WO2021140900A1 - Boiler operation simulator, boiler operation assistance device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium with boiler operation simulation program recorded on same - Google Patents

Boiler operation simulator, boiler operation assistance device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium with boiler operation simulation program recorded on same Download PDF

Info

Publication number
WO2021140900A1
WO2021140900A1 PCT/JP2020/047731 JP2020047731W WO2021140900A1 WO 2021140900 A1 WO2021140900 A1 WO 2021140900A1 JP 2020047731 W JP2020047731 W JP 2020047731W WO 2021140900 A1 WO2021140900 A1 WO 2021140900A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler
heat transfer
calculation
process value
simulator
Prior art date
Application number
PCT/JP2020/047731
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 堂本
一彦 斉藤
隆 尾崎
尚 三田
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021140900A1 publication Critical patent/WO2021140900A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/18Applications of computers to steam boiler control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes

Definitions

  • the present invention relates to a boiler driving simulator.
  • Patent Document 1 states that "the inner loop is a high-speed version dynamic characteristic simulator that can predict the characteristics of a plant when it is operated according to the assumed plan in a short time. , This predicted value is compared and evaluated with the limit value of the operation restriction condition, and the above plan is modified by fuzzy inference or the like in the direction of obtaining better operation characteristics.
  • the outer loop is obtained by the inner loop. It consists of a high-precision dynamic characteristic simulator for inputting the optimum plan, a means for instructing the operation limiting condition of the inner loop and the modification of the dynamic characteristic model in the direction of reducing the difference in the characteristics obtained by the inner and outer loops, and the like. In the start-up test accompanied by, an actual plant may be used instead of the outer dynamic characteristic simulator (summary excerpt). "
  • Patent Document 1 does not consider the spatial deviation, and as a result of the simulator, only the average value of the operating conditions is obtained, and there is room for further ingenuity.
  • the present invention solves the above-mentioned problems, and aims to improve the accuracy of boiler operation simulation.
  • the boiler has a first branch system that serves as a path for fluid flowing through the heat transfer section of the boiler, and the first branch system in the heat transfer section.
  • the operation simulator includes a second branch system arranged at spatial intervals, and the operation simulator is a boiler heat transfer model for calculating a temporary process value generated in the heat transfer unit when the boiler is virtually operated.
  • the first tentative process value generated in the heat transfer unit on the first branch system and the first tentative process value generated in the heat transfer unit on the first branch system are applied to the calculation conditions including the tentative input parameters assumed to be set in the boiler in the virtual operation. It is provided with a boiler heat transfer calculation unit that calculates the second tentative process value generated in the heat transfer unit on the two-branch system and outputs the first tentative process value and the second tentative process value, respectively. , Characterized by.
  • Fluid system diagram of the power plant of this embodiment Hardware configuration diagram of a driving support device equipped with a boiler driving simulator Functional block diagram of the driving support device Flowchart showing the process flow of the process simulator Flow chart showing the overall processing flow of the boiler operation support device Diagram showing an example of data that defines input / output relationships for machine learning Diagram showing an example of index DB
  • the power generation plant 100 has a boiler 110 that burns fuel and generates steam by the heat of the combustion, and a steam turbine that drives a generator 101 by rotating a turbine using the steam generated by the boiler 110 to generate power.
  • a high-pressure steam turbine (HPT) 121 a high-pressure steam turbine (HPT) 121, a medium-pressure steam turbine (IPT) 122, a low-pressure steam turbine (LPT) 123, a water supply line 130 for supplying water to the boiler 110, and an operation control device 150 (FIG. 2) and.
  • HPT high-pressure steam turbine
  • IPT medium-pressure steam turbine
  • LPT low-pressure steam turbine
  • the boiler 110 includes an economizer (ECO) 111, a furnace water cooling wall (WW) 112, a brackish water separator (WS) 113, a superheater (SH) 114, and a reheater (RH) 115. ..
  • ECO economizer
  • WW furnace water cooling wall
  • WS brackish water separator
  • SH superheater
  • RH reheater
  • the superheater 114 includes a superheater 114 having a plurality of stages, specifically, 1SH, 2SH, and 3SH in three stages from the downstream to the upstream in the flow path direction (see FIGS. 7, 8 and 9).
  • the reheater 115 is provided with two stages from the downstream to the upstream.
  • a condenser 131 On the water supply line 130, there are a condenser 131, a condenser pump 132, a low pressure water supply superheater (low pressure heater) 133, a deaerator 134, a water supply pump 135, and a high pressure water supply superheater (high pressure heater) 136. And are provided.
  • the economizer 111 preheats the supplied water by heat exchange with the combustion gas.
  • the water preheated by the economizer 111 produces a water-steam two-phase fluid in the furnace water cooling wall 112 by passing through a furnace wall pipe (not shown) formed on the wall.
  • the water-steam two-phase fluid generated in the furnace water cooling wall 112 is sent to the brackish water separator 113 and separated into saturated steam and saturated water.
  • the saturated steam is guided to the superheater 114, and the saturated water is guided to the condenser 131 through the first pipe 161.
  • the saturated steam separated by the brackish water separator 113 is superheated by the superheater 114 by heat exchange with the combustion gas, and is supplied to the high-pressure steam turbine 121 via the main steam pipe 162.
  • the main steam pipe 162 is provided with a first shut-off valve 176 that is always open.
  • the outlet of the high pressure steam turbine 121 is connected to the low temperature reheat steam pipe 163.
  • the low temperature reheat steam pipe 163 is branched and connected to the ventilator line 199 at the first connection point 191 in front of the reheater 115.
  • the ventilator line 199 is connected to the condenser 131.
  • an exhaust forced check valve 192 for suppressing the backflow of steam to the high pressure steam turbine 121 is provided between the first connection point 191 and the reheater 115.
  • a ventilator valve 193 is provided between the first connection point 191 and the condenser 131.
  • the ventilator valve 193 is always closed, and is fully opened during FCB (fast cutback) operation, and fully closed during normal operation and in-house single load operation.
  • the steam that has performed the predetermined work in the high-pressure steam turbine 121 is guided to the reheater 115 via the low-temperature reheat steam pipe 163 during normal operation.
  • the normal operation here means an operation in a state of being connected to the power transmission system.
  • the reheater 115 reheats the steam that has performed the predetermined work in the high-pressure steam turbine 121.
  • the steam superheated by the reheater 115 is supplied to the medium-pressure steam turbine 122 and the low-pressure steam turbine 123 via the high-temperature reheat steam pipe 164, where they perform work and drive the generator 101.
  • the high temperature reheat steam pipe 164 is provided with a second shutoff valve 177 that is always open.
  • the second connection point 194 between the superheater 114 and the first shutoff valve 176 in the main steam pipe 162 and the third connection point 195 on the downstream side of the exhaust forced check valve 192 in the low temperature reheat steam pipe 163. Is connected by a high pressure bypass steam pipe 165.
  • the high-pressure bypass steam pipe 165 is provided with a normally closed high-pressure bypass on-off valve 171.
  • the fourth connection point 196 between the reheater 115 and the second stop valve 177 and the condenser 131 are connected by a low pressure bypass steam pipe 167.
  • the low-pressure bypass steam pipe 167 is provided with a low-pressure bypass on-off valve 172 that is always closed.
  • the steam that has finished its work in the low-pressure steam turbine 123 is supplied to the condenser 131 by the first exhaust steam pipe 166.
  • the condensate condensed water in the condensate 131 is sent to the deaerator 134 after passing through the low pressure heater 133 by the condensate pump 132 together with the saturated water sent from the brackish water separator 113, and the gas component in the condensate is removed. Will be done.
  • the condensate that has passed through the deaerator 134 is further boosted by the water supply pump 135, then fed to the high-pressure water supply superheater 136 to be heated, and finally returned to the boiler 110.
  • the power plant 100 is equipped with three sprays for controlling the temperature of superheated steam.
  • the water supply from the pre-stage superheater spray 211 flows into the flow path between the outlet of 1SH, which is the first-stage superheater 114, and the inlet of 2SH, which is the second-stage superheater 114.
  • the first water supply port 201 is provided.
  • the front-stage superheater water supply line 215, which serves as a flow path for water supply from the front-stage superheater spray 211 to the first water supply port 201, is provided with a front-stage superheater spray valve 202.
  • a second water supply port 203 into which the spray from the rear-stage superheater spray 212 flows is provided.
  • the rear-stage superheater water supply line 216 which serves as a flow path for water supply from the rear-stage superheater spray 212 to the second water supply port 203, is provided with a rear-stage superheater spray valve 204.
  • a reheater spray valve 206 is provided in the reheater water supply line 217, which is a flow path for water supply from the reheater spray 213 to the third water supply port 205.
  • each control valve and the operation control device 150 have a signal line. It is electrically or communicated via. Then, the opening degree control signal of the operation control device 150 is transmitted to each control valve, and the opening / closing control of each control valve is executed.
  • FIG. 2 is a hardware configuration diagram of a driving support device 300 equipped with a driving simulator of the boiler 110.
  • the operation support device 300 includes a CPU (Central Processing Unit) 301, a RAM (Random Access Memory) 302, a ROM (Read Only Memory) 303, an HDD (Hard Disk Drive) 304, an input I / F 305, and an output I / F 306. , These are configured using computers connected to each other via bus 307.
  • a monitor 308 may be connected to the output I / F 306 so that the simulation result of the driving simulator can be displayed.
  • the operation control device 150 of the boiler 110 includes a CPU 151, a RAM 152, a ROM 153, an HDD 154, an input I / F 155, and an output I / F 156, and these are configured by using a computer connected to each other via a bus 157. ..
  • the output I / F 156 of the operation control device 150 is connected to the input I / F 305 of the operation support device 300. Then, the actual input parameters used in the actual operation of the boiler 110 and the actual process values obtained as a result of the actual operation by setting the actual input parameters in the boiler 110 are transferred from the operation control device 150 to the operation support device 300. Will be sent.
  • the transmitted actual input parameter and the actual process value form one calculation condition associated with each other.
  • FIG. 2 shows an example in which the operation support device 300 and the operation control device 150 are configured by separate hardware, the operation support device 300 and the operation control device 150 are configured by the same hardware. A program that realizes the functions of each device may be executed by one hardware.
  • the operation control device 150 outputs a control signal for setting the actual input parameter acquired from the operation support device 300 of the boiler 110 to the operation end of the boiler 110 to the operation end.
  • the actual operation can be performed under the operating conditions evaluated by the driving support device 300 (corresponding to the following "calculation conditions").
  • FIG. 3 is a functional block diagram of the driving support device 300.
  • the operation support device 300 selects a suitable calculation condition from the operation simulator 350 of the boiler 110, the index creation unit 330, and the calculation conditions simulated by the operation simulator 350, and outputs the operation support unit 360 to the operation control device 150. And, including.
  • the driving simulator 350 is not a function of the driving support device 300, but can be configured as a device that realizes the simulation function by the driving simulator 350 alone.
  • the operation simulator 350 includes a control simulator 310 and a process simulator 320.
  • the control simulator 310 includes an operation end model 311 and a control device model 312, and a detection end model 313.
  • the process simulator 320 simulates the process values (for example, steam flow rate, steam temperature, steam pressure) related to the steam of the boiler 110 based on the design data, the physical formula, and the engineering formula.
  • the process simulator 320 uses the boiler heat transfer model creation unit 321, the boiler heat transfer model storage unit 322 that stores the boiler heat transfer model created by the boiler heat transfer model creation unit 321, and the boiler heat transfer model to calculate heat transfer. It includes a boiler heat transfer calculation unit 323 for performing the above, and an index database (DB) storage unit 324 for storing an index (which may include an index related to spatial deviation and fluctuation over time) described later.
  • DB index database
  • the "boiler heat transfer model” referred to here is a model that reproduces the tentative process value generated in the heat transfer portion of the boiler 110 when the boiler 110 is virtually operated.
  • the boiler heat transfer calculation unit 323 acquires a temporary input parameter from the operation end model 311 (operation amount input process), and uses this to execute the flow rate / pressure distribution calculation process, the mass balance calculation process, and the heat balance calculation process in this order. Then, the temporary process value obtained as a result of each calculation process is output to the detection end model 313 and the index DB storage unit 324 (process value output process).
  • the index related to the fluctuation over time stored in the index DB storage unit 324 is created by the index creation unit 330.
  • the index creation unit 330 performs processing by a CFD (Computational Fluid Dynamics) simulator, machine learning using the CFD calculation result obtained as a result, and index extraction processing for extracting an index from the result of machine learning. Execute.
  • CFD Computer Fluid Dynamics
  • the control device model 312 is a model of the operation control device 150 of the boiler 110.
  • the control device model 312 calculates the temporary input parameter for optimally operating the boiler 110 based on the temporary process value, and temporarily inputs the temporary process value to the operation end model 311. Set the parameters.
  • the driving support unit 360 acquires the calculation conditions simulated by the driving simulator 350 and selects suitable calculation conditions based on the evaluation results of the calculation condition evaluation unit 361 and the calculation condition evaluation unit 361 that evaluate the quality of each calculation condition. Then, the operation control device 150 includes an actual input parameter output unit 362 that outputs the input parameters included in the calculation conditions to the operation control device 150 as actual input parameters. The operation control device 150 sets this actual input parameter at each operating end of the boiler 110. As a result, the boiler 110 can be actually operated using the calculation conditions simulated by the operation simulator 350.
  • calculation condition evaluation unit 361 For example, an individual score corresponding to the process value is assigned to each process value in advance, and the individual scores of the process values obtained under one calculation condition are totaled to obtain a total score. Is calculated. Then, the actual input parameter output unit 362 may select and output the calculation conditions to be output to the operation control device 150 based on the magnitude of the total score.
  • FIG. 4 and 5 are flowcharts showing the processing procedure of the boiler operation support device.
  • FIG. 4 is a flowchart showing a processing flow of the index creating unit 330 performed as a preliminary preparation.
  • FIG. 5 is a flowchart mainly showing a processing flow of the operation simulator 350.
  • the index creation unit 330 sets the calculation conditions for the CFD simulation that reproduces the combustion characteristics of the boiler (S101), and performs the CFD calculation (S102).
  • CFD CFD
  • LES Large Eddy Simulation, unsteady simulation
  • the "calculation condition" referred to here is an operating condition when performing CFD simulation calculation, and is specifically defined including a set of input parameters set at the operation end. Examples of input parameters include, for example, the opening degree of a damper and the opening degree control signal of various spray valves. Further, individual input parameters included in one calculation condition and mathematical formulas used for CFD calculation may also be included in the calculation condition.
  • FIG. 6A is an example of data in which the input / output relationship for machine learning is defined.
  • FIG. 6B is a diagram showing an example of an index DB.
  • the horizontal axes T1, T2, ..., T18 (corresponding to the "initial calculation condition") of the orthogonal array indicate that there are 18 calculation conditions T.
  • This calculation condition includes eight temporary input parameters, x1, x2, ..., X8.
  • one calculation condition for example, temporary input parameters x1, x2, ..., X8 of T1 are read out from the orthogonal array.
  • the index creation unit 330 (CFD simulator) applies the temporary input parameters x1, x2, ..., X8 to the CFD reproduction model, and the boiler heat transfer calculation unit 323 outputs as a value used for the boiler heat transfer calculation. Is calculated.
  • the output may include those relating to spatial deviation and those relating to temporal deviation.
  • the amplitude ⁇ of the calorific value fluctuation and the period T may be included as the heat transfer.
  • Each of the above types of outputs is an example, and not all of these outputs are necessary, and at least one or more outputs are appropriately calculated.
  • the index creation unit 330 (CFD simulator) sets the input / output relationship for machine learning by associating the temporary input parameter with the output obtained in S103 (S103).
  • the index creation unit 330 (CFD simulator) performs CFD simulation for all of the calculation conditions T1 to T18.
  • the index creation unit 330 machine learning machine-learns the input / output relationship (main process list) using the calculation result of CFD simulation for all the calculation conditions T1 to T18, and can reproduce the input / output relationship. Create a model.
  • known algorithms such as random forest, gradient boosting tree, neural network, Ridge regression, Lasso regression, nearest neighbor method and the like may be appropriately used.
  • the index creation unit 330 sets calculation conditions having input parameters different from those of calculation conditions T1 to T18.
  • This calculation condition is an additional calculation condition (S105).
  • S105 additional calculation condition
  • a calculation using a machine learning model can be performed in a shorter time and at a lower cost than a CFD calculation.
  • 6651 additional calculation conditions are set, which is more than the CFD calculation conditions (18 ways) (based on the temporary input parameters and outputs of the 18 calculation conditions, 3 to the 8th power). That is, the temporary input parameter of the calculation condition of 6561 is set).
  • the index DB of FIG. 6B may include a calculation condition that considers at least one of a spatial deviation, a period associated with a change over time, and a calorific value fluctuation amount.
  • the index creation unit 330 (index extraction) inputs the parameters of the calculation conditions into the machine learning model, performs additional calculations, and obtains an output (S106). This result is performed in all 6651 ways, the results are organized, and the index related to the spatial deviation of combustion and the fluctuation with time is extracted to create an index DB (see FIG. 6B) (S107).
  • the boiler heat transfer model creation unit 321 sets the boiler heat transfer calculation conditions, and the control simulator 310 further sets the calculation conditions required for driving support of the boiler 110 (S201).
  • the calculation condition referred to here means a set of temporary input parameters that define the calculation condition when performing an operation simulation.
  • the operation end model 311 outputs a temporary input parameter virtually set to each operation end of the boiler 110 to the boiler heat transfer calculation unit 323.
  • the boiler heat transfer calculation unit 323 reads the spatial deviation and fluctuation index from the index DB storage unit 324 (S202).
  • the boiler heat transfer calculation unit 323 applies the spatial deviation, the period accompanying the change over time, and the fluctuation index to the boiler heat transfer model, and performs an improved calculation (S203).
  • improved calculation is used to distinguish it from the basic calculation on the premise that there is only one system shown in FIG. 7, which will be described later.
  • the boiler heat transfer calculation unit 323 outputs the result of the improved calculation to the detection end model 313 (S204).
  • the boiler heat transfer model creation unit 321 accepts inputs of main engine design data, auxiliary equipment design data, and grid connection data, and applies these input data to physical and engineering formulas to create a boiler heat transfer model.
  • main engine design data for example, there are design data of the generator 101, the turbine (HPT121, IPT122, LPT123), and the boiler 110.
  • Auxiliary equipment design data includes a condenser 131, a deaerator 134, a condenser pump 132, a water supply pump 135, a fan, and various control valves.
  • system connection data for example, there is a flow path system of turbine steam, wind flue, and boiler superheated steam.
  • thermodynamics-based formulas examples of physical and engineering formulas used by the boiler heat transfer model creation unit 321 for model creation are physics-based formulas (1), fluid dynamics-based formulas (2), thermodynamics-based formulas (3), and heat transfer. Equation (4) based on thermodynamics may be used.
  • the boiler heat transfer model creation unit 321 stores the created boiler heat transfer model in the boiler heat transfer model storage unit 322.
  • FIG. 7 shows an example of a conventional boiler heat transfer calculation process, in which it is considered that there is one steam line between the economizers 111 and 3SH, and the heat transfer section on the steam line of one system is moved from downstream to upstream.
  • An example is shown in which the heat is calculated by blocking toward.
  • the economizer (ECO) 111, the furnace water cooling wall (WW) 112, the brackish water separator (WS) 113, and the superheater (SH) 114 are divided into 1SH, 2SH, and 3SH for each stage.
  • the boiler heat transfer calculation unit 323 multiplies the difference between the inlet enthalpy (Hin: this is the same value as the outlet enthalpy of the immediately preceding block) and the outlet enthalpy (Hout) of each block by the spray flow rate G of each block.
  • the heat input Q ** of each block is calculated by the following equation (5).
  • Q ** (H ** out-H ** in) xG ** flow ... (5)
  • the heat input Qww of the furnace water cooling wall 112 is obtained by the following equation (6).
  • Qww (Hwww-Heco) xGww ... (6)
  • FIG. 8 shows an example of boiler heat transfer calculation processing considering the system of the boiler 110.
  • the steam line of the boiler 110 is not one system, but actually branches into multiple systems.
  • a plurality of branch systems are arranged in the horizontal plane at intervals in the left-right direction.
  • the steam line is one system up to the economizer 111, the furnace water cooling wall 112, and the brackish water separator 113, but the outlet of the brackish water separator 113. It is separated into a first branch system (left branch system) and a second branch system (right branch system) from the to the entrance of 1SH. A first branch system (left branch system) and a second branch system (right branch system) are provided from the outlets of 1SH to 3SH.
  • the boiler heat transfer calculation unit 323 describes the heat input Q1sA, Q2sA, and Q3sA for each block of 1SH, 2SH, and 3SH for the first branch system and the second branch system (Q * sA corresponds to the first provisional process value). , Q1sB, Q2sB, Q3sB (Q * sB corresponds to the second tentative process value).
  • the exit enthalpies H1soA, H2soA, H3soA of each block of the first system, and the exit enthalpies H1soB, H2soB, H3soB of each block of the second branch system are applied to the equation (5), and the first branch system, the first branch system, the first The heat input Q1sA, Q2sA, Q3sA, Q1sB, Q2sB, and Q3sB for each block on the two-branch system are calculated.
  • the above is an example of performing boiler heat transfer calculation processing in consideration of only the spatial deviation at a certain time point.
  • the heat input and outlet enthalpy fluctuate periodically with the passage of time, and the heat input and outlet enthalpy fluctuate in a minute time.
  • FIG. 9 shows an example of boiler heat transfer calculation in which fluctuations (cycle and calorific value fluctuation) due to changes with time are taken into consideration in addition to the system of the boiler 110.
  • the boiler heat transfer calculation unit 323 adds a fluctuation amount ⁇ to each of the inlet enthalpy and the outlet enthalpy in the heat transfer calculation of each block. That is, the exit enthalpy is set to Hout + ⁇ Hout, and the entrance enthalpy is set to Hin + ⁇ Hin. Then, by applying these values to the equation (5), the heat input Q to which the fluctuation amount ⁇ Q is added is calculated as shown in the equation (9).
  • the heat input Q (current output) is the amplitude ⁇ calculated from the index DB, and the heat quantity fluctuation function QA + Q ( ⁇ A, TA), QB + Q ( ⁇ B, TB).
  • the cycle and fluctuation are likely to occur when the opening degree of the damper provided in the boiler 110 changes. Therefore, it is effective to include the opening degree of the damper as a temporary input parameter, and to be able to perform the boiler heat transfer calculation including the above period and fluctuation especially when the opening degree of the damper changes.
  • FIG. 10 is a graph showing the output of the driving simulator.
  • the fluid path was branched, conventionally, it was regarded as one system of fluid path and the average value was output (shown by the broken line in FIG. 10). Therefore, the spatial deviation of the branch system provided in the boiler 110 was not taken into consideration. As a result, in fact, for example, in the first branch system (left), even if the enthalpy of the furnace water cooling wall 112 is an abnormal value, it is averaged with the right enthalpy in the simulator output and detected as a normal value. Yes, the simulation accuracy was low.
  • the spatial deviation appears in the simulation output (shown by the solid line in FIG. 10). This improves the simulation accuracy.
  • the operation simulator output has a period along the time direction as shown in FIG. 10, and the enthalpy increases or decreases in a minute time. ..
  • the appearance of abnormal values in a minute time can be reproduced by the simulator, and the simulation accuracy is improved.
  • the index creation unit 330 generates 6561 additional calculation conditions from the calculation conditions of 8 using the all-pair method and the orthogonal array, and performs CFD calculation and machine learning to generate the index DB. Create in advance. Therefore, the boiler heat transfer calculation is performed by reading the index from the index DB for the calculation load related to the CFD calculation including the spatial deviation, the period, and the fluctuation. Therefore, it is not necessary to perform CFD calculation at the time of boiler heat transfer calculation, and the calculation speed of the process simulator 320 can be increased. As a result, a process simulation can be performed in parallel with the actual operation of the boiler 110, and a suitable operation simulation can also be performed in the operation support for monitoring the boiler 110.
  • an index DB may be created from the CFD calculation result without performing machine learning. Further, the index creating unit 330 may be arranged in the process simulator 320.
  • the boiler branched from the downstream of the brackish water separator 113 to the first branch system and the second branch system, but also in the boiler branching from the upstream of the brackish water separator 113 to the first branch system and the second branch system.
  • the present invention is applicable.
  • the boiler heat transfer calculation may be performed for each of the first branch system and the second branch system, and a temporary process value reflecting the spatial deviation and the temporal deviation may be output.
  • the index creation unit 330 has been described as a functional block different from the operation simulator 350 (see FIG. 3), but the index creation unit 330 may be configured as one function of the operation simulator 350.

Abstract

This boiler operation simulator, including: a first branch system which becomes a path for a fluid flowing inside a heat transfer part of a boiler; and a second branch system which is spatially separated from the first branch system in the heat transfer part, is provided with a boiler heat transfer calculation unit which applies, to a boiler heat transfer model for calculating a formal process value generated in the heat transfer part when the boiler is virtually operated, a calculation condition including a formal input parameter assumed to be set in the boiler in the virtual operation, calculates each of a first formal process value generated in the heat transfer unit on the first branch system and a second formal process value generated in the heat transfer unit on the second branch system, and outputs each of the first formal process value and the second formal process value.

Description

ボイラの運転シミュレータ、ボイラの運転支援装置、ボイラの運転制御装置、ボイラの運転シミュレーション方法、ボイラの運転シミュレーションプログラム、及びボイラの運転シミュレーションプログラムを記録した記録媒体Boiler driving simulator, boiler driving support device, boiler driving control device, boiler driving simulation method, boiler driving simulation program, and recording medium recording boiler driving simulation program
 本発明は、ボイラの運転シミュレータに関する。 The present invention relates to a boiler driving simulator.
 火力発電所に設置されたボイラの運転シミュレータとして、特許文献1には、「内側のループは、まず仮定した計画で運転したときのプラントの特性を短時間で予測可能な高速版動特性シミュレータと、この予測値を運転制限条件の制限値と比較評価し、より良好な運転特性を得る方向に上記計画をファジィ推論等により修正する手段から成る。外側のループは、内側のループで得られた最適計画を入力する高精度の動特性シミュレータと、内側と外側ループにより得られた特性の差異が減少する方向に内側ループの運転制限条件と動特性モデルの修正を指示する手段等から成る。繰返しを伴う起動試験時には、外側の動特性シミュレータの代りに、実プラントを用いてもよい(要約抜粋)」という記載がある。 As an operation simulator of a boiler installed in a thermal power plant, Patent Document 1 states that "the inner loop is a high-speed version dynamic characteristic simulator that can predict the characteristics of a plant when it is operated according to the assumed plan in a short time. , This predicted value is compared and evaluated with the limit value of the operation restriction condition, and the above plan is modified by fuzzy inference or the like in the direction of obtaining better operation characteristics. The outer loop is obtained by the inner loop. It consists of a high-precision dynamic characteristic simulator for inputting the optimum plan, a means for instructing the operation limiting condition of the inner loop and the modification of the dynamic characteristic model in the direction of reducing the difference in the characteristics obtained by the inner and outer loops, and the like. In the start-up test accompanied by, an actual plant may be used instead of the outer dynamic characteristic simulator (summary excerpt). "
特許第3333674号公報Japanese Patent No. 3333674
 ボイラの炉内に空間的な広がりがあることから、ボイラを実際に燃焼させると、伝熱面の左右方向の位置によって伝熱面温度が異なることがある。ボイラの運転についての経済性・安定性をより追求するためには、運転シミュレータの高精度化が求められるが、そのためには、ボイラの伝熱部の空間偏差を考慮することが望ましい。しかし、特許文献1では空間偏差については考慮されておらず、シミュレータの結果として運転状況の平均値のみを求めており、更なる工夫の余地がある。 Because there is a spatial spread inside the boiler furnace, when the boiler is actually burned, the heat transfer surface temperature may differ depending on the position of the heat transfer surface in the left-right direction. In order to further pursue economic efficiency and stability of boiler operation, it is necessary to improve the accuracy of the operation simulator, but for that purpose, it is desirable to consider the spatial deviation of the heat transfer part of the boiler. However, Patent Document 1 does not consider the spatial deviation, and as a result of the simulator, only the average value of the operating conditions is obtained, and there is room for further ingenuity.
 本発明は上記した課題を解決するものであり、ボイラの運転シミュレーションの高精度化を目的とする。 The present invention solves the above-mentioned problems, and aims to improve the accuracy of boiler operation simulation.
 上記目的を達成するために、特許請求の範囲に記載の構成を備える。その一例をあげるならば、ボイラの運転シミュレータであって、前記ボイラは当該ボイラの伝熱部内を流れる流体の経路となる第1分岐系統と、前記伝熱部内において前記第1分岐系統に対して空間的に間隔を空けて配置された第2分岐系統と、を備え、前記運転シミュレータは、前記ボイラを仮想運転した際に前記伝熱部に生じる仮プロセス値を演算するためのボイラ伝熱モデルに、前記仮想運転において前記ボイラに設定されると仮定される仮入力パラメータを含む計算条件を適用し、前記第1分岐系統上にある前記伝熱部に生じる第1仮プロセス値と、前記第2分岐系統上にある前記伝熱部に生じる第2仮プロセス値と、を其々演算し、前記第1仮プロセス値及び前記第2仮プロセス値を其々出力するボイラ伝熱計算部を備える、ことを特徴とする。 In order to achieve the above purpose, the structure described in the claims is provided. To give an example, in a boiler operation simulator, the boiler has a first branch system that serves as a path for fluid flowing through the heat transfer section of the boiler, and the first branch system in the heat transfer section. The operation simulator includes a second branch system arranged at spatial intervals, and the operation simulator is a boiler heat transfer model for calculating a temporary process value generated in the heat transfer unit when the boiler is virtually operated. The first tentative process value generated in the heat transfer unit on the first branch system and the first tentative process value generated in the heat transfer unit on the first branch system are applied to the calculation conditions including the tentative input parameters assumed to be set in the boiler in the virtual operation. It is provided with a boiler heat transfer calculation unit that calculates the second tentative process value generated in the heat transfer unit on the two-branch system and outputs the first tentative process value and the second tentative process value, respectively. , Characterized by.
 本発明によれば、ボイラの運転シミュレーションの高精度化を行えるボイラの運転シミュレータを提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a boiler operation simulator capable of improving the accuracy of boiler operation simulation. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
本実施形態の発電プラントの流体系統図Fluid system diagram of the power plant of this embodiment ボイラの運転シミュレータを搭載した運転支援装置のハードウェア構成図Hardware configuration diagram of a driving support device equipped with a boiler driving simulator 運転支援装置の機能ブロック図Functional block diagram of the driving support device プロセスシミュレータの処理の流れを示すフローチャートFlowchart showing the process flow of the process simulator ボイラ運転支援装置の全体の処理の流れを示すフローチャートFlow chart showing the overall processing flow of the boiler operation support device 機械学習用の入出力関係を定義したデータ例を示す図Diagram showing an example of data that defines input / output relationships for machine learning 指標DB例を示す図Diagram showing an example of index DB 従来の熱計算処理例(節炭器から過熱器)を示す図The figure which shows the conventional heat calculation processing example (from economizer to superheater) ボイラの系統を考慮したボイラ伝熱計算例を示す図Diagram showing an example of boiler heat transfer calculation considering the boiler system ボイラの系統に加え、経時変化に伴う周期及び熱量変動を考慮したボイラ伝熱計算例を示す図The figure which shows the boiler heat transfer calculation example which considered the cycle and the calorific value fluctuation with time change in addition to the boiler system. 運転シミュレータ出力を示すグラフGraph showing driving simulator output
 以下に添付図面を参照して、本発明に係る好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings. The present invention is not limited to this embodiment, and when there are a plurality of embodiments, the present invention also includes a combination of the respective embodiments.
 発電プラント100は、燃料を燃焼させ、該燃焼の熱によって蒸気を発生させるボイラ110と、ボイラ110が発生した蒸気を用いてタービンを回転させることにより発電機101を駆動させて発電する蒸気タービン、具体的には高圧蒸気タービン(HPT)121と、中圧蒸気タービン(IPT)122と、低圧蒸気タービン(LPT)123と、ボイラ110に水を供給する給水ライン130と、運転制御装置150(図2)と、を備える。 The power generation plant 100 has a boiler 110 that burns fuel and generates steam by the heat of the combustion, and a steam turbine that drives a generator 101 by rotating a turbine using the steam generated by the boiler 110 to generate power. Specifically, a high-pressure steam turbine (HPT) 121, a medium-pressure steam turbine (IPT) 122, a low-pressure steam turbine (LPT) 123, a water supply line 130 for supplying water to the boiler 110, and an operation control device 150 (FIG. 2) and.
 ボイラ110は、節炭器(ECO)111と、火炉水冷壁(WW)112と、汽水分離器(WS)113と、過熱器(SH)114と、再熱器(RH)115と、を備える。 The boiler 110 includes an economizer (ECO) 111, a furnace water cooling wall (WW) 112, a brackish water separator (WS) 113, a superheater (SH) 114, and a reheater (RH) 115. ..
 本実施形態では、過熱器114は、流路方向下流から上流に向かって複数段、具体的には1SH、2SH、3SHの3段の過熱器114を備える(図7,8,9参照)。再熱器115は、下流から上流に向かって2段備える。 In the present embodiment, the superheater 114 includes a superheater 114 having a plurality of stages, specifically, 1SH, 2SH, and 3SH in three stages from the downstream to the upstream in the flow path direction (see FIGS. 7, 8 and 9). The reheater 115 is provided with two stages from the downstream to the upstream.
 給水ライン130上には、復水器131と、復水ポンプ132と、低圧給水過熱器(低圧ヒーター)133と、脱気器134と、給水ポンプ135と、高圧給水過熱器(高圧ヒーター)136とが設けられる。 On the water supply line 130, there are a condenser 131, a condenser pump 132, a low pressure water supply superheater (low pressure heater) 133, a deaerator 134, a water supply pump 135, and a high pressure water supply superheater (high pressure heater) 136. And are provided.
 上記構成を有する発電プラント100では、節炭器111で、供給された水を燃焼ガスとの熱交換により予熱する。節炭器111で予熱された水は、火炉水冷壁112において、壁に形成された不図示の炉壁管を通すことにより水-蒸気2相流体を生成する。火炉水冷壁112において生成された水-蒸気2相流体は、汽水分離器113に送られて、飽和蒸気と飽和水とに分離される。ここで、飽和蒸気は過熱器114へ、飽和水は第1配管161を通り復水器131へ、それぞれ、導かれる。 In the power plant 100 having the above configuration, the economizer 111 preheats the supplied water by heat exchange with the combustion gas. The water preheated by the economizer 111 produces a water-steam two-phase fluid in the furnace water cooling wall 112 by passing through a furnace wall pipe (not shown) formed on the wall. The water-steam two-phase fluid generated in the furnace water cooling wall 112 is sent to the brackish water separator 113 and separated into saturated steam and saturated water. Here, the saturated steam is guided to the superheater 114, and the saturated water is guided to the condenser 131 through the first pipe 161.
 汽水分離器113で分離された飽和蒸気は、燃焼ガスとの熱交換により過熱器114で過熱され、主蒸気管162を経由して高圧蒸気タービン121に供給される。主蒸気管162には、常時開の第1塞止弁176が設けられる。高圧蒸気タービン121の出口は、低温再熱蒸気管163に連結される。 The saturated steam separated by the brackish water separator 113 is superheated by the superheater 114 by heat exchange with the combustion gas, and is supplied to the high-pressure steam turbine 121 via the main steam pipe 162. The main steam pipe 162 is provided with a first shut-off valve 176 that is always open. The outlet of the high pressure steam turbine 121 is connected to the low temperature reheat steam pipe 163.
 低温再熱蒸気管163は、再熱器115の手前の第1連結点191において、ベンチレータライン199に分岐接続する。ベンチレータライン199は復水器131に連結する。低温再熱蒸気管163において、第1連結点191と再熱器115との間には高圧蒸気タービン121への蒸気の逆流を抑止するための排気強制逆止弁192が備えられる。 The low temperature reheat steam pipe 163 is branched and connected to the ventilator line 199 at the first connection point 191 in front of the reheater 115. The ventilator line 199 is connected to the condenser 131. In the low temperature reheat steam pipe 163, an exhaust forced check valve 192 for suppressing the backflow of steam to the high pressure steam turbine 121 is provided between the first connection point 191 and the reheater 115.
 ベンチレータライン199において、第1連結点191と復水器131との間には、ベンチレータ弁193が備えられる。ベンチレータ弁193は常時閉状態であり、FCB(ファストカットバック)運転時に全開、通常運転時及び所内単独負荷運転時に全閉する。 In the ventilator line 199, a ventilator valve 193 is provided between the first connection point 191 and the condenser 131. The ventilator valve 193 is always closed, and is fully opened during FCB (fast cutback) operation, and fully closed during normal operation and in-house single load operation.
 高圧蒸気タービン121で所定の仕事を行った蒸気は、通常運転時は、低温再熱蒸気管163を経由して再熱器115に導かれる。ここでいう通常運転とは、送電系統に接続した状態での運転をいう。 The steam that has performed the predetermined work in the high-pressure steam turbine 121 is guided to the reheater 115 via the low-temperature reheat steam pipe 163 during normal operation. The normal operation here means an operation in a state of being connected to the power transmission system.
 再熱器115では、高圧蒸気タービン121で所定の仕事を行った蒸気を再度過熱する。再熱器115で過熱された蒸気は、高温再熱蒸気管164を経由して中圧蒸気タービン122及び低圧蒸気タービン123に供給され、そこで、それぞれ仕事を行い、発電機101を駆動する。高温再熱蒸気管164には、常時開の第2塞止弁177が設けられる。 The reheater 115 reheats the steam that has performed the predetermined work in the high-pressure steam turbine 121. The steam superheated by the reheater 115 is supplied to the medium-pressure steam turbine 122 and the low-pressure steam turbine 123 via the high-temperature reheat steam pipe 164, where they perform work and drive the generator 101. The high temperature reheat steam pipe 164 is provided with a second shutoff valve 177 that is always open.
 主蒸気管162における過熱器114と第1塞止弁176との間にある第2連結点194と、低温再熱蒸気管163における排気強制逆止弁192の下流側にある第3連結点195とは、高圧バイパス蒸気管165により連結される。高圧バイパス蒸気管165には、常時閉の高圧バイパス開閉弁171が設けられる。 The second connection point 194 between the superheater 114 and the first shutoff valve 176 in the main steam pipe 162 and the third connection point 195 on the downstream side of the exhaust forced check valve 192 in the low temperature reheat steam pipe 163. Is connected by a high pressure bypass steam pipe 165. The high-pressure bypass steam pipe 165 is provided with a normally closed high-pressure bypass on-off valve 171.
 また、高温再熱蒸気管164において、再熱器115と第2塞止弁177との間にある第4連結点196と、復水器131とは、低圧バイパス蒸気管167により連結される。低圧バイパス蒸気管167には、常時閉の低圧バイパス開閉弁172が設けられる。 Further, in the high temperature reheat steam pipe 164, the fourth connection point 196 between the reheater 115 and the second stop valve 177 and the condenser 131 are connected by a low pressure bypass steam pipe 167. The low-pressure bypass steam pipe 167 is provided with a low-pressure bypass on-off valve 172 that is always closed.
 低圧蒸気タービン123で仕事を終えた蒸気は、第1排気蒸気管166によって復水器131に供給される。復水器131で凝縮した復水は、汽水分離器113から送られた飽和水と共に復水ポンプ132によって低圧ヒーター133を通過した後、脱気器134に送られ、復水中のガス成分が除去される。脱気器134を経た復水は、更に給水ポンプ135によって昇圧された後、高圧給水過熱器136に送給されて加熱され、最終的には、ボイラ110へ還流される。 The steam that has finished its work in the low-pressure steam turbine 123 is supplied to the condenser 131 by the first exhaust steam pipe 166. The condensate condensed water in the condensate 131 is sent to the deaerator 134 after passing through the low pressure heater 133 by the condensate pump 132 together with the saturated water sent from the brackish water separator 113, and the gas component in the condensate is removed. Will be done. The condensate that has passed through the deaerator 134 is further boosted by the water supply pump 135, then fed to the high-pressure water supply superheater 136 to be heated, and finally returned to the boiler 110.
 また、発電プラント100には、過熱蒸気の温度を制御するための3つのスプレイが備えらえる。具体的には、1段目の過熱器114である1SHの出口と、2段目の過熱器114である2SHの入口との間の流路には、前段過熱器スプレイ211からの給水が流入する第1給水口201が備えられる。前段過熱器スプレイ211から第1給水口201への給水の流路となる前段過熱器給水ライン215には、前段過熱器スプレイ弁202が備えられる。 In addition, the power plant 100 is equipped with three sprays for controlling the temperature of superheated steam. Specifically, the water supply from the pre-stage superheater spray 211 flows into the flow path between the outlet of 1SH, which is the first-stage superheater 114, and the inlet of 2SH, which is the second-stage superheater 114. The first water supply port 201 is provided. The front-stage superheater water supply line 215, which serves as a flow path for water supply from the front-stage superheater spray 211 to the first water supply port 201, is provided with a front-stage superheater spray valve 202.
 2SHの出口と3段目の過熱器114である3SHの入口との間には、後段過熱器スプレイ212からのスプレイが流入する第2給水口203が備えられる。後段過熱器スプレイ212から第2給水口203への給水の流路となる後段過熱器給水ライン216には、後段過熱器スプレイ弁204が備えられる。 Between the outlet of the 2SH and the inlet of the 3SH, which is the third-stage superheater 114, a second water supply port 203 into which the spray from the rear-stage superheater spray 212 flows is provided. The rear-stage superheater water supply line 216, which serves as a flow path for water supply from the rear-stage superheater spray 212 to the second water supply port 203, is provided with a rear-stage superheater spray valve 204.
 同様に、1段目の再熱器115の出口と、2段目の再熱器115の入口との間の流路には、再熱器スプレイ213からのスプレイが流入する第3給水口205が備えられる。再熱器スプレイ213から第3給水口205への給水の流路となる再熱器給水ライン217には、再熱器スプレイ弁206が備えられる。 Similarly, the third water supply port 205 into which the spray from the reheater spray 213 flows into the flow path between the outlet of the first-stage reheater 115 and the inlet of the second-stage reheater 115. Is provided. A reheater spray valve 206 is provided in the reheater water supply line 217, which is a flow path for water supply from the reheater spray 213 to the third water supply port 205.
 図1では説明の便宜のため、運転制御装置150(図2参照)と各制御弁とを接続する信号線は簡略化して図示するが、各制御弁と運転制御装置150とは、信号線を介して電気的に、又は通信接続される。そして運転制御装置150の開度制御信号が各制御弁に伝達され、各制御弁の開閉制御が実行される。 In FIG. 1, for convenience of explanation, the signal line connecting the operation control device 150 (see FIG. 2) and each control valve is shown in a simplified manner, but each control valve and the operation control device 150 have a signal line. It is electrically or communicated via. Then, the opening degree control signal of the operation control device 150 is transmitted to each control valve, and the opening / closing control of each control valve is executed.
 図2は、ボイラ110の運転シミュレータを搭載した運転支援装置300のハードウェア構成図である。運転支援装置300は、CPU(Central Processing Unit)301、RAM(Random Access Memory)302、ROM(Read Only Memory)303、HDD(Hard Disk Drive)304、入力I/F305、及び出力I/F306を含み、これらがバス307を介して互いに接続されたコンピュータを用いて構成される。出力I/F306には、モニタ308を接続し、運転シミュレータのシミュレート結果を表示できるように構成されてもよい。 FIG. 2 is a hardware configuration diagram of a driving support device 300 equipped with a driving simulator of the boiler 110. The operation support device 300 includes a CPU (Central Processing Unit) 301, a RAM (Random Access Memory) 302, a ROM (Read Only Memory) 303, an HDD (Hard Disk Drive) 304, an input I / F 305, and an output I / F 306. , These are configured using computers connected to each other via bus 307. A monitor 308 may be connected to the output I / F 306 so that the simulation result of the driving simulator can be displayed.
 一方、ボイラ110の運転制御装置150は、CPU151、RAM152、ROM153、HDD154、入力I/F155、及び出力I/F156を含み、これらがバス157を介して互いに接続されたコンピュータを用いて構成される。 On the other hand, the operation control device 150 of the boiler 110 includes a CPU 151, a RAM 152, a ROM 153, an HDD 154, an input I / F 155, and an output I / F 156, and these are configured by using a computer connected to each other via a bus 157. ..
 運転制御装置150の出力I/F156は運転支援装置300の入力I/F305に接続される。そして、ボイラ110の実運転に用いられた実入力パラメータと、当該実入力パラメータをボイラ110に設定して実運転した結果得られた実プロセス値とが、運転制御装置150から運転支援装置300へ送信される。送信された実入力パラメータと実プロセス値とは紐づけられた一つの計算条件を形成する。なお、図2では、運転支援装置300と運転制御装置150とは別体のハードウェアにより構成する例を示したが、運転支援装置300と運転制御装置150とを同一のハードウェアにより構成し、各装置の機能を実現するプログラムを一つのハードウェアで実行させてもよい。また運転制御装置150は、ボイラ110の運転支援装置300から取得した実入力パラメータをボイラ110の操作端に設定する制御信号を、操作端に対して出力する。これにより、運転支援装置300により評価された運転条件(下記「計算条件」に相当する)で実運転をすることができる。 The output I / F 156 of the operation control device 150 is connected to the input I / F 305 of the operation support device 300. Then, the actual input parameters used in the actual operation of the boiler 110 and the actual process values obtained as a result of the actual operation by setting the actual input parameters in the boiler 110 are transferred from the operation control device 150 to the operation support device 300. Will be sent. The transmitted actual input parameter and the actual process value form one calculation condition associated with each other. Although FIG. 2 shows an example in which the operation support device 300 and the operation control device 150 are configured by separate hardware, the operation support device 300 and the operation control device 150 are configured by the same hardware. A program that realizes the functions of each device may be executed by one hardware. Further, the operation control device 150 outputs a control signal for setting the actual input parameter acquired from the operation support device 300 of the boiler 110 to the operation end of the boiler 110 to the operation end. As a result, the actual operation can be performed under the operating conditions evaluated by the driving support device 300 (corresponding to the following "calculation conditions").
 図3は、運転支援装置300の機能ブロック図である。運転支援装置300は、ボイラ110の運転シミュレータ350と、指標作成部330と、運転シミュレータ350でシミュレーションした計算条件の中から好適な計算条件を選択し、運転制御装置150に出力する運転支援部360と、を含む。運転シミュレータ350は、運転支援装置300の一機能ではなく、運転シミュレータ350単体でもシミュレーション機能を実現する装置として構成できる。 FIG. 3 is a functional block diagram of the driving support device 300. The operation support device 300 selects a suitable calculation condition from the operation simulator 350 of the boiler 110, the index creation unit 330, and the calculation conditions simulated by the operation simulator 350, and outputs the operation support unit 360 to the operation control device 150. And, including. The driving simulator 350 is not a function of the driving support device 300, but can be configured as a device that realizes the simulation function by the driving simulator 350 alone.
 運転シミュレータ350は、制御シミュレータ310及びプロセスシミュレータ320を含む。 The operation simulator 350 includes a control simulator 310 and a process simulator 320.
 制御シミュレータ310は、操作端モデル311、制御装置モデル312、及び検出端モデル313を含む。 The control simulator 310 includes an operation end model 311 and a control device model 312, and a detection end model 313.
 プロセスシミュレータ320は、ボイラ110の蒸気に関するプロセス値(例えば蒸気の流量、蒸気温度、蒸気圧力)についてのシミュレーションを、設計データ及び物理式と工学式に基づき行う。 The process simulator 320 simulates the process values (for example, steam flow rate, steam temperature, steam pressure) related to the steam of the boiler 110 based on the design data, the physical formula, and the engineering formula.
 プロセスシミュレータ320は、ボイラ伝熱モデル作成部321と、ボイラ伝熱モデル作成部321が作成したボイラ伝熱モデルを記憶するボイラ伝熱モデル記憶部322と、ボイラ伝熱モデルを用いて伝熱計算を行うボイラ伝熱計算部323と、後述する指標(空間偏差、経時的なゆらぎに関わる指標を含んでもよい)を記憶する指標データベース(DB)記憶部324とを含む。ここでいう「ボイラ伝熱モデル」とは、ボイラ110を仮想運転した際にボイラ110の伝熱部に生じる仮プロセス値を再現したモデルである。 The process simulator 320 uses the boiler heat transfer model creation unit 321, the boiler heat transfer model storage unit 322 that stores the boiler heat transfer model created by the boiler heat transfer model creation unit 321, and the boiler heat transfer model to calculate heat transfer. It includes a boiler heat transfer calculation unit 323 for performing the above, and an index database (DB) storage unit 324 for storing an index (which may include an index related to spatial deviation and fluctuation over time) described later. The "boiler heat transfer model" referred to here is a model that reproduces the tentative process value generated in the heat transfer portion of the boiler 110 when the boiler 110 is virtually operated.
 ボイラ伝熱計算部323は、操作端モデル311から仮入力パラメータを取得する(操作量入力処理)と、これを用いて流量・圧力分布計算処理、マスバランス計算処理、ヒートバランス計算処理の順に実行し、各計算処理の結果得られる仮プロセス値を検出端モデル313及び指標DB記憶部324に出力する(プロセス値出力処理)。 The boiler heat transfer calculation unit 323 acquires a temporary input parameter from the operation end model 311 (operation amount input process), and uses this to execute the flow rate / pressure distribution calculation process, the mass balance calculation process, and the heat balance calculation process in this order. Then, the temporary process value obtained as a result of each calculation process is output to the detection end model 313 and the index DB storage unit 324 (process value output process).
 指標DB記憶部324に記憶される経時的なゆらぎに関わる指標は、指標作成部330で作成される。指標作成部330は、CFD(Computational Fluid Dynamics:数値流体力学)シミュレータによる処理、その結果得られたCFD計算結果を用いて機械学習を行う処理、機械学習の結果から指標を抽出する指標抽出処理を実行する。 The index related to the fluctuation over time stored in the index DB storage unit 324 is created by the index creation unit 330. The index creation unit 330 performs processing by a CFD (Computational Fluid Dynamics) simulator, machine learning using the CFD calculation result obtained as a result, and index extraction processing for extracting an index from the result of machine learning. Execute.
 制御装置モデル312は、ボイラ110の運転制御装置150のモデルである。制御装置モデル312は、検出端モデル313から仮プロセス値の入力を受け付けると、その仮プロセス値に基づいて、ボイラ110を最適運転するための仮入力パラメータを演算し、操作端モデル311に仮入力パラメータを設定する。 The control device model 312 is a model of the operation control device 150 of the boiler 110. When the control device model 312 receives the input of the temporary process value from the detection end model 313, the control device model 312 calculates the temporary input parameter for optimally operating the boiler 110 based on the temporary process value, and temporarily inputs the temporary process value to the operation end model 311. Set the parameters.
 運転支援部360は、運転シミュレータ350がシミュレーションした計算条件を取得し、各計算条件の良否を評価する計算条件評価部361と、計算条件評価部361の評価結果を基に好適な計算条件を選択して運転制御装置150へ当該計算条件に含まれる入力パラメータを実入力パラメータとして運転制御装置150に出力する実入力パラメータ出力部362とを含む。運転制御装置150は、この実入力パラメータをボイラ110の各操作端に設定する。これにより、運転シミュレータ350によりシミュレートされた計算条件を用いてボイラ110を実運転させることができる。 The driving support unit 360 acquires the calculation conditions simulated by the driving simulator 350 and selects suitable calculation conditions based on the evaluation results of the calculation condition evaluation unit 361 and the calculation condition evaluation unit 361 that evaluate the quality of each calculation condition. Then, the operation control device 150 includes an actual input parameter output unit 362 that outputs the input parameters included in the calculation conditions to the operation control device 150 as actual input parameters. The operation control device 150 sets this actual input parameter at each operating end of the boiler 110. As a result, the boiler 110 can be actually operated using the calculation conditions simulated by the operation simulator 350.
 計算条件評価部361の処理例として、例えば、予め各プロセス値に対して、プロセス値に応じた個別スコアを割当てて、一つの計算条件で得られたプロセス値の個別スコアを合計して合計スコアを算出する。そして実入力パラメータ出力部362が、合計スコアの大小を基に運転制御装置150へ出力すべき計算条件を選択し、出力してもよい。 As a processing example of the calculation condition evaluation unit 361, for example, an individual score corresponding to the process value is assigned to each process value in advance, and the individual scores of the process values obtained under one calculation condition are totaled to obtain a total score. Is calculated. Then, the actual input parameter output unit 362 may select and output the calculation conditions to be output to the operation control device 150 based on the magnitude of the total score.
 図4及び図5は、ボイラの運転支援装置の処理手順を示すフローチャートである。図4は,事前準備として行う指標作成部330の処理の流れを示すフローチャートである。図5は、主に運転シミュレータ350の処理の流れを示すフローチャートである。 4 and 5 are flowcharts showing the processing procedure of the boiler operation support device. FIG. 4 is a flowchart showing a processing flow of the index creating unit 330 performed as a preliminary preparation. FIG. 5 is a flowchart mainly showing a processing flow of the operation simulator 350.
 図4のフローチャートの説明を行う。指標作成部330(CFDシミュレータ)にて、ボイラの燃焼特性を再現したCFDシミュレーションの計算条件を設定し(S101)、CFD計算を実施する(S102)。ここで用いられるCFDには、燃焼の空間偏差や経時的なゆらぎが再現できる方法が好ましく、例えば、LES(Large Eddy Simulation、非定常シミュレーション)がその候補になる。また、ここでいう「計算条件」とは、CFDシミュレーション計算を行う際の運転条件であって、具体的には操作端に設定される入力パラメータのセットを含んで定義される。入力パラメータ例として、例えばダンパの開度、各種スプレイ弁の開度制御信号が含まれる。また1つの計算条件に含まれる個々の入力パラメータやCFD計算に用いられる数式も計算条件に含まれてもよい。 The flowchart of FIG. 4 will be described. The index creation unit 330 (CFD simulator) sets the calculation conditions for the CFD simulation that reproduces the combustion characteristics of the boiler (S101), and performs the CFD calculation (S102). For the CFD used here, a method capable of reproducing the spatial deviation of combustion and the fluctuation over time is preferable, and for example, LES (Large Eddy Simulation, unsteady simulation) is a candidate. Further, the "calculation condition" referred to here is an operating condition when performing CFD simulation calculation, and is specifically defined including a set of input parameters set at the operation end. Examples of input parameters include, for example, the opening degree of a damper and the opening degree control signal of various spray valves. Further, individual input parameters included in one calculation condition and mathematical formulas used for CFD calculation may also be included in the calculation condition.
 図4の全体の流れについて、図6A、図6Bを例にとり説明する。図6Aは、機械学習用の入出力関係を定義したデータ例である。図6Bは、指標DB例を示す図である。直交表の横軸T1、T2、・・・、T18(「初期計算条件」に相当する)は、計算条件Tが18あることを示す。この計算条件は、8個の仮入力パラメータ、x1、x2、・・・、x8を含む。S102では、直交表から一つの計算条件、例えばT1の仮入力パラメータx1、x2、・・・、x8を読み出す。そして、指標作成部330(CFDシミュレータ)は、仮入力パラメータx1、x2、・・・、x8をCFD再現モデルに当てはめてボイラ伝熱計算部323がボイラの伝熱計算に用いる値としてのアウトプットを演算する。アウトプットには、空間偏差に関するものと経時偏差に関するものを含んでもよい。空間偏差に関するアウトプットとして第1分岐系統の入熱QA、第2分岐系統の入熱QB、空間的な補正係数α、従来例のボイラ伝熱計算結果に対する補正量Q’また、経時変化に関するアウトプットとして熱量変動の振幅λ、周期Tを含んでもよい。上記各種類のアウトプットは一例であり、これら全てのアウトプットは必要ではなく、適宜少なくとも一つ以上のアウトプットが演算される。 The overall flow of FIG. 4 will be described by taking FIGS. 6A and 6B as examples. FIG. 6A is an example of data in which the input / output relationship for machine learning is defined. FIG. 6B is a diagram showing an example of an index DB. The horizontal axes T1, T2, ..., T18 (corresponding to the "initial calculation condition") of the orthogonal array indicate that there are 18 calculation conditions T. This calculation condition includes eight temporary input parameters, x1, x2, ..., X8. In S102, one calculation condition, for example, temporary input parameters x1, x2, ..., X8 of T1 are read out from the orthogonal array. Then, the index creation unit 330 (CFD simulator) applies the temporary input parameters x1, x2, ..., X8 to the CFD reproduction model, and the boiler heat transfer calculation unit 323 outputs as a value used for the boiler heat transfer calculation. Is calculated. The output may include those relating to spatial deviation and those relating to temporal deviation. As the output related to the spatial deviation, the heat input QA of the first branch system, the heat input QB of the second branch system, the spatial correction coefficient α, the correction amount Q for the boiler heat transfer calculation result of the conventional example, and the output related to the change with time. The amplitude λ of the calorific value fluctuation and the period T may be included as the heat transfer. Each of the above types of outputs is an example, and not all of these outputs are necessary, and at least one or more outputs are appropriately calculated.
 指標作成部330(CFDシミュレータ)は、仮入力パラメータと、S103で求めたアウトプットとを紐づけて、機械学習用の入出力関係を設定する(S103)。 The index creation unit 330 (CFD simulator) sets the input / output relationship for machine learning by associating the temporary input parameter with the output obtained in S103 (S103).
 指標作成部330(CFDシミュレータ)は、計算条件T1からT18の全てについてCFDシミュレーションを行う。 The index creation unit 330 (CFD simulator) performs CFD simulation for all of the calculation conditions T1 to T18.
 指標作成部330(機械学習)は、計算条件T1からT18の全てについてCFDシミュレーションを行った演算結果を用いた入出力関係(主要プロセスリスト)を機械学習して、入出力関係を再現できる機械学習モデルを作成する。ここでの機械学習には、公知のアルゴリズム、例えば、ランダムフォレスト、勾配ブースティング木、ニューラルネットワーク、Ridge回帰、Lasso回帰、最近傍法等を適宜用いてもよい。 The index creation unit 330 (machine learning) machine-learns the input / output relationship (main process list) using the calculation result of CFD simulation for all the calculation conditions T1 to T18, and can reproduce the input / output relationship. Create a model. For machine learning here, known algorithms such as random forest, gradient boosting tree, neural network, Ridge regression, Lasso regression, nearest neighbor method and the like may be appropriately used.
 指標作成部330(指標抽出)は、計算条件T1からT18とは異なる入力パラメータを有する計算条件を設定する。この計算条件が追加計算条件である(S105)。一般に、CFD計算よりも機械学習モデルを用いた計算の方が短時間かつ低コストで行うことができる。図6Bの指標DBでは、CFDの計算条件(18通り)より多い、6561通りの追加計算条件が設定されている(18の計算条件の仮入力パラメータとアウトプットとを基に、3の8乗、すなわち6561の計算条件の仮入力パラメータを設定されている)。なお、図6Bの指標DBには、空間偏差や経時変化に伴う周期、熱量変動量の少なくとも一つを考慮した計算条件が含まれてもよい。 The index creation unit 330 (index extraction) sets calculation conditions having input parameters different from those of calculation conditions T1 to T18. This calculation condition is an additional calculation condition (S105). In general, a calculation using a machine learning model can be performed in a shorter time and at a lower cost than a CFD calculation. In the index DB of FIG. 6B, 6651 additional calculation conditions are set, which is more than the CFD calculation conditions (18 ways) (based on the temporary input parameters and outputs of the 18 calculation conditions, 3 to the 8th power). That is, the temporary input parameter of the calculation condition of 6561 is set). The index DB of FIG. 6B may include a calculation condition that considers at least one of a spatial deviation, a period associated with a change over time, and a calorific value fluctuation amount.
 指標作成部330(指標抽出)は、計算条件のパラメータを機械学習モデルに入力して、追加計算を実施しアウトプットを得る(S106)。この結果を全6561通り行い、結果を整理して、燃焼の空間偏差、経時的なゆらぎに関わる指標を抽出して指標DB(図6B参照)を作成する(S107)。 The index creation unit 330 (index extraction) inputs the parameters of the calculation conditions into the machine learning model, performs additional calculations, and obtains an output (S106). This result is performed in all 6651 ways, the results are organized, and the index related to the spatial deviation of combustion and the fluctuation with time is extracted to create an index DB (see FIG. 6B) (S107).
 次に、図5のフローチャートの説明を行う。まず、ボイラ伝熱モデル作成部321がボイラ伝熱の計算条件を設定し、さらに制御シミュレータ310がボイラ110の運転支援等のために必要となる計算条件の設定を行う(S201)。ここでいう計算条件とは、具体的には、運転シミュレーションを行う際の計算条件を規定した仮入力パラメータのセットを意味する。操作端モデル311は、ボイラ伝熱計算部323にボイラ110の各操作端に仮想的に設定される仮入力パラメータを出力する。 Next, the flowchart of FIG. 5 will be described. First, the boiler heat transfer model creation unit 321 sets the boiler heat transfer calculation conditions, and the control simulator 310 further sets the calculation conditions required for driving support of the boiler 110 (S201). Specifically, the calculation condition referred to here means a set of temporary input parameters that define the calculation condition when performing an operation simulation. The operation end model 311 outputs a temporary input parameter virtually set to each operation end of the boiler 110 to the boiler heat transfer calculation unit 323.
 ボイラ伝熱計算部323は、指標DB記憶部324から空間偏差、ゆらぎ指標を読み込む(S202)。ボイラ伝熱計算部323は、空間偏差、経時変化に伴う周期、ゆらぎ指標をボイラ伝熱モデルに当てはめて、改良計算を実施する(S203)。「改良計算」とは、後述する図7に示した一系統しかないことを前提とする基本計算と区別するための言葉である。 The boiler heat transfer calculation unit 323 reads the spatial deviation and fluctuation index from the index DB storage unit 324 (S202). The boiler heat transfer calculation unit 323 applies the spatial deviation, the period accompanying the change over time, and the fluctuation index to the boiler heat transfer model, and performs an improved calculation (S203). The term "improved calculation" is used to distinguish it from the basic calculation on the premise that there is only one system shown in FIG. 7, which will be described later.
 ボイラ伝熱計算部323は、検出端モデル313に改良計算の結果を出力する(S204)。 The boiler heat transfer calculation unit 323 outputs the result of the improved calculation to the detection end model 313 (S204).
 続いて、ボイラ伝熱モデル計算の流れを説明する。 Next, the flow of boiler heat transfer model calculation will be explained.
 ボイラ伝熱モデル作成部321は、主機設計データ、補機設計データ、及び系統接続データの入力を受け付け、それら入力データを物理式、工学式に適用してボイラ伝熱モデルを作成する。 The boiler heat transfer model creation unit 321 accepts inputs of main engine design data, auxiliary equipment design data, and grid connection data, and applies these input data to physical and engineering formulas to create a boiler heat transfer model.
 主機設計データとして例えば発電機101、タービン(HPT121、IPT122、LPT123)、ボイラ110の設計データがある。補機設計データとして、復水器131、脱気器134、復水ポンプ132、給水ポンプ135、ファン、各種制御弁がある。更に系統接続データとして、例えばタービン蒸気、風煙道、ボイラ過熱蒸気の流路系統がある。 As the main engine design data, for example, there are design data of the generator 101, the turbine (HPT121, IPT122, LPT123), and the boiler 110. Auxiliary equipment design data includes a condenser 131, a deaerator 134, a condenser pump 132, a water supply pump 135, a fan, and various control valves. Further, as system connection data, for example, there is a flow path system of turbine steam, wind flue, and boiler superheated steam.
 ボイラ伝熱モデル作成部321がモデル作成に用いる物理式や工学式の例として、物理学に基づく式(1)、流体力学に基づく式(2)、熱力学に基づく式(3)、及び伝熱学に基づく式(4)を用いてもよい。
Figure JPOXMLDOC01-appb-M000001
Examples of physical and engineering formulas used by the boiler heat transfer model creation unit 321 for model creation are physics-based formulas (1), fluid dynamics-based formulas (2), thermodynamics-based formulas (3), and heat transfer. Equation (4) based on thermodynamics may be used.
Figure JPOXMLDOC01-appb-M000001
 ボイラ伝熱モデル作成部321は、作成したボイラ伝熱モデルをボイラ伝熱モデル記憶部322に記憶する。 The boiler heat transfer model creation unit 321 stores the created boiler heat transfer model in the boiler heat transfer model storage unit 322.
 図7は、従来のボイラ伝熱計算処理例であり、節炭器111から3SHまでの間に一系統の蒸気ラインがあると捉え、一系統の蒸気ライン上にある伝熱部を下流から上流に向かってブロック化して熱計算を行った例を示す。具体的には、節炭器(ECO)111、火炉水冷壁(WW)112、汽水分離器(WS)113、過熱器(SH)114は各段、1SH、2SH、3SHに分ける。そして、ボイラ伝熱計算部323は、各ブロックの入口エンタルピー(Hin:これは直前のブロックの出口エンタルピーと同値)、出口エンタルピー(Hout)の差分に、各ブロックのスプレイ流量Gを乗算して、各ブロックの入熱Q**を下式(5)により演算する。
Q**=(H**out-H**in)xG**flow・・・(5)
FIG. 7 shows an example of a conventional boiler heat transfer calculation process, in which it is considered that there is one steam line between the economizers 111 and 3SH, and the heat transfer section on the steam line of one system is moved from downstream to upstream. An example is shown in which the heat is calculated by blocking toward. Specifically, the economizer (ECO) 111, the furnace water cooling wall (WW) 112, the brackish water separator (WS) 113, and the superheater (SH) 114 are divided into 1SH, 2SH, and 3SH for each stage. Then, the boiler heat transfer calculation unit 323 multiplies the difference between the inlet enthalpy (Hin: this is the same value as the outlet enthalpy of the immediately preceding block) and the outlet enthalpy (Hout) of each block by the spray flow rate G of each block. The heat input Q ** of each block is calculated by the following equation (5).
Q ** = (H ** out-H ** in) xG ** flow ... (5)
 例えば火炉水冷壁112の入熱Qwwは、下式(6)により得られる。
Qww=(Hww-Heco)xGww・・・(6)
For example, the heat input Qww of the furnace water cooling wall 112 is obtained by the following equation (6).
Qww = (Hwww-Heco) xGww ... (6)
 図8は、ボイラ110の系統を考慮したボイラ伝熱計算処理例を示す。 FIG. 8 shows an example of boiler heat transfer calculation processing considering the system of the boiler 110.
 ボイラ110の蒸気ラインは一系統ではなく、実際には複数の系統に分岐している。そして、複数の分岐系統が水平面内において左右方向に間隔を空けて配置されている。その結果、左右端において、伝熱部への入熱、及び伝熱部出口における流体温度、流体圧力といった出口エンタルピーが異なる。 The steam line of the boiler 110 is not one system, but actually branches into multiple systems. A plurality of branch systems are arranged in the horizontal plane at intervals in the left-right direction. As a result, the heat input to the heat transfer section and the outlet enthalpies such as the fluid temperature and the fluid pressure at the outlet of the heat transfer section differ at the left and right ends.
 具体的には、図8に示すように、実際のボイラ110では、蒸気ラインは、節炭器111、火炉水冷壁112、汽水分離器113までは1系統であるが、汽水分離器113の出口から1SHの入口までの間で第1分岐系統(左分岐系統)と第2分岐系統(右分岐系統)とに分離する。そして、1SHから3SHの出口までは第1分岐系統(左分岐系統)と第2分岐系統(右分岐系統)とが設けられる。 Specifically, as shown in FIG. 8, in the actual boiler 110, the steam line is one system up to the economizer 111, the furnace water cooling wall 112, and the brackish water separator 113, but the outlet of the brackish water separator 113. It is separated into a first branch system (left branch system) and a second branch system (right branch system) from the to the entrance of 1SH. A first branch system (left branch system) and a second branch system (right branch system) are provided from the outlets of 1SH to 3SH.
 次にボイラ伝熱計算部323は第1分岐系統、第2分岐系統について、1SH、2SH、3SHのブロック毎の入熱Q1sA、Q2sA、Q3sA(Q*sAは第1仮プロセス値に相当する)、Q1sB、Q2sB、Q3sB(Q*sBは第2仮プロセス値に相当する)を求める。具体的には、第1系統の各ブロックの出口エンタルピーH1soA、H2soA、H3soA、第2分岐系統の各ブロックの出口エンタルピーH1soB、H2soB、H3soBを式(5)に当てはめて、第1分岐系統、第2分岐系統上のブロック毎の入熱Q1sA、Q2sA、Q3sA、Q1sB、Q2sB、Q3sBを演算する。 Next, the boiler heat transfer calculation unit 323 describes the heat input Q1sA, Q2sA, and Q3sA for each block of 1SH, 2SH, and 3SH for the first branch system and the second branch system (Q * sA corresponds to the first provisional process value). , Q1sB, Q2sB, Q3sB (Q * sB corresponds to the second tentative process value). Specifically, the exit enthalpies H1soA, H2soA, H3soA of each block of the first system, and the exit enthalpies H1soB, H2soB, H3soB of each block of the second branch system are applied to the equation (5), and the first branch system, the first branch system, the first The heat input Q1sA, Q2sA, Q3sA, Q1sB, Q2sB, and Q3sB for each block on the two-branch system are calculated.
 ここで、入熱Qの空間偏差を考慮する方法として、以下を代表的にあげることができる。ただし、これに限られず、他の方法を用いてもよい。
 1)指標DBに各分岐系統の入熱の値が直接記載されている場合
 指標DBからQA,QBを直接読み取って、空間偏差を表現する。
 ここで、QA:第1分岐系統の入熱、QB:第2分岐系統の入熱
 2)指標DBに空間的な補正係数が記載されている場合
 下式(7)に従い、従来例のボイラ伝熱計算(図7参照)を行い、得られた入熱の半分に対して、指標DBから代表系統の補正係数αを読み取り、乗算して左右偏差を求める。
 QA=α×Q/2、QB=(1-α)×Q/2・・・(7)
 3)指標DBに空間的な補正量が記載されている場合
 下式(8)に従い、従来例のボイラ伝熱計算(図7参照)を行い、得られた入熱の半分に対して、指標DBから補正量Q’を読み取り、加減して左右偏差を求める。
 QA=Q/2+Q’、QB=Q/2-Q’ ・・・(8)
Here, as a method of considering the spatial deviation of the heat input Q, the following can be typically given. However, the present invention is not limited to this, and other methods may be used.
1) When the value of heat input of each branch system is directly described in the index DB QA and QB are directly read from the index DB to express the spatial deviation.
Here, QA: heat input of the first branch system, QB: heat input of the second branch system 2) When the spatial correction coefficient is described in the index DB According to the following equation (7), the boiler transfer of the conventional example A thermal calculation (see FIG. 7) is performed, and the correction coefficient α of the representative system is read from the index DB and multiplied by half of the obtained heat input to obtain the lateral deviation.
QA = α × Q / 2, QB = (1-α) × Q / 2 ... (7)
3) When the spatial correction amount is described in the index DB According to the following formula (8), the boiler heat transfer calculation of the conventional example (see FIG. 7) is performed, and the index is used for half of the obtained heat input. The correction amount Q'is read from the DB and adjusted to obtain the lateral deviation.
QA = Q / 2 + Q', QB = Q / 2-Q'... (8)
 上記は、ある1時点における空間偏差のみを考慮してボイラ伝熱計算処理を行う例である。しかし、ボイラ110の実運転では時間の経過とともに入熱、出口エンタルピーは周期的に変動し、微細時間では入熱、出口エンタルピーにゆらぎが生じる。 The above is an example of performing boiler heat transfer calculation processing in consideration of only the spatial deviation at a certain time point. However, in the actual operation of the boiler 110, the heat input and outlet enthalpy fluctuate periodically with the passage of time, and the heat input and outlet enthalpy fluctuate in a minute time.
 図9に、ボイラ110の系統に加え、経時変化に伴うゆらぎ(周期及び熱量変動)を考慮したボイラ伝熱計算例を示す。 FIG. 9 shows an example of boiler heat transfer calculation in which fluctuations (cycle and calorific value fluctuation) due to changes with time are taken into consideration in addition to the system of the boiler 110.
 ボイラ伝熱計算部323は、各ブロックの伝熱計算において、入口エンタルピー及び出口エンタルピーの其々にゆらぎ量Δを加える。即ち出口エンタルピーはHout+ΔHout、入口エンタルピーはHin+ΔHinと設定する。そしてこれらの値を式(5)に当てはめることにより、式(9)に示すようにゆらぎ量ΔQが加わった入熱Qを演算する。
Figure JPOXMLDOC01-appb-M000002
The boiler heat transfer calculation unit 323 adds a fluctuation amount Δ to each of the inlet enthalpy and the outlet enthalpy in the heat transfer calculation of each block. That is, the exit enthalpy is set to Hout + ΔHout, and the entrance enthalpy is set to Hin + ΔHin. Then, by applying these values to the equation (5), the heat input Q to which the fluctuation amount ΔQ is added is calculated as shown in the equation (9).
Figure JPOXMLDOC01-appb-M000002
 ここで、空間偏差に加えて経時変化に伴う周期及び熱量変動を考慮する場合は、入熱Q(現行出力)を指標DBから算出した振幅λ、周期Tを加味した熱量変動関数QA+Q(λA、TA)、QB+Q(λB、TB)とする。 Here, when considering the period and heat quantity fluctuation due to the change with time in addition to the spatial deviation, the heat input Q (current output) is the amplitude λ calculated from the index DB, and the heat quantity fluctuation function QA + Q (λA, TA), QB + Q (λB, TB).
 周期及びゆらぎは、ボイラ110に備えられたダンパの開度が変わると生じやすい。よって、仮入力パラメータとしてダンパの開度を含み、当該ダンパの開度が変化した場合に特に上記周期及びゆらぎを含むボイラ伝熱計算を行えることは有効である。 The cycle and fluctuation are likely to occur when the opening degree of the damper provided in the boiler 110 changes. Therefore, it is effective to include the opening degree of the damper as a temporary input parameter, and to be able to perform the boiler heat transfer calculation including the above period and fluctuation especially when the opening degree of the damper changes.
 プロセスシミュレータ320の作用効果について図10に基づいて説明する。図10は運転シミュレータ出力を示すグラフである。 The operation and effect of the process simulator 320 will be described with reference to FIG. FIG. 10 is a graph showing the output of the driving simulator.
 実際のボイラ110では流体経路が分岐しているにも関わらず、従来は、一系統の流体経路と見做して、平均値を出力していた(図10において破線で図示)。従って、ボイラ110内に備えられた分岐系統の空間偏差は考慮されていなかった。その結果、実際には、例えば第1分岐系統(左)では、火炉水冷壁112のエンタルピーが異常値になっていても、シミュレータ出力では右側エンタルピーと平均化されて正常値として検出されることがあり、シミュレーション精度が低かった。 In the actual boiler 110, although the fluid path was branched, conventionally, it was regarded as one system of fluid path and the average value was output (shown by the broken line in FIG. 10). Therefore, the spatial deviation of the branch system provided in the boiler 110 was not taken into consideration. As a result, in fact, for example, in the first branch system (left), even if the enthalpy of the furnace water cooling wall 112 is an abnormal value, it is averaged with the right enthalpy in the simulator output and detected as a normal value. Yes, the simulation accuracy was low.
 これに対して、本実施形態に係る運転シミュレータでは、第1分岐系統及び第2分岐系統の其々についてエンタルピーを計算するため、空間偏差がシミュレーション出力に現れる(図10において実線で図示)。これにより、シミュレーション精度が向上する。 On the other hand, in the operation simulator according to the present embodiment, since the enthalpy is calculated for each of the first branch system and the second branch system, the spatial deviation appears in the simulation output (shown by the solid line in FIG. 10). This improves the simulation accuracy.
 さらに、実際のボイラ110を運転させると、時間の経過に伴いエンタルピーの変動周期、及び熱量変動(ゆらぎ)が生じる。 Furthermore, when the actual boiler 110 is operated, the enthalpy fluctuation cycle and the calorific value fluctuation (fluctuation) occur with the passage of time.
 しかし、従来は、周期やゆらぎを考慮していないため、図10に示すように、シミュレータ出力は大きな周期変動はあっても微細なゆらぎはシミュレータ出力には現れず、滑らかな曲線で表せていた。 However, conventionally, since the period and fluctuation are not taken into consideration, as shown in FIG. 10, even if the simulator output has a large periodic fluctuation, the minute fluctuation does not appear in the simulator output and can be represented by a smooth curve. ..
 これに対して、本実施形態に係るプロセスシミュレータ320では、周期やゆらぎを考慮するため、図10に示すように運転シミュレータ出力は時間方向に沿って周期を有すると共に、微細時間においてエンタルピーが増減する。これにより、微細時間における異常値の出現もシミュレータで再現でき、シミュレーション精度が向上する。 On the other hand, in the process simulator 320 according to the present embodiment, in order to consider the period and fluctuation, the operation simulator output has a period along the time direction as shown in FIG. 10, and the enthalpy increases or decreases in a minute time. .. As a result, the appearance of abnormal values in a minute time can be reproduced by the simulator, and the simulation accuracy is improved.
 また、本実施形態に係るプロセスシミュレータ320では、指標作成部330がオールペア法、直交表を用いて8の計算条件から6561の追加計算条件を生成し、CFD計算や機械学習を行って指標DBを予め作成する。そのため、空間偏差や周期、ゆらぎを含んだCFD計算に係る演算負荷を、指標DBから指標を読み込んでボイラ伝熱計算を行う。そのため、ボイラ伝熱計算時にCFD計算を行わなくてよく、プロセスシミュレータ320の演算速度を速くすることができる。その結果、ボイラ110の実運転時に並行してプロセスシミュレーションを行い、ボイラ110を監視する運転支援においても、好適な運転シミュレーションを行える。 Further, in the process simulator 320 according to the present embodiment, the index creation unit 330 generates 6561 additional calculation conditions from the calculation conditions of 8 using the all-pair method and the orthogonal array, and performs CFD calculation and machine learning to generate the index DB. Create in advance. Therefore, the boiler heat transfer calculation is performed by reading the index from the index DB for the calculation load related to the CFD calculation including the spatial deviation, the period, and the fluctuation. Therefore, it is not necessary to perform CFD calculation at the time of boiler heat transfer calculation, and the calculation speed of the process simulator 320 can be increased. As a result, a process simulation can be performed in parallel with the actual operation of the boiler 110, and a suitable operation simulation can also be performed in the operation support for monitoring the boiler 110.
 上記実施形態は、本発明を限定するものではなく、本発明の趣旨を逸脱しない範囲での設計変更が可能である。 The above embodiment does not limit the present invention, and the design can be changed without departing from the gist of the present invention.
 例えば図3に示す指標作成部330について、機械学習を行わずに、CFD計算結果から指標DBを作成してもよい。また、指標作成部330をプロセスシミュレータ320内に配置してもよい。 For example, for the index creation unit 330 shown in FIG. 3, an index DB may be created from the CFD calculation result without performing machine learning. Further, the index creating unit 330 may be arranged in the process simulator 320.
 また、図7では、汽水分離器113の下流から第1分岐系統及び第2分岐系統に分岐したが、汽水分離器113の上流から第1分岐系統及び第2分岐系統に分岐するボイラにおいても、本発明は適用できる。その場合も、第1分岐系統及び第2分岐系統の其々についてボイラ伝熱計算を行い、空間偏差や経時偏差が反映された仮プロセス値を出力させてもよい。 Further, in FIG. 7, the boiler branched from the downstream of the brackish water separator 113 to the first branch system and the second branch system, but also in the boiler branching from the upstream of the brackish water separator 113 to the first branch system and the second branch system. The present invention is applicable. In that case as well, the boiler heat transfer calculation may be performed for each of the first branch system and the second branch system, and a temporary process value reflecting the spatial deviation and the temporal deviation may be output.
 また、上記実施形態では、指標作成部330は運転シミュレータ350とは別の機能ブロックとして説明したが(図3参照)、指標作成部330は、運転シミュレータ350の一機能として構成してもよい。 Further, in the above embodiment, the index creation unit 330 has been described as a functional block different from the operation simulator 350 (see FIG. 3), but the index creation unit 330 may be configured as one function of the operation simulator 350.
100   :発電プラント
101   :発電機
110   :ボイラ
111   :節炭器
112   :火炉水冷壁
113   :汽水分離器
114   :過熱器
115   :再熱器
121   :高圧蒸気タービン
122   :中圧蒸気タービン
123   :低圧蒸気タービン
130   :給水ライン
131   :復水器
132   :復水ポンプ
133   :低圧ヒーター
134   :脱気器
135   :給水ポンプ
136   :高圧給水過熱器
150   :運転制御装置
151   :CPU
152   :RAM
153   :ROM
154   :HDD
155   :入力I/F
156   :出力I/F
157   :バス
161   :第1配管
162   :主蒸気管
163   :低温再熱蒸気管
164   :高温再熱蒸気管
165   :高圧バイパス蒸気管
166   :第1排気蒸気管
167   :低圧バイパス蒸気管
171   :高圧バイパス開閉弁
172   :低圧バイパス開閉弁
176   :第1塞止弁
177   :第2塞止弁
191   :第1連結点
192   :排気強制逆止弁
193   :ベンチレータ弁
194   :第2連結点
195   :第3連結点
196   :第4連結点
199   :ベンチレータライン
201   :第1給水口
202   :前段過熱器スプレイ弁
203   :第2給水口
204   :後段過熱器スプレイ弁
205   :第3給水口
206   :再熱器スプレイ弁
211   :前段過熱器スプレイ
212   :後段過熱器スプレイ
213   :再熱器スプレイ
215   :前段過熱器給水ライン
216   :後段過熱器給水ライン
217   :再熱器給水ライン
300   :運転支援装置
305   :入力I/F
306   :出力I/F
307   :バス
308   :モニタ
310   :制御シミュレータ
311   :操作端モデル
312   :制御装置モデル
313   :検出端モデル
320   :プロセスシミュレータ
321   :ボイラ伝熱モデル作成部
322   :ボイラ伝熱モデル記憶部
323   :ボイラ伝熱計算部
324   :指標DB記憶部
330   :指標作成部
350   :運転シミュレータ
360   :運転支援部
361   :計算条件評価部
362   :実入力パラメータ出力部
 
100: Power plant 101: Generator 110: Boiler 111: Coal saving device 112: Fire furnace water cooling wall 113: Steam water separator 114: Superheater 115: Condenser 121: High pressure steam turbine 122: Medium pressure steam turbine 123: Low pressure steam Turbine 130: Water supply line 131: Condenser 132: Condensate pump 133: Low pressure heater 134: Deaerator 135: Water supply pump 136: High pressure water supply superheater 150: Operation control device 151: CPU
152: RAM
153: ROM
154: HDD
155: Input I / F
156: Output I / F
157: Bus 161: First pipe 162: Main steam pipe 163: Low temperature reheated steam pipe 164: High temperature reheated steam pipe 165: High pressure bypass steam pipe 166: First exhaust steam pipe 167: Low pressure bypass steam pipe 171: High pressure bypass On-off valve 172: Low-pressure bypass on-off valve 176: First blocking valve 177: Second blocking valve 191: First connection point 192: Exhaust forced check valve 193: Ventilator valve 194: Second connection point 195: Third connection Point 196: Fourth connection point 199: Ventilator line 201: First water supply port 202: Front stage superheater spray valve 203: Second water supply port 204: Rear stage superheater spray valve 205: Third water supply port 206: Reheater spray valve 211: Front stage superheater spray 212: Rear stage superheater spray 213: Reheater spray 215: Front stage superheater water supply line 216: Rear stage superheater water supply line 217: Reheater water supply line 300: Operation support device 305: Input I / F
306: Output I / F
307: Bus 308: Monitor 310: Control simulator 311: Operation end model 312: Control device model 313: Detection end model 320: Process simulator 321: Boiler heat transfer model creation unit 322: Boiler heat transfer model storage unit 323: Boiler heat transfer Calculation unit 324: Index DB storage unit 330: Index creation unit 350: Operation simulator 360: Operation support unit 361: Calculation condition evaluation unit 362: Actual input parameter output unit

Claims (10)

  1.  ボイラの運転シミュレータであって、
     前記ボイラは当該ボイラの伝熱部内を流れる流体の経路となる第1分岐系統と、前記伝熱部内において前記第1分岐系統に対して空間的に間隔を空けて配置された第2分岐系統と、を備え、
     前記運転シミュレータは、
     前記ボイラを仮想運転した際に前記伝熱部に生じる仮プロセス値を演算するためのボイラ伝熱モデルに、前記仮想運転において前記ボイラに設定されると仮定される仮入力パラメータを含む計算条件を適用し、前記第1分岐系統上にある前記伝熱部に生じる第1仮プロセス値と、前記第2分岐系統上にある前記伝熱部に生じる第2仮プロセス値と、を其々演算し、前記第1仮プロセス値及び前記第2仮プロセス値を其々出力するボイラ伝熱計算部を備える、
     ことを特徴とするボイラの運転シミュレータ。
    It ’s a boiler driving simulator.
    The boiler includes a first branch system that serves as a path for a fluid flowing through the heat transfer section of the boiler, and a second branch system that is spatially spaced from the first branch system in the heat transfer section. , Equipped with
    The driving simulator
    The boiler heat transfer model for calculating the temporary process value generated in the heat transfer unit when the boiler is virtually operated is provided with calculation conditions including temporary input parameters that are assumed to be set in the boiler in the virtual operation. Apply and calculate the first tentative process value generated in the heat transfer section on the first branch system and the second tentative process value generated in the heat transfer section on the second branch system, respectively. , A boiler heat transfer calculation unit that outputs the first tentative process value and the second tentative process value, respectively.
    Boiler driving simulator featuring that.
  2.  請求項1に記載のボイラの運転シミュレータであって、
     前記ボイラ伝熱計算部は、前記伝熱部を前記流体の流路方向下流から上流に向かって複数のブロックに分割し、前記第1分岐系統上にある各ブロックに生じる前記第1仮プロセス値と、前記第2分岐系統上にある各ブロックに生じる前記第2仮プロセス値と、を其々演算する、
     ことを特徴とするボイラの運転シミュレータ。
    The boiler driving simulator according to claim 1.
    The boiler heat transfer calculation unit divides the heat transfer unit into a plurality of blocks from the downstream to the upstream in the flow path direction of the fluid, and the first tentative process value generated in each block on the first branch system. And the second tentative process value generated in each block on the second branch system are calculated respectively.
    Boiler driving simulator featuring that.
  3.  請求項1又は2に記載のボイラの運転シミュレータであって、
     前記計算条件は、前記仮入力パラメータと、当該仮入力パラメータを用いた数値流体力学計算を行って得られるアウトプットとが紐づけられた条件である、
     ことを特徴とするボイラの運転シミュレータ。
    The boiler operation simulator according to claim 1 or 2.
    The calculation condition is a condition in which the temporary input parameter and the output obtained by performing a computational fluid dynamics calculation using the temporary input parameter are associated with each other.
    Boiler driving simulator featuring that.
  4.  請求項3に記載のボイラの運転シミュレータであって、
     前記計算条件は、前記仮入力パラメータと、前記ボイラの周期変化又は熱量変動量の少なくとも一つを含むアウトプットとが紐づけられた条件であり、
     前記ボイラの運転シミュレータは、前記仮入力パラメータと、前記ボイラの周期変化又は熱量変動量の少なくとも一つを含むアウトプットとを前記ボイラ伝熱モデルに適用し、前記ボイラの周期変化又は熱量変動量の少なくとも一つを含む前記第1仮プロセス値及び前記第2仮プロセス値を其々演算し、其々出力する、
     ことを特徴とするボイラの運転シミュレータ。
    The boiler driving simulator according to claim 3.
    The calculation condition is a condition in which the temporary input parameter is associated with an output including at least one of the periodic change or calorific value fluctuation amount of the boiler.
    The boiler operation simulator applies the temporary input parameter and an output including at least one of the periodic change or calorific value fluctuation amount of the boiler to the boiler heat transfer model, and the periodic change or calorific value fluctuation amount of the boiler. The first tentative process value and the second tentative process value including at least one of the above are calculated and output respectively.
    Boiler driving simulator featuring that.
  5.  請求項3又は4に記載のボイラの運転シミュレータにおいて、前記仮入力パラメータを用いた数値流体力学計算を行ってアウトプットを演算し、前記仮入力パラメータと前記アウトプットとが紐づけられた少なくとも一つ以上の初期計算条件に基づいて、前記仮入力パラメータと前記アウトプットとの関係を機械学習して前記初期計算条件よりも多い追加計算条件を演算し、前記初期計算条件及び前記追加計算条件を指標データベースに記録する指標作成部を更に備え、
     前記ボイラ伝熱計算部は、前記指標データベースからボイラ伝熱計算に用いる計算条件を読み出し、前記ボイラ伝熱モデルに読み出した計算条件を適用して前記第1仮プロセス値及び前記第2仮プロセス値を演算する、
     ことを特徴とするボイラの運転シミュレータ。
    In the boiler operation simulator according to claim 3 or 4, a numerical fluid dynamics calculation using the temporary input parameter is performed to calculate an output, and at least one in which the temporary input parameter and the output are associated with each other. Based on one or more initial calculation conditions, the relationship between the temporary input parameter and the output is machine-learned to calculate additional calculation conditions larger than the initial calculation conditions, and the initial calculation conditions and the additional calculation conditions are calculated. It also has an index creation unit that records in the index database.
    The boiler heat transfer calculation unit reads out the calculation conditions used for the boiler heat transfer calculation from the index database, applies the calculation conditions read out to the boiler heat transfer model, and applies the first tentative process value and the second tentative process value. To calculate,
    Boiler driving simulator featuring that.
  6.  請求項1、2、3、4、又は5のいずれか一つに記載のボイラの運転シミュレータと、
     当該運転シミュレータが演算した前記第1仮プロセス値及び前記第2仮プロセス値の良否を評価し、当該評価結果に基づいて当該運転シミュレータがシミュレートした計算条件を選択し、選択した計算条件に含まれる仮入力パラメータを実入力パラメータとして前記ボイラの運転制御装置に出力する、
     ことを特徴とするボイラの運転支援装置。
    The boiler operation simulator according to any one of claims 1, 2, 3, 4, or 5.
    The quality of the first tentative process value and the second tentative process value calculated by the operation simulator is evaluated, and the calculation conditions simulated by the operation simulator are selected based on the evaluation results and included in the selected calculation conditions. The temporary input parameter is output to the operation control device of the boiler as an actual input parameter.
    A boiler driving support device that is characterized by this.
  7.  請求項6に記載のボイラの運転支援装置、及び前記ボイラに備えられた操作端の其々に通信接続された前記ボイラの運転制御装置であって、
     前記運転制御装置は、前記ボイラの運転支援装置から取得した前記実入力パラメータを前記操作端に設定する制御信号を、前記操作端に対して出力する、
     ことを特徴とするボイラの運転制御装置。
    The boiler operation support device according to claim 6, and the boiler operation control device that is communication-connected to each of the operation ends provided in the boiler.
    The operation control device outputs a control signal for setting the actual input parameter acquired from the operation support device of the boiler to the operation end to the operation end.
    Boiler operation control device characterized by this.
  8.  ボイラの伝熱部内を流れる流体の経路となる第1分岐系統と、前記伝熱部内において前記第1分岐系統に対して空間的に間隔を空けて配置された第2分岐系統と、を備えたボイラの運転シミュレーション方法であって、
     前記ボイラを仮想運転した際に前記伝熱部に生じる仮プロセス値を演算するためのボイラ伝熱モデルに、前記仮想運転において前記ボイラに設定されると仮定される仮入力パラメータを含む計算条件を適用し、前記第1分岐系統上にある前記伝熱部に生じる第1仮プロセス値と、前記第2分岐系統上にある前記伝熱部に生じる第2仮プロセス値と、を其々演算するステップと、
     前記第1仮プロセス値及び前記第2仮プロセス値を其々出力するステップと、
     を含むことを特徴とするボイラの運転シミュレーション方法。
    It includes a first branch system that serves as a path for fluid flowing through the heat transfer section of the boiler, and a second branch system that is spatially spaced from the first branch system in the heat transfer section. It ’s a boiler operation simulation method.
    The boiler heat transfer model for calculating the temporary process value generated in the heat transfer unit when the boiler is virtually operated is provided with calculation conditions including temporary input parameters that are assumed to be set in the boiler in the virtual operation. Apply and calculate the first tentative process value generated in the heat transfer section on the first branch system and the second tentative process value generated in the heat transfer section on the second branch system, respectively. Steps and
    A step of outputting the first temporary process value and the second temporary process value, respectively.
    A boiler operation simulation method characterized by including.
  9.  請求項8に記載のボイラの運転シミュレーション方法を、コンピュータに実行させるためのボイラの運転シミュレーションプログラム。 A boiler operation simulation program for causing a computer to execute the boiler operation simulation method according to claim 8.
  10.  請求項9に記載のボイラの運転シミュレーションプログラムを記録した記録媒体。 A recording medium on which the boiler operation simulation program according to claim 9 is recorded.
PCT/JP2020/047731 2020-01-10 2020-12-21 Boiler operation simulator, boiler operation assistance device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium with boiler operation simulation program recorded on same WO2021140900A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-003146 2020-01-10
JP2020003146A JP7426240B2 (en) 2020-01-10 2020-01-10 Boiler operation simulator, boiler operation support device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium recording the boiler operation simulation program

Publications (1)

Publication Number Publication Date
WO2021140900A1 true WO2021140900A1 (en) 2021-07-15

Family

ID=76788578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047731 WO2021140900A1 (en) 2020-01-10 2020-12-21 Boiler operation simulator, boiler operation assistance device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium with boiler operation simulation program recorded on same

Country Status (2)

Country Link
JP (1) JP7426240B2 (en)
WO (1) WO2021140900A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266408A (en) * 1993-03-12 1994-09-22 Hitachi Ltd Adaptive control method for process and control system for process
JP2000346304A (en) * 1999-06-08 2000-12-15 Hitachi Ltd Method and apparatus for predicting temperature of boiler heat transfer tube wall
JP2001041403A (en) * 1999-07-30 2001-02-13 Babcock Hitachi Kk Boiler controller
JP2006194550A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Method and apparatus for estimating generated steam of waste heat recovery boiler, and method and system for supporting maintenance plan of power generation facility
WO2019159883A1 (en) * 2018-02-13 2019-08-22 三菱日立パワーシステムズ株式会社 Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon
WO2019208773A1 (en) * 2018-04-27 2019-10-31 三菱日立パワーシステムズ株式会社 Operation assistance device for plant, operation assistance method for plant, learning model creation method for plant, operation assistance program for plant, recording medium on which operation assistance program for plant is recorded, learning model creation program for plant, and recording medium on which learning model creation program for plant is recorded

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266408A (en) * 1993-03-12 1994-09-22 Hitachi Ltd Adaptive control method for process and control system for process
JP2000346304A (en) * 1999-06-08 2000-12-15 Hitachi Ltd Method and apparatus for predicting temperature of boiler heat transfer tube wall
JP2001041403A (en) * 1999-07-30 2001-02-13 Babcock Hitachi Kk Boiler controller
JP2006194550A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Method and apparatus for estimating generated steam of waste heat recovery boiler, and method and system for supporting maintenance plan of power generation facility
WO2019159883A1 (en) * 2018-02-13 2019-08-22 三菱日立パワーシステムズ株式会社 Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon
WO2019208773A1 (en) * 2018-04-27 2019-10-31 三菱日立パワーシステムズ株式会社 Operation assistance device for plant, operation assistance method for plant, learning model creation method for plant, operation assistance program for plant, recording medium on which operation assistance program for plant is recorded, learning model creation program for plant, and recording medium on which learning model creation program for plant is recorded

Also Published As

Publication number Publication date
JP7426240B2 (en) 2024-02-01
JP2021110507A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
De Mello Boiler models for system dynamic performance studies
Montañés et al. Demonstrating load-change transient performance of a commercial-scale natural gas combined cycle power plant with post-combustion CO2 capture
Alobaid et al. Numerical and experimental study of a heat recovery steam generator during start-up procedure
Flynn et al. A drum boiler model for long term power system dynamic simulation
Zhou et al. An improved coordinated control technology for coal-fired boiler-turbine plant based on flexible steam extraction system
JP4131859B2 (en) Steam temperature control device, steam temperature control method, and power plant using them
Sreepradha et al. Mathematical model for integrated coal fired thermal boiler using physical laws
Alobaid et al. A comparative study of different dynamic process simulation codes for combined cycle power plants–Part B: Start-up procedure
Alobaid et al. Fast start-up analyses for Benson heat recovery steam generator
El Hefni et al. Modeling and Simulation of Thermal Power Plants
Kotowicz et al. The influence of economic parameters on the optimal values of the design variables of a combined cycle plant
Beiron et al. Dynamic modeling for assessment of steam cycle operation in waste-fired combined heat and power plants
Ahmed et al. Modelling and practical studying of heat recovery steam generator (HRSG) drum dynamics and approach point effect on control valves
Ata et al. Comparison and validation of three process simulation programs during warm start-up procedure of a combined cycle power plant
Liao et al. Flexible operation of large-scale coal-fired power plant integrated with solvent-based post-combustion CO2 capture based on neural network inverse control
Alamoodi et al. Nonlinear control of coal-fired steam power plants
Montañés et al. Compact steam bottoming cycles: Minimum weight design optimization and transient response of once-through steam generators
Alobaid Start-up improvement of a supplementary-fired large combined-cycle power plant
WO2021140900A1 (en) Boiler operation simulator, boiler operation assistance device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium with boiler operation simulation program recorded on same
Cafaro et al. Monitoring of the thermoeconomic performance in an actual combined cycle power plant bottoming cycle
Ghaffari et al. An optimization approach based on genetic algorithm for modeling Benson type boiler
Kim et al. Characteristics of transient operation of a dual-pressure bottoming system for the combined cycle power plant
Taimoor et al. Comprehensive dynamic modeling, simulation, and validation for an industrial boiler incident investigation
CN111737859B (en) Improved turbine unit variable-pressure operation consumption difference quantitative calculation model construction method
Deng et al. Quantitative analysis of energy storage in different parts of combined heat and power plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912257

Country of ref document: EP

Kind code of ref document: A1