ステップS1ではまず、先行プラントと対象プラントの全運転データと、先行プラントでの既存モデルを読み込む。 In reading step S1, first, all operation data of the preceding plant and the target plant and the existing model in the preceding plant are read.
 ここで、プラントとは、発電プラントのうちボイラプラントが例示されており、以降はボイラプラントを前提に説明するが、これに限定されるものではなく、広く工業製品、材料を生成するプラントにも適用可能であることは言うまでもない。例えば、燃料を燃焼する燃焼プラントとして、発電プラント以外に、蒸気供給プラント、製鉄プラントが例示される。また、燃焼プラント以外では、化学、製紙プラントが例示される。 Here, a boiler plant is illustrated as an example of a power plant, and the following description is based on the assumption of a boiler plant. However, the plant is not limited to this, and is widely applied to plants that produce industrial products and materials. Needless to say, it is applicable. For example, as a combustion plant for burning fuel, a steam supply plant and an iron manufacturing plant are exemplified in addition to a power generation plant. Other than the combustion plant, chemical and papermaking plants are exemplified.
 先行プラントは、モデルを作成した実績のある既存プラントのことであり、既存モデルは先行プラントで作成されたモデルのことである。 The preceding plant is an existing plant with a track record of creating a model, and the existing model is a model created at the preceding plant.
 また、モデルとは、プラントの入力パラメータ(インプット)とプロセス値(アウトプット)との関係を示すものである。入力パラメータをモデルに入力して、プロセス値を予測(シミュレーション)するために用いられる。原則としてモデルはプロセス値ごとに作成されるが、これに限定されず1つのモデルで複数のプロセス値を出力するようにしてもよい。 Also, the model indicates the relationship between plant input parameters (inputs) and process values (outputs). Input parameters are input to the model and used to predict (simulate) process values. In principle, a model is created for each process value, but the present invention is not limited to this, and a plurality of process values may be output by one model.
 次にモデル作成ステップS2においては、以下に詳細を示す各ステップが順次実行される。 Next, in the model creation step S2, each step shown in detail below is sequentially executed.
 ステップS21では、まずモデル作成の回数N(初期値は0)に1を追加する。 In step S21, 1 is first added to the number N of model creations (initial value is 0).
 次にステップS22では、モデル作成条件、追加パラメータ候補を読み込む。回数Nが2以上の場合は、これらの変更を行う。ここで、モデル作成条件とは、モデル作成の対象(プロセス値)、手法(関数式)や許容誤差等のことである。また、追加パラメータ候補とは、後述する入力パラメータの追加候補のことである。 Next, in step S22, model creation conditions and additional parameter candidates are read. When the number of times N is 2 or more, these changes are made. Here, the model creation conditions are a model creation target (process value), a method (function formula), an allowable error, and the like. Further, the additional parameter candidate is an input parameter addition candidate to be described later.
 次にステップS23では、先行プラントと対象プラントのプラント仕様、燃料性状の差異を確認する。 Next, in step S23, the difference in plant specifications and fuel properties between the preceding plant and the target plant is confirmed.
 ステップS23での確認の結果、プラント仕様が異なる場合は、ステップS24に移り、既存モデルの入力パラメータにプラント仕様に関係する物理パラメータを追加する。ここで、物理パラメータとは、プラントの構造、性能および/または設計条件に係るパラメータである。物理パラメータを追加することにより、プラント仕様を表す適切なパラメータを選定できる。 If the plant specifications are different as a result of the confirmation in step S23, the process proceeds to step S24, and physical parameters related to the plant specifications are added to the input parameters of the existing model. Here, the physical parameter is a parameter related to the structure, performance and / or design conditions of the plant. By adding physical parameters, appropriate parameters representing plant specifications can be selected.
 ステップS23での確認の結果、燃料性状が異なる場合は、ステップS25に移り、既存モデルの入力パラメータに燃料性状に関係する燃料パラメータを追加する。ここで、燃料パラメータとは、燃料の調整、燃焼、環境負荷、水分のいずれかに係るパラメータである。 As a result of the confirmation in step S23, if the fuel properties are different, the process proceeds to step S25, and the fuel parameters related to the fuel properties are added to the input parameters of the existing model. Here, the fuel parameter is a parameter related to any of fuel adjustment, combustion, environmental load, and moisture.
 ステップS23での確認の結果、プラント仕様、燃料性状のいずれも差異がない場合は、ステップS26に移り、入力パラメータの追加は行わない。 If, as a result of the confirmation in step S23, there is no difference in either the plant specifications or the fuel properties, the process proceeds to step S26, and no input parameters are added.
 なお、ステップS23においてプラント仕様、燃料性状が異なる場合とは、既存モデルの入力パラメータにそれぞれ物理パラメータ、燃料パラメータの追加を要する程度に異なることを指す。例えば、プラント仕様のうちボイラ寸法が異なる場合であって、既存モデルの入力パラメータにボイラ寸法に係る物理パラメータが既に含まれている場合は、新たな入力パラメータの追加は不要となる。このような場合には、ステップS23ではプラント仕様は差異がないと判断される。 In addition, the case where the plant specifications and the fuel properties are different in step S23 indicates that the input parameters of the existing model are different to the extent that it is necessary to add physical parameters and fuel parameters, respectively. For example, when the boiler dimensions are different among the plant specifications and the physical parameters related to the boiler dimensions are already included in the input parameters of the existing model, it is not necessary to add new input parameters. In such a case, it is determined in step S23 that there is no difference in plant specifications.
 検証ステップS3においては、以下に詳細を示す各ステップが順次実行される。 In the verification step S3, the steps shown in detail below are sequentially executed.
 ステップS31では、全運転データを用いて、作成された新規モデルの精度検証を行う。次いでステップS32において、新規モデルの妥当性を判断する。例えば、全運転データにおけるプロセス値の実測値(実プロセス値)とモデルを用いて算出したプロセス値のシミュレーション値(仮想プロセス値)を対比し、誤差を確認する。因みに、誤差が許容誤差以内であればモデルは妥当と判断する。 In step S31, the accuracy of the created new model is verified using all operation data. Next, in step S32, the validity of the new model is determined. For example, an actual value (actual process value) of a process value in all operation data is compared with a simulation value (virtual process value) of a process value calculated using a model, and an error is confirmed. Incidentally, if the error is within the allowable error, the model is judged to be appropriate.
 ステップS32での判断により、誤差が許容誤差を超える場合は、ステップS33において、回数Nが許容回数Nth以下であるかを確認する。回数Nが許容回数Nth以下であれば、再度モデル作成ステップS2に戻り、モデル作成条件、追加パラメータ候補を変更して、新規モデルを修正する。 If it is determined in step S32 that the error exceeds the allowable error, it is confirmed in step S33 whether the number N is equal to or less than the allowable number Nth. If the number N is less than or equal to the allowable number Nth, the process returns to the model creation step S2 again, and the model creation conditions and additional parameter candidates are changed to correct the new model.
 検証ステップS3においては、新規モデルの代表的な入力パラメータとプロセス値との関係について、予め定められた基準に基づき検証することにより、入力と出力の関係(傾向)について、理論またはオペレータの経験の観点から妥当性を検証することで、モデルの精度をより高めることができる。 In the verification step S3, the relationship between the input and output (trend) of the theory or the operator's experience is verified by verifying the relationship between the typical input parameter of the new model and the process value based on a predetermined criterion. By verifying the validity from the viewpoint, the accuracy of the model can be further increased.
 出力ステップS4においては、以下に詳細を示す各ステップが順次実行される。 In the output step S4, the steps shown in detail below are sequentially executed.
 ステップS32での処理において、モデルは妥当と判断された場合、ステップS41において新規モデルを後述する出力やデータベースへ出力する。 In the process in step S32, when it is determined that the model is valid, in step S41, the new model is output to an output or a database to be described later.
 ステップS33での処理において、前述の回数Nが許容回数Nthを超える場合は、モデル作成エラーを入出力部309へ出力する。このようにして、新規モデルもしくはモデル作成エラーのいずれかを出力した後モデル作成フローは終了する。 In the process in step S33, if the above-mentioned number N exceeds the allowable number Nth, a model creation error is output to the input / output unit 309. In this way, the model creation flow ends after outputting either a new model or a model creation error.
 出力ステップS4において、新規モデルの代表的な入力パラメータとプロセス値の関係をさらに出力することにより、入力と出力の関係(傾向)について、オペレータが再度確認できる。 In the output step S4, by further outputting the relationship between the representative input parameters of the new model and the process value, the operator can confirm again the relationship (trend) between the input and the output.
 図2においては、プラントのモデルの作成手法について説明したが、このようにして作成されたモデルは例えばプラントの運転制御装置に組み込まれて利用される。図3、図4を用いてプラントの運転制御装置を構成する考え方について説明する。 In FIG. 2, the plant model creation method has been described, but the model created in this way is used by being incorporated in, for example, a plant operation control device. The concept of configuring the plant operation control device will be described with reference to FIGS.
 まず図3は、図2で作成したモデルを用いたシミュレーションの結果を、運転制御装置に対する運転指示として与える運転指示流れを示したフローチャートである。 First, FIG. 3 is a flowchart showing an operation instruction flow for giving a result of simulation using the model created in FIG. 2 as an operation instruction to the operation control device.
 本フローチャートでは、まずステップS5において対象プラントの新規運転データと、新規モデルを読み込む。 In this flowchart, first, in step S5, new operation data and a new model of the target plant are read.
 次にシミュレーションステップS6において、シミュレーションを実施する。まずステップS61において、シミュレーション条件を設定する。シミュレーション条件とは、入力パラメータのセットのことである。 Next, simulation is performed in simulation step S6. First, in step S61, simulation conditions are set. A simulation condition is a set of input parameters.
 ステップS62において、入力パラメータのセットを図2の処理で作成した新規モデルに入力してシミュレーションを実施する。シミュレーションの結果、仮想プロセス値を得ることができる。 In step S62, the input parameter set is input to the new model created in the process of FIG. As a result of the simulation, a virtual process value can be obtained.
 運転指示ステップS7では、運転制御装置に対する運転指示値を作成する。最初にステップS71において、シミュレーション結果を評価する。次いでステップS72において、シミュレーションにより得られた仮想プロセス値について最適(所定の条件を満たす)か否かを判断する。最適でない場合は、ステップS61に戻りシミュレーション条件を再設定して、あらたな仮想プロセス値を算出することを指示する。 In operation instruction step S7, an operation instruction value for the operation control device is created. First, in step S71, the simulation result is evaluated. Next, in step S72, it is determined whether or not the virtual process value obtained by the simulation is optimal (predetermined conditions are satisfied). If it is not optimal, the process returns to step S61 to reset the simulation conditions and instruct to calculate a new virtual process value.
 ここで、評価とは、それぞれの仮想プロセス値を所定の換算係数でスコア(無次元)に換算することとしてもよい。また最適とは、算定されたスコアの合計値が所定値以上となる場合としてもよい。または、複数のケース(シミュレーション条件)でシミュレーションを行い、それらの結果のうちスコアの最も高い場合、あるいは上位数ケースのうちオペレータが最適と判断する場合としてもよい。さらに、スコアがより高いケースを遺伝的アルゴリズムや粒子群最適化の手法を用いて自動で探索して、その結果から最適か否かを判断してもよい。 Here, evaluation may be conversion of each virtual process value into a score (non-dimensional) with a predetermined conversion coefficient. Also, “optimal” may be a case where the total value of the calculated scores is equal to or greater than a predetermined value. Alternatively, a simulation may be performed in a plurality of cases (simulation conditions), and the result may be the highest score or the operator may determine that the highest number of cases is optimal. Furthermore, a case with a higher score may be automatically searched using a genetic algorithm or particle swarm optimization technique, and it may be determined whether or not the result is optimal.
 ステップS72において、最適と判断されたシミュレーションの条件および結果をもとに運転指示値を算出し、結果を後述する出力画面等へ出力する。 In step S72, a driving instruction value is calculated based on the simulation conditions and results determined to be optimal, and the results are output to an output screen or the like to be described later.
 図4は、モデルを組み込んだボイラプラントの運転制御装置の全体構成例を示す図である。図4には、これを大別すると制御の対象であるボイラプラント100と、ボイラプラント100の制御を行う運転制御装置200が記載されている。 FIG. 4 is a diagram showing an example of the overall configuration of an operation control apparatus for a boiler plant incorporating a model. FIG. 4 shows a boiler plant 100 that is a control target when roughly classified, and an operation control device 200 that controls the boiler plant 100.
 このうちボイラプラント100は、詳細には図1の通りのシステム構成であるが、その中で代表的にセンサSRと操作端OPを記載している。操作端OPとは、弁やダンパのことを指す。センサSRは、ボイラプラント100各部のプロセス値などの運転データを検知している。 Among these, the boiler plant 100 has a system configuration as shown in FIG. 1 in detail, but the sensor SR and the operation end OP are typically described therein. The operation end OP refers to a valve or a damper. The sensor SR detects operation data such as process values of each part of the boiler plant 100.
 これに対し、運転制御装置200は、ボイラプラント100内に設置されたセンサSRからその運転データを入力として入手して、最終的にボイラプラント100内の各部操作端OPにおける操作量を出力として与えるものである。 On the other hand, the operation control apparatus 200 obtains the operation data from the sensor SR installed in the boiler plant 100 as an input, and finally gives an operation amount at each operation end OP in the boiler plant 100 as an output. Is.
 運転制御装置200は、この入力から出力までを一貫して処理する自動制御の考え方のものであるが、運転制御部201を除外して、運転支援装置300を構成することができる。運転支援装置300である場合には、運転支援装置300が提示するパラメータをオペレータMまたは予め定められたルールベースで判断したうえで適切と思われる値のパラメータを、運転制御部201に送信することでボイラプラント100の運転制御を行うものである。なお運転制御部201は、設定したパラメータに対する適宜の帰還信号を得て、所謂帰還制御による自動制御を実行する。 The operation control device 200 is based on the concept of automatic control that consistently processes from input to output, but the operation support device 300 can be configured by omitting the operation control unit 201. In the case of the driving support device 300, the parameter that the driving support device 300 presents is determined based on the operator M or a predetermined rule base and then a parameter value that is considered appropriate is transmitted to the driving control unit 201. Thus, operation control of the boiler plant 100 is performed. The operation control unit 201 obtains an appropriate feedback signal for the set parameter, and executes automatic control by so-called feedback control.
 本発明の以下の説明においては、運転支援装置300を構成することについて述べるが、この考え方を運転制御装置200に展開することは容易に行えることであるので、詳細な説明は割愛する。 In the following description of the present invention, the configuration of the driving support device 300 will be described. However, since this concept can be easily developed in the driving control device 200, a detailed description thereof will be omitted.
 図4に示す本発明に係る運転支援装置300においては多くのデータを取り扱っており、そのため各種のデータベースDBを保有している。運転支援装置300で採用するデータベースDBとその記憶内容は以下のとおりである。 The driving support apparatus 300 according to the present invention shown in FIG. 4 handles a lot of data, and therefore has various databases DB. The database DB adopted by the driving support device 300 and the stored contents are as follows.
 過去運転データベースDB1は、先行プラントにおける運転データを記憶する。過去運転データベースDB1のデータ構成例を図8に示し、後述する。 The past operation database DB1 stores operation data in the preceding plant. A data configuration example of the past operation database DB1 is shown in FIG. 8 and will be described later.
 新規運転データベースDB2は、対象プラントにおいて取得された新規運転データを記憶する。新規運転データベースDB2のデータ構成例は、基本的に過去運転データベースDB1のデータ構成例と同じである。 The new operation database DB2 stores new operation data acquired in the target plant. The data configuration example of the new operation database DB2 is basically the same as the data configuration example of the past operation database DB1.
 既存モデルデータベースDB3は、先行プラントで作成された既存モデルを記憶する。既存モデルデータベースDB3のデータ構成例を図9に示し、後述する。 The existing model database DB3 stores the existing model created in the preceding plant. A data configuration example of the existing model database DB3 is shown in FIG. 9 and will be described later.
 プラント仕様データベースDB4は、先行プラントと対象プラントのプラント仕様を記憶する。プラント仕様データベースDB4のデータ構成例を図10に示し、後述する。 The plant specification database DB4 stores plant specifications of the preceding plant and the target plant. A data configuration example of the plant specification database DB4 is shown in FIG. 10 and will be described later.
 燃料性状データベースDB5は、先行プラントと対象プラントで使用された燃料の性状を記憶する。燃料性状データベースDB5のデータ構成例を図11に示し、後述する。 The fuel property database DB5 stores the properties of the fuel used in the preceding plant and the target plant. A data configuration example of the fuel property database DB5 is shown in FIG. 11 and will be described later.
 新規モデルデータベースDB6は、作成された新規モデルを記憶する。 The new model database DB6 stores the created new model.
 図4に示す運転支援装置300は、上記データベースに記憶されたデータを用いて以下のように働く。 The driving support apparatus 300 shown in FIG. 4 works as follows using the data stored in the database.
 データ取得部301は、ボイラプラント(対象プラント)100から新規運転データを取得し、新規運転データベースDB2に格納する。 The data acquisition unit 301 acquires new operation data from the boiler plant (target plant) 100 and stores it in the new operation database DB2.
 データ抽出変換部302は、モデル作成や運転制御用に必要なデータ(新規運転データ、過去運転データ)を新規運転データベースDB2、過去運転データベースDB1から抽出し、必要に応じて補完、フォーマット変換する。ここでの変換の一例は、センサSRにより直接計測できない運転データを、他のデータなどから推定し、同定する処理などである。係る推定処理は計算機を用いてソフト的に実行されることから推定した値をソフトセンサ値と呼ぶ。 The data extraction / conversion unit 302 extracts data necessary for model creation and operation control (new operation data, past operation data) from the new operation database DB2 and the past operation database DB1, and complements and converts the format as necessary. An example of the conversion here is a process of estimating and identifying operation data that cannot be directly measured by the sensor SR from other data. Since the estimation process is executed in software using a computer, the estimated value is called a soft sensor value.
 モデル作成装置303については、図5において詳述するが、その概要はデータ抽出変換部302からの新規運転データ、過去運転データ、既存モデルデータベースDB3からの既存モデルデータ、プラント仕様データベースDB4からのプラント仕様データ、燃料性状データベースDB5からの燃料の性状データを用いてボイラプラント100の入出力の関係を示すモデル(新規モデル)を作成するものである。作成された新規モデルは、新規モデルデータベースDB6に格納される。 The model creation device 303 will be described in detail with reference to FIG. 5. The outline of the model creation device 303 is new operation data from the data extraction / conversion unit 302, past operation data, existing model data from the existing model database DB3, and plant from the plant specification database DB4. A model (new model) indicating the input / output relationship of the boiler plant 100 is created using the specification data and the fuel property data from the fuel property database DB5. The created new model is stored in the new model database DB6.
 シミュレーション部306は、データ抽出変換部302から出力された新規運転データと新規モデルデータベースDB6から出力された新規モデルを用いて仮想プロセス値を算出し、算出結果を最適化部307へ出力する。 The simulation unit 306 calculates a virtual process value using the new operation data output from the data extraction conversion unit 302 and the new model output from the new model database DB6, and outputs the calculation result to the optimization unit 307.
 最適化部307は、仮想プロセス値について、最適か否かを判断し、最適と判断した場合は仮想プロセス値を運転指示部308へ出力し、最適でない判断した場合はシミュレーション条件を再設定して再度シミュレーションを行うようシミュレーション部306へ出力する。運転指示部308は、最適と判断されたシミュレーションの条件および結果をもとに、運転指示値を算出し、運転制御部201へ出力する。また、運転指示部308は、最適化部307から出力されたシミュレーションの結果及び算出した運転指示値を入出力部309へ出力する。ここでの詳細は図3の運転指示ステップS7にて説明したものである。 The optimization unit 307 determines whether or not the virtual process value is optimal. If it is determined to be optimal, the optimization unit 307 outputs the virtual process value to the operation instruction unit 308. If it is determined that the virtual process value is not optimal, the simulation condition is reset. It outputs to the simulation part 306 so that it may simulate again. The driving instruction unit 308 calculates a driving instruction value based on the simulation conditions and results determined to be optimal, and outputs them to the driving control unit 201. Further, the driving instruction unit 308 outputs the simulation result output from the optimization unit 307 and the calculated driving instruction value to the input / output unit 309. The details here are the same as those described in the operation instruction step S7 of FIG.
 入出力部309は、新規モデルの作成・検証結果、シミュレーションの評価結果、運転指示の提案画面を表示し、それぞれに対してオペレータMの指示を受け付ける。また、過去運転データベースDB1、既存モデルデータベースDB3、プラント仕様データベースDB4、燃料性状データベースDB5に対する追加情報の入力があれば、入力結果をそれぞれに出力する。 The input / output unit 309 displays a new model creation / verification result, a simulation evaluation result, and a driving instruction proposal screen, and receives an instruction from the operator M for each. Further, if there is input of additional information for the past operation database DB1, the existing model database DB3, the plant specification database DB4, and the fuel property database DB5, the input result is output to each.
 なお運転支援装置300が与える運転指示値を運転制御部201に与えることで、運転制御装置を構成することができる。この場合に、運転制御部201は、運転指示値をもとに、ボイラの各操作端OPの運転(弁の開度等)を制御する。なお運転制御は、運転指示値をもとに自動で行っても、入出力部309でのオペレータMの承諾を経てから行っても、いずれでもよい。また、既存のボイラプラント制御装置(図示せず)からの運転指示値に対して、運転支援装置300からの運転指示値をバイアス値として加算して、最終的な運転指示値を指示してもよい。 Note that the operation control device can be configured by providing the operation control value given by the operation support device 300 to the operation control unit 201. In this case, the operation control unit 201 controls the operation (valve opening degree, etc.) of each operation end OP of the boiler based on the operation instruction value. The operation control may be performed automatically based on the operation instruction value or may be performed after the operator M's consent at the input / output unit 309. Further, even if the operation instruction value from the operation support apparatus 300 is added as a bias value to the operation instruction value from the existing boiler plant control apparatus (not shown), the final operation instruction value is instructed. Good.
 以上説明した運転支援装置300においては、モデル作成装置303で作成したモデルにさらに対象プラントの新規運転データを用いてプロセス値を算出するシミュレーションステップと、プロセス値が所定条件を満たすように、対象プラントの運転指示値を算出する運転指示ステップをさらに備えることにより、汎用的なモデルを用いてプラントの運転
支援ができるようにしたものということができる。
In the operation support apparatus 300 described above, a simulation step for calculating a process value using the new operation data of the target plant in addition to the model generated by the model generation apparatus 303, and the target plant so that the process value satisfies a predetermined condition. It can be said that the operation instruction step for calculating the operation instruction value is further provided so that the operation support of the plant can be performed using a general-purpose model.
 次に図5を用いて、モデル作成装置303の詳細構成例について説明する。モデル作成装置303では、データ抽出変換部302からの新規運転データ、過去運転データ、既存モデルデータベースDB3からの既存モデルデータ、プラント仕様データベースDB4からのプラント仕様データ、燃料性状データベースDB5からの燃料の性状データ、追加パラメータ候補データベースDB7からの追加パラメータ候補データ、センシティビティデータベースDB8からのセンシティビティデータを用いてボイラプラントの入出力の関係を示すモデル(新規モデル)を作成するものである。作成された新規モデルは、新規モデルデータベースDB6に格納される。追加パラメータ候補データ、センシティビティデータは、既存モデルデータ、プラント仕様データ、燃料の性状データのように、入出力部309を介して設定、入力されたデータである。 Next, a detailed configuration example of the model creation device 303 will be described with reference to FIG. In the model creation device 303, new operation data from the data extraction conversion unit 302, past operation data, existing model data from the existing model database DB3, plant specification data from the plant specification database DB4, and fuel properties from the fuel property database DB5. A model (new model) indicating the input / output relationship of the boiler plant is created using the data, additional parameter candidate data from the additional parameter candidate database DB7, and sensitivity data from the sensitivity database DB8. The created new model is stored in the new model database DB6. The additional parameter candidate data and sensitivity data are data set and input via the input / output unit 309, such as existing model data, plant specification data, and fuel property data.
 なおモデル作成装置303には新たに追加パラメータ候補データベースDB7とセンシティビティデータベースDB8が追加されているが、このうち追加パラメータ候補データベースDB7は、入力パラメータの追加候補を記憶するものであり、センシティビティデータベースDB8は、代表的な入力パラメータとプロセス値との関係(変化傾向)を検証するための基準を記憶するものである。追加パラメータ候補データベースDB7の構成例を図12に例示し、センシティビティデータベースDB8の構成例を図13に例示して、その詳細を後述する。 Note that an additional parameter candidate database DB7 and a sensitivity database DB8 are newly added to the model creation device 303. Of these, the additional parameter candidate database DB7 stores additional candidates for input parameters, and is a sensitivity database. The DB 8 stores criteria for verifying the relationship (change tendency) between typical input parameters and process values. An example of the configuration of the additional parameter candidate database DB7 is illustrated in FIG. 12, and an example of the configuration of the sensitivity database DB8 is illustrated in FIG.
 モデル作成装置303は、先行プラントの実績を活用して、対象プラントの入力パラメータとプロセス値との関係を示すモデルを作成するものであって、先行プラントおよび対象プラントの全運転データと、先行プラントでの既存モデルを読み込むデータ読込部3031と、既存モデルの入力パラメータにプラント仕様に関係する物理パラメータを追加して、新規モデルを作成するモデル修正部3032と、作成された新規モデルを、全運転データを用いて精度検証するモデル検証部3033と、精度検証された新規モデルを出力するモデル出力部3034から構成されている。 The model creation device 303 creates a model indicating the relationship between the input parameters of the target plant and the process value by utilizing the results of the preceding plant, and includes all the operation data of the preceding plant and the target plant, and the preceding plant. The data reading unit 3031 for reading the existing model in the model, the model correcting unit 3032 for creating a new model by adding physical parameters related to the plant specifications to the input parameters of the existing model, and the created new model for the entire operation The model verification unit 3033 performs accuracy verification using data, and the model output unit 3034 outputs a new model whose accuracy has been verified.
 図5のモデル作成装置303を構成する各部は、詳細には以下のように機能する。 Each part of the model creation device 303 in FIG. 5 functions in detail as follows.
 まずデータ読み込み部3031は、データ抽出変換部302で抽出された全運転データ
(過去運転データ、および新規運転データ)、および既存モデルデータベースDB3に記
憶された既存モデルを読み込む。
First, the data reading unit 3031 reads all the operation data (past operation data and new operation data) extracted by the data extraction / conversion unit 302 and the existing model stored in the existing model database DB3.
 モデル修正部3032は、内部に記憶するモデル作成条件に基づき、既存モデルデータベースDB3から読み込んだ既存モデルを修正する。その際、プラント仕様データベースDB4から読み込んだプラント仕様、燃料性状データベースDB5から読み込んだ燃料性状について、先行プラントと対象プラントの差異を確認する。さらに、追加パラメータ候補データベースDB7から、入力パラメータの追加候補を読み込む。この追加候補の中から、プラント仕様が異なる場合は物理パラメータを、燃料性状パラメータが異なる場合は燃料パラメータをそれぞれ選定し、入力パラメータに追加する。この詳細は、図2のモデル作成ステップS3に示されている。 The model correction unit 3032 corrects the existing model read from the existing model database DB3 based on the model creation conditions stored inside. At that time, the difference between the preceding plant and the target plant is confirmed for the plant specifications read from the plant specification database DB4 and the fuel properties read from the fuel property database DB5. Further, input parameter addition candidates are read from the additional parameter candidate database DB7. From these addition candidates, a physical parameter is selected if the plant specification is different, and a fuel parameter is selected if the fuel property parameter is different, and added to the input parameter. This detail is shown in the model creation step S3 of FIG.
 モデル検証部3033は、モデル修正部3032から読み込んだ新規モデルの精度検証を行う。精度検証は、以下の2項目を実施する。 The model verification unit 3033 verifies the accuracy of the new model read from the model correction unit 3032. For accuracy verification, the following two items are implemented.
 精度検証の項目1は、全運転データを用いて、作成された新規モデルの精度検証を行うことである。ここでは、全運転データにおけるプロセス値の実測値(実プロセス値)とモデルを用いて算出したプロセス値のシミュレーション値(仮想プロセス値)とを対比し、予測誤差を演算する。その上で、演算された予測誤差と予めモデル検証部3033に記憶された許容誤差とを対比して、精度検証を行う。 Item 1 of accuracy verification is to perform accuracy verification of the created new model using all operation data. Here, the actual measurement value (actual process value) of the process value in all the operation data is compared with the simulation value (virtual process value) of the process value calculated using the model, and the prediction error is calculated. Then, accuracy is verified by comparing the calculated prediction error with the allowable error stored in the model verification unit 3033 in advance.
 精度検証の項目2は、新規モデルの代表的な入力パラメータとプロセス値との関係について、センシティビティデータベースDB8から読み込んだ基準に基づき検証する。 Item 2 of accuracy verification verifies the relationship between typical input parameters and process values of the new model based on the criteria read from the sensitivity database DB8.
 モデル検証部3033における上記精度検証により、入力と出力の関係(傾向)について、理論またはオペレータMの経験の観点から妥当性を検証することで、モデルの精度をより高めることができる。 By the above-described accuracy verification in the model verification unit 3033, the accuracy of the model can be further improved by verifying the validity of the relationship (trend) between input and output from the viewpoint of the theory or the experience of the operator M.
 モデル出力部3034では、検証された新規モデルをモデル検証部3033から読み込み、新規モデルデータベースDB6と入出力部309とへ出力する。 The model output unit 3034 reads the verified new model from the model verification unit 3033 and outputs it to the new model database DB 6 and the input / output unit 309.
 次に図6を用いてモデル作成用の全運転データの一例について説明する。ここで全運転データとは、データ抽出変換部302から得られる過去運転データ、および新規運転データのことであり、図6の例では過去運転データは、先行プラントであるプラントA、Bにおける運転データであり、新規運転データは、対象プラントであるプラントCにおける運転データである。なお運転データは試運転データ及び実運転データを含むものである。全運転データとして、試運転データと実稼働中の実運転データの両方を含むことにより、先行プラントのデータを全て活用してモデルの精度を高めることができる。 Next, an example of all operation data for creating a model will be described with reference to FIG. Here, the total operation data is past operation data and new operation data obtained from the data extraction / conversion unit 302. In the example of FIG. 6, the past operation data is the operation data in the plants A and B that are the preceding plants. The new operation data is operation data in the plant C that is the target plant. The operation data includes test operation data and actual operation data. By including both the test operation data and the actual operation data during actual operation as the total operation data, it is possible to improve the accuracy of the model by using all the data of the preceding plant.
 このように図6の例では、3つのプラント(A、B、C)があり、プラントA、プラントBは先行プラント、プラントCは対象プラントである。新設の対象プラントであるプラントCのモデル作成のために、先行プラントであるプラントA、Bにおける運転データおよびこれらの先行プラントで作成されたモデルを参照して、プラントCのモデルを新規に作成しようとしている。 Thus, in the example of FIG. 6, there are three plants (A, B, C), the plant A and the plant B are the preceding plants, and the plant C is the target plant. To create a model for plant C, which is a new target plant, let's create a new model for plant C by referring to the operation data in plants A and B, which are the preceding plants, and the models created in these preceding plants. It is said.
 以下各プラントにおける運転とモデル作成の関係について順次説明する。まずプラントAのモデルは、プラントAの実稼働前に必要となるため、プラントAの試運転データ(試験的にパラメータ、燃料を変化させて取得した運転データ)を用いて作成する。ここでは、プラントAについてのモデル作成処理は完了しており、運転が開始されて実運転データが取得されているものとする。 The relationship between operation and model creation at each plant will be explained in turn below. First, since the model of the plant A is necessary before the plant A is actually operated, it is created using the trial operation data of the plant A (operation data acquired by changing parameters and fuel experimentally). Here, it is assumed that the model creation process for the plant A has been completed, the operation is started, and the actual operation data is acquired.
 プラントBのモデルは、プラントAの試運転データと実運転データ(運転制御期間内に取得されたデータ)の両方と、プラントBの試運転データを用いて作成したものである。ここでは、プラントBについてのモデル作成処理は完了しており、運転が開始されて実運転データが取得されているものとする。なおプラントBについてのモデル作成処理時には、プラントBの物理、燃料パラメータを追加してプラントBに適したモデルが作成されている。 The plant B model is created using both the plant A test operation data and the actual operation data (data acquired during the operation control period) and the plant B test operation data. Here, it is assumed that the model creation process for the plant B has been completed, the operation is started, and the actual operation data is acquired. During the model creation process for plant B, a model suitable for plant B is created by adding the physical and fuel parameters of plant B.
 新設のプラントCのモデルは、今から作成する。この作成においては、プラントA、Bの試運転データと実運転データ、およびプラントCの試運転データを用いて、プラントCの物理、燃料パラメータを追加してプラントCに適したモデルが作成されることになる。 The new plant C model will be created now. In this creation, a model suitable for the plant C is created by adding the physical and fuel parameters of the plant C using the trial operation data and actual operation data of the plants A and B and the trial operation data of the plant C. Become.
 このように新設の対象プラントのモデル作成に当たり、先行プラントのデータを全て活用してモデルの精度を高めることができる。また、段階的にモデルを作成することで、追加する入力パラメータを精査して、適切な入力パラメータに厳選できる。ここで、一度追加された入力パラメータは削除されず、次のプラントで引き継がれる。既存プラントでの実績を最大限活用し、かつ連続性を持たせるためである。 In this way, when creating a model for a new target plant, the accuracy of the model can be improved by using all the data of the preceding plant. In addition, by creating a model in stages, it is possible to examine input parameters to be added and carefully select appropriate input parameters. Here, once added input parameters are not deleted, but are succeeded by the next plant. This is to maximize the results of existing plants and provide continuity.
 図7はモデルのインプットとアウトプットの関係を表す模式図である。ここで、モデルの入力パラメータ(インプット)には、操作端用のパラメータに加えて、物理パラメータおよび/または燃料パラメータが含まれる。操作端用のパラメータとは、操作端OPへの指示値(弁の開度等)を示すパラメータのことである。 Fig. 7 is a schematic diagram showing the relationship between model inputs and outputs. Here, the input parameters (inputs) of the model include physical parameters and / or fuel parameters in addition to parameters for the operation end. The parameter for the operation end is a parameter indicating an instruction value (valve opening degree or the like) to the operation end OP.
 モデルは、プロセス値ごとに作成される。ここでプロセス値とは、図4の運転制御部201での制御の結果としてボイラプラント100で得られる出力であり、その多くはボイラプラント100の監視、制御上の監視項目(あるいは監視制御項目)を示すものである。これらは例えば、環境監視上、大気に排出される排ガスNOx値であり、蒸気タービンなどに与えられる蒸気についての温度、圧力であり、各種機器や補機において制御する制御対象量であり、センサSRにより検知される。従って、モデルはボイラプラント100の出力である複数のプロセス値の夫々について、そのプロセス値に影響を与える入力パラメータとの間に成立する相関などの関係を定義したものである。 A model is created for each process value. Here, the process value is an output obtained in the boiler plant 100 as a result of the control in the operation control unit 201 in FIG. 4, and most of them are monitoring items (or monitoring control items) for monitoring and controlling the boiler plant 100. Is shown. These are, for example, the NOx value of exhaust gas discharged into the atmosphere for environmental monitoring, the temperature and pressure of steam given to a steam turbine, etc., and the control target amounts to be controlled by various devices and auxiliary equipment, and the sensor SR Is detected. Therefore, the model defines a relationship such as correlation established between each of a plurality of process values that are the output of the boiler plant 100 and an input parameter that affects the process value.
 以下に、主要なデータベースDBについて、その構成例を示し説明する。 Below, an example of the configuration of the main database DB will be described and explained.
 図8は過去運転データベースDB1におけるデータフォーマットの例である。この例では横軸を、プラント名、使用燃料、運転ケース数などで区分けする。縦軸は、入力パラメータとプロセス値の其々に係るデータで区分けする。なお新規運転データベースDB2も基本的には、過去運転データベースDB1におけるデータフォーマットと同じ構成とされている。 FIG. 8 shows an example of a data format in the past operation database DB1. In this example, the horizontal axis is divided by plant name, fuel used, number of operation cases, and the like. The vertical axis is divided by data relating to each of the input parameter and the process value. The new operation database DB2 basically has the same configuration as the data format in the past operation database DB1.
 図9は既存モデルデータベースDB3におけるデータフォーマットの例である。横軸はプラントごとに作成日、関数、入力パラメータ、モデル詳細で区分けする。関数には、モデル化する手法を記載する。モデル化する手法としては、ステップワイズ法、ランダムフォレスト、k近傍法(KNN)、ニューラルネットワーク法、深層学習、強化学習などが例示されるがこれに限られない。モデル詳細には、以下に示すモデル式Fの各項目について記載する。もしくは各項目が記載された別のDBの引用先を記載してもよい。 FIG. 9 shows an example of the data format in the existing model database DB3. The horizontal axis is divided by plant by creation date, function, input parameters, and model details. The function describes the method of modeling. Examples of the modeling method include, but are not limited to, stepwise method, random forest, k-nearest neighbor method (KNN), neural network method, deep learning, reinforcement learning, and the like. In the model details, each item of the model formula F shown below is described. Or you may describe the quotation destination of another DB in which each item was described.
 モデル式Fは、例えば(1)式のようなものでありここで、fはモデル化手法(関数)、xは入力パラメータ、ωは重み付け、λは切片、nは入力パラメータの数を示す。
[数1]
F=f(x、ω、λ、n)   (1)
 縦軸はモデルの作成単位で区分けする。プロセス値ごとにモデルを作成する場合は、モデル化の対象とするプロセス値を列挙する。
The model formula F is, for example, the formula (1), where f is a modeling method (function), x is an input parameter, ω is weighted, λ is an intercept, and n is the number of input parameters.
[Equation 1]
F = f (x, ω, λ, n) (1)
The vertical axis is divided by the model creation unit. When creating a model for each process value, list the process values to be modeled.
 同一プラントでモデルを更新した場合は、更新履歴が分かるように全てのバージョンのモデルを記憶してもよい。例えば、図9では、モデルPR1を更新してモデルPR1´と表記している。 When updating the model in the same plant, all versions of the model may be stored so that the update history can be understood. For example, in FIG. 9, the model PR1 is updated and represented as a model PR1 ′.
 それぞれのモデルの作成日が記憶されていることから、入力パラメータが、どのプラントで、いつの段階で追加されたものか識別可能になっている。入力パラメータの追加履歴を後から追えるようにするためである。 Since the creation date of each model is stored, it is possible to identify at which stage the input parameter was added at which plant. This is because the input parameter addition history can be followed later.
 図10はプラント仕様データベースDB4におけるデータフォーマットの例である。横軸はプラント名で区分けする。先行プラント、対象プラントの全てを網羅するプラント名を列挙する。 FIG. 10 shows an example of a data format in the plant specification database DB4. The horizontal axis is divided by plant name. List plant names that cover all preceding and target plants.
 縦軸は、プラント仕様を表す項目で区分けする。ここでは、構造仕様と性能仕様で区別している。構造仕様とは寸法のことであり、ボイラ寸法が例示される。性能仕様とは、プラントの性能を表す値であり、排ガス温度、蒸気温度等が例示される。構造仕様、性能仕様は、計測結果の代表値だけでなく設計条件の値を記載してもよい。 縦 軸 The vertical axis is divided by items representing plant specifications. Here, a distinction is made between structural specifications and performance specifications. The structural specifications are dimensions, and boiler dimensions are exemplified. The performance specification is a value representing the performance of the plant, and examples thereof include exhaust gas temperature and steam temperature. The structure specification and performance specification may describe not only the representative value of the measurement result but also the value of the design condition.
 図11は燃料性状データベースDB5におけるデータフォーマットの例である。横軸は燃料で区分けする。先行プラント、対象プラントの全てを網羅する燃料を列挙する。 FIG. 11 shows an example of a data format in the fuel property database DB5. The horizontal axis is divided by fuel. List the fuels that cover all the preceding and target plants.
 縦軸は、燃料性状を表す項目で区分けする。燃料性状には、工業分析(燃料比等)と元素分析(炭素量等)が例示される。ここで燃料比とは、固定炭素と揮発分との比率のことである。 縦 軸 The vertical axis is divided by items representing fuel properties. Examples of the fuel properties include industrial analysis (fuel ratio, etc.) and elemental analysis (carbon amount, etc.). Here, the fuel ratio is the ratio of fixed carbon to volatile matter.
 図12は追加パラメータ候補データベースDB7におけるデータフォーマットの例である。横軸はデータ取得法や適用条件で区分けする。データ取得法では、計測値だけでなく、複数の計測値を組合せて計算された計算値(ソフトセンサ値)としてもよい。なおプラント仕様を表す適切なパラメータの計測値がない場合には、計算値で代用可である。 FIG. 12 shows an example of the data format in the additional parameter candidate database DB7. The horizontal axis is divided according to the data acquisition method and applicable conditions. In the data acquisition method, not only measured values but also calculated values (soft sensor values) calculated by combining a plurality of measured values may be used. If there is no measured value of an appropriate parameter that represents the plant specification, a calculated value can be substituted.
 縦軸は、物理パラメータ、燃料パラメータで区分けする。物理パラメータは、構造寸法などボイラ仕様から得られるもの、ガス温度、蒸気温度など計測値あるいは計算値から得られるものがある。なお、後者は、ボイラ仕様から設計値を参照して設定してもよい。また物理パラメータは、複数の計測値を組合せて計算されたソフトセンサ値であってもよい。ソフトセンサ値も物理パラメータとして取り扱うことにより、プラント仕様を表す適切なパラメータの計測値がない場合に計算値で代用できることができる。 The vertical axis is divided by physical parameters and fuel parameters. Some physical parameters are obtained from boiler specifications such as structural dimensions, and others are obtained from measured values or calculated values such as gas temperature and steam temperature. The latter may be set with reference to the design value from the boiler specification. The physical parameter may be a soft sensor value calculated by combining a plurality of measurement values. By treating the soft sensor value as a physical parameter, a calculated value can be substituted when there is no measurement value of an appropriate parameter representing the plant specification.
 燃料パラメータは、燃料の特性を評価する際に用いられる項目であり、石炭の粉砕に関して粉砕機(微粉炭機/ミル)のモータ電流値、油圧、差圧等であり、石炭の燃焼に関して燃料消費量(コールフロー)、伝熱面の吸収熱量、ボイラ出力等であり、環境負荷に関して排ガス中のNOx値、SO2値等であり、水分に関して粉砕機の入口空気温度等である。追加パラメータとして燃料パラメータを追加することにより、燃料性状の差異を考慮した動作モデルを作成できる。また燃料パラメータとして、燃料の調整、燃焼、環境負荷、水分のいずれかに係るパラメータを用いることにより、燃料性状を表す適切なパラメータを選定できる。 The fuel parameter is an item used when evaluating the characteristics of the fuel, and is the motor current value, hydraulic pressure, differential pressure, etc. of the pulverizer (pulverized coal machine / mil) for coal pulverization, and fuel consumption for coal combustion. Quantity (call flow), absorbed heat quantity of the heat transfer surface, boiler output, etc., NOx value in exhaust gas with respect to environmental load, SO2 value, etc., and inlet air temperature of pulverizer, etc. with respect to moisture. By adding a fuel parameter as an additional parameter, it is possible to create an operation model that takes into account differences in fuel properties. Further, by using a parameter relating to any of fuel adjustment, combustion, environmental load, and moisture as the fuel parameter, an appropriate parameter representing the fuel property can be selected.
 なお、粉砕機に関する運転データについて、ボイラプラント100が粉砕機を複数台備えている場合、2台以上の粉砕機の運転データを入力パラメータに用いて、新規モデルを作成するのが好ましい。この場合、仮想プロセス値を算出する際は、1台の粉砕機の運転データを代表して使用し、当該粉砕機が停止した場合は別の粉砕機の運転データへ切り替える。1台の粉砕機がメンテナンス等で停止しても、別の粉砕機の運転データを用いて運転支援を継続できるためである。粉砕機は、稼働率や微粉炭を供給するバーナ位置に応じて選定すればよい。特に、なるべく中段のバーナに微粉炭を供給する粉砕機から選定するのが好ましい。ボイラ内の平均的な挙動を反映できるためである。 In addition, about the operation data regarding a grinder, when the boiler plant 100 is equipped with two or more grinders, it is preferable to create a new model using operation data of two or more grinders as input parameters. In this case, when calculating the virtual process value, the operation data of one pulverizer is used as a representative, and when the pulverizer stops, the operation data is switched to another pulverizer operation data. This is because even if one pulverizer stops due to maintenance or the like, operation support can be continued using operation data of another pulverizer. What is necessary is just to select a grinder according to the burner position which supplies an operation rate and pulverized coal. In particular, it is preferable to select from a pulverizer that supplies pulverized coal to the middle burner as much as possible. This is because the average behavior in the boiler can be reflected.
 図13はセンシティビティデータベースDB8におけるデータフォーマットの例である。横軸は代表的なプロセス値で区分けされる。蒸気温度、メタル温度およびNOx値が例示されるが、これに限られない。 FIG. 13 shows an example of the data format in the sensitivity database DB8. The horizontal axis is divided by typical process values. Although steam temperature, metal temperature, and NOx value are illustrated, it is not restricted to this.
 縦軸は代表的な入力パラメータで区分けされる。バーナ角度、空気ダンパ開度が例示されるが、これに限られない。センシティビティの確認基準は、入力パラメータとプロセス値との関係について、比例、反比例、一定などの線形的変化傾向、または、上に凸、下に凸などの非線形的変化傾向で示される。 】 The vertical axis is classified by typical input parameters. Although a burner angle and an air damper opening degree are illustrated, it is not restricted to this. The sensitivity confirmation criterion is indicated by a linear change tendency such as proportional, inversely proportional, or constant, or a non-linear change tendency such as upward or downward, with respect to the relationship between the input parameter and the process value.
 図14はセンシティビティの確認画面の表示例である。縦軸は代表的なプロセス値、横軸は代表的な入力パラメータとした2軸グラフで、両データの関係を表示する。モデル検証部3033では、この結果と、センシティビティデータベースDB8に記憶された確認基準とを対比し、新規モデルの妥当性を検証する。または、オペレータMが入出力部の確認画面で妥当性を確認する。 FIG. 14 is a display example of the sensitivity confirmation screen. The vertical axis represents a typical process value, and the horizontal axis represents a typical input parameter. The relationship between the two data is displayed. The model verification unit 3033 compares this result with the confirmation criteria stored in the sensitivity database DB8 to verify the validity of the new model. Alternatively, the operator M confirms the validity on the confirmation screen of the input / output unit.
 なお、運転制御装置200の機能の一部又は全てを遠隔又はクラウド上に配置してインターネット回線を介してボイラプラント100と接続してもよい。 Note that some or all of the functions of the operation control device 200 may be remotely or on the cloud and connected to the boiler plant 100 via the Internet line.
 図17は運転制御装置200のハードウェア構成の一例を示す図である。運転制御装置200は、CPU(CPU(Central Processing Unit)601、RAM(Random Access Memory)602、ROM(Read Only Memory)603、HDD(Hard Disk Drive)604、入力I/F605、及び出力I/F606を含み、これらがバス607を介して互いに接続されたコンピュータを用いて構成される。なお、運転制御装置200のハードウェア構成は上記に限定されず、制御回路と記憶装置との組み合わせにより構成されてもよい。また運転制御装置200は、運転制御装置200の各機能を実現するプログラムをコンピュータが実行することにより構成され、それらプログラムはクラウド1601や記録媒体1602に格納される。 FIG. 17 is a diagram illustrating an example of a hardware configuration of the operation control apparatus 200. The operation control device 200 includes a CPU (CPU (Central Processing Unit) 601, a RAM (Random Access Memory) 602, a ROM (Read Only Memory) 603, an HDD (Hard Disk Drive) 604, an input I / F 605, and an output I / F 605, 6. These are configured using computers connected to each other via a bus 607. The hardware configuration of the operation control device 200 is not limited to the above, and is configured by a combination of a control circuit and a storage device. The operation control apparatus 200 is configured by a computer executing programs that realize the functions of the operation control apparatus 200, and these programs are stored in the cloud 1601 or the recording medium 1602. .
 記録媒体1602に格納されるプログラムは、例えば図2に示すフローチャートの機能を有するプログラムであり、先行プラントの入力パラメータとプロセス値との関係を示す既存モデルを取得し、既存モデルの入力パラメータに、対象プラントのプラント仕様に関係する物理パラメータを追加して、新規モデルを作成する処理をコンピュータに実行させるプログラム(新規モデル作成プログラム)としてもよい。 The program stored in the recording medium 1602 is, for example, a program having the function of the flowchart shown in FIG. 2, acquires an existing model indicating the relationship between the input parameter of the preceding plant and the process value, and sets the input parameter of the existing model as It is good also as a program (new model creation program) which adds the physical parameter relevant to the plant specification of a target plant, and makes a computer perform the process which creates a new model.
 また、記録媒体1602に格納されるプログラムは、例えば図3に示すフローチャートの機能を有するプログラムであり、新規モデル作成プログラムにより生成された新規モデルを取得し、対象プラントの新規運転データを取得し、新規運転データと新規モデルを用いてプロセス値を算出し、所定条件を満たすプロセス値に基づき対象プラントの運転指示値を算出する処理をコンピュータに実行させるプログラム(運転支援プログラム)としてもよい。 Further, the program stored in the recording medium 1602 is a program having the function of the flowchart shown in FIG. 3, for example, acquires a new model generated by the new model creation program, acquires new operation data of the target plant, It is good also as a program (driving support program) which calculates a process value using new operation data and a new model, and makes a computer perform the process which calculates the operation instruction value of a target plant based on the process value which satisfy | fills predetermined conditions.
 また、運転制御装置200は、外部通信器608、例えば4G、5G回線通信器やWi-Fi(登録商標)等の無線LAN通信器を備え、CPU601が外部通信器608を介してクラウド1601からプログラムを読み込み、RAM602にロードして実行してもよい。又は、運転制御装置200は、記録媒体1602のデータを読み取るためのドライバ609を備え、CPU601が記録媒体1602からプログラムを読み込み、RAM602にロードして実行してもよい。記録媒体1602の種類は問わず、SDカード、USBメモリ、外付けHDD等、プログラムの容量に応じた様々な記録媒体を用いることができる。 The operation control apparatus 200 also includes an external communication device 608, for example, a wireless LAN communication device such as a 4G or 5G line communication device or Wi-Fi (registered trademark), and the CPU 601 executes a program from the cloud 1601 via the external communication device 608. May be read and loaded into the RAM 602 for execution. Alternatively, the operation control apparatus 200 may include a driver 609 for reading data on the recording medium 1602, and the CPU 601 may read a program from the recording medium 1602, load it into the RAM 602, and execute it. Regardless of the type of the recording medium 1602, various recording media such as an SD card, a USB memory, an external HDD, and the like depending on the capacity of the program can be used.
 図18は運転支援装置300のハードウェア構成の一例を示す図である。上記の運転制御装置200と同様の構成を取る一方で、出力I/F606から、例えばモニタやプリンタなどの出力部(入出力部309)に、新規モデルの作成・検証結果、シミュレーションの評価結果、運転指示の提案画面を出力(表示)するように構成される。 FIG. 18 is a diagram illustrating an example of a hardware configuration of the driving support device 300. While taking the same configuration as the operation control device 200 described above, from the output I / F 606 to an output unit (input / output unit 309) such as a monitor or a printer, a new model creation / verification result, a simulation evaluation result, It is configured to output (display) a driving instruction proposal screen.
 実施例2においては、複数のボイラプラントを統括的に結合することで、モデル作成を支援する運転支援システムを構成することについて説明する。 In Example 2, it will be described that a driving support system that supports model creation is configured by collectively combining a plurality of boiler plants.
 図15は、モデル作成を支援する運転支援システム500の全体構成例を示す図である。この図において、モデル作成を支援する運転支援システム500は、例えば複数のボイラプラント100A、100B、100C毎に設けられた複数のローカル支援システム300A、300B、300Cと、ローカル支援システム300A、300B、300CとネットワークNを介して通信可能な遠隔支援システム400とから構成されている。 FIG. 15 is a diagram illustrating an example of the overall configuration of a driving support system 500 that supports model creation. In this figure, a driving support system 500 that supports model creation includes, for example, a plurality of local support systems 300A, 300B, and 300C provided for each of a plurality of boiler plants 100A, 100B, and 100C, and local support systems 300A, 300B, and 300C. And a remote support system 400 capable of communicating via the network N.
 図16は、モデル作成を支援する運転支援システム500の詳細構成例を示す図であり、例えばローカル支援システム300Aの構成を代表構成例として示している。ローカル支援システム300B、300Cもローカル支援システム300Aと同じ構成を有している。 FIG. 16 is a diagram illustrating a detailed configuration example of the driving support system 500 that supports model creation. For example, the configuration of the local support system 300A is illustrated as a representative configuration example. The local support systems 300B and 300C have the same configuration as the local support system 300A.
 ローカル支援システム300Aは、運転支援装置300と第一送受信部301とから構成される。なお運転支援装置300ではなく運転制御装置200であってもよい。遠隔支援システム400は、第二送受信部401と、共通モデルデータベースDB10とから構成される。 The local support system 300A includes a driving support device 300 and a first transmission / reception unit 301. The driving control device 200 may be used instead of the driving support device 300. The remote support system 400 includes a second transmission / reception unit 401 and a common model database DB10.
 第一送受信部301は、運転支援装置300内のモデル作成装置303で作成された新規モデルと新規運転データの更新結果を、一定周期または第二送受信部401からの指示により第二送受信部401へ送信する。 The first transmission / reception unit 301 sends the update result of the new model and the new driving data created by the model creation device 303 in the driving support device 300 to the second transmission / reception unit 401 at regular intervals or by an instruction from the second transmission / reception unit 401. Send.
 第二送受信部401は、それぞれのローカル支援システム300A、300B、300Cから送信された新規運転データと新規モデルの更新結果を受信する。あらたな更新結果を受信した場合、随時または一定周期で全運転データと既存モデルの更新結果として、他の全てのローカル支援システム300A、300B、300Cの第一送受信部301へ送信する。 The second transmission / reception unit 401 receives new operation data and new model update results transmitted from the local support systems 300A, 300B, and 300C. When a new update result is received, it is transmitted to the first transmission / reception units 301 of all other local support systems 300A, 300B, and 300C as update results of all the operation data and the existing model at any time or at a constant cycle.
 第一送受信部301は、あらたな全運転データと既存モデルの更新結果を受信した場合、全運転データの更新結果を過去運転データベースDB1へ、既存モデルの更新結果を既存モデルデータベースDB3へそれぞれ送信する。 When the first transmission / reception unit 301 receives new operation data and an update result of the existing model, the first transmission / reception unit 301 transmits the update result of the entire operation data to the past operation database DB1 and the update result of the existing model to the existing model database DB3. .
 かくして、図15、図16に例示したモデル作成を支援する運転支援システムは、モデル作成装置303を備える複数のローカル支援システム300A、300B、300Cと、ローカル支援システム300A、300B、300CとネットワークNを介して通信可能な遠隔支援システム400とからなり、ローカル支援システム300A、300B、300Cは、新規運転データと新規モデルの更新結果を遠隔支援システム400へ送信するとともに、遠隔支援システム400から送信された他のローカル支援システムにおける全運転データと既存モデルの更新結果を受信する第一送受信部301を有し、遠隔支援システム400は、それぞれのローカルシステム300A、300B、300Cから送信された新規運転データと新規モデルの更新結果を受信するとともに、更新結果を他のすべてのローカルシステム300A、300B、300Cへ全運転データと既存モデルの更新結果として送信する第二送受信部401を有するものとされる。 Thus, the driving support system that supports model creation illustrated in FIGS. 15 and 16 includes a plurality of local support systems 300A, 300B, and 300C including the model creation device 303, the local support systems 300A, 300B, and 300C, and the network N. The local support systems 300A, 300B, and 300C transmit new driving data and new model update results to the remote support system 400 and are transmitted from the remote support system 400. The remote support system 400 includes a first transmission / reception unit 301 that receives all the driving data in other local support systems and the update result of the existing model. The remote support system 400 includes new driving data transmitted from the respective local systems 300A, 300B, and 300C. New model Which receives the result of the update, all local system 300A the update result of the other, 300B, is to have a second transceiver 401 that transmits a result of updating existing models and all operation data to 300C.
 係る構成により、他のローカル支援システム(先行プラント)における運転データとモデルの更新結果を共有することができる。 With this configuration, operation data and model update results in other local support systems (preceding plants) can be shared.
 なお上記説明では、ローカルシステム300A、300B、300Cは、遠隔支援システム400を介して信号伝達する構成とされているが、これはローカルシステム300A、300B、300C間で、直接送受信を行うものであってもよい。 In the above description, the local systems 300A, 300B, and 300C are configured to transmit signals via the remote support system 400. However, this is for direct transmission / reception between the local systems 300A, 300B, and 300C. May be.
 本発明は、石炭火力発電所ばかりでなく一般のプラントに広く適用することができる。 The present invention can be widely applied not only to coal-fired power plants but also to general plants.
31、32、33、34、35:粉砕機、100、100A、100B、100C:ボイラプラント、200:運転制御装置、201:運転制御部、300:運転支援装置、300A、300B、300C:ローカル支援システム、301:第一送受信部、303:モデル作成装置、306:シミュレーション部、308:運転指示部、309:入出力部(出力部)、400:遠隔支援システム、401:第二送受信部、500:運転支援システム、DB1:過去運転データベース、DB2:新規運転データベース、DB3:既存モデルデータベース、DB4:プラント仕様データベース、DB5:燃料性状データベース、DB6:新規モデルデータベース、DB7:追加パラメータ候補データベース、DB8:センシティビティデータベース、N:ネットワーク 31, 32, 33, 34, 35: Crusher, 100, 100A, 100B, 100C: Boiler plant, 200: Operation control device, 201: Operation control unit, 300: Operation support device, 300A, 300B, 300C: Local support System 301: first transmission / reception unit 303: model creation device 306: simulation unit 308: driving instruction unit 309: input / output unit (output unit) 400: remote support system 401: second transmission / reception unit 500 : Operation support system, DB1: Past operation database, DB2: New operation database, DB3: Existing model database, DB4: Plant specification database, DB5: Fuel property database, DB6: New model database, DB7: Additional parameter candidate database, DB8: Sensitivity database , N: network

Claims (14)

  1.  先行プラントの実績を活用して、対象プラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成方法であって、
     前記先行プラントでの既存モデルを読み込む読込ステップと、前記先行プラントでの既存モデルの入力パラメータに、前記対象プラントのプラント仕様に関係する物理パラメータを追加して、新規モデルを作成するモデル作成ステップを、有することを特徴とするモデル作成方法。
    A model creation method for creating a model that shows the relationship between the input parameters of a target plant and a process value by utilizing the results of a preceding plant,
    A reading step of reading an existing model in the preceding plant, and a model creating step of adding a physical parameter related to the plant specification of the target plant to an input parameter of the existing model in the preceding plant to create a new model A model creation method characterized by comprising:
  2.  請求項1に記載のモデル作成方法であって、
     前記物理パラメータは、プラントの構造、性能および/または設計条件に係るパラメータであることを特徴とするモデル作成方法。
    The model creation method according to claim 1,
    The model creation method characterized in that the physical parameter is a parameter related to a structure, performance and / or design conditions of a plant.
  3.  請求項1または2に記載のモデル作成方法であって、
     前記物理パラメータは、複数の計測値を組合せて計算されたソフトセンサ値を含むことを特徴とするモデル作成方法。
    The model creation method according to claim 1 or 2,
    The model creation method characterized in that the physical parameter includes a soft sensor value calculated by combining a plurality of measurement values.
  4.  請求項1から請求項3のいずれか1項に記載のモデル作成方法であって、
     前記先行プラントおよび前記対象プラントは、燃料の燃焼プラントであり、
     前記モデル作成ステップは、前記既存モデルの入力パラメータに前記燃料の性状に関係する燃料パラメータを追加して、新規モデルを作成することを特徴とするモデル作成方法。
    The model creation method according to any one of claims 1 to 3,
    The preceding plant and the target plant are fuel combustion plants,
    The model creation step is characterized in that a new model is created by adding a fuel parameter related to a property of the fuel to an input parameter of the existing model.
  5.  請求項4に記載のモデル作成方法であって、
     前記燃料パラメータは、燃料の調整、燃焼、環境負荷、水分のいずれかに係るパラメータであることを特徴とするモデル作成方法。
    A model creation method according to claim 4,
    The model creation method, wherein the fuel parameter is a parameter relating to any of fuel adjustment, combustion, environmental load, and moisture.
  6.  請求項1から請求項5のいずれか1項に記載のモデル作成方法であって、
    前記新規モデルを、前記先行プラントと前記対象プラントの全運転データを用いて精度検証する検証ステップをさらに含み、
     前記検証ステップは、前記新規モデルの代表的な入力パラメータとプロセス値との関係について、予め定められた基準に基づき検証することを特徴とするモデル作成方法。
    A model creation method according to any one of claims 1 to 5,
    A verification step of verifying the accuracy of the new model using all operation data of the preceding plant and the target plant;
    In the verification step, the relationship between a representative input parameter of the new model and a process value is verified based on a predetermined criterion.
  7.  請求項6に記載のモデル作成方法であって、
     前記全運転データは、試運転データと実稼働中の実運転データの両方を含むことを特徴とするモデル作成方法。
    The model creation method according to claim 6,
    The total operation data includes both test operation data and actual operation data during actual operation.
  8.  請求項1から請求項7のいずれか1項に記載のモデル作成方法であって、
    前記新規モデルを出力する出力ステップをさらに含み、
     前記出力ステップは、前記新規モデルの代表的な入力パラメータとプロセス値の関係をさらに出力することを特徴とするモデル作成方法。
    A model creation method according to any one of claims 1 to 7,
    An output step of outputting the new model;
    The output step further outputs a relationship between a representative input parameter of the new model and a process value.
  9.  請求項1から請求項8のいずれか1項に記載のモデル作成方法により生成された新規モデルを用いるプラントの運転支援方法であって、
     前記対象プラントの新規運転データと前記新規モデルを用いて前記プロセス値を算出するシミュレーションステップと、
     所定条件を満たす前記プロセス値に基づき前記対象プラントの運転指示値を算出する運転指示ステップをさらに備えることを特徴とするプラントの運転支援方法。
    A plant operation support method using a new model generated by the model creation method according to any one of claims 1 to 8,
    A simulation step of calculating the process value using the new operation data of the target plant and the new model;
    A plant operation support method, further comprising an operation instruction step of calculating an operation instruction value of the target plant based on the process value satisfying a predetermined condition.
  10.  先行プラントの実績を活用して作成された、対象プラントの入力パラメータとプロセス値との関係を示すモデルであって、
     前記先行プラントでの既存モデルの入力パラメータに、前記対象プラントのプラント仕様に関係する物理パラメータを識別可能に追加して作成されたことを特徴とするモデル。
    It is a model that shows the relationship between the input parameters of the target plant and the process value, created by utilizing the results of the preceding plant,
    A model created by adding, in an identifiable manner, physical parameters related to the plant specifications of the target plant to the input parameters of the existing model in the preceding plant.
  11.  先行プラントの実績を活用して、対象プラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成装置であって、
     前記先行プラントでの既存モデルを読み込むデータ読込部と、前記先行プラントでの既存モデルの入力パラメータに前記対象プラントのプラント仕様に関係する物理パラメータを追加して、新規モデルを作成することを特徴とするモデル作成装置。
    A model creation device that creates a model that shows the relationship between the input parameters of the target plant and the process value by utilizing the results of the preceding plant,
    A data reading unit for reading an existing model in the preceding plant, and adding a physical parameter related to the plant specification of the target plant to an input parameter of the existing model in the preceding plant to create a new model, Model creation device.
  12.  先行プラントの入力パラメータとプロセス値との関係を示す既存モデルを取得し、前記既存モデルの入力パラメータに、対象プラントのプラント仕様に関係する物理パラメータを追加して、新規モデルを作成する処理をコンピュータに実行させるプログラム。 The computer acquires the existing model indicating the relationship between the input parameter of the preceding plant and the process value, adds the physical parameter related to the plant specification of the target plant to the input parameter of the existing model, and creates a new model A program to be executed.
  13.  請求項12に記載のプログラムにより生成された新規モデルを取得し、
     前記対象プラントの新規運転データを取得し、
    前記新規運転データと前記新規モデルを用いて前記プロセス値を算出し、
     所定条件を満たす前記プロセス値に基づき前記対象プラントの運転指示値を算出する
    処理をコンピュータに実行させるプログラム。
    A new model generated by the program according to claim 12 is acquired,
    Obtain new operation data of the target plant,
    Calculate the process value using the new operation data and the new model,
    A program that causes a computer to execute a process of calculating an operation instruction value of the target plant based on the process value that satisfies a predetermined condition.
  14.  請求項12または請求項13に記載のプログラムを記録した記録媒体。 A recording medium on which the program according to claim 12 or 13 is recorded.
PCT/JP2019/004829 2018-02-13 2019-02-12 Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon WO2019159883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500478A JP6799708B2 (en) 2018-02-13 2019-02-12 Model creation method, plant operation support method, and model creation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-022875 2018-02-13
JP2018022875 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159883A1 true WO2019159883A1 (en) 2019-08-22

Family

ID=67620184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004829 WO2019159883A1 (en) 2018-02-13 2019-02-12 Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon

Country Status (3)

Country Link
JP (1) JP6799708B2 (en)
TW (1) TW201937441A (en)
WO (1) WO2019159883A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140900A1 (en) * 2020-01-10 2021-07-15 三菱パワー株式会社 Boiler operation simulator, boiler operation assistance device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium with boiler operation simulation program recorded on same
WO2021157240A1 (en) * 2020-02-04 2021-08-12 三菱パワー株式会社 Prediction device, plant, prediction method, program, and configuration program
WO2022074734A1 (en) * 2020-10-06 2022-04-14 国立大学法人 東京大学 Control system production equipment, control system production method, and program
JP7384311B1 (en) * 2023-07-03 2023-11-21 富士電機株式会社 Driving support device, driving support method and program
JP7478297B1 (en) 2023-09-08 2024-05-02 三菱重工業株式会社 Information processing system, information processing method, learning system, and learning method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363840B2 (en) * 2021-03-10 2023-10-18 横河電機株式会社 Analysis equipment, analysis method and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001117606A (en) * 1999-10-19 2001-04-27 Kawasaki Heavy Ind Ltd Adaptive control method and apparatus for thermal power plant
JP2005078545A (en) * 2003-09-03 2005-03-24 Yokogawa Electric Corp Method and device for adjusting process model
JP2009053938A (en) * 2007-08-27 2009-03-12 Toshiba Corp Equipment diagnosing system and equipment-diagnosing method on the basis of multiple model
JP2014052929A (en) * 2012-09-10 2014-03-20 Hitachi Ltd Control device and control method for thermal power plant
JP2016192034A (en) * 2015-03-31 2016-11-10 株式会社日立製作所 Statistical model creation device, statistical model creation method, and statistical model creation program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121704A (en) * 1994-10-20 1996-05-17 Babcock Hitachi Kk Steam temperature control apparatus for boiler
JP5469131B2 (en) * 2011-07-19 2014-04-09 株式会社日立製作所 Plant diagnostic method and apparatus.
JP2013109711A (en) * 2011-11-24 2013-06-06 Yokogawa Electric Corp Plant model creation device and plant operation support system
JP6458403B2 (en) * 2014-08-25 2019-01-30 富士電機株式会社 Prediction model generation device, prediction model generation method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001117606A (en) * 1999-10-19 2001-04-27 Kawasaki Heavy Ind Ltd Adaptive control method and apparatus for thermal power plant
JP2005078545A (en) * 2003-09-03 2005-03-24 Yokogawa Electric Corp Method and device for adjusting process model
JP2009053938A (en) * 2007-08-27 2009-03-12 Toshiba Corp Equipment diagnosing system and equipment-diagnosing method on the basis of multiple model
JP2014052929A (en) * 2012-09-10 2014-03-20 Hitachi Ltd Control device and control method for thermal power plant
JP2016192034A (en) * 2015-03-31 2016-11-10 株式会社日立製作所 Statistical model creation device, statistical model creation method, and statistical model creation program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140900A1 (en) * 2020-01-10 2021-07-15 三菱パワー株式会社 Boiler operation simulator, boiler operation assistance device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium with boiler operation simulation program recorded on same
JP2021110507A (en) * 2020-01-10 2021-08-02 三菱パワー株式会社 Boiler operation simulator, boiler operation support device, boiler operation control device, boiler operation simulation method, boiler simulation program, and recording medium recorded with boiler operation simulation program
JP7426240B2 (en) 2020-01-10 2024-02-01 三菱重工業株式会社 Boiler operation simulator, boiler operation support device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium recording the boiler operation simulation program
WO2021157240A1 (en) * 2020-02-04 2021-08-12 三菱パワー株式会社 Prediction device, plant, prediction method, program, and configuration program
CN114929366A (en) * 2020-02-04 2022-08-19 三菱重工业株式会社 Prediction device, plant, prediction method, program, and configuration program
WO2022074734A1 (en) * 2020-10-06 2022-04-14 国立大学法人 東京大学 Control system production equipment, control system production method, and program
JP7384311B1 (en) * 2023-07-03 2023-11-21 富士電機株式会社 Driving support device, driving support method and program
JP7478297B1 (en) 2023-09-08 2024-05-02 三菱重工業株式会社 Information processing system, information processing method, learning system, and learning method

Also Published As

Publication number Publication date
JP6799708B2 (en) 2020-12-16
TW201937441A (en) 2019-09-16
JPWO2019159883A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2019159883A1 (en) Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon
Park et al. Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially-fired boiler
EP1921280B1 (en) Systems and methods for multi-level optimizing control systems for boilers
WO2019208773A1 (en) Operation assistance device for plant, operation assistance method for plant, learning model creation method for plant, operation assistance program for plant, recording medium on which operation assistance program for plant is recorded, learning model creation program for plant, and recording medium on which learning model creation program for plant is recorded
JP4876057B2 (en) Plant control device and thermal power plant control device
US20090132095A1 (en) Control device for plant, control device for thermal power plant, and gas concentration estimation device of coal-burning boiler
JP5918663B2 (en) Thermal power plant control device and control method
KR102216820B1 (en) Test planning device and test planning method
JP6718911B2 (en) Model creation method, plant operation support method, and model creation device
Eslick et al. Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application
CN103791515B (en) Coal-burning boiler burner hearth exit gas temperature online soft sensor system
JP6732676B2 (en) Simulation result evaluation apparatus and method
KR102329372B1 (en) Operating condition evaluation device, operating condition evaluation method, and boiler control system
JP2019204145A5 (en)
JP2009222332A (en) Control device for plant equipped with boiler and control method for plant equipped with boiler
JP2022125756A (en) Operation support method and operation support device for thermal power plant
JP7086692B2 (en) Plant control equipment, plants, plant control methods and plant control programs
JP2017228102A (en) Raw material selection support device, and raw material selection support method
JP2022157124A (en) Boiler operation support device, boiler operation control system, boiler operation support method, and boiler operation support program
JP2022157118A (en) Operation support device for boiler, operation control system for boiler, operation support method for boiler, and operation support program for boiler
WO2022137785A1 (en) Boiler operation assistance device and boiler operation assistance system
Kuronen Improving transient simulation of pulverized coal-fired power plants in dynamic simulation software
Khobo A modelling methodology to quantify the impact of plant anomalies on ID fan capacity in coal fired power plants
Liu et al. Introduction to Improving Thermal Power Plant Efficiency
Vuorinen Utilizing feedback calculations in development of bubbling fluidized bed boiler design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754440

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020500478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754440

Country of ref document: EP

Kind code of ref document: A1