JP2015072959A - 絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法 - Google Patents

絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法 Download PDF

Info

Publication number
JP2015072959A
JP2015072959A JP2013206918A JP2013206918A JP2015072959A JP 2015072959 A JP2015072959 A JP 2015072959A JP 2013206918 A JP2013206918 A JP 2013206918A JP 2013206918 A JP2013206918 A JP 2013206918A JP 2015072959 A JP2015072959 A JP 2015072959A
Authority
JP
Japan
Prior art keywords
cooler
metal plate
power semiconductor
circuit metal
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013206918A
Other languages
English (en)
Other versions
JP6259625B2 (ja
Inventor
智 谷本
Satoshi Tanimoto
谷本  智
浩二 早川
Koji Hayakawa
浩二 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Nissan Motor Co Ltd
Original Assignee
Kyocera Corp
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Nissan Motor Co Ltd filed Critical Kyocera Corp
Priority to JP2013206918A priority Critical patent/JP6259625B2/ja
Publication of JP2015072959A publication Critical patent/JP2015072959A/ja
Application granted granted Critical
Publication of JP6259625B2 publication Critical patent/JP6259625B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】温度差が大きい冷熱サイクルストレスに対して、高い耐性を有する絶縁基板と冷却器の接合構造体、接合構造体の製造方法、パワー半導体モジュール、及びパワー半導体モジュールの製造方法を提供する。【解決手段】平板形状のセラミック基板11と、該セラミック基板11の上面に接合された上部回路金属板13と、セラミック基板11の下面に接合された下部回路金属板12からなる絶縁基板200を備える。更に、金属製の冷却器100を備える。そして、下部回路金属板12の下面と冷却器100の上面を接合する接合層と、を有し、下部回路金属板12は、低熱膨張高弾性金属層を少なくとも1層備え、接合層は、融点または固相線温度が600℃以上である超高温接合層10であることを特徴とする。【選択図】 図1

Description

本発明は、温度差が大きい冷熱サイクルストレスに対して、高い耐性を有する絶縁基板と冷却器の接合構造体、及びこの接合構造体を備えるパワー半導体モジュール、接合構造体の製造方法、及びパワー半導体モジュールの製造方法に関する。
炭化珪素(SiC)や窒化ガリウム(GaN)、ダイヤモンド(C)等のワイドバンドギャップ半導体を用いたパワー半導体装置は、高い半導体接合温度(Tj)であっても、従来のシリコン(Si)やガリウム砒素(GaAs)を用いたパワー半導体装置に比べてオン抵抗が低く、高速スイッチイングが可能であるという利点がある。このため、半導体装置が小面積(大電流密度)となり、且つ、システムを構成する受動部品や冷却器の小型化を図ることができるので、小型軽量で低価格なパワーエレクトロニクスシステムが実現できると期待されている。
このようなパワーエレクトロニクスシステムを実現するためには、高い半導体接合温度Tj(例えば、最大値Tjmaxが250℃)で作動することは勿論のこと、広範囲の温度変動ΔTj(例えば、Tj=−40℃〜250℃)でも故障なく作動するパワー半導体モジュールが実現されなくてはならない。しかしながら、現在のSiパワー半導体モジュールの作動温度はTj=−40℃〜125℃であり、半導体接合温度Tjを上記のように高温まで拡張させたパワー半導体モジュールを作製することは容易でない。
このような問題を解決するため、特開2008−270353号公報(特許文献1)に記載された半導体モジュールが提案されている。該特許文献1では、下記のようなSiCパワー半導体モジュールが開示されている。即ち、該パワー半導体モジュールは、水冷ジャケットの上にMoを基材とする放熱板をネジ留めした水冷冷却器の上に、厚さ50μmのCu電極両面貼り絶縁基板(窒化珪素セラミック基板)と、半導体素子とを高温はんだで接合し、積み上げる構成としている。以下、電極両面貼り絶縁基板を単に「絶縁基板」と称することにする。このパワー半導体モジュールでは、最大半導体接合温度Tjmaxが200℃、温度範囲ΔTjが240℃、の冷熱サイクル試験で、2000サイクル程度に耐えられる信頼度を有することが開示されている。
一方、非特許文献1には、Tjmax=250℃で作動するSiCパワー半導体モジュールが開示されている。このパワー半導体モジュールは、冷却器(空冷冷却フィン)の上に厚さ0.3mmのCu電極両面貼り絶縁基板(窒化珪素セラミック基板)と、半導体素子とを高温はんだ等で接合し、積み上げる構成としている。このモジュールは、特許文献1に示されているモジュールの部品で高価であるMo放熱板を省き、絶縁基板と冷却フィンを接合した構成としている。
特開2008−270353号
谷本智ほか, Mate 2012 (2012年1月横浜) 論文集, p. 107
しかしながら、上述の特許文献1に開示されたパワー半導体モジュールにおいては、(a)放熱板を水冷ジャケットにネジ止めする冷却器構造をとっているため、放熱板と水冷ジャケットとの間に本質的に気相のギャップが生じて、この間の熱抵抗が高いという問題がある。(b)特に、放熱板と水冷ジャケットの熱膨張係数の差が大きい場合には、このギャップの幅が温度変化や冷熱サイクルの進行とともに変動して、この結果、熱抵抗が大きく変動する問題もあった。これは放熱板と冷却器がバイメタル効果によって湾曲運動することが原因である。(c)更に、Tjmax=200℃に設計限界があるため、200℃より高い温度Tjmaxで、且つ、より広いΔTjサイクル(例えば、温度範囲Tj=−40℃〜250℃(ΔTj=290℃))の環境で作動させようとすると、絶縁基板と放熱板との間のBi系はんだ接合層(Bi−CuAlMnなど)が急速に疲労して破断するという問題があった。これは接合材の基材となるBiの融点が約270℃(合金になると更に融点が下がることにも注意)とTjmaxに近い上に、Biが元来脆く延性に乏しい性質の金属であるからである。
一方、非特許文献1に開示されたパワー半導体モジュールでは、上述したように、高価な放熱板を省いた上に、両面電極貼り絶縁基板(窒化珪素)と冷却器とを高温はんだ(Au−Snはんだ)で接合する構成としているため、絶縁基板の金属電極板と冷却器との間に気相のギャップはなく、この間の熱抵抗は非常に小さなものになっている。この意味で非特許文献1のパワー半導体モジュールは上記特許文献1のパワー半導体モジュールの問題(a)と(b)を解決していると言うことができる。
しかしながら、(d)Tjmaxを250℃付近まで上げ、且つ、広いΔTjサイクルの環境で、例えば、温度範囲Tj=−40℃〜250℃の環境で作動させようとすると、特許文献1の絶縁基板と放熱器の接合はんだ層で観察された不良(上記問題(c)と同様の不良)、即ち、縁基板と冷却器との間の高温はんだ接合層(Au−Sn)が急速に疲労して破断するという問題があった。
本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、温度差が大きい冷熱サイクルストレスに対して、高い耐性を有する絶縁基板と冷却器の接合構造体、接合構造体の製造方法、パワー半導体モジュール、及びパワー半導体モジュールの製造方法を提供することにある。
上記目的を達成するため、本発明の絶縁基板と冷却器との接合構造体は、平板形状のセラミック基板、上部回路金属板、及び下部回路金属板からなる絶縁基板と、金属製の冷却器と、を備える。また、下部回路金属板の下面と冷却器の上面を接合する接合層と、を有し、下部回路金属板は、低熱膨張高弾性金属層を少なくとも1層備え、接合層は、融点または固相線温度が600℃以上である超高温接合層である。
本発明の絶縁基板と冷却器との接合構造体では、下部回路金属板に低熱膨張高弾性金属層を備え、且つ、融点または固相線温度が600℃以上である超高温接合層を用いているので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
本発明の第1実施形態に係る絶縁基板と冷却器の接合構造体の構成を示す要部断面図である。 本発明の第2実施形態に係る絶縁基板と冷却器の接合構造体の構成を示す要部断面図である。 本発明の第3実施形態に係る絶縁基板と冷却器の接合構造体の構成を示す要部断面図である。 本発明の第4実施形態に係るパワー半導体モジュールの構成を示す要部断面図である。 本発明の第5実施形態に係るパワー半導体モジュールの構成を示す要部断面図である。 本発明の第6実施形態に係るパワー半導体モジュールの構成を示す要部断面図である。 本発明に係る試験品と従来の試験品を用いた場合の試験結果を示す説明図である。
以下、本発明の実施形態を図面に基づいて説明する。なお、以下に示す絶縁基板と冷却器の接合構造体、及びこれを用いたパワー半導体モジュールの断面図において、各層の厚さは理解を促進するために誇張して記載している。
[第1実施形態に係る絶縁基板と冷却器の接合構造体]
図1は、本発明の第1実施形態に係る絶縁基板と冷却器の接合構造体1000(以下、単に「接合構造体1000」と略す)の構成を示す断面図である。第1実施形態に係る接合構造体1000は、金属製の冷却器100と、絶縁基板200と、冷却器100と絶縁基板200とを接合する超高温接合層10と、から構成されている。本発明の重要な構造上の特徴の1つである超高温接合層10は、AgとCuを基材とし、600℃以上に融点または固相線温度(溶け始める温度)を有する合金接合材(純Agも含む)を融解して形成した接合層である。超高温接合層10を形成する接合材としては、基材にInを添加した、Ag−24%、Cu−15%In合金や、基材にSnを添加した、Au−30%、Cu−10%Sn合金(mass%、以下同様)が挙げられる。なお、これ以外の組成比の合金、これ以外の元素を添加した合金を用いることも可能である。
冷却器100は、空冷、水冷の冷却方式を問わない。即ち、図1のような冷却フィン構造のものでも、また、前述した特許文献1に開示されている水冷ジャケット構造でも良い。材質は、上記した超高温接合層10の接合作業温度にて融解、変形せずに、且つ、延性が高く(高延性であり)、加工性の高い金属材料が望ましい。また、瞬時耐熱600℃以上の金属材料からなることが望ましい。製造原価が廉価で、この要件に最も適合するものとして、CuまたはCuを基材とする合金(真鍮など)を挙げることができる。
絶縁基板200は、平板形状をなすセラミック基板11と、該セラミック基板11の下面に、周知のダイレクトボンド法、或いは、活性金属接合法で接合された下部回路金属板12と、セラミック基板11の上面に、やはりダイレクトボンド法、或いは、活性金属接合法で接合された上部回路金属板13と、を有する構造をなしている。この接合層(図示省略)の融点は、前述の超高温接合層10よりも、30℃以上高いことを要件とする。ダイレクトボンド法や活性金属接合法で接合した接合層は、一般的にはこの要件を満足する。
本発明のセラミック基板11として、靭性が高い窒化珪素(SiN)が推奨される。また、アルミナ(Al2O3)や窒化アルミニウム(AlN)、ベリリア(BeO)を用いることもできる。セラミック基板11の厚みは、0.1mm〜2mmの範囲であることが望ましく、実用的には0.31mm程度の厚さにするのが好適である。なお、セラミック基板11は、複数枚重ねて設けられる場合もある。
下部回路金属板12は、融点が1350℃以上、且つ、低熱膨張を呈する高弾性金属層(低熱膨張高弾性金属層)を少なくとも1層含む単層または多層に構成されている。ここで、低熱膨張高弾性とは、室温における合成線熱膨張係数が8ppm/℃以下である金属板と定義する。下部回路金属板12に適した材料としては、単体元素材料としてMoやWが挙げられる。単体合金材料としては、CuW(焼結)やCuMo(焼結)の板材ほか、KovarやAlloy42などの板材も適している。64Fe−36Ni合金や64Fe−36Ni−5Co合金、36.5Fe−54Co−9.5Cr合金等の、超低熱膨張合金板の両面に冶金学的方法でCu板を接合させて形成したクラッド板材も下部回路金属板12として好適である。
また、前述した単体元素材料板材(MoやW)や単体合金材料板材(CuWなど)の両面に薄いCu板を冶金学的に接合させたクラッド板材も適用することができる。下部回路金属板12の厚みは実用上0.1mm〜2mmの範囲であることが望ましく、0.2mm〜1mmの範囲であることがより望ましい。
一方、上部回路金属板13として、通常のCu板を用いることをできる。しかし、絶縁基板200を作製するときに生産性の向上を図る観点と、作製後に反りが発生するという問題を軽減する観点から、上部回路金属板13は下部回路金属板12と同じ構造、且つ、同じ厚みにするのが好ましい。なお、上部回路金属板13は用途に応じてパターニングされているものとする。
次に、第1実施形態に係る接合構造体1000の製造方法について説明する。初めに、冷却器100と絶縁基板200をそれぞれ独立に準備する(準備工程)。
一例として、CuまたはCuを基材とする合金(真鍮など)で冷却器100を作製する場合で説明すると、切削、鋳造、圧延する等の周知の加工法を用いてCuまたはその合金を加工し、図1に示す如くのフィン構造の冷却器100を作製する。
一方、絶縁基板200を作製するためには、所定の材質、層構造、厚みを有する下部回路金属板12と上部回路金属板13との間に、所定の厚み、材質を有するセラミック基板11を挟持し、且つ加圧したところで、周知のダイレクトボンド法(DCB法)または活性金属接合法でセラミック基板11と下部回路金属板12、上部回路金属板13とを接合させ、これを絶縁基板200とする。
活性金属接合法を用いて接合する場合には、セラミック基板11と各回路金属板12,13との間に、接合処理前にTi−Cu−Ag等の活性金属接合材を介在させるものとする。また、ダイレクトボンド法が適用できるのは、接合面がCu箔で覆われているクラッド材回路金属板に限られる。
次いで、冷却器100と絶縁基板200を準備する準備工程が終了すると、冷却器100と絶縁基板200を十分に有機洗浄し、その後、冷却器100または絶縁基板200の接合予定部分に超高温接合剤(Ag−24%、Cu−15%In合金など)をスクリーン印刷して、オーブンで乾燥させる。即時に超高温接合剤を介在させるように、冷却器100と絶縁基板200を重ね合わせる(重ね合わせ工程)。その後、加圧した状態で、不活性ガス雰囲気または真空雰囲気で、超高温接合剤の融点よりも30℃以上高い温度まで上昇させる。その後、徐々に冷却すると、強固な超高温接合層10が形成され、図1に示した構造の接合構造体1000が完成する(接合工程)。
本発明の効果を検証するために、図7に示すように、前述の非特許文献1の構造に基づく比較例の試験品#1と本実施形態に基づく試験品#3〜#5を作製し(1品種あたり最低3個用意)、−40℃〜250℃の範囲で、冷熱サイクル試験(3000サイクル)を実施した。絶縁基板(セラミック基板)と冷却器(空冷フィン)の縦と横の寸法は20mm×18mmであり、全試験品で共通であった。冷却器100はタフピッチ銅製で、切削加工で作製し、その高さは約20mmである。絶縁基板200の上部回路金属板13、下部回路金属板12の縦と横の寸法は19mm×17mmで、各回路金属板12,13は、その縦横の中心線がセラミック基板の中心線と一致するように、セラミック基板の両面に活性金属接合法で接合されている。
比較例の試験品#1では、冷却器100と絶縁基板200とが共晶Au−Sn高温はんだ(融点280℃)で接合され、絶縁基板200の上部回路金属板13と下部回路金属板12は無酸素Cuの単板で構成されている。この2点の相違を除けば、比較例の試験品♯1の断面構造は見かけ上、図1と同じである。
また、比較例の試験品#2は、第1実施形態の効果を解析するために特別に作製した試験品である。該試験品#2では、冷却器100と絶縁基板200とが第1実施形態に基づく超高温接合層10で接合されているが、絶縁基板200の上部回路金属板13、及び下部回路金属板12は、非特許文献1の構造と同様に、無酸素Cuの単板で構成されている。
故障モードを確認するためのサーベイ冷熱サイクル試験を行った結果、試験品#1はAu−Sn高温はんだ接合層の外縁が起点となって、同はんだ層にクラックが発生し、次第に中心部に向かってクラックが進展し、遂には、絶縁基板が冷却器から完全に遊離する故障モードであることが判明した。
一方、試験品#2と第1実施形態に係る試験品♯3,♯4,♯5では、絶縁基板200の下部回路金属板12の外縁が起点となりクラックが発生し、そのクラックがセラミック基板11と下部回路金属板12との間の接合層または接合界面近傍のセラミック基板11の表面に沿って中心に向かって進展して行く故障モードが観察された。しかし、試験品♯3,♯4,♯5では、3000サイクル終了後でも絶縁基板200が冷却器100から完全に離脱するような激しい故障は観察されなかった。
こうして、比較例の試験品#1と#2と第1実施形態に係る試験品♯3,♯4,♯5の故障モードが明らかになったことを受けて、寿命を決定するための−40℃〜250℃の冷熱サイクルにて本試験を実施した。この試験で、「寿命」は「下部回路金属板の4隅コーナー部でAu−Sn高温はんだ層、または下部回路基板−セラミック基板接合層に沿って起こった上記クラックの進展が2mmに達したときのサイクル数」と定義した。ここで、クラックの検出場所をコーナー部と限定したのはクラックの発生時期が最も早く、クラックの進展速度が最も大きいからである。
試験開始後、累積20サイクル後、50サイクル後、100サイクル後、200サイクル後、500サイクル後に、これ以降は500サイクル毎に試験を中断し、その時々のクラックの発生を光学顕微鏡で仔細に観察した。試験は累積3000サイクルで打ち切った。クラックの進展の深さを光学顕微鏡で観察するのが難しい場合は、その時点で試験品を1つ抜き出し、該試験品のコーナー部分の断面電子顕微鏡観察を行い、クラックの進展の深さを計測し、寿命に達しているか否かを判断した。
図7に、寿命試験の結果(サイクル寿命)を示している。一般に、ある部品を民生や産業の製品に適用する場合、規定された冷熱サイクル試験条件で、1000サイクル以上の寿命が必要とされている。この指標に照らして、非特許文献1の方式を採用した従来技術に基づく試験品#1の結果を見ると、試験品#1の寿命20サイクルは民生や産業の製品に適用できる寿命水準に遠く及ばないことがわかる。
これに対して、本願の第1実施形態に係る各種試験品#3〜#5は、すべて寿命が1000サイクルを大きく超え、1500サイクル以上に達している。これらの事実から、第1実施形態に係る接合構造体1000は、非特許文献1で開示されている従来技術の問題点、即ち、前述した(d)絶縁基板と冷却器との間の高温はんだ接合層(Au−Sn)が急速に疲労して破断するという問題を解決している。前述したように、非特許文献1に開示された技術では、特許文献1の問題点(a)と(b)を解決したものの、(c)と同等の課題(d)については解決できなった。しかるに、本願の第1実施形態に係る接合構造体1000は、非特許文献1の従来技術の問題(d)を解決したのであるから、特許文献1の従来技術の問題点(a)〜(c)を同時に解決したと言うこともできる。
次に、本発明の第1実施形態に係る接合構造体1000の作用について説明する。第1実施形態で為した2つの構造改良のうち、超高温接合層10だけを採用した試験品#2は、試験品#1と比べると、冷熱サイクル寿命を100サイクルまで延ばすと共に、クラックの発生地点を、下部回路金属板と冷却器との接合層(試験品#1)から、セラミック基板と下部回路金属板との接合層(試験品#2)に転換させていることがわかる。
この事実から、超高温接合層10は、冷熱サイクルストレス疲労に対して非常に強い耐性を呈する作用があり、その結果として、非特許文献1(試験品#1)で問題となっていた「Au−Sn高温はんだ接合層でクラックが発生、進展する」という劣化モードを解決できる、という作用が発生したことが理解される。しかしながら、この劣化モードが解決された結果、試験品#2(寿命100サイクル)では、これまでその陰に隠れていたセラミック基板と下部回路金属板との接合層の疲労劣化モードが顕在化したと解釈すると、現象をよく説明できる。
次に、比較例の試験品#2と第1実施形態に係る試験品#3,#4の結果を比較すると、試験品#3及び#4は、故障モードが変化することなく、冷熱サイクル寿命を極めて大幅に延長させる作用があることがわかる。第1実施形態に係る試験品#3及び#4と、比較例の試験品#2との相違は、融点が1350℃以上、且つ、低熱膨張を呈する金属層を少なくとも1層含む単層または多層の低熱膨張高弾性が試作品♯3,♯4の下部回路金属板12に含まれている点である。冷却器100とセラミック基板11の中間位置にある「低熱伸縮性」の金属板が、熱伸縮し易いCu製の冷却器100と、熱伸縮し難いセラミック基板11との間で生じる大きな冷熱サイクルストレスを大略引き受け、それに耐えることによって、セラミック基板と下部回路金属板との接合層には過大な冷熱サイクルストレスが伝播しないようにしたと考えると、図7に示した結果を合理的に説明できる。
このようにして、第1実施形態に係る接合構造体1000では、下部回路金属板12に、低熱膨張高弾性金属層を少なくとも1層備え、且つ、接合層として、融点または固相線温度が600℃以上である超高温接合層を用いるので、従来よりも高いTjmax、広いΔTjサイクルの環境下においても、高い信頼性で機能する接合構造体を提供できる。従って、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
また、下部回路金属板12は、合成線熱膨張係数が8ppm/℃以下である材料を用いるので、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。更に、低熱膨張高弾性金属層は、Mo、W、CuW、CuMo、Kovar、Alloy4、64Fe−36Ni合金、63Fe−32Ni−5Co合金、36.5Fe−54Co−9.5Cr合金、の何れかの金属材料から選ばれた1層以上の板材で形成されるので、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。
また、下部回路金属板12の厚みが、0.1mm〜2mmの範囲であるので、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。更に、超高温接合層10として、AgとCuを基材する合金、またはAgを用いることにより、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。
また、超高温接合層10として、Agを24%、Cuを15%含むIn合金、及び、Auを30%、Cuを10%含むSn合金、のうちのいずれかを用いることにより、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。更に、セラミック基板11を、窒化珪素(SiN)、アルミナ(Al2O3)、窒化アルミニウム(AlN)、ベリリア(BeO)から選ばれた1つとすることにより、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。
また、セラミック基板11の厚みを、0.1mm〜2mmの範囲とすることにより、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。更に、冷却器100として、瞬時耐熱600℃以上で、且つ、高延性の金属材料を用いることにより、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。
また、冷却器100として、CuまたはCuを基材とする合金を用いることにより、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。
[第2実施形態に係る絶縁基板と冷却器の接合構造体]
ある部品を、屋外の酷環境で使用される製品に適用する場合、規定された冷熱サイクル試験条件下で、その部品には寿命3000サイクル以上の寿命を達成することが信頼性の目安とされている。第2実施形態及び後述の第3実施形態では、この条件を満足するようにしている。
図2は、本発明の第2実施形態に係る接合構造体2000の構成を示す要部断面図である。前述した図1と同一部分には同一符号を付して、説明を省略する。第2実施形態に係る接合構造体2000と、前述した第1実施形態に係る接合構造体1000とで相違する点は、絶縁基板201の下部回路金属板12aのみである。以下では、下部回路金属板12aの付近についてのみ説明する。下部回路金属板12aは、融点が1350℃以上、且つ、低熱膨張を呈する金属層を少なくとも1層含む単層または多層の低熱膨張高弾性から成っている。
この低熱膨張高弾性の定義は、下部回路金属板12aに適する材料、及び厚みも前述した第1実施形態の下部回路金属板12と同一であるので説明を省略する。また、下部回路金属板12aは、図2から明らかなように、断面の外形が逆台形(セラミック面が上底、超高温接合面が下底)に形成されている。これは、下部回路金属板12aの底面の端部に逆テーパ部14が形成されていると表現することもできる。即ち、下部回路金属板12aの周縁は、該下部回路金属板12aの、超高温接合層10との接合面を下側の底面とした逆テーパ形状となっている。
端部に逆テーパ部14が形成された結果、第2実施形態に係る接合構造体2000を上部から透視した場合、下部回路金属板12aと冷却器100との接合面(超高温接合層10)が、セラミック基板11と下部回路金属板12aとの接合面の周縁よりも、テーパの水平成分の分だけ内部に後退した配置となる。テーパ角度(テーパ無しを90°とする)は、0°に近い方が冷熱サイクル信頼性には良い結果を与える。しかし、超高温接合層10との有効面積が減少して放熱性が低下するという別の問題が発生するので、実用上はテーパ角度が35°〜85°の範囲が望ましく、45°〜75°の範囲がより一層望ましい。
次に、図2に示した第2実施形態に係る接合構造体2000の製造方法について説明する。初めに、冷却器100と絶縁基板201をそれぞれ独立に準備する。
冷却器100の作製方法は、第1実施形態で示した作製方法と同一であるので説明を省略する。絶縁基板201を作製するためには、まず、所定の材質、層構造、厚みを有する下部回路金属板12aと、上部回路金属板13を用意する。ここで、下部回路金属板12aは、端部断面に逆テーパ部14を備えるように加工される(加工工程)。上部回路金属板13についても同様のテーパ形状としても良い。
逆テーパ部14の形成方法は、切削加工が最も一般的である。これ以外に、上部回路金属板13が化学的に活性な材料である場合には、ウェットエッチングで回路パターンを形成するときにエッチング条件を適正化して逆テーパ部14を形成することもできる。下部回路金属板12aと上部回路金属板13が用意できたら、第1実施形態に示した製造過程と同様に、下部回路金属板12aと上部回路金属板13の間に所定の厚み、材質のセラミック基板11を挟持し、且つ加圧する。そして、周知のダイレクトボンド法、または活性金属接合法でセラミック基板11と下部回路金属板12a、上部回路金属板13とを接合させ、絶縁基板201とする。
その後、冷却器100と絶縁基板201を超高温接合剤(上記Ag−24%、Cu−15%In合金など)で接合させて、超高温接合層10を形成する。その後、接合構造体2000を完成させるまでの製造工程は、前述した第1実施形態の作製方法と同様であるので説明を省略する。
第2実施形態に係る接合構造体2000の効果を検証するために、第1実施形態に係る接合構造体1000の試験品#4(図7参照)の下部回路金属板12(CICクラッド板、厚み0.35mm)にウェットエンチングで約60°の逆テーパをつけた第2実施形態に係る接合構造体2000の試験品#6を作製して、−40℃〜250℃冷熱サイクル寿命試験(3000サイクル打ち切り)を実施した。試験法は、前述した第1実施形態で詳述したので説明を省略する。
その結果、クラックの発生、進展を含むすべての不良を発生させることなく、所望の3000サイクルを終了することに成功した。この結果は、図7に示す通りである。なお、セラミック基板をAlN基板とし、下部回路金属板12aをCICクラッド材、またはMoとした試験品でも3000サイクル超を達成できる。
下部回路金属板12aに逆テーパ部14を形成した試験品#6が、逆テーパ部14を形成しない試験品#4より冷熱サイクル寿命が延びた理由は、定性的に以下のようにして説明される。試験品#4では、熱伸縮し易いCu製冷却器100と熱伸縮し難いセラミック基板11との間で生起する大きな冷熱サイクルストレスを、下部回路金属板12に含まれる低熱膨張高弾性が減殺して、サイクル寿命を延ばすことができる。しかし、減殺しきれない残余の冷熱サイクルストレスは、セラミック基板11と下部回路金属板12との界面に印加され、サイクル数の経過と共に疲労が進む。特に、水平構造が不連続となるセラミック基板11と下部回路金属板12との接合部の周縁は構造的に脆い上に、残余ストレスが最も集中し易い場所でもあるから、クラックの起点となり易く、ひと度クラックが生じると、速い速度で進展し易い性質を帯びている。
これに対して、第2実施形態に係る試験品#6の下部回路金属板12aにおいては、逆テーパ部14が接合周縁部に集中する残余ストレスを分散させ和らげる効果がある。これに加えて、下部回路金属板12aの周縁部は、逆テーパ部14の傾斜によって薄くなっていて、クラックが発生し難くなっている。これら2つの効果が相乗的に作用し、クラックが発生をするサイクル数を、3000サイクル以上にさせたものと考えられる。
このようにして、第2実施形態に係る絶縁基板と冷却器の接合構造体2000では、下部回路金属板12の周縁が、該下部回路金属板12の、超高温接合層10との接合面を下側の底面とした逆テーパ形状となっている。即ち、逆テーパ部14が形成されている。そして、該逆テーパ部14により、接合周縁部に集中する残余ストレスを分散させるので、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。
また、下部回路金属板の周縁に形成される逆テーパ部14のテーパ角度を、35°〜85°の範囲とすることにより、温度差が大きい冷熱サイクルストレスに対して、より一層耐性を高めることが可能となる。
[第3実施形態に係る絶縁基板と冷却器の接合構造体]
図3は、第3実施形態に係る接合構造体3000の構成を示す要部断面図である。前述した図1と同一部分には同一符号を付して、説明を省略する。第3実施形態に係る接合構造体3000は、第1実施形態に係る接合構造体1000と同様に、基本構造は、冷却器101と、絶縁基板200と、冷却器101と絶縁基板200とを接合する超高温接合層10と、から構成されている。
冷却器101は、空冷、水冷の冷却方式を問わない。図3のような冷却フィン構造のものでも、特許文献1記載の水冷ジャケット構造でもよい。材質は、超高温接合層10の接合作業温度に耐え(融解したり変形したりしない)、且つ、高延性であり加工性の高い金属材料が望ましい。製造原価が低くこの要件に最も適合するのは、CuまたはCuを基材とする合金(真鍮など)である。図1に示した冷却器100と対比すると、第3実施形態に係る接合構造体3000では、冷却器101の上面に台座15が設けられている点で相違する。この台座15は、後から接合するのではなく、冷却器101と一体化されたものである。台座15の高さは0.1mm〜1mmの範囲であることが望ましく、0.3mm〜0.6mmの範囲であることが一層望ましい。
台座15の形状は、平面視した際に、下部回路金属板12の形状と縮小相似形にあり、両者の重心と中心線が一致するように(言い換えると、等角写像的関係に)突き合わされて超高温接合層10によって強固に接合されている。
符号16は、台座15と接合しない下部回路金属板12の非接合領域である。上面から眺めた非接合領域16の形状は、等幅帯状となる。非接合領域16(等幅帯状非接合領域)の幅は、下部回路金属板12の厚みを基準に、±0.2mm以内の範囲であることが望ましい。例えば、絶縁基板200の下部回路金属板12の厚みが0.35mmのとき非接合領域16の幅は、0.35±0.2mm(=0.15mm〜0.55mm)の範囲とする。
次に、図3に示した第3実施形態に係る接合構造体3000の製造方法を説明する。初めに、冷却器101と絶縁基板200をそれぞれ独立に準備する。CuまたはCuを基材とする合金(真鍮など)を用いて冷却器101を作製する場合を例に説明すると、切削、鋳造、圧延するなどの周知の加工法を用いて、Cuまたはその合金を加工し、図3のような台座15を備えたフィン構造の冷却器101を作製する。
絶縁基板200の作製方法は、前述した第1実施形態で示した接合構造体1000の製造方法で説明したので省略する。
冷却器101と絶縁基板200が準備できたところで、冷却器101と絶縁基板200を十分に有機洗浄した後、冷却器100の接合予定面に超高温接合剤(Ag−24%、Cu−15%In合金など)を塗布して、オーブンで乾燥させる。即時に、超高温接合剤を介在させて、冷却器101と絶縁基板200を重ね合わせ、加圧した状態で、不活性ガス雰囲気または真空雰囲気で、超高温接合剤の融点よりも30℃以上高い温度まで上昇させ、徐々に冷却する。すると、強固な超高温接合層10が形成され、図3に示した構造の接合構造体3000が完成する。下部回路金属板12の内周に上述した等幅帯状の非接合領域16を作成するために、超高温接合剤の接合形成にあたっては、アライメント手段としてのカーボン治具を使用することが推奨される。
第3実施形態に係る接合構造体3000の効果を次のようにして検証した。即ち、図7に示した第1実施形態に係る接合構造体1000の試験品#4の冷却器100を、台座15を備えた冷却器101に変更して第3実施形態に係る接合構造体3000の試験品#7を作成した。そして、この試作品♯7について、−40℃〜250℃の冷熱サイクル寿命試験(3000サイクル打ち切り)を実施した。試験品#7の台座15の高さは、0.3mm、非接合領域16の幅は0.3mmであった。試験結果は、セラミック基板11と下部回路金属板12との接合部にも、下部回路金属板12と台座15との接合部にも、いかなるクラックをも発生させることなく所望の3000サイクルを終えることができた。なお、セラミック基板をAlN基板とし、下部回路金属板12をCICクラッド材またはMoとした試験品でも同様に3000サイクル超を達成できた。
次に、第3実施形態に係る接合構造体3000において、上記の効果が得られる理由について説明する。
一般に、セラミック基板とそれより小さな寸法の回路金属板との接合部において、最も破断しやすい場所は、回路金属板の周縁である。また一般に、膨張率の小さなセラミック基板と膨張率の大きなバルク金属基板(冷却器101に相当)とを、両基板より面積が小さく、且つ、両基板膨張率の間の合成膨張率を有する薄い金属板片(下部回路金属板12に対応)を介して接合したとき、各温度において最も応力が大きくなるのは、薄い金属板片周縁の接合界面付近である。図1を見れば分かるように、前述した第1実施形態に係る接合構造体1000は、セラミック基板の接合部の破断し易い場所と、応力が集中する位置がx−y平面状で一致している。
しかし、第3実施形態に係る接合構造体3000では、冷却器101に下部回路金属板12よりも小面積の台座15を設ける構成としているため、上述した熱応力が集中し易い場所は台座15の周縁部である。一方、セラミック基板11の接合部が最も破断し易い下部回路金属板12の周縁部が、熱応力の最も集中し易い台座15の周縁部と非接合領域16の幅だけ離れる構造になっている。このため、第1実施形態と比べると、下部回路金属板12周縁部の熱応力が相対的に弱まり、結果として、この部分での熱疲労の進行が遅くなり、クラックの発生の時期が少なくとも3000サイクル以上に延びたと考えられる。
このようにして、第3実施形態に係る絶縁基板と冷却器の接合構造体3000では、冷却器101の、下部回路金属板12との接触側となる上面には、下部回路金属板12に対して平面視した際に、縮小相似形状をなす台座15が形成され、該台座15と下部回路金属板12とが、等角写像的関係を保ちつつ超高温接合層10を介して接合された構成とされるので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
更に、台座15と下部回路金属板12の接合で、該下部回路金属板12の内縁に生じた等幅帯状非接合領域の幅を、該下部回路金属板12の厚みを基準に±0.2mm以内の範囲とすることにより、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
[第4実施形態に係るパワー半導体モジュール]
図4は、本発明の第4実施形態に係るパワー半導体モジュール4000の構成を示す要部断面図である。第4実施形態に係るパワー半導体モジュール4000は、前述した第1実施形態に係る接合構造体1000を備える。更に、該接合構造体1000の上部回路金属板13の上に載置され、且つ、耐熱接合層20を介して上部回路金属板13の一の要素の上面に電気的、機械的に接合されたワイドバンドギャップ半導体を用いたパワー半導体装置チップ21を備える。また、該パワー半導体装置チップ21の上部電極(図示省略)と、上部回路金属板13の他の要素を電気的に接続するボンディングワイヤ22(空間結線手段)を備えている。
空間接合手段としては、ボンディングワイヤ22以外に、ボンディングリボン、クリップリードを用いることもできる。図4に示す接合構造体1000は第1実施形態に示した接合構造体1000と同一であるので、説明を省略する。
パワー半導体装置チップ21としては、炭化珪素(SiC)や窒化ガリウム(GaN)、ダイヤモンド(C)、酸化ガリウム(Ga2O3)等のワイドバンドギャップ半導体を主材料として用いることができる。但し、これらに限定されるものではない。パワー半導体装置チップ21の表面には、ワイヤボンドを可能とする厚いAl膜(Alパッド、図示省略)が形成され、裏面には、金属接合を可能とするTi/Ni/Agなどの実装電極(図示省略)が形成されている。
耐熱接合層20の接合材料は、融点、固相線温度、及び接合プロセス温度のうちの少なくとも1つが、Tjmax(パワー半導体装置チップ21の最大作動温度)よりも30℃以上高く、且つ、パワー半導体装置チップ21のアセンブリプロセス耐熱温度(瞬時耐熱温度)Tpmax以下である金属または合金材料を用いることが望ましい。いま、Tjmax=250℃、Tpmax=450℃とすると、この要件に適合する材料として、例えば、Au−Snはんだ、Au−Geはんだ、Au−Siはんだ、Zn−Alはんだ、AgやAu、Cuなどのナノ粒子(またはナノロッド、ナノフレーク)材などが挙げられる。しかし、前記条件を満たせば、これ以外の材料を使用することも可能である。
ボンディングワイヤ22は、周知のSiパワー半導体モジュールのワイヤと同じAlワイヤ(合金を含む)を用いることができる。Cuワイヤの外周を厚いAl膜で被覆したAlクラッドCuワイヤも用いることができる。Auワイヤは高温でAlパッドと反応してパープルプラーク不良を短時間に発生するので、その使用は望ましくない。ワイヤの径は、50μm〜600μmの範囲であることが望ましく、100μm〜350μmの範囲であることがより望ましい。
第1実施形態にて示した接合構造体1000の上部回路金属板13の表面には、厚いNiめっき(図示省略)が施されている。Niめっきの上に薄いAuめっき(図示省略)を施すのが望ましい。Niめっきの役割は、高温雰囲気から起こる上部回路金属板13の表面の激しい酸化を防ぐことと、高温はんだなどでパワー半導体装置チップ21を接合するとき(耐熱接合層20を形成するとき)接合材の濡れ性を良くすることと、サービス期間中に耐熱接合層20と上部回路金属板13基材との間で起こる反応を抑止することが目的である。薄いAuめっきの役割は、耐熱接合層20形成までの暫時、Niめっき表面が酸化するのを防止すること、耐熱接合層20形成のときに接合材の濡れ性を促進することが目的である。
次に、第4実施形態に係るパワー半導体モジュール4000の製造方法について説明する。初めに、第1実施形態にて示した製造方法で説明した通りの製造工程で、接合構造体1000を作製する。
続いて、接合構造体1000をきれいに洗浄し、該接合構造体1000の金属部分表面に形成された自然酸化膜を酸で除去する。更に、金属部分表面に無電解めっき法ではじめにNiめっき(詳細には、Ni−Pめっき、またはNi−Bめっき)を被覆する(被覆工程)。次いで、Auめっきを被覆する。ここで金属部分とは、上部回路金属板13及び冷却器100のことである。Niめっきの厚みは、0.5μm〜15μmの間が望ましく、3μm〜7μmの範囲がより望ましい。Auめっきの厚みは0.01μm以上であればよい。本実施形態において、Ni/Auめっきが必須なのは絶縁基板200の上部回路金属板13の表面だけであるから、めっきの材料コストを下げる観点から冷却器100の表面に付着しないようにして、Ni/Auめっきをしてもよい。
Ni/Auめっきが終了したところで、ワイドバンドギャップのパワー半導体装置チップ21と接合構造体1000をアセトン、イソプロピルアルコール等の有機溶剤で超音波洗浄し、これらの部品の表面に付着している汚染物を除去する。また、耐熱接合層20を形成するもとになる接合材料が板状の固体である場合には、該接合材料も同様にして洗浄する。
続いて、減圧リフロー装置のリフロー台に、接合構造体1000を設置し、上部回路金属板13の所定の位置に、耐熱接合層20を形成するための耐熱接合材料、例えば、共晶Au−Ge高温はんだを載置する。もし、耐熱接合材料がペースト状のものである場合は、シリンジ等を利用して所定の位置にはんだペーストを滴下する。そして、耐熱接合材料の上にパワー半導体装置チップ21を置き、静止させる。
ここで、上部回路金属板13の接合させるべき位置に耐熱接合材料とパワー半導体装置チップ21を正確に載置すると共に、リフロープロセス(熱プロセス)中のパワー半導体装置チップ21の位置ずれを防止するために、テンプレート式カーボン治具を使用することが望ましい。
上記準備が終了したならば、リフロー工程を実行する。初めに、減圧リフロー装置の扉を閉鎖し、試料室の排気を行う。試料室内の圧力が5ミリバール以下になったら、不活性ガスを導入する。この操作を数回行い、試料室内の空気を不活性ガスで置換する。これにより、試料室は不活性ガスで充満することになる。
そして、リフロー台、或いは試料室全体を加熱して、上記各部品の温度を概ね200℃に昇温し、約2分間この温度を保持する。このとき、蟻酸蒸気を含む不活性ガスを導入して汚染有機物の除去を促進してもよい。
その後、不活性ガス導入を停止し、排気を再開して試料室を5ミリバール以下に減圧すると共に、リフロー台(または試料室全体)を更に加熱して、接合構造体1000と耐熱接合材料とパワー半導体装置チップ21を耐熱接合材料の融点より約30℃高い温度(共晶Au−Ge高温はんだの場合は約400℃)まで昇温させ、リフローさせる。この温度は、パワー半導体装置チップ21の瞬時耐熱温度よりも低い温度領域とする。保持時間は約1分である。
リフローが終了したら、試料室に不活性ガスを導入し降温を開始する。チャンバ内部の温度が十分低い温度まで下がったところで、完成品、即ち、第4実施形態に係るパワー半導体モジュール4000をリフロー装置から取り出す。
最後にワイヤボンダーを用いて、ボンディングワイヤ22(Alワイヤなど)でパワー半導体装置チップ21のAlパッドと上部回路金属板13(或いは、モジュール外のリード端子など)の所定の位置を電気的に結合する(電気接続工程)。その結果、第4実施形態に係るパワー半導体モジュール4000が完成する。
本実施形態の効果を検証するために、第4実施形態に係るパワー半導体モジュール4000の試験品#8を作製して、−40℃〜250℃冷熱サイクル試験(3000サイクル)を実施した。冷熱サイクル試験の方法は第1実施形態で説明した通りである。図7に示すように、試験品#8は、第1実施形態に係る接合構造体の検証に作製した試験品#4の上部回路金属板13片と、市販のSiC半導体ショットキーバリアダイオードチップ(定格:耐圧600V、12A)を、共晶Au−Ge高温はんだ(融点356℃)で接合させて、耐熱接合層20とする。更に、SiC半導体ショットキーバリアダイオードチップのAlパッド(アノード)と上部回路金属板13を、直径200μmのAlボンディングワイヤを2本で接続したものとなっている。
試験結果は、図7の試験品#8に示した通りであり、試験品#4と同様であった。即ち、第4実施形態に係るパワー半導体モジュール4000の寿命は、2500サイクル、故障モードは、下部回路金属板12とセラミック基板11との接合層の周縁を起点とする接合層に沿ったクラック進展であった。接合層のクラックの原因、即ち、熱応力変化による接合層の疲労は、全体に占める体積が格段に大きい冷却器100と絶縁基板200の作用が支配するので、この結果は当然の結果である。
このように、第4実施形態に係るパワー半導体モジュール4000は、寿命2500サイクルを達成している。これらの事実から、非特許文献1で開示されている従来のパワー半導体モジュールの問題点である、(d)絶縁基板と冷却器との間の高温はんだ接合層(Au−Sn)が早期に疲労して破断するという問題を解決している、と言うことができる。冒頭で説明したように、非特許文献1では、特許文献1の問題点(a)と(b)を解決できるものの、非特許文献1の課題(d)に等しい課題(c)は解決できなかった。しかるに、第4実施形態に係るパワー半導体モジュール4000は、非特許文献1の問題(d)を解決したのであるから、特許文献1の問題点(a)〜(c)をも同時に解決した、と言うこともできる。
このようにして、第4実施形態に係るパワー半導体モジュール4000では、接合構造体として、第1実施形態に示した接合構造体1000を用いている。前述したように、接合構造体1000は、下部回路金属板12に、低熱膨張高弾性金属層を少なくとも1層備え、且つ、接合層として、融点または固相線温度が600℃以上である超高温接合層を用いているので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
また、パワー半導体装置チップ21は、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンド(C)、酸化ガリウム(Ga2O3)の少なくとも一つを主材料とするので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
更に、耐熱接合層20は、融点、固相線温度、接合プロセス温度、のうちの少なくとも一つが、パワー半導体装置チップ21の最大作動温度よりも30℃以上高く、且つ、パワー半導体装置チップ21のアセンブリプロセス耐熱温度以下である金属、または合金を原料として形成されるので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
また、耐熱接合層20は、Au−Snはんだ、Au−Geはんだ、Au−Siはんだ、Zn−Alはんだ、から選ばれた1つ、または、AgまたはAuまたはCuのナノ粒子、またはナノロッド、またはナノフレーク材から選ばれた1つ、を原料として形成された層であるので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
更に、空間結線手段は、ボンディングワイヤ、ボンディングリボン、及びクリップリードから選ばれた1つであるので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。また、空間結線手段の材料は、AlまたはAlの合金、或いは、Cu母材の外周をAl膜で被覆したAlクラッドCu、のいずれかであるので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
更に、ボンディングワイヤの直径を、50μm〜600μmの範囲とすることにより、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。また、絶縁基板と冷却器の接合構造体の、上部回路金属板の表面は、Niめっきで覆われるので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
更に、Niめっきの厚みを0.5μm〜15μmの範囲することにより、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。また、リフロー工程は、耐熱接合材料の融点よりも30℃以上高く、且つ、パワー半導体装置チップ21の瞬時耐熱温度よりも低い温度領域で実施されるので、温度差が大きい冷熱サイクルストレスに対して、耐性を高めることが可能となる。
[第5実施形態に係るパワー半導体モジュール]
図5は、本発明の第5実施形態に係るパワー半導体モジュール5000の構成を示す要部断面図である。第5実施形態に係るパワー半導体モジュール5000は、前述の第2実施形態に係る接合構造体2000と、該接合構造体2000の上部回路金属板13の上に載置され、且つ、耐熱接合層20を介して上部回路金属板13に電気的、機械的に接合されたワイドバンドギャップ半導体を用いたパワー半導体装置チップ21を備えている。更に、該パワー半導体装置チップ21の上部電極と上部回路金属板13の他の要素を電気的に接続するボンディングワイヤ22を備えている。接合構造体2000の構造及びその製造方法は、第2実施形態にて説明したので、ここでの説明を省略する。
第5実施形態の効果を検証するために、図7に示すように、第5実施形態に係るパワー半導体モジュール5000の試験品#9を作製して、−40℃〜250℃の冷熱サイクル試験(3000サイクルで試験打ち切り)を実施した。冷熱サイクル試験の方法は第1実施形態で説明した通りである。試験品#9は、第2実施形態に係る接合構造体2000の検証に作製した試験品#6の上部回路金属板13片と市販のSiC半導体ショットキーバリアダイオードチップ(定格:耐圧600V、12A)を共晶Au−Ge高温はんだ(融点356℃)で接合させて耐熱接合層20とする。そして、SiC半導体ショットキーバリアダイオードチップのAlパッド(アノード)と上部回路金属板13を直径200μmのAlボンディングワイヤ2本で接続したものとなっている。
試験品#9の試験結果は、図7に示したように、寿命は3000サイクル超で、試験内に不良は発生しなかった。この結果は、前記接合構造体の試験品#6の結果と同じである。これら事実から、第5実施形態に係るパワー半導体モジュール5000は、非特許文献1で開示されている従来パワー半導体モジュールの問題点である、(d)絶縁基板と冷却器との間の高温はんだ接合層(Au−Sn)が早期に疲労して破断するという問題を解決している、また、上述の第4実施形態の効果の説明した内容と同じ理由で、第5実施形態に係るパワー半導体モジュール5000は、特許文献1の従来技術の問題点(a)〜(c)をも同時に解決した、と言うことができる。
第5実施形態に係るパワー半導体モジュール5000の作用は、第2実施形態に係る接合構造体2000で説明した内容と同様であるので、説明を省略する。
[第6実施形態に係るパワー半導体モジュール]
図6は、本発明の第6実施形態に係るパワー半導体モジュール6000の構成を示す要部断面図である。第6実施形態に係るパワー半導体モジュール6000は、前述した第3実施形態に係る接合構造体3000と、該接合構造体3000の上部回路金属板13の上に載置され、且つ、耐熱接合層20を介して該上部回路金属板13に電気的、機械的に接合されたワイドバンドギャップ半導体を用いたパワー半導体装置チップ21を備える。また、該パワー半導体装置チップ21の上部電極(図示省略)と上部回路金属板13の他の要素を電気的に接続するボンディングワイヤ22を備えている。
接合構造体3000の構造及びその製造方法については、第3実施形態で説明したので、ここでの説明を省略する。
第6実施形態の効果を検証するために、図7に示すように、第6実施形態に係るパワー半導体モジュール6000の試験品#10を作製して、−40℃〜250℃の冷熱サイクル試験(3000サイクルで試験打ち切り)を実施した。冷熱サイクル試験の方法は第1実施形態で説明した通りである。試験品#10は、第3実施形態に係る接合構造体3000の検証に作製した試験品#7の上部回路金属板13片と市販のSiC半導体ショットキーバリアダイオードチップ(定格:耐圧600V、12A)を共晶Au−Ge高温はんだ(融点356℃)で接合させて耐熱接合層20とする。そして、SiC半導体ショットキーバリアダイオードチップのAlパッド(アノード)と上部回路金属板13を直径200μmのAlボンディングワイヤ2本で接続したものとなっている。
試験品#10の試験結果は、図7に示したように、寿命は3000サイクル超で、試験が終了しても不良は発生しなかった。この結果は、前述した試験品#7の結果と同じである。これら事実から、第6実施形態に係るパワー半導体モジュール6000は、非特許文献1で開示されている従来パワー半導体モジュールの問題点、(d)絶縁基板と冷却器との間の高温はんだ接合層(Au−Sn)が早期に疲労して破断するという問題を解決している、また、前述した4実施形態の効果で示した理由と同様の理由により、第6実施形態に係るパワー半導体モジュール6000は、特許文献1の従来技術の問題点(a)〜(c)をも同時に解決した、と言うことができる。
以上、本発明の、絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。
本発明は、温度差が大きい冷熱サイクルストレスに耐性の高い接合構造体を提供する上で有用である。
10 超高温接合層
11 セラミック基板
12,12a 下部回路金属板
13 上部回路金属板
14 逆テーパ部
15 台座
16 非接合領域
20 耐熱接合層
21 パワー半導体装置チップ
22 ボンディングワイヤ(空間結線手段)
100,101 冷却器
200,201 絶縁基板
1000,2000,3000 絶縁基板と冷却器との接合構造体
4000,5000,6000 パワー半導体モジュール

Claims (27)

  1. 平板形状のセラミック基板と、該セラミック基板の上面に接合された上部回路金属板と、前記セラミック基板の下面に接合された下部回路金属板と、からなる絶縁基板と、
    金属製の冷却器と、
    前記下部回路金属板の下面と前記冷却器の上面を接合する接合層と、を有し、
    前記下部回路金属板は、低熱膨張高弾性金属層を少なくとも1層備え、
    前記接合層は、融点または固相線温度が600℃以上である超高温接合層であることを特徴とする絶縁基板と冷却器の接合構造体。
  2. 前記下部回路金属板は、合成線熱膨張係数が8ppm/℃以下であることを特徴とする請求項1に記載の絶縁基板と冷却器の接合構造体。
  3. 前記低熱膨張高弾性金属層は、Mo、W、CuW、CuMo、Kovar、Alloy4、64Fe−36Ni合金、63Fe−32Ni−5Co合金、36.5Fe−54Co−9.5Cr合金、の何れかの金属材料から選ばれた1層以上の板材で形成されることを特徴とする請求項1または請求項2に記載の絶縁基板と冷却器の接合構造体。
  4. 前記下部回路金属板の厚みは、0.1mm〜2mmの範囲であること特徴とする請求項1〜請求項3のいずれか1項に記載の絶縁基板と冷却器の接合構造体。
  5. 前記超高温接合層は、AgとCuを基材する合金、またはAgであることを特徴とする請求項1〜請求項4のいずれか1項に記載の絶縁基板と冷却器の接合構造体。
  6. 前記超高温接合層は、Agを24%、Cuを15%含むIn合金、及び、Auを30%、Cuを10%含むSn合金、のうちのいずれかであることを特徴とする請求項5に記載の絶縁基板と冷却器の接合構造体。
  7. 前記セラミック基板は、窒化珪素(SiN)、アルミナ(Al2O3)、窒化アルミニウム(AlN)、ベリリア(BeO)から選ばれた1つであることを特徴とする請求項1〜請求項6のいずれか1項に記載の絶縁基板と冷却器の接合構造体。
  8. 前記セラミック基板の厚みは0.1mm〜2mmの範囲であることを特徴とする請求項1〜請求項7のいずれか1項に記載の絶縁基板と冷却器の接合構造体。
  9. 前記冷却器は、瞬時耐熱600℃以上で、且つ、高延性の金属材料からなることを特徴とする請求項1〜請求項8のいずれか1項に記載の絶縁基板と冷却器の接合構造体。
  10. 前記冷却器は、Cu、またはCuを基材とする合金からなることを特徴とする請求項9に記載の絶縁基板と冷却器の接合構造体。
  11. 前記下部回路金属板の周縁は、該下部回路金属板の、前記超高温接合層との接合面を下側の底面とした逆テーパ形状となっていることを特徴とする請求項1〜請求項10のいずれか1項に記載の絶縁基板と冷却器の接合構造体。
  12. 前記下部回路金属板の周縁に形成されるテーパ形状のテーパ角度は、35°〜85°の範囲であることを特徴とする請求項11に記載の絶縁基板と冷却器の接合構造体。
  13. 前記冷却器の、前記下部回路金属板との接触側となる上面には、前記下部回路金属板に対して平面視で縮小相似形状をなす台座が形成され、該台座と前記下部回路金属板とが、等角写像的関係を保ちつつ前記超高温接合層を介して接合された構成であることを特徴とする請求項1〜請求項10のいずれか1項に記載の絶縁基板と冷却器の接合構造体。
  14. 前記台座と前記下部回路金属板の接合で、該下部回路金属板の内縁に生じた等幅帯状非接合領域の幅は、該下部回路金属板の厚みを基準に±0.2mm以内の範囲であることを特徴とする請求項13に記載の絶縁基板と冷却器の接合構造体。
  15. 平板形状のセラミック基板、該セラミック基板の上面に接合された上部回路金属板、及び、前記セラミック基板の下面に接合された下部回路金属板からなる絶縁基板と、金属製の冷却器と、を独立に準備する準備工程と、
    前記絶縁基板と前記冷却器を、超高温接合剤を介在させて重ね合わせる重ね合わせ工程と、
    重ね合わせた絶縁基板と冷却器を加圧した状態で、不活性ガス雰囲気、或いは真空雰囲気で前記超高温接合剤の融点よりも30℃以上高い温度まで上昇させ、その後、徐々に冷却する接合工程と、
    を備えたことを特徴とする絶縁基板と冷却器の接合構造体の製造方法。
  16. 前記準備する工程の後に、前記下部回路金属板の周縁の下側の底面を、切削加工、またはウェットエッチングのいずれかにより、逆テーパ形状に加工する加工工程を備えたことを特徴とする請求項15に記載の絶縁基板と冷却器の接合構造体の製造方法。
  17. 請求項1〜請求項14のいずれか1項に記載の絶縁基板と冷却器の接合構造体と、
    前記絶縁基板と冷却器の接合構造体に設けられる上部回路金属板の、一の要素の上面に設けられるパワー半導体装置チップと、
    前記上部回路金属板の上面と、前記パワー半導体装置チップを、電気的に且つ機械的に接合する耐熱接合層と、
    前記パワー半導体装置チップの上部電極と、前記上部回路金属板の他の要素と、を電気的に接続する空間結線手段と、
    を備えたことを特徴とするパワー半導体モジュール。
  18. 前記パワー半導体装置チップは、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンド(C)、酸化ガリウム(Ga2O3)の少なくとも一つを主材料とすることを特徴とする請求項17に記載のパワー半導体モジュール。
  19. 前記耐熱接合層は、融点、固相線温度、接合プロセス温度、のうちの少なくとも一つが、パワー半導体装置チップの最大作動温度よりも30℃以上高く、且つ、パワー半導体装置チップのアセンブリプロセス耐熱温度以下である金属、または合金を原料として形成されることを特徴とする請求項17または請求項18に記載のパワー半導体モジュール。
  20. 前記耐熱接合層は、Au−Snはんだ、Au−Geはんだ、Au−Siはんだ、Zn−Alはんだ、から選ばれた1つ、
    または、AgまたはAuまたはCuのナノ粒子、またはナノロッド、またはナノフレーク材から選ばれた1つ、
    を原料として形成された層であることを特徴とする請求項17〜請求項19のいずれか1項に記載のパワー半導体モジュール。
  21. 前記空間結線手段は、ボンディングワイヤ、ボンディングリボン、及びクリップリードから選ばれた1つであることを特徴とする請求項17〜請求項20のいずれか1項に記載のパワー半導体モジュール。
  22. 前記空間結線手段の材料は、AlまたはAlの合金、或いは、Cu母材の外周をAl膜で被覆したAlクラッドCu、のいずれかであることを特徴とする請求項17〜請求項21のいずれか1項に記載のパワー半導体モジュール。
  23. 前記空間結線手段は、ボンディングワイヤであり、該ボンディングワイヤの直径は、50μm〜600μmの範囲であることを特徴とする請求項17〜請求項22のいずれか1項に記載のパワー半導体モジュール。
  24. 前記絶縁基板と冷却器の接合構造体の、上部回路金属板の表面は、Niめっきで覆われていることを特徴とする請求項17〜請求項23のいずれか1項に記載のパワー半導体モジュール。
  25. 前記Niめっきの厚みは0.5μm〜15μmの範囲であることを特徴とする請求項24に記載のパワー半導体モジュール。
  26. 平板形状のセラミック基板、該セラミック基板の上面に接合された上部回路金属板、及び、前記セラミック基板の下面に接合された下部回路金属板からなる絶縁基板と、金属製の冷却器を独立に準備する準備工程と、
    前記絶縁基板と前記冷却器を、超高温接合剤を介在させて重ね合わせる重ね合わせ工程と、
    重ね合わせた絶縁基板と冷却器を加圧した状態で、不活性ガス雰囲気、或いは真空雰囲気で前記超高温接合剤の融点よりも30℃以上高い温度まで上昇させ、その後、徐々に冷却する接合工程と、により、絶縁基板と冷却器の接合構造体を作製し、
    更に、前記絶縁基板と冷却器の接合構造体の金属部分にNiめっきを被覆する被覆工程と、
    前記Niめっきで被覆した、絶縁基板と冷却器の接合構造体の上部回路金属板の一の要素の上面に耐熱接合材料を用いてパワー半導体装置チップを、熱プロセスで接合するリフロー工程と、
    接合したパワー半導体装置チップの上面と、前記上部回路金属板の他の要素を空間結線手段で電気的に接続する電気接続工程と、
    を備えたことを特徴とするパワー半導体モジュールの製造方法。
  27. 前記リフロー工程は、耐熱接合材料の融点よりも30℃以上高く、且つ、パワー半導体装置チップの瞬時耐熱温度よりも低い温度領域で実施されることを特徴とする請求項26に記載のパワー半導体モジュールの製造方法。
JP2013206918A 2013-10-02 2013-10-02 絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法 Active JP6259625B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206918A JP6259625B2 (ja) 2013-10-02 2013-10-02 絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206918A JP6259625B2 (ja) 2013-10-02 2013-10-02 絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015072959A true JP2015072959A (ja) 2015-04-16
JP6259625B2 JP6259625B2 (ja) 2018-01-10

Family

ID=53015154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206918A Active JP6259625B2 (ja) 2013-10-02 2013-10-02 絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法

Country Status (1)

Country Link
JP (1) JP6259625B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192877A (ja) * 2018-04-27 2019-10-31 株式会社デンソー 半導体装置
JPWO2018207396A1 (ja) * 2017-05-11 2020-03-12 住友電気工業株式会社 半導体装置
US11152280B2 (en) 2016-11-24 2021-10-19 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269392A (ja) * 1998-09-04 2000-09-29 Sumitomo Metal Electronics Devices Inc 半導体モジュール及び放熱用絶縁板
JP2000349209A (ja) * 1999-06-09 2000-12-15 Mitsubishi Electric Corp パワー半導体モジュール
JPWO2008078788A1 (ja) * 2006-12-26 2010-04-30 京セラ株式会社 放熱基板およびこれを用いた電子装置
WO2013118478A1 (ja) * 2012-02-09 2013-08-15 富士電機株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269392A (ja) * 1998-09-04 2000-09-29 Sumitomo Metal Electronics Devices Inc 半導体モジュール及び放熱用絶縁板
JP2000349209A (ja) * 1999-06-09 2000-12-15 Mitsubishi Electric Corp パワー半導体モジュール
JPWO2008078788A1 (ja) * 2006-12-26 2010-04-30 京セラ株式会社 放熱基板およびこれを用いた電子装置
WO2013118478A1 (ja) * 2012-02-09 2013-08-15 富士電機株式会社 半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11152280B2 (en) 2016-11-24 2021-10-19 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing the same
JPWO2018207396A1 (ja) * 2017-05-11 2020-03-12 住友電気工業株式会社 半導体装置
JP7127641B2 (ja) 2017-05-11 2022-08-30 住友電気工業株式会社 半導体装置
JP2019192877A (ja) * 2018-04-27 2019-10-31 株式会社デンソー 半導体装置
JP7187814B2 (ja) 2018-04-27 2022-12-13 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JP6259625B2 (ja) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6632686B2 (ja) 半導体装置および半導体装置の製造方法
JP4964009B2 (ja) パワー半導体モジュール
US8987895B2 (en) Clad material for insulating substrates
KR102097177B1 (ko) 파워 모듈용 기판, 히트싱크가 부착된 파워 모듈용 기판 및 파워 모듈
JP6199397B2 (ja) 半導体装置およびその製造方法
JP2016174165A (ja) 半導体装置
WO2013018504A1 (ja) 半導体装置とその製造方法
JP5829403B2 (ja) 放熱用絶縁基板及びその製造方法
JP5991103B2 (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
KR20170044105A (ko) 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 및 히트 싱크의 제조 방법
KR20170046649A (ko) 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 및 히트 싱크의 제조 방법
JP6154383B2 (ja) 絶縁基板、多層セラミック絶縁基板、パワー半導体装置と絶縁基板の接合構造体、及びパワー半導体モジュール
JP6259625B2 (ja) 絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法
WO2017183222A1 (ja) 半導体装置およびその製造方法
JP4360847B2 (ja) セラミック回路基板、放熱モジュール、および半導体装置
JP6221590B2 (ja) 絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法
US10937731B2 (en) Semiconductor module and method for manufacturing semiconductor module
US9349704B2 (en) Jointed structure and method of manufacturing same
JP2021098641A (ja) 銅/セラミックス接合体、及び、絶縁回路基板
JP2004055576A (ja) 回路基板及びそれを用いたパワーモジュール
JP6436247B2 (ja) 半導体装置及びその製造方法
JP2011210745A (ja) パワーモジュール用基板及びその製造方法
JP2018182088A (ja) 放熱基板、放熱基板電極、半導体パッケージ、及び半導体モジュール
JP2012015313A (ja) 半導体素子を有する半導体装置
JP2021095327A (ja) 銅/セラミックス接合体、及び、絶縁回路基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6259625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150