JP2015072405A - Image capturing lens, image capturing device, and mobile terminal - Google Patents

Image capturing lens, image capturing device, and mobile terminal Download PDF

Info

Publication number
JP2015072405A
JP2015072405A JP2013208754A JP2013208754A JP2015072405A JP 2015072405 A JP2015072405 A JP 2015072405A JP 2013208754 A JP2013208754 A JP 2013208754A JP 2013208754 A JP2013208754 A JP 2013208754A JP 2015072405 A JP2015072405 A JP 2015072405A
Authority
JP
Japan
Prior art keywords
lens
imaging
page
image
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013208754A
Other languages
Japanese (ja)
Other versions
JP6191820B2 (en
Inventor
貴志 川崎
Takashi Kawasaki
貴志 川崎
Original Assignee
コニカミノルタ株式会社
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, Konica Minolta Inc filed Critical コニカミノルタ株式会社
Priority to JP2013208754A priority Critical patent/JP6191820B2/en
Publication of JP2015072405A publication Critical patent/JP2015072405A/en
Application granted granted Critical
Publication of JP6191820B2 publication Critical patent/JP6191820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a compact image capturing lens which offers a larger aperture, good correction for various aberrations, and a configuration with six or more lenses.SOLUTION: An image capturing lens 10 satisfies 1.5<Dn/s1<2.3...(1) and s1≥s2...(2), where a value Dn represents a distance from an image-side surface S22 of a main negative lens (second lens L2) to an imaging plane I, a value s1 represents an aperture diameter of a first aperture provided on an object-side flare stop FS, and a value s2 represents an aperture diameter of a second aperture provided on an image-side flare stop FS.

Description

本発明は、小型の撮像レンズ、並びにこれを組み込んだ撮像装置及び携帯端末に関し、特に6枚以上のレンズを有する低背に好適な撮像レンズ、撮像装置、及び携帯端末に関する。   The present invention relates to a small imaging lens, and an imaging apparatus and a portable terminal incorporating the same, and more particularly to an imaging lens, an imaging apparatus, and a portable terminal suitable for a low profile having six or more lenses.
近年、CCD(Charge Coupled Device)型イメージセンサーあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子を用いた撮像素子の高性能化及び小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及しつつある。さらに最近では、上記のような携帯情報端末等に搭載される表示素子の大型化・高精細化を受け、撮像素子も高画素化が求められており、これらの携帯情報端末等に搭載される撮像レンズに対しては、さらなる高性能化への要求が高まっている。このような用途の撮像レンズとして、5枚構成の撮像レンズが提案されている。最近では、さらなる高性能化を目指し5枚レンズに比べ収差補正能力の優れた6枚や7枚構成のレンズも提案されている(例えば特許文献1、2等参照)。   In recent years, with the improvement in performance and miniaturization of imaging devices using solid-state imaging devices such as CCD (Charge Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, Portable information terminals are becoming popular. More recently, with the increase in size and definition of display elements mounted on the above-described portable information terminals and the like, the imaging elements are also required to have higher pixels, and are mounted on these portable information terminals and the like. There is a growing demand for higher performance for imaging lenses. As an imaging lens for such an application, an imaging lens having a five-lens configuration has been proposed. Recently, six or seven lenses having an excellent aberration correction ability compared to a five-lens lens have been proposed for further enhancement of performance (see, for example, Patent Documents 1 and 2).
撮像素子に対する高画素化の要求の一方で、撮像装置の小型化の要求も強く、撮像素子については、高画素化と小型化とを両立するために、画素サイズの小型化が進んでいる。撮像素子の画素サイズが小さくなると、その分1画素当たりで受光できる光量が減少するため、S/N比が小さくなることによるノイズや、露光時間が長くなるため発生する手振れによる画像劣化が問題となる。この1画素当たりで受光できる光量の減少に起因する問題の対策のため、より明るいレンズが求められており、最近ではF1.9以下の大口径のレンズが求められている。一方で、大口径化は、受光光量の増加には寄与するが、球面収差やコマ収差などの単色収差の発生に繋がり、光学性能を劣化させてしまう。上記特許文献1、2に記載のレンズは、共にF2.0以上の暗い撮像レンズしか記載されておらず、球面収差やコマ収差は問題となっていない。上記特許文献1、2等に記載の撮像レンズを大口径化することを考えると、球面収差をレンズのパワー配置の調整に依って補正したとしても、コマ収差を同時に補正することは難しく、高性能化を妨げる要因となると考えられる。   On the other hand, there is a strong demand for downsizing of the image pickup apparatus on the other hand, while the demand for downsizing of the image pickup device is strong. In order to achieve both high downsizing and downsizing of the image pickup device, downsizing of the pixel size is progressing. As the pixel size of the image sensor becomes smaller, the amount of light that can be received per pixel decreases accordingly, and noise due to a decrease in the S / N ratio and image degradation due to camera shake that occurs due to a longer exposure time are problematic. Become. In order to solve the problem caused by the decrease in the amount of light that can be received per pixel, a brighter lens is demanded, and recently, a lens having a large aperture of F1.9 or less is demanded. On the other hand, increasing the diameter contributes to an increase in the amount of received light, but leads to the occurrence of monochromatic aberrations such as spherical aberration and coma aberration, and degrades optical performance. The lenses described in Patent Documents 1 and 2 only describe a dark imaging lens of F2.0 or higher, and spherical aberration and coma are not a problem. Considering increasing the diameter of the imaging lens described in Patent Documents 1 and 2 and the like, even if spherical aberration is corrected by adjusting the power arrangement of the lens, it is difficult to correct coma at the same time. This is considered to be a factor that hinders performance.
中国実用新案公告第202886720号明細書China Utility Model Publication No. 2028886720 Specification 中国実用新案公告第202886713号明細書China Utility Model Notification No. 202886713
本発明は、このような問題点に鑑みてなされたものであり、従来タイプと同程度の小型の撮像レンズとしつつも、大口径化された上で、諸収差が良好に補正された、6枚構成以上の撮像レンズを提供することを目的とする。ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。
L/2Y<1.00 … (7)
ただし、
L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:撮像素子の撮像面対角線長(撮像素子の矩形実効画素領域の対角線長)
ここで、像側焦点とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記Lの値を計算するものとする。
The present invention has been made in view of such a problem, and while making the imaging lens as small as that of the conventional type, the various apertures are well corrected with a large aperture. An object of the present invention is to provide an imaging lens having a number of sheets or more. Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
L / 2Y <1.00 (7)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: Diagonal length of the imaging surface of the imaging device (diagonal length of the rectangular effective pixel area of the imaging device)
Here, the image side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens. When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of the image pickup device package is disposed between the most image side surface of the image pickup lens and the image side focal position, the parallel plate is used. The part is assumed to be the air conversion distance and the value of L is calculated.
値L/2Yについては、より望ましくは、下式の範囲がよい。
L/2Y<0.95 … (7)'
The value L / 2Y is more preferably in the range of the following formula.
L / 2Y <0.95 (7) '
上記目的を達成するため、本発明に係る撮像レンズは、6枚から8枚までのレンズからなり、最も像側に配置されたレンズの像側面は非球面で中心以外の有効径内に極値を有し、最も物体側から連続して配置される第1レンズ、第2レンズ及び第3レンズは、少なくとも1枚の正レンズと少なくとも1枚の負レンズとを含み、第1、第2及び第3レンズのうち、最もパワー(絶対値)の大きい正レンズを主正レンズとし、最もパワー(絶対値)の大きい負レンズを主負レンズとし、第1レンズの物体側には所定の第1開口を持った第1絞り部材が配置され、主負レンズと隣接するレンズとの間には所定の第2開口を持った第2絞り部材が配置され、下記の条件式を満たす。
1.5<Dn/s1<2.3 … (1)
s1≧s2 … (2)
Dn:主負レンズの像側面から撮像面までの距離(ただし、平行平板がある場合、平行平板の部分は空気換算長とする)
s1:第1絞り部材の開口径
s2:第2絞り部材の開口径で、第2絞り部材とみなせる絞り部材が複数ある場合最も小さい開口径
なお、以上において、パワーとは、レンズに対し平行光線を入射させた時に、光軸に近付く方向に屈折する場合を正のパワーを持つとし、光軸から遠ざかる方向に屈折する場合を負のパワーを持つとする。また、有効径とは、最大像高へ到達する光線束のうち、最も光軸から離れた位置を通過する光線の通過高さのことを示す。極値とは、有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面又は接線が光軸と垂直な平面又は線分となるような非球面上の点のことである。
条件式(1)の値については、より望ましくは、下式の範囲がよい。
1.6<Dn/s1<2.2 … (1)'
In order to achieve the above object, the imaging lens according to the present invention is composed of 6 to 8 lenses, and the image side surface of the lens arranged closest to the image side is an aspherical surface and has an extreme value within an effective diameter other than the center. The first lens, the second lens, and the third lens that are continuously arranged from the most object side include at least one positive lens and at least one negative lens, and the first, second, and third lenses Among the third lenses, the positive lens having the highest power (absolute value) is set as the main positive lens, the negative lens having the highest power (absolute value) is set as the main negative lens, and a predetermined first lens is provided on the object side of the first lens. A first diaphragm member having an aperture is disposed, and a second diaphragm member having a predetermined second aperture is disposed between the main negative lens and the adjacent lens, and satisfies the following conditional expression.
1.5 <Dn / s1 <2.3 (1)
s1 ≧ s2 (2)
Dn: Distance from the image side surface of the main negative lens to the imaging surface (however, when there is a parallel plate, the parallel plate portion is the air equivalent length)
s1: Aperture diameter of the first aperture member s2: The aperture diameter of the second aperture member, and the smallest aperture diameter when there are a plurality of aperture members that can be regarded as the second aperture member. When the light is incident, it is assumed that it has a positive power when it is refracted in a direction approaching the optical axis, and has a negative power when it is refracted in a direction away from the optical axis. The effective diameter indicates the passing height of the light beam that passes through the position farthest from the optical axis among the light beam reaching the maximum image height. An extreme value is a point on the aspheric surface where the tangent plane or tangent of the apex of the aspheric surface is a plane or line segment perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.
As for the value of conditional expression (1), the range of the following expression is more desirable.
1.6 <Dn / s1 <2.2 (1) ′
本発明に係る撮像レンズでは、6枚から8枚までのレンズからなることで、F1.9以下となるような明るいレンズとしても良好に収差補正をしつつ、低背化を達成することができる。また、物体側に近い第1〜第3レンズのうち少なくとも1枚のレンズを正レンズとすることで、物体側に近い位置に正レンズを配置することになるため、全系の主点位置が物体側に寄り、光学全長の短縮に有利になる。また、第1〜第3レンズの少なくとも1枚のレンズを負レンズとすることで、軸上光束径の太い位置に負レンズを配置することができるため、軸上色収差や球面収差の補正に有利になる。さらに、最も像側に配置されたレンズの像側面を有効径内で中心以外に極値を持った非球面とすることで、周辺像高の光線が像面へ入射する際の入射角を小さく抑えることが可能になるため、撮像素子を用いた場合のセンサーの受光効率を向上させることができる。   With the imaging lens according to the present invention, it is possible to achieve a reduction in height while satisfactorily correcting aberrations even with a bright lens having a lens size of F1.9 or less because it is composed of 6 to 8 lenses. . In addition, by setting at least one lens among the first to third lenses close to the object side as a positive lens, the positive lens is arranged at a position close to the object side. It is closer to the object side, which is advantageous for shortening the optical total length. In addition, by using at least one of the first to third lenses as a negative lens, the negative lens can be arranged at a position where the axial beam diameter is large, which is advantageous for correcting axial chromatic aberration and spherical aberration. become. Furthermore, by making the image side surface of the lens disposed closest to the image side an aspherical surface having an extreme value other than the center within the effective diameter, the incident angle when the light beam of the peripheral image height is incident on the image surface is reduced. Since it can be suppressed, the light receiving efficiency of the sensor when using the image sensor can be improved.
条件式(1)は、第1〜第3レンズのいずれかである主負レンズの像側面から像面までの距離Dnと、第1レンズの物体側に配置された第1絞り部材の第1開口の開口径s1との比を表わしている。主負レンズが像面から遠ざかり過ぎると、光学全長の短縮の妨げとなる。また、主負レンズが像面に近付き過ぎると、光束の細い位置に負レンズが配置されることになり、球面収差及びコマ収差の補正に不利になる。さらに、第1絞り部材の第1開口の開口径s1が大き過ぎると、周辺像高へ結像する光束のうち、入射瞳の端付近を通過するコマ収差になりやすい光線を遮断することができず、コマ収差の補正に不利になる。一方、第1開口の開口径s1が小さ過ぎると、撮像レンズの大口径化を妨げることになる。
すなわち、条件式(1)の下限を上回ることで、主負レンズが像面に近付き過ぎたり、第1遮絞り部材の第1開口の開口径s1が大きくなり過ぎたりすることを防げるため、球面収差やコマ収差の補正を良好にできる。一方、条件式(1)の上限を下回ることで、主負レンズが像面から遠ざかり過ぎたり、第1絞り部材の第1開口の開口径s1が小さくなり過ぎたりすることを防げるため、光学全長を短縮しつつ大口径化することが可能になる。
Conditional expression (1) satisfies the distance Dn from the image side surface of the main negative lens, which is one of the first to third lenses, to the image surface, and the first aperture member disposed on the object side of the first lens. The ratio with the opening diameter s1 of the opening is represented. If the main negative lens is too far away from the image plane, it will hinder the shortening of the total optical length. If the main negative lens is too close to the image plane, the negative lens is disposed at a position where the light beam is thin, which is disadvantageous for correction of spherical aberration and coma aberration. Furthermore, if the aperture diameter s1 of the first aperture of the first diaphragm member is too large, it is possible to block light rays that tend to cause coma that passes near the end of the entrance pupil from among the light beams that are imaged to the peripheral image height. This is disadvantageous for correction of coma aberration. On the other hand, if the opening diameter s1 of the first opening is too small, the increase in the diameter of the imaging lens is hindered.
That is, exceeding the lower limit of the conditional expression (1) prevents the main negative lens from being too close to the image plane or the opening diameter s1 of the first opening of the first blocking member from becoming too large. Aberration and coma can be corrected well. On the other hand, by falling below the upper limit of conditional expression (1), it is possible to prevent the main negative lens from moving too far away from the image plane and the aperture diameter s1 of the first aperture of the first aperture member from becoming too small. It is possible to increase the diameter while shortening the length.
さらに、条件式(2)を満たすことにより、主負レンズの物体側又は像側に配置される第2絞り部材の開口径s2が第1レンズの物体側に配置される第1絞り部材の開口径s1よりも小さくなり、周辺像高に結像する光束のうち、入射瞳の端付近を通過する光線を遮光することになるため、コマ収差を改善することができ、高性能化が可能になる。   Furthermore, by satisfying the conditional expression (2), the aperture diameter s2 of the second diaphragm member disposed on the object side or the image side of the main negative lens is set to open the first diaphragm member disposed on the object side of the first lens. The light beam that is smaller than the aperture s1 and that passes through the vicinity of the end of the entrance pupil among the light fluxes formed at the peripheral image height is shielded, so that coma can be improved and high performance can be achieved. Become.
本発明の具体的な側面によれば、上記撮像レンズにおいて、最も像側のレンズは、負レンズである。つまり、物体側からの順で、第1〜第7レンズからなる場合、第7レンズが負レンズである。第1〜第6レンズからなる場合、第6レンズが負レンズである。
最終レンズを負レンズとすることで、最終レンズから像面を遠ざけることになるため、必要なバックフォーカスを確保することができる。例えばオートフォーカスタイプの撮像装置においては、レンズとセンサーとの距離を変動させる機構が付与されるため、レンズとセンサーとの距離はある程度大きいことが求められ、上記のようにバックフォーカスを確保することが重要になる。
According to a specific aspect of the present invention, in the imaging lens, the lens closest to the image side is a negative lens. That is, in the case of the first to seventh lenses in order from the object side, the seventh lens is a negative lens. In the case of the first to sixth lenses, the sixth lens is a negative lens.
By making the final lens a negative lens, the image plane is moved away from the final lens, so that necessary back focus can be ensured. For example, in an auto-focus type imaging device, a mechanism for changing the distance between the lens and the sensor is provided, so the distance between the lens and the sensor is required to be large to some extent, and as described above, the back focus is ensured. Becomes important.
本発明の別の側面では、第4レンズよりも物体側に開口絞りを有する。このように開口絞りを配置することで、射出瞳位置を像面から遠ざけることができるため、像面への光線の入射角を小さく抑えることができる。   In another aspect of the present invention, an aperture stop is provided closer to the object side than the fourth lens. By arranging the aperture stop in this way, the exit pupil position can be moved away from the image plane, so that the incident angle of the light beam on the image plane can be kept small.
本発明のさらに別の側面では、下記の条件式を満たす。
1.0≦Φmax/EPD<1.25 … (3)
Φmax:第1レンズから第3レンズまでのうち、最も有効径が大きいレンズの有効径
EPD:入射瞳直径
条件式(3)の値については、より望ましくは、下式の範囲がよい。
1.0≦Φmax/EPD<1.1 … (3)'
In still another aspect of the present invention, the following conditional expression is satisfied.
1.0 ≦ Φmax / EPD <1.25 (3)
Φmax: effective diameter of the lens having the largest effective diameter from the first lens to the third lens EPD: entrance pupil diameter For the value of the conditional expression (3), the range of the following expression is more preferable.
1.0 ≦ Φmax / EPD <1.1 (3) ′
条件式(3)は、第1〜第3レンズの有効径のうち、最も大きい有効径Φmaxと、入射瞳径EPDとの比を表わしている。最も物体側に配置される3枚のレンズは、光束径の太い位置に配置されるため、球面収差やコマ収差への寄与が大きい。有効径Φmaxが入射瞳に対して大きくなると、最大の有効径Φmaxとなるレンズ内で有効径に対し相対的に光束径が細くなってしまうため、球面収差やコマ収差への寄与が小さくなり、負レンズであれば最適な収差補正ができなくなってしまい、正レンズであれば収差の発生を小さく抑えることができない。言い換えるならば、条件式(3)の上限を下回ることで、球面収差とコマ収差との両方を良好に補正することができるようになる。また、第1レンズの有効径は入射瞳よりも小さくなることはないため、条件式(3)の下限を下回ることはない。   Conditional expression (3) represents the ratio of the largest effective diameter Φmax of the effective diameters of the first to third lenses to the entrance pupil diameter EPD. Since the three lenses arranged closest to the object side are arranged at a position where the beam diameter is large, the contribution to spherical aberration and coma aberration is large. When the effective diameter Φmax increases with respect to the entrance pupil, the luminous flux diameter becomes relatively small with respect to the effective diameter in the lens having the maximum effective diameter Φmax, and thus the contribution to spherical aberration and coma aberration is reduced. If it is a negative lens, the optimum aberration correction cannot be performed, and if it is a positive lens, the occurrence of aberration cannot be suppressed small. In other words, both the spherical aberration and the coma aberration can be satisfactorily corrected by falling below the upper limit of the conditional expression (3). Moreover, since the effective diameter of the first lens is never smaller than the entrance pupil, it does not fall below the lower limit of conditional expression (3).
本発明のさらに別の側面では、下記の条件式を満たす。
0.70<s2/s1≦1.0 … (4)
条件式(4)の値については、より望ましくは、下式の範囲がよい。
0.73<s2/s1≦0.90 … (4)'
In still another aspect of the present invention, the following conditional expression is satisfied.
0.70 <s2 / s1 ≦ 1.0 (4)
As for the value of conditional expression (4), the range of the following expression is more desirable.
0.73 <s2 / s1 ≦ 0.90 (4) ′
条件式(4)は、第1レンズの物体側に配置された第1絞り部材の第1開口の開口径s1に対する、主負レンズの像側又は物体側に配置された第2遮光絞りの第2開口の開口径s2の比を表わしている。周辺像高に結像する光束が入射瞳の全域を通過するようにレンズ間に配置するすべての絞り部材の開口径を決定すると、大口径化する際に顕著に発生するコマ収差がそのまま残存してしまうため、高性能化が難しくなってしまう。一方、周辺像高に結像する光束は、特に本発明に記載の撮像レンズのような低背レンズにおいては、光軸に対し大きな角度を持ってレンズ中を通過するため、入射瞳の端付近を通過する光線は、像面に近付くにしたがって光軸から離れる。従って、第1レンズの物体側の絞り部材の位置を通過する光線に対し、主負レンズの位置を通過する光線は光軸から離れた位置を通過することになる。このような事情から、条件式(4)の上限を下回ることで、第2絞り部材の開口径s2が、第1絞り部材の開口径s1よりも確実に小さくなり、コマ収差を確実に改善することができ、高性能化が可能になる。また、条件式(4)の下限を上回ることで、周辺像高の光束を遮光し過ぎることがなくなるため、周辺の光量が不足するのを防ぐことができる。   Conditional expression (4) indicates that the second light-shielding diaphragm disposed on the image side or object side of the main negative lens with respect to the aperture diameter s1 of the first aperture of the first diaphragm member disposed on the object side of the first lens. The ratio of the opening diameter s2 of the two openings is represented. When the aperture diameters of all the diaphragm members arranged between the lenses are determined so that the light beam formed at the peripheral image height passes through the entire area of the entrance pupil, the coma aberration that occurs remarkably when the aperture is increased remains as it is. As a result, high performance becomes difficult. On the other hand, the light beam formed at the peripheral image height passes through the lens at a large angle with respect to the optical axis, particularly in a low-profile lens such as the imaging lens according to the present invention, so that it is near the end of the entrance pupil. The light rays passing through the optical axis move away from the optical axis as they approach the image plane. Therefore, the light beam that passes through the position of the main negative lens passes through the position away from the optical axis with respect to the light beam that passes through the position of the aperture member on the object side of the first lens. Under such circumstances, by falling below the upper limit of conditional expression (4), the aperture diameter s2 of the second aperture member is surely smaller than the aperture diameter s1 of the first aperture member, and the coma aberration is reliably improved. And higher performance is possible. Further, by exceeding the lower limit of the conditional expression (4), it is possible to prevent the light flux of the peripheral image height from being excessively shielded, so that it is possible to prevent the peripheral light amount from being insufficient.
本発明のさらに別の側面では、主負レンズの像側面は、凹面であり、全系の中で有効径が最も小さい面である。主負レンズの像側面を凹面とすることで、軸上光束に対しては面への入射角を小さくすることができるため、球面収差の発生を小さくすることができる。また、周辺像高へ結像する光束に対しては、強い負のパワーを発揮するため、主正レンズで発生したコマ収差の補正を良好にすることができる。さらに、主負レンズの有効径を小さくすることで、主負レンズに強いパワーを持たせても、有効径の周辺部で面の傾きが大きくなり過ぎないため、有効径周辺部を通過する光線に対し、不要な球面収差とコマ収差との発生を抑えることができる。   In still another aspect of the present invention, the image side surface of the main negative lens is a concave surface, which is the surface having the smallest effective diameter in the entire system. By making the image side surface of the main negative lens concave, it is possible to reduce the angle of incidence on the surface with respect to the axial light beam, thereby reducing the occurrence of spherical aberration. Further, since a strong negative power is exerted with respect to the light beam formed at the peripheral image height, the coma aberration generated in the main positive lens can be corrected well. In addition, by reducing the effective diameter of the main negative lens, even if the main negative lens has a strong power, the inclination of the surface does not become too large at the periphery of the effective diameter. On the other hand, generation of unnecessary spherical aberration and coma aberration can be suppressed.
本発明のさらに別の側面では、下記の条件式を満たす。
1.0<f123/f<4.0 … (5)
f123:第1レンズから第3レンズまでの合成焦点距離
f:全系の焦点距離
条件式(5)の値については、より望ましくは、下式の範囲がよい。
1.5<f123/f<2.5 … (5)'
In still another aspect of the present invention, the following conditional expression is satisfied.
1.0 <f123 / f <4.0 (5)
f123: Combined focal length from the first lens to the third lens f: Focal length of the entire system More preferably, the value of the conditional expression (5) is in the range of the following expression.
1.5 <f123 / f <2.5 (5) ′
条件式(5)は第1〜第3レンズまでの合成焦点距離f123と、全系の焦点距離fとの比を表わしている。全系の焦点距離fを維持しつつ光学全長を短縮するためには、物体側に全系の主点位置を寄せなければならないが、物体側に強い正のパワーを配置することで全系の主点位置を物体側に寄せることができる。条件式(5)の上限を下回ることで、第1〜第3レンズが強い正のパワーを持つことになるため、光学全長の短縮に有利になる。また条件式(5)の下限を上回ることで、第1〜第3レンズの正のパワーが強くなり過ぎることがないため、球面収差やコマ収差の発生を小さくすることができる。   Conditional expression (5) represents the ratio of the combined focal length f123 from the first to third lenses to the focal length f of the entire system. In order to shorten the overall optical length while maintaining the focal length f of the entire system, the principal point position of the entire system must be brought closer to the object side. However, by placing a strong positive power on the object side, The principal point position can be moved closer to the object side. By falling below the upper limit of conditional expression (5), the first to third lenses have a strong positive power, which is advantageous for shortening the total optical length. Moreover, since the positive power of the first to third lenses does not become too strong by exceeding the lower limit of the conditional expression (5), the occurrence of spherical aberration and coma aberration can be reduced.
本発明のさらに別の側面では、主負レンズの像側に連続して配置される3枚のレンズが、下記の条件式をそれぞれ満たす。
0.01<SAG_A/ΦA<0.20 … (6)
SAG_A:物体側面の有効径内のサグ量
ΦA:物体側面の有効径
条件式(6)の値については、より望ましくは、下式の範囲がよい。
0.02<SAG_A/ΦA<0.15 … (6)'
In still another aspect of the present invention, the three lenses continuously arranged on the image side of the main negative lens satisfy the following conditional expressions, respectively.
0.01 <SAG_A / ΦA <0.20 (6)
SAG_A: Sag amount within the effective diameter of the object side surface ΦA: Effective diameter of the object side surface The value of conditional expression (6) is more preferably in the range of the following expression.
0.02 <SAG_A / ΦA <0.15 (6) ′
条件式(6)は、主負レンズの像側に配置される3枚のレンズの物体側面の、サグ量SAG_Aと有効径ΦAとの比を表わしている。有効径ΦAに対しサグ量SAG_Aが大きくなり過ぎると、そのレンズの光軸方向に占める領域が大きくなってしまうため、光学全長の短縮に不利になる。また、有効径ΦAに対しサグ量SAG_Aが小さ過ぎると、そのレンズは小さな屈折力しか持てないため、収差補正が困難になる。   Conditional expression (6) represents the ratio between the sag amount SAG_A and the effective diameter ΦA of the object side surfaces of the three lenses disposed on the image side of the main negative lens. If the sag amount SAG_A becomes too large with respect to the effective diameter ΦA, the area occupied in the optical axis direction of the lens becomes large, which is disadvantageous for shortening the optical total length. On the other hand, if the sag amount SAG_A is too small with respect to the effective diameter ΦA, the lens can only have a small refractive power, so that aberration correction becomes difficult.
本発明のさらに別の側面では、主負レンズは、主正レンズの直後の像側に配置されている。光学全長短縮の観点から、全系の主点位置を物体側に寄せるため、主正レンズはより物体側にあるのが望ましい。また、各像高に結像する光束は主正レンズの通過後に集束するため、主正レンズから離れるほど光束が細くなってしまう。収差補正の観点からは、主負レンズは、光束が太い位置に配置されることが望ましい。従って、主正レンズの像側直後に主負レンズを配置することで、光学全長の短縮を有利にしつつ、収差補正を良好にすることができる。   In yet another aspect of the present invention, the main negative lens is disposed on the image side immediately after the main positive lens. From the viewpoint of shortening the total optical length, it is desirable that the main positive lens is closer to the object side in order to bring the principal point position of the entire system closer to the object side. Further, since the light fluxes formed at the respective image heights are converged after passing through the main positive lens, the light flux becomes thinner as the distance from the main positive lens is increased. From the viewpoint of aberration correction, it is desirable that the main negative lens is disposed at a position where the light beam is thick. Therefore, by arranging the main negative lens immediately after the main positive lens on the image side, it is possible to improve the aberration correction while advantageously shortening the optical total length.
本発明のさらに別の側面では、実質的にパワーを持たない光学素子をさらに有する。   In still another aspect of the present invention, the optical device further includes an optical element having substantially no power.
本発明に係る撮像装置は、上述の撮像レンズと、撮像素子とを備える。本発明の撮像レンズを用いることで、小型で明るく高性能の撮像装置を得ることができる。   An imaging apparatus according to the present invention includes the imaging lens described above and an imaging element. By using the imaging lens of the present invention, a small, bright and high-performance imaging device can be obtained.
本発明に係る携帯端末は、上述の撮像装置を備える。本発明の撮像装置を用いることで、小型で高性能の携帯端末を得ることができる。   The portable terminal which concerns on this invention is provided with the above-mentioned imaging device. By using the imaging device of the present invention, a small and high performance portable terminal can be obtained.
本発明の一実施形態の撮像レンズを備える撮像装置を説明する図である。It is a figure explaining an imaging device provided with the imaging lens of one embodiment of the present invention. レンズや絞り部材の状態を説明する部分拡大断面図である。It is a partial expanded sectional view explaining the state of a lens or a diaphragm member. 図1の撮像装置を備える携帯端末を説明するブロック図である。It is a block diagram explaining a portable terminal provided with the imaging device of FIG. (A)及び(B)は、それぞれ携帯端末の表面側及び裏面側の斜視図である。(A) And (B) is a perspective view of the surface side and back surface side of a portable terminal, respectively. 実施例1の撮像レンズの断面図である。2 is a cross-sectional view of an imaging lens of Example 1. FIG. (A)〜(E)は、実施例1の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 1. FIG. 実施例2の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 2. FIG. (A)〜(E)は、実施例2の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 3. FIG. (A)〜(E)は、実施例3の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 3. FIGS. 実施例4の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 4. FIG. (A)〜(E)は、実施例4の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 4. FIGS. 実施例5の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 5. FIG. (A)〜(E)は、実施例5の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 5. FIGS. 実施例6の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 6. FIG. (A)〜(E)は、実施例6の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 6. FIG. 実施例7の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 7. FIG. (A)〜(E)は、実施例7の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 7. FIGS. 実施例8の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 8. FIG. (A)〜(E)は、実施例8の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 8. FIGS. 実施例9の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 9. FIG. (A)〜(E)は、実施例9の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 9. FIGS. 実施例10の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 10. FIG. (A)〜(E)は、実施例10の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 10. FIGS. 実施例11の撮像レンズの断面図である。14 is a cross-sectional view of the imaging lens of Example 11. FIG. (A)〜(E)は、実施例11の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 11. FIGS. 実施例12の撮像レンズの断面図である。14 is a cross-sectional view of an imaging lens of Example 12. FIG. (A)〜(E)は、実施例12の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 12. FIGS. 実施例13の撮像レンズの断面図である。14 is a cross-sectional view of the imaging lens of Example 13. FIG. (A)〜(E)は、実施例13の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 13. FIGS. 実施例14の撮像レンズの断面図である。16 is a cross-sectional view of the imaging lens of Example 14. FIG. (A)〜(E)は、実施例14の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 14. FIGS. 実施例15の撮像レンズの断面図である。16 is a cross-sectional view of the imaging lens of Example 15. FIG. (A)〜(E)は、実施例15の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 15. FIGS. 実施例16の撮像レンズの断面図である。16 is a cross-sectional view of the imaging lens of Example 16. FIG. (A)〜(E)は、実施例16の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 16. FIGS.
以下、図1等を参照して、本発明の一実施形態である撮像レンズ等について説明する。なお、図1で例示した撮像レンズ10は、後述する実施例1の撮像レンズ11と同一の構成となっている。   Hereinafter, with reference to FIG. 1 etc., the imaging lens etc. which are one Embodiment of this invention are demonstrated. The imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.
図1は、本発明の一実施形態である撮像レンズを備えるカメラモジュールを説明する断面図である。   FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.
カメラモジュール50は、被写体像を形成する撮像レンズ10と、撮像レンズ10によって形成された被写体像を検出する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、撮像レンズ10等を保持するとともに物体側からの光束を入射させる開口部OPを有する鏡筒部54とを備える。撮像レンズ10は、被写体像を撮像素子51の像面又は撮像面(被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述する撮像装置に組み込まれて使用されるが、単独でも撮像装置と呼ぶものとする。   The camera module 50 includes an imaging lens 10 that forms a subject image, an imaging device 51 that detects a subject image formed by the imaging lens 10, and a wiring board 52 that holds the imaging device 51 from behind and has wiring and the like. And a lens barrel portion 54 having an opening OP for holding the imaging lens 10 and the like and allowing a light beam from the object side to enter. The imaging lens 10 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element 51. The camera module 50 is used by being incorporated in an imaging device to be described later.
撮像レンズ10は、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6と、第7レンズL7とを備える。これらの第1〜第7レンズL1〜L7の間、第1レンズL1の物体側等の適所には、開口絞りASや遮光絞りFSが配置されている。図示を省略するが、撮像レンズ10は、上記第1〜7レンズL1〜L7に代えて第1〜6レンズを備えるものであってもよく、第1〜8レンズを備えるものであってもよい。具体的には、例えば上記第4、第5、第6、及び第7レンズL4,L5,L6,L7に代えて第4、第5、及び第6レンズを備えるものであってもよい。   The imaging lens 10 includes, in order from the object side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a seventh lens L7. With. Between these first to seventh lenses L1 to L7, an aperture stop AS and a light-shielding stop FS are disposed at appropriate positions such as the object side of the first lens L1. Although illustration is omitted, the imaging lens 10 may include first to sixth lenses instead of the first to seventh lenses L1 to L7, or may include first to eighth lenses. . Specifically, for example, instead of the fourth, fifth, sixth, and seventh lenses L4, L5, L6, and L7, fourth, fifth, and sixth lenses may be provided.
撮像レンズ10は、小型であり、その尺度として、以下の式(7)を満たすレベルの小型化を目指している。
L/2Y<1.00 … (7)
ここで、Lは、撮像レンズ10全系の最も物体側のレンズ面S11から像側焦点までの光軸AX上の距離であり、2Yは、撮像素子51の撮像面対角線長(撮像素子51の矩形実効画素領域の対角線長)であり、像側焦点とは、撮像レンズ10に光軸AXと平行な平行光線が入射した場合の像点をいう。この範囲を満たすことで、カメラモジュール50全体の小型化が可能となる。
The imaging lens 10 is small in size, and as a scale, it aims at miniaturization at a level satisfying the following expression (7).
L / 2Y <1.00 (7)
Here, L is the distance on the optical axis AX from the most object-side lens surface S11 of the entire imaging lens 10 system to the image-side focal point, and 2Y is the diagonal length of the imaging surface of the imaging device 51 (of the imaging device 51). Diagonal length of the rectangular effective pixel region), and the image-side focal point refers to an image point when a parallel ray parallel to the optical axis AX is incident on the imaging lens 10. By satisfying this range, the entire camera module 50 can be reduced in size.
なお、撮像レンズ10の最も像側の面(像側面S72)と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板Fが配置される場合には、平行平板F部分は空気換算距離としたうえで上記Lの値を計算するものとする。また、より望ましくは下式の範囲とする。
L/2Y<0.95 … (7)'
A parallel flat plate F such as an optical low-pass filter, an infrared cut filter, or a seal glass of an image pickup device package is disposed between the most image side surface (image side surface S72) of the image pickup lens 10 and the image side focal position. In this case, the value of L is calculated for the parallel flat plate F portion as an air conversion distance. More preferably, it is in the range of the following formula.
L / 2Y <0.95 (7) '
撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部51aの表面は、像面又は撮像面(被投影面)Iとなっている。   The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof. The surface of the photoelectric conversion unit 51a as the light receiving unit is an image plane or an imaging plane (projected plane) I.
配線基板52は、撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や駆動機構55aを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。   The wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54). The wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.
撮像素子51の撮像レンズ10側には、不図示のホルダー部材によって、平行平板Fが撮像素子51等を覆うように配置・固定されている。   On the imaging lens 10 side of the imaging element 51, a parallel plate F is disposed and fixed by a holder member (not shown) so as to cover the imaging element 51 and the like.
鏡筒部54は、撮像レンズ10を収納し保持している。鏡筒部54は、撮像レンズ10を構成するレンズL1〜L7のうちいずれか1つ以上のレンズを光軸AXに沿って移動させることにより、撮像レンズ10の合焦の動作を可能にするため、例えば駆動機構55aを有している。駆動機構55aは、例えばボイスコイルモーターとガイドとを備え、特定の又は全部のレンズを光軸AXに沿って往復移動させる。   The lens barrel 54 houses and holds the imaging lens 10. The lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L7 constituting the imaging lens 10 along the optical axis AX. For example, it has a drive mechanism 55a. The drive mechanism 55a includes, for example, a voice coil motor and a guide, and reciprocates a specific lens or all of the lenses along the optical axis AX.
撮像レンズ10を構成する第1〜第7レンズL1〜L7は、図示を省略しているが、周囲外側に支持用の比較的肉厚のフランジ部をそれぞれ有しており、フランジ部を介して隣接するレンズと積層され、鏡筒部分54a内に保持されている。   Although illustration is abbreviate | omitted, the 1st-7th lenses L1-L7 which comprise the imaging lens 10 have the comparatively thick flange part for a support on the outer periphery periphery, respectively, via a flange part. It is laminated with an adjacent lens and held in the lens barrel portion 54a.
図2等を参照して、鏡筒部54内に保持される撮像レンズ10の状態を説明する。撮像レンズ10を構成する第1〜第7レンズL1〜L7は、支持用のフランジ部39をそれぞれ有しており、フランジ部39を介して隣接するレンズと積層され、鏡筒部分54a内に保持されている。これらのレンズL1〜L7の間には、フランジ部39に挟まれて1つの開口絞りASと5つの遮光絞りFSとが配置され、迷光の発生を防止している。鏡筒部分54aの物体側には、レンズL1の有効径の周囲を覆うような開口絞りFSが形成されている。第7レンズL7のフランジ部39の像側にも遮光絞りFSが配置されている。以上の開口絞りASや遮光絞りFSは、いずれも結像に寄与し得る光線を選択的に通過させるための絞り部材である。   With reference to FIG. 2 etc., the state of the imaging lens 10 hold | maintained in the lens-barrel part 54 is demonstrated. The first to seventh lenses L1 to L7 constituting the imaging lens 10 each have a supporting flange portion 39, and are stacked with adjacent lenses via the flange portion 39, and are held in the lens barrel portion 54a. Has been. Between these lenses L1 to L7, one aperture stop AS and five light-shielding stops FS are disposed between the flange portions 39 to prevent the generation of stray light. An aperture stop FS that covers the periphery of the effective diameter of the lens L1 is formed on the object side of the lens barrel portion 54a. A light-shielding stop FS is also disposed on the image side of the flange portion 39 of the seventh lens L7. The aperture stop AS and the light-shielding stop FS described above are stop members for selectively allowing light rays that can contribute to image formation to pass through.
次に、図3、図4(A)及び4(B)を参照して、図1に例示されるカメラモジュール50を搭載した携帯電話機その他の携帯端末300の一例について説明する。   Next, an example of a cellular phone or other portable terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 3, 4A, and 4B.
携帯端末300は、スマートフォン型の携帯通信端末であり、カメラモジュール50を有する撮像装置100と、各部を統括的に制御するとともに各処理に応じたプログラムを実行する制御部(CPU)310と、通信に関連するデータ、撮像した映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである表示操作部320と、電源スイッチ等を含む操作部330と、アンテナ341を介して外部サーバー等との間の各種情報通信を実現するための無線通信部340と、携帯端末300のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)360と、制御部310によって実行される各種処理プログラムやデータ、処理データ、若しくは撮像装置100による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)370とを備えている。   The mobile terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging device 100 having a camera module 50, a control unit (CPU) 310 that performs overall control of each unit and executes a program corresponding to each process, and communication. Various operations between a display operation unit 320 that is a touch panel that displays data related to the image, captured video, and the like and receives a user operation, an operation unit 330 including a power switch, and an external server via the antenna 341 Executed by a wireless communication unit 340 for realizing information communication, a storage unit (ROM) 360 storing necessary data such as a system program, various processing programs, and a terminal ID of the mobile terminal 300, and the control unit 310 Various processing programs and data, processing data, or imaging data by the imaging device 100 Temporary storage unit used as a work area for temporarily storing data or the like and a (RAM) 370.
撮像装置100は、既に説明したカメラモジュール50のほかに、制御部103、光学系駆動部105、撮像素子駆動部107、画像メモリー108等を備える。   In addition to the camera module 50 described above, the imaging apparatus 100 includes a control unit 103, an optical system driving unit 105, an imaging element driving unit 107, an image memory 108, and the like.
制御部103は、撮像装置100の各部を制御する。制御部103は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、ROMから読み出されてRAMに展開された各種プログラムとCPUとの協働によって各種処理を実行する。なお、制御部103は、撮像装置100外の制御部310と通信可能に接続されており、制御信号や画像データの授受が可能になっている。   The control unit 103 controls each unit of the imaging device 100. The control unit 103 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs are read out from the ROM and expanded in the RAM, in cooperation with the CPU. Execute the process. The control unit 103 is communicably connected to the control unit 310 outside the imaging apparatus 100, and can exchange control signals and image data.
光学系駆動部105は、制御部103の制御により合焦、露出等を行う際に、撮像レンズ10の駆動機構55aを動作させて撮像レンズ10の状態を制御する。光学系駆動部105は、駆動機構55aを動作させて撮像レンズ10中の特定レンズ又は全レンズを光軸AXに沿って適宜移動させることにより、撮像レンズ10に合焦動作等を行わせる。   The optical system driving unit 105 controls the state of the imaging lens 10 by operating the driving mechanism 55 a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the control unit 103. The optical system driving unit 105 operates the driving mechanism 55a to appropriately move the specific lens or all the lenses in the imaging lens 10 along the optical axis AX, thereby causing the imaging lens 10 to perform a focusing operation or the like.
撮像素子駆動部107は、制御部103の制御により露出等を行う際に、撮像素子51の動作を制御する。具体的には、撮像素子駆動部107は、タイミング信号に基づいて撮像素子51を走査駆動し、これから画像信号を取り出す。また、撮像素子駆動部107は、撮像素子51によって検出されデジタル化された画像信号に対して、歪み補正、色補正、圧縮等の各種画像処理を施すことができる。   The image sensor drive unit 107 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control unit 103. Specifically, the image sensor driving unit 107 scans and drives the image sensor 51 based on the timing signal, and extracts an image signal therefrom. The image sensor driving unit 107 can perform various image processing such as distortion correction, color correction, and compression on the image signal detected and digitized by the image sensor 51.
画像メモリー108は、デジタル化された画像信号を撮像素子駆動部107から受け取って、読み出し及び書き込み可能な画像データとして記憶する。   The image memory 108 receives the digitized image signal from the image sensor driving unit 107 and stores it as readable and writable image data.
ここで、上記撮像装置100を含む携帯端末300の撮影動作を説明する。携帯端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、撮像レンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1参照)に結像される。撮像素子51は、撮像素子駆動部107によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分検出する。   Here, the photographing operation of the mobile terminal 300 including the imaging device 100 will be described. When the camera mode in which the mobile terminal 300 is operated as a camera is set, subject monitoring (through image display) and image shooting execution are performed. In monitoring, an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51. The image sensor 51 is scanned and driven by the image sensor driving unit 107 and detects an analog signal corresponding to one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.
このアナログ信号は、撮像素子51に付属する回路においてRGBの各原色成分毎に適宜ゲイン調整された後に、デジタルデータに変換される。そのデジタルデータに対しては、撮像素子駆動部107にて画素補間処理及びY補正処理を含むカラープロセス処理が行われて、デジタル値の輝度信号Y及び色差信号Cb,Cr(画像データ)が生成されて画像メモリー108に格納される。格納されたデジタルデータは、画像メモリー108から定期的に読み出されてビデオ信号の生成に利用され、制御部103及び制御部310を介して、表示操作部320に出力される。   This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51. The digital data is subjected to color process processing including pixel interpolation processing and Y correction processing in the image sensor driving unit 107 to generate a digital luminance signal Y and color difference signals Cb, Cr (image data). And stored in the image memory 108. The stored digital data is periodically read out from the image memory 108 and used to generate a video signal, and is output to the display operation unit 320 via the control unit 103 and the control unit 310.
この表示操作部320は、モニタリングにおいてはファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部320を介して行う操作入力に基づいて、光学系駆動部105の駆動により撮像レンズ10の合焦、露出等が設定される。   The display operation unit 320 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 105 based on an operation input performed by the user via the display operation unit 320 at any time.
このようなモニタリング状態において、ユーザーが表示操作部320を適宜操作することにより、静止画像データが撮影される。表示操作部320の操作内容に応じて、画像メモリー108に格納された1コマの画像データが読み出されて、撮像素子駆動部107により圧縮等の処理が施される。その処理された画像データは、制御部103及び制御部310を介して、例えば一時記憶部(RAM)370等に記録される。   In such a monitoring state, when the user appropriately operates the display operation unit 320, still image data is captured. One frame of image data stored in the image memory 108 is read in accordance with the operation content of the display operation unit 320, and processing such as compression is performed by the image sensor driving unit 107. The processed image data is recorded in, for example, a temporary storage unit (RAM) 370 via the control unit 103 and the control unit 310.
なお、上述の撮像装置100は、本発明に好適な撮像装置の一例であり、本発明は、これに限定されるものではない。   The above-described imaging apparatus 100 is an example of an imaging apparatus suitable for the present invention, and the present invention is not limited to this.
すなわち、カメラモジュール50又は撮像レンズ10を搭載した撮像装置は、スマートフォン型の携帯端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるであってもよい。   That is, the imaging device equipped with the camera module 50 or the imaging lens 10 is not limited to being built in the smartphone-type mobile terminal 300, but may be built into a mobile phone, a PHS (Personal Handyphone System), or the like. Of course, it may be incorporated in a PDA (Personal Digital Assistant), a tablet personal computer, a mobile personal computer, a digital still camera, a video camera, or the like.
以下、図1等に戻って、本発明の一実施形態である撮像レンズ10について詳細に説明する。図1に示す撮像レンズ10は、撮像素子51の撮像面(被投影面)Iに被写体像を結像させるものであって、物体側から順に、物体側に凸面を向けた正の第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6と、光軸AX近傍で像側に凹面を向けた負の第7レンズL7と、を備える。上記撮像レンズ10において、最も像側の第7レンズL7の物体側面S71及び像側面S72は、非球面であり、特に像側面S72は、有効径内に極値すなわち変曲点Pを持つ。第1〜第3レンズL1〜L3のうち、第1レンズL1は、光軸AX近傍で正の屈折力を有する正レンズであり、第2及び第3レンズL2,L3は、例えばいずれも光軸AX近傍で負の屈折力を有する負レンズである。図示の例では、第1〜第3レンズL1〜L3を構成する正レンズは1つであり、第1レンズL1が主正レンズとなっている。また、図示の例では、第2レンズL2の焦点距離(絶対値)が第3レンズL3の焦点距離(絶対値)よりも短く、第2レンズL2が主負レンズとなっている。第1及び第2レンズL1,L2の合成焦点距離は、正の値となっている。撮像レンズ10は、第3レンズL3より物体側に開口絞りASを有し、図示の例では、開口絞りASが第1及び第2レンズL1,L2の間に配置されている。この撮像レンズ10において、第1レンズL1の物体側と、第2及び第3レンズL2,L3の間とに遮光絞りFSが配置されている。ここで、第1レンズL1の物体側に配置されている遮光絞りFS1は、第1開口を持った第1絞り部材として機能し、第1及び第2レンズL1,L2の間に配置されている開口絞りAS又は第2及び第3レンズL2,L3の間に配置されている遮光絞りFS2は、第2開口を持った第2絞り部材として機能している。   Hereinafter, returning to FIG. 1 and the like, the imaging lens 10 according to an embodiment of the present invention will be described in detail. An imaging lens 10 shown in FIG. 1 forms a subject image on an imaging surface (projected surface) I of an imaging device 51, and is a positive first lens with a convex surface facing the object side in order from the object side. L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, and a negative seventh lens with a concave surface facing the image side in the vicinity of the optical axis AX L7. In the imaging lens 10, the object side surface S71 and the image side surface S72 of the seventh lens L7 closest to the image side are aspherical surfaces. In particular, the image side surface S72 has an extreme value, that is, an inflection point P within the effective diameter. Of the first to third lenses L1 to L3, the first lens L1 is a positive lens having a positive refractive power in the vicinity of the optical axis AX, and the second and third lenses L2 and L3 are both optical axes, for example. It is a negative lens having negative refractive power in the vicinity of AX. In the illustrated example, the first to third lenses L1 to L3 are one positive lens, and the first lens L1 is a main positive lens. In the illustrated example, the focal length (absolute value) of the second lens L2 is shorter than the focal length (absolute value) of the third lens L3, and the second lens L2 is a main negative lens. The combined focal length of the first and second lenses L1 and L2 is a positive value. The imaging lens 10 has an aperture stop AS closer to the object side than the third lens L3, and in the illustrated example, the aperture stop AS is disposed between the first and second lenses L1 and L2. In the imaging lens 10, a light-shielding stop FS is disposed between the object side of the first lens L1 and between the second and third lenses L2 and L3. Here, the light-shielding diaphragm FS1 disposed on the object side of the first lens L1 functions as a first diaphragm member having a first opening, and is disposed between the first and second lenses L1 and L2. The light-shielding stop FS2 disposed between the aperture stop AS or the second and third lenses L2 and L3 functions as a second stop member having a second opening.
上記撮像レンズ10によれば、物体側に近い第1〜第3レンズL1〜L3のうち第1レンズL1を正レンズとし、かつ、第1及び第2レンズL1,L2の合成焦点距離を正の値としているので、撮像レンズ10全系の主点位置が物体側に寄るため、光学全長の短縮に有利になっている。また、第1〜第3レンズL1〜L3のうち第2レンズL2等を負レンズとすることで、軸上光束径の太い位置に負レンズを配置することができるため、軸上色収差及び球面収差の補正に有利になる。さらに、最終の第7レンズL7の像側面S72を有効径内に変曲点Pを持った非球面とすることで、周辺像高の光線が撮像面Iへ入射する際の入射角を小さく抑えることが可能になるため、撮像素子51の受光効率を向上させることができる。   According to the imaging lens 10, the first lens L1 among the first to third lenses L1 to L3 close to the object side is a positive lens, and the combined focal length of the first and second lenses L1 and L2 is positive. Therefore, the principal point position of the entire imaging lens 10 system is closer to the object side, which is advantageous for shortening the optical total length. In addition, since the second lens L2 and the like among the first to third lenses L1 to L3 is a negative lens, the negative lens can be disposed at a position where the axial light beam diameter is large. It becomes advantageous for correction of. Furthermore, by making the image side surface S72 of the final seventh lens L7 an aspherical surface having an inflection point P within the effective diameter, the incident angle when a light beam having a peripheral image height is incident on the imaging surface I is kept small. Therefore, the light receiving efficiency of the image sensor 51 can be improved.
上記撮像レンズ10においては、値Dnを主負レンズ(第2レンズL2)の像側面S22から撮像面Iまでの距離とし、値s1を物体側の遮光絞りFSに設けられた第1開口の開口径とし、値s2を像側の遮光絞りFSに設けられた第2開口の開口径として、以下の条件式(1)及び(2)
1.5<Dn/s1<2.3 … (1)
s1≧s2 … (2)
を満足するものとなっている。ここで、値Dnについては、平行平板Fの部分は空気換算長として計算する。また、値s2については、第1レンズL1の物体側に配置された第1絞り部材(遮光絞り)FS1の開口径として与えられる。値s2については、第2及び第3レンズL2,L3間に配置された第2絞り部材(遮光絞り)FS2の開口径として与えられる。図示の例では、主負レンズである第2レンズL2の物体側の開口絞りASの開口径よりも第2レンズL2の像側の遮光絞りFSの開口径の方が小さく、第2絞り部材は、第2及び第3レンズL2,L3間の遮光絞りFSとなっている。
なお、条件式(1)の値Dn/s1については、下記の条件式(1)'の範囲内とすることがより望ましい。
1.6<Dn/s1<2.2 … (1)'
In the imaging lens 10, the value Dn is the distance from the image side surface S22 of the main negative lens (second lens L2) to the imaging surface I, and the value s1 is the opening of the first aperture provided in the light-shielding stop FS on the object side. The following conditional expressions (1) and (2), where the aperture is the aperture and the value s2 is the aperture of the second aperture provided in the image-side light-shielding stop FS
1.5 <Dn / s1 <2.3 (1)
s1 ≧ s2 (2)
Is satisfied. Here, about the value Dn, the part of the parallel plate F is calculated as air conversion length. The value s2 is given as the aperture diameter of the first diaphragm member (light-shielding diaphragm) FS1 disposed on the object side of the first lens L1. The value s2 is given as the aperture diameter of the second diaphragm member (light-shielding diaphragm) FS2 disposed between the second and third lenses L2 and L3. In the illustrated example, the aperture diameter of the light-shielding stop FS on the image side of the second lens L2 is smaller than the aperture diameter of the aperture stop AS on the object side of the second lens L2 that is the main negative lens. , A light-shielding stop FS between the second and third lenses L2 and L3.
Note that the value Dn / s1 of the conditional expression (1) is more preferably within the range of the following conditional expression (1) ′.
1.6 <Dn / s1 <2.2 (1) ′
上記撮像レンズ10によれば、値Dn/s1が条件式(1)の下限を上回ることで、主負レンズ(第2レンズL2)が撮像面Iに近付き過ぎたり、絞り部材FSに設けられた第1開口の開口径s1が大きくなり過ぎたりすることを抑制できるため、球面収差やコマ収差の補正を良好にできる。一方、値Dn/s1が条件式(1)の上限を下回ることで、主負レンズ(第2レンズL2)が像面から遠ざかり過ぎたり、絞り部材FSに設けられた第1開口の開口径s1が小さくなり過ぎたりすることを抑制できるため、撮像レンズ10の光学全長を短縮しつつ大口径化することが可能になる。
また、上記撮像レンズ10によれば、条件式(2)を満たし、第1絞り部材FS1の開口径s1が第2絞り部材FS2の開口径s2よりもが小さくなり、周辺像高に結像する光束のうち、入射瞳の端付近を通過する光線を遮光することになるため、コマ収差を改善することができ、高性能化が可能になる。
According to the imaging lens 10, the value Dn / s1 exceeds the lower limit of the conditional expression (1), so that the main negative lens (second lens L2) is too close to the imaging surface I or provided on the diaphragm member FS. Since it is possible to suppress the opening diameter s1 of the first opening from becoming too large, spherical aberration and coma can be favorably corrected. On the other hand, when the value Dn / s1 falls below the upper limit of the conditional expression (1), the main negative lens (second lens L2) is too far away from the image plane, or the aperture diameter s1 of the first aperture provided in the aperture member FS. Can be prevented from becoming too small, so that it is possible to increase the aperture while shortening the optical total length of the imaging lens 10.
Also, according to the imaging lens 10, the conditional expression (2) is satisfied, the opening diameter s1 of the first diaphragm member FS1 is smaller than the opening diameter s2 of the second diaphragm member FS2, and an image is formed at the peripheral image height. Since the light beam passing through the vicinity of the end of the entrance pupil of the light beam is shielded, coma aberration can be improved and high performance can be achieved.
本実施形態の撮像レンズ10は、上記条件式(1)及び(2)に加えて、既に説明した条件式(3)
1.0≦Φmax/EPD<1.25 … (3)
を満足する。ただし、値Φmaxは、第1〜第3レンズL1〜L3までのうち、最も有効径が大きいレンズ(図示の例では第1レンズL1)の有効径であり、値EPDは、入射瞳直径である。
なお、条件式(3)の値Φmax/EPDについては、下記の条件式(3)'の範囲内とすることがより望ましい。
1.0≦Φmax/EPD<1.1 … (3)'
In addition to the conditional expressions (1) and (2), the imaging lens 10 of the present embodiment has the conditional expression (3) already described.
1.0 ≦ Φmax / EPD <1.25 (3)
Satisfied. However, the value Φmax is the effective diameter of the lens having the largest effective diameter (the first lens L1 in the illustrated example) among the first to third lenses L1 to L3, and the value EPD is the entrance pupil diameter. .
The value Φmax / EPD of conditional expression (3) is more preferably within the range of conditional expression (3) ′ below.
1.0 ≦ Φmax / EPD <1.1 (3) ′
本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(4)
0.70<s2/s1≦1.0 … (4)
を満足する。
なお、条件式(4)の値s2/s1については、下記の条件式(4)'の範囲内とすることがより望ましい。
0.73<s2/s1≦0.90 … (4)'
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (4) already described.
0.70 <s2 / s1 ≦ 1.0 (4)
Satisfied.
Note that the value s2 / s1 of the conditional expression (4) is more preferably within the range of the following conditional expression (4) ′.
0.73 <s2 / s1 ≦ 0.90 (4) ′
本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(5)
1.0<f123/f<4.0 … (5)
を満足する。ただし、値f123は、第1〜第3レンズL1〜L3までの合成焦点距離であり、値fは、撮像レンズ10全系の焦点距離である。
なお、条件式(5)の値f123/fについては、下記の条件式(5)'の範囲内とすることがより望ましい。
1.5<f123/f<2.5 … (5)'
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (5) already described.
1.0 <f123 / f <4.0 (5)
Satisfied. However, the value f123 is the combined focal length from the first to third lenses L1 to L3, and the value f is the focal length of the entire imaging lens 10 system.
The value f123 / f of the conditional expression (5) is more preferably within the range of the following conditional expression (5) ′.
1.5 <f123 / f <2.5 (5) ′
本実施形態の撮像レンズ10のうち、主負レンズ(第2レンズL2)の像側に配置される3枚のレンズ(第3、第4、第5レンズL3,L4,L5)については、上記条件式(1)等に加えて、既に説明した条件式(6)
0.01<SAG_A/ΦA<0.20 … (6)
を満足する。ただし、値SAG_Aは、上記3枚のレンズL3〜L5の物体側面S31,S41,S51の有効径内のサグ量であり、ΦAは、各レンズL3〜L5の物体側面S31,S41,S51の有効径である。
なお、条件式(6)の値SAG_A/ΦAについては、下記の条件式(6)'の範囲内とすることがより望ましい。
0.02<SAG_A/ΦA<0.15 … (6)'
Of the imaging lens 10 of the present embodiment, the three lenses (third, fourth, fifth lenses L3, L4, L5) arranged on the image side of the main negative lens (second lens L2) are described above. In addition to conditional expression (1) etc., conditional expression (6) already explained
0.01 <SAG_A / ΦA <0.20 (6)
Satisfied. However, the value SAG_A is the sag amount within the effective diameter of the object side surfaces S31, S41, and S51 of the three lenses L3 to L5, and ΦA is the effective value of the object side surfaces S31, S41, and S51 of the lenses L3 to L5. Is the diameter.
Note that the value SAG_A / ΦA of the conditional expression (6) is more preferably within the range of the following conditional expression (6) ′.
0.02 <SAG_A / ΦA <0.15 (6) ′
本実施形態の撮像レンズ10では、特に図示していないが、実質的にパワーを持たないレンズその他の光学素子をさらに備えるものとできる。   Although not particularly illustrated, the imaging lens 10 of the present embodiment may further include a lens or other optical element that does not substantially have power.
〔実施例〕
以下、本発明に係る撮像レンズの具体的な実施例について説明する。各実施例において、rは曲率半径を意味し、dは軸上面間隔を意味し、ndはレンズ材料のd線に対する屈折率を意味し、vdはレンズ材料のアッベ数を意味し、「eff.dia.」は有効径を意味する。また、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸AX方向にX軸をとり、光軸AXと垂直方向の高さをhとして以下の「数1」で表す。
ただし、
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
さらに、各実施例において、「STO」は開口絞りASを意味し、「FS」は遮光絞りFSを意味する。
なお、各実施例の撮像レンズが前提とする使用基本波長は587.56nmであり、曲率半径等の面形状の単位はmmである。
〔Example〕
Hereinafter, specific examples of the imaging lens according to the present invention will be described. In each embodiment, r represents the radius of curvature, d represents the axial top surface spacing, nd represents the refractive index of the lens material with respect to the d-line, vd represents the Abbe number of the lens material, “eff. “dia.” means an effective diameter. In addition, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin, the X axis in the optical axis AX direction, The height in the direction perpendicular to the axis AX is represented by “Equation 1” below.
However,
Ai: i-order aspherical coefficient R: radius of curvature K: conical constant Further, in each embodiment, “STO” means the aperture stop AS, and “FS” means the light blocking stop FS.
In addition, the use fundamental wavelength which the imaging lens of each Example presupposes is 587.56 nm, and the unit of surface shape, such as a curvature radius, is mm.
〔実施例1〕
実施例1のレンズ面のデータを以下の表1に示す。
〔表1〕
面番号 r d nd vd eff. dia.
1 FS INFINITY -0.1000 2.700
2* 1.9667 0.7120 1.54470 56 2.625
3* -9.5028 0.0663 2.494
STO INFINITY 0.0000 2.443
5* 2.1268 0.1504 1.63469 23.9 2.282
6* 1.1775 0.3670 2.056
7 FS INFINITY 0.1800 2.050
8* 22.5212 0.3660 1.54470 56 2.182
9* 8.2854 0.1000 2.451
10* 2.6266 0.3717 1.54470 56 2.778
11* 4.7470 0.1535 3.036
12* 8.6726 0.2000 1.63469 23.9 3.277
13* 5.3552 0.2870 3.431
14* 8.4713 0.6176 1.54470 56 3.820
15* -1.2722 0.2844 4.092
16* 45.1563 0.3151 1.54470 56 4.908
17* 1.0531 0.4000 5.309
18 INFINITY 0.1100 1.51633 64.1 5.602
19 INFINITY 0.3790
[Example 1]
The lens surface data of Example 1 is shown in Table 1 below.
[Table 1]
Surface number rd nd vd eff.dia.
1 FS INFINITY -0.1000 2.700
2 * 1.9667 0.7120 1.54470 56 2.625
3 * -9.5028 0.0663 2.494
STO INFINITY 0.0000 2.443
5 * 2.1268 0.1504 1.63469 23.9 2.282
6 * 1.1775 0.3670 2.056
7 FS INFINITY 0.1800 2.050
8 * 22.5212 0.3660 1.54470 56 2.182
9 * 8.2854 0.1000 2.451
10 * 2.6266 0.3717 1.54470 56 2.778
11 * 4.7470 0.1535 3.036
12 * 8.6726 0.2000 1.63469 23.9 3.277
13 * 5.3552 0.2870 3.431
14 * 8.4713 0.6176 1.54470 56 3.820
15 * -1.2722 0.2844 4.092
16 * 45.1563 0.3151 1.54470 56 4.908
17 * 1.0531 0.4000 5.309
18 INFINITY 0.1100 1.51633 64.1 5.602
19 INFINITY 0.3790
実施例1のレンズ面の非球面係数を以下の表2に示す。
〔表2〕
第2面
K=-8.22802e-001, A4=1.91375e-002, A6=5.43170e-003,
A8=-5.90436e-003, A10=8.76981e-003, A12=-4.67995e-003,
A14=1.07996e-003
第3面
K=-7.98909e+001, A4=9.81762e-002, A6=-1.18737e-001,
A8=1.18025e-001, A10=-7.92024e-002, A12=3.03109e-002,
A14=-4.86274e-003
第5面
K=-2.24162e+001, A4=1.80214e-002, A6=-4.06404e-002,
A8=5.39192e-002, A10=-5.00906e-002, A12=2.27445e-002,
A14=-3.54001e-003
第6面
K=-6.33786e+000, A3=1.03847e-002, A4=1.36593e-002,
A5=1.94056e-002, A6=4.64130e-002, A8=-1.32939e-001,
A10=1.71554e-001, A12=-1.14880e-001, A14=3.23310e-002
第8面
K=-2.79837e+001, A3=-1.02503e-002, A4=1.95438e-002,
A5=-1.94346e-001, A6=2.30842e-001, A8=-2.05062e-001,
A10=1.34975e-001, A12=-5.11263e-002, A14=-3.10333e-004
第9面
K=4.97825e+000, A3=-4.48486e-002, A4=-1.72924e-001,
A5=4.01329e-003, A6=6.30455e-002, A8=-4.19386e-002,
A10=6.44463e-003, A12=6.17139e-003, A14=-4.50847e-003
第10面
K=4.89398e-001, A3=-7.49603e-002, A4=-1.53262e-001,
A5=9.45476e-003, A6=-1.14499e-002, A8=5.41254e-003,
A10=7.60970e-003,A12=1.34869e-003,A14=-1.55023e-003
第11面
K=6.32329e+000, A3=-8.08059e-002, A4=-5.21718e-002,
A5=5.05387e-002, A6=-1.28865e-001, A8=5.81021e-002,
A10=-1.28264e-002,A12=1.49895e-003
第12面
K=1.86989e+001, A3=-4.91918e-002, A4=-3.35069e-001,
A5=3.65152e-001, A6=-2.67571e-001, A8=1.01794e-001,
A10=-1.92471e-002, A12=8.87502e-004
第13面
K=-3.08174e+000, A3=-3.23757e-002, A4=-2.63810e-001,
A5=1.59983e-001, A6=-4.87836e-002, A8=6.04489e-003,
A10=6.42809e-003,A12=-2.20734e-003,A14=1.58325e-004
第14面
K=-3.38748e+001, A3=-3.88196e-003, A4=1.24503e-002,
A5=-1.20172e-001, A6=1.17358e-001, A8=-4.78783e-002,
A10=1.49422e-002, A12=-2.67805e-003, A14=2.20101e-004
第15面
K=-9.07157e+000, A3=-9.46510e-002, A4=-5.97512e-002,
A5=1.02415e-001, A6=-6.69828e-003, A8=-1.78173e-002,
A10=6.50738e-003, A12=-1.12326e-003, A14=7.68896e-005
第16面
K=7.99641e+001, A3=-1.20236e-001, A4=-9.23792e-002,
A5=3.91343e-002, A6=2.25840e-002, A8=-2.96911e-003,
A10=-3.44293e-004, A12=8.49048e-005, A14=-4.43939e-006
第17面
K=-6.37169e+000, A3=-1.87779e-003, A4=-1.49423e-001,
A5=1.11589e-001, A6=-2.92809e-002, A8=1.35999e-003,
A10=-2.30915e-004, A12=2.63067e-005, A14=-8.30657e-007
なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10−002)を、e(たとえば2.5e−002)を用いて表すものとする。
The aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below.
[Table 2]
Second side
K = -8.22802e-001, A4 = 1.91375e-002, A6 = 5.43170e-003,
A8 = -5.90436e-003, A10 = 8.76981e-003, A12 = -4.67995e-003,
A14 = 1.07996e-003
Third side
K = -7.98909e + 001, A4 = 9.81762e-002, A6 = -1.18737e-001,
A8 = 1.18025e-001, A10 = -7.92024e-002, A12 = 3.03109e-002,
A14 = -4.86274e-003
5th page
K = -2.24162e + 001, A4 = 1.80214e-002, A6 = -4.06404e-002,
A8 = 5.39192e-002, A10 = -5.00906e-002, A12 = 2.27445e-002,
A14 = -3.54001e-003
6th page
K = -6.33786e + 000, A3 = 1.03847e-002, A4 = 1.36593e-002,
A5 = 1.94056e-002, A6 = 4.64130e-002, A8 = -1.32939e-001,
A10 = 1.71554e-001, A12 = -1.14880e-001, A14 = 3.23310e-002
8th page
K = -2.79837e + 001, A3 = -1.02503e-002, A4 = 1.95438e-002,
A5 = -1.94346e-001, A6 = 2.30842e-001, A8 = -2.05062e-001,
A10 = 1.34975e-001, A12 = -5.11263e-002, A14 = -3.10333e-004
9th page
K = 4.97825e + 000, A3 = -4.48486e-002, A4 = -1.72924e-001,
A5 = 4.01329e-003, A6 = 6.30455e-002, A8 = -4.19386e-002,
A10 = 6.44463e-003, A12 = 6.17139e-003, A14 = -4.50847e-003
10th page
K = 4.89398e-001, A3 = -7.49603e-002, A4 = -1.53262e-001,
A5 = 9.45476e-003, A6 = -1.14499e-002, A8 = 5.41254e-003,
A10 = 7.60970e-003, A12 = 1.34869e-003, A14 = -1.55023e-003
11th page
K = 6.32329e + 000, A3 = -8.08059e-002, A4 = -5.21718e-002,
A5 = 5.05387e-002, A6 = -1.28865e-001, A8 = 5.81021e-002,
A10 = -1.28264e-002, A12 = 1.49895e-003
12th page
K = 1.86989e + 001, A3 = -4.91918e-002, A4 = -3.35069e-001,
A5 = 3.65152e-001, A6 = -2.67571e-001, A8 = 1.01794e-001,
A10 = -1.92471e-002, A12 = 8.87502e-004
Side 13
K = -3.08174e + 000, A3 = -3.23757e-002, A4 = -2.63810e-001,
A5 = 1.59983e-001, A6 = -4.87836e-002, A8 = 6.04489e-003,
A10 = 6.42809e-003, A12 = -2.20734e-003, A14 = 1.58325e-004
14th page
K = -3.38748e + 001, A3 = -3.88196e-003, A4 = 1.24503e-002,
A5 = -1.20172e-001, A6 = 1.17358e-001, A8 = -4.78783e-002,
A10 = 1.49422e-002, A12 = -2.67805e-003, A14 = 2.20101e-004
15th page
K = -9.07157e + 000, A3 = -9.46510e-002, A4 = -5.97512e-002,
A5 = 1.02415e-001, A6 = -6.69828e-003, A8 = -1.78173e-002,
A10 = 6.50738e-003, A12 = -1.12326e-003, A14 = 7.68896e-005
16th page
K = 7.99641e + 001, A3 = -1.20236e-001, A4 = -9.23792e-002,
A5 = 3.91343e-002, A6 = 2.25840e-002, A8 = -2.96911e-003,
A10 = -3.44293e-004, A12 = 8.49048e-005, A14 = -4.43939e-006
17th page
K = -6.37169e + 000, A3 = -1.87779e-003, A4 = -1.49423e-001,
A5 = 1.11589e-001, A6 = -2.92809e-002, A8 = 1.35999e-003,
A10 = -2.30915e-004, A12 = 2.63067e-005, A14 = -8.30657e-007
In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −002 ) is expressed using e (for example, 2.5e−002).
実施例1の撮像レンズの特性を以下に列挙する。
FL 3.778
Fno 1.44
w 75.33
Ymax 2.916
BF 0.889
TL 5.060
BFa 0.852
TLa 5.023
ここで、FLは撮像レンズ全系の焦点距離を意味し、FnoはFナンバーを意味し、wは対角線画角を意味し、Ymaxは撮像素子の撮像面対角線長の半値を意味し、BFはバックフォーカスを意味し、TLは系全長を意味する。また、BFaは、バックフォーカス(最終レンズ〜像面I ※平行平板は空気換算長としたとき)、TLaは、光学全長(最終レンズ〜像面I ※平行平板は空気換算長としたとき)を意味する。なお、以上の符号は、これ以降の実施例でも同様の意味を有するものとする。
The characteristics of the imaging lens of Example 1 are listed below.
FL 3.778
Fno 1.44
w 75.33
Ymax 2.916
BF 0.889
TL 5.060
BFa 0.852
TLa 5.023
Here, FL means the focal length of the entire imaging lens system, Fno means the F number, w means the diagonal field angle, Ymax means the half value of the diagonal length of the imaging surface of the imaging device, and BF means This means back focus, and TL means the total length of the system. BFa is the back focus (final lens to image plane I * when the parallel plate is the air conversion length), and TLa is the optical total length (final lens to image plane I * the parallel plate is the air conversion length). means. In addition, the above code | symbol shall have the same meaning also in the subsequent Examples.
実施例1の単レンズデータを以下の表3に示す。
〔表3〕
レンズ番号 面番号 焦点距離 有効径
Elem Surfs Focal Length Diameter
1 2- 3 3.0584 2.625
2 5- 6 -4.4284 2.282
3 8- 9 -24.2842 2.451
4 10-11 10.1673 3.036
5 12-13 -22.5866 3.431
6 14-15 2.0771 4.092
7 16-17 -1.9845 5.309
8 18-19 -1e+035 5.638
The single lens data of Example 1 is shown in Table 3 below.
[Table 3]
Lens number Surface number Focal length Effective diameter
Elem Surfs Focal Length Diameter
1 2- 3 3.0584 2.625
2 5- 6 -4.4284 2.282
3 8- 9 -24.2842 2.451
4 10-11 10.1673 3.036
5 12-13 -22.5866 3.431
6 14-15 2.0771 4.092
7 16-17 -1.9845 5.309
8 18-19 -1e + 035 5.638
図5は、実施例1の撮像レンズ11等の断面図である。撮像レンズ11は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い負の屈折力を有し像側に凹面を向けた略平凹の第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けた略平凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第2及び第3レンズL2,L3の間とには、遮光絞りFSがそれぞれ配置されている。なお、例えば第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができ、この点は、以下の実施例でも同様である。   FIG. 5 is a cross-sectional view of the imaging lens 11 and the like of the first embodiment. The imaging lens 11 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. The second lens L2, the third lens L3 having a substantially negative refractive power around the optical axis AX and having a concave surface facing the image side, and an object having a positive refractive power around the optical axis AX. A fourth meniscus lens L4 having a convex surface facing the side, a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refraction around the optical axis AX A biconvex sixth lens L6 having power, and a substantially plano-concave seventh lens L7 having negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the second and third lenses L2 and L3, A light-shielding stop FS is disposed. For example, a parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object, and this is the same in the following embodiments.
図6(A)〜6(C)は、実施例1の撮像レンズ11の諸収差図(球面収差、非点収差、歪曲収差)を示し、図6(D)及び6(E)は、実施例1の撮像レンズ11の横収差を示している。   6A to 6C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 11 of Example 1, and FIGS. 6D and 6E show the examples. The lateral aberration of the imaging lens 11 of Example 1 is shown.
〔実施例2〕
実施例2のレンズ面のデータを以下の表4に示す。
〔表4〕
面番号 r d nd vd eff. dia.
1 FS INFINITY -0.2500 2.700
2* 1.8265 0.7706 1.54470 56 2.633
3* -9.8075 0.0500 2.483
4* 2.2119 0.1796 1.63469 23.9 2.261
5* 1.1650 0.3677 1.978
STO INFINITY 0.1500 1.963
7* -15.7609 0.1900 1.54470 56 2.113
8* 12.4701 0.1015 2.279
9* 3.4709 0.6368 1.54470 56 2.595
10* 13.7284 0.1000 2.996
11* 6.9010 0.2000 1.63469 23.9 3.132
12* 6.4920 0.5187 3.256
13* 44.5000 0.4973 1.54470 56 3.591
14* -1.1492 0.1749 3.914
15* -5.2967 0.3007 1.54470 56 4.536
16* 1.1765 0.7000 5.011
17 INFINITY 0.1100 1.51633 64.1 5.680
18 INFINITY 0.2024
[Example 2]
The lens surface data of Example 2 is shown in Table 4 below.
[Table 4]
Surface number rd nd vd eff.dia.
1 FS INFINITY -0.2500 2.700
2 * 1.8265 0.7706 1.54470 56 2.633
3 * -9.8075 0.0500 2.483
4 * 2.2119 0.1796 1.63469 23.9 2.261
5 * 1.1650 0.3677 1.978
STO INFINITY 0.1500 1.963
7 * -15.7609 0.1900 1.54470 56 2.113
8 * 12.4701 0.1015 2.279
9 * 3.4709 0.6368 1.54470 56 2.595
10 * 13.7284 0.1000 2.996
11 * 6.9010 0.2000 1.63469 23.9 3.132
12 * 6.4920 0.5187 3.256
13 * 44.5000 0.4973 1.54470 56 3.591
14 * -1.1492 0.1749 3.914
15 * -5.2967 0.3007 1.54470 56 4.536
16 * 1.1765 0.7000 5.011
17 INFINITY 0.1100 1.51633 64.1 5.680
18 INFINITY 0.2024
実施例2のレンズ面の非球面係数を以下の表5に示す。
〔表5〕
第2面
K=-7.62402e-001, A4=2.04751e-002, A6=6.15415e-003,
A8=-6.48276e-003, A10=8.84911e-003, A12=-4.48738e-003,
A14=1.01834e-003
第3面
K=9.83262e+000, A4=9.78535e-002, A6=-1.16417e-001,
A8=1.18654e-001, A10=-7.95199e-002, A12=3.02924e-002,
A14=-4.86274e-003
第4面
K=-1.88230e+001, A4=-8.39250e-004, A6=-3.81024e-002,
A8=6.15429e-002, A10=-4.95206e-002, A12=2.10021e-002,
A14=-3.54000e-003
第5面
K=-5.13366e+000, A3=9.20875e-003, A4=1.19772e-002,
A5=1.92273e-002, A6=5.03902e-002, A8=-1.21332e-001,
A10=1.72304e-001, A12=-1.22781e-001, A14=3.79822e-002
第7面
K=-8.00000e+001, A3=-1.31138e-002, A4=4.62154e-002,
A5=-1.85231e-001, A6=2.34638e-001, A8=-1.98611e-001,
A10=1.35696e-001, A12=-5.04387e-002, A14=7.62898e-003
第8面
K=4.88218e+001, A3=-1.80239e-002, A4=-1.52562e-001,
A5=1.13531e-002, A6=6.54020e-002, A8=-3.87499e-002,
A10=1.08407e-002, A12=9.52540e-003, A14=-3.15667e-003
第9面
K=2.06211e+000, A3=-1.95698e-002, A4=-1.42525e-001,
A5=1.93943e-002, A6=-8.24714e-003, A8=3.05060e-003,
A10=7.47791e-003, A12=1.72573e-003, A14=-1.21519e-003
第10面
K=-8.00000e+001, A3=-2.74626e-002, A4=-2.19898e-002,
A5=6.27652e-002, A6=-1.24758e-001, A8=5.60335e-002,
A10=-1.42980e-002, A12=2.03003e-003
第11面
K=1.39238e+001, A3=-8.44025e-003, A4=-3.28119e-001,
A5=3.72168e-001, A6=-2.65022e-001, A8=9.88716e-002,
A10=-2.05718e-002, A12=1.06740e-003
第12面
K=1.34574e+001, A3=-1.32284e-002, A4=-2.56059e-001,
A5=1.57577e-001, A6=-5.11886e-002, A8=7.16231e-003,
A10=6.80037e-003, A12=-2.26892e-003, A14=4.15564e-005
第13面
K=8.00000e+001, A3=-9.74745e-003, A4=1.71772e-002,
A5=-1.27294e-001, A6=1.14521e-001, A8=-4.81556e-002,
A10=1.49933e-002, A12=-2.62088e-003, A14=2.30959e-004
第14面
K=-7.64107e+000, A3=-4.42792e-002, A4=-7.79999e-002,
A5=9.16848e-002, A6=-8.06985e-003, A8=-1.69608e-002,
A10=6.70296e-003, A12=-1.10843e-003, A14=6.64654e-005
第15面
K=-6.14130e+001, A3=-6.87097e-002, A4=-9.91812e-002,
A5=3.63023e-002, A6=2.20450e-002, A8=-2.94886e-003,
A10=-3.32315e-004, A12=8.65810e-005, A14=-4.83883e-006
第16面
K=-9.29155e+000, A3=-1.25830e-002, A4=-1.28523e-001,
A5=1.02833e-001, A6=-3.15161e-002, A8=1.69075e-003,
A10=-1.99522e-004, A12=2.45502e-005, A14=-1.11388e-006
The aspherical coefficient of the lens surface of Example 2 is shown in Table 5 below.
[Table 5]
Second side
K = -7.62402e-001, A4 = 2.04751e-002, A6 = 6.15415e-003,
A8 = -6.48276e-003, A10 = 8.84911e-003, A12 = -4.48738e-003,
A14 = 1.01834e-003
Third side
K = 9.83262e + 000, A4 = 9.78535e-002, A6 = -1.16417e-001,
A8 = 1.18654e-001, A10 = -7.95199e-002, A12 = 3.02924e-002,
A14 = -4.86274e-003
4th page
K = -1.88230e + 001, A4 = -8.39250e-004, A6 = -3.81024e-002,
A8 = 6.15429e-002, A10 = -4.95206e-002, A12 = 2.10021e-002,
A14 = -3.54000e-003
5th page
K = -5.13366e + 000, A3 = 9.20875e-003, A4 = 1.19772e-002,
A5 = 1.92273e-002, A6 = 5.03902e-002, A8 = -1.21332e-001,
A10 = 1.72304e-001, A12 = -1.22781e-001, A14 = 3.79822e-002
7th page
K = -8.00000e + 001, A3 = -1.31138e-002, A4 = 4.62154e-002,
A5 = -1.85231e-001, A6 = 2.34638e-001, A8 = -1.98611e-001,
A10 = 1.35696e-001, A12 = -5.04387e-002, A14 = 7.62898e-003
8th page
K = 4.88218e + 001, A3 = -1.80239e-002, A4 = -1.52562e-001,
A5 = 1.13531e-002, A6 = 6.54020e-002, A8 = -3.87499e-002,
A10 = 1.08407e-002, A12 = 9.52540e-003, A14 = -3.15667e-003
9th page
K = 2.06211e + 000, A3 = -1.95698e-002, A4 = -1.42525e-001,
A5 = 1.93943e-002, A6 = -8.24714e-003, A8 = 3.05060e-003,
A10 = 7.47791e-003, A12 = 1.72573e-003, A14 = -1.21519e-003
10th page
K = -8.00000e + 001, A3 = -2.74626e-002, A4 = -2.19898e-002,
A5 = 6.27652e-002, A6 = -1.24758e-001, A8 = 5.60335e-002,
A10 = -1.42980e-002, A12 = 2.03003e-003
11th page
K = 1.39238e + 001, A3 = -8.44025e-003, A4 = -3.28119e-001,
A5 = 3.72168e-001, A6 = -2.65022e-001, A8 = 9.88716e-002,
A10 = -2.05718e-002, A12 = 1.06740e-003
12th page
K = 1.34574e + 001, A3 = -1.32284e-002, A4 = -2.56059e-001,
A5 = 1.57577e-001, A6 = -5.11886e-002, A8 = 7.16231e-003,
A10 = 6.80037e-003, A12 = -2.26892e-003, A14 = 4.15564e-005
Side 13
K = 8.00000e + 001, A3 = -9.74745e-003, A4 = 1.71772e-002,
A5 = -1.27294e-001, A6 = 1.14521e-001, A8 = -4.81556e-002,
A10 = 1.49933e-002, A12 = -2.62088e-003, A14 = 2.30959e-004
14th page
K = -7.64107e + 000, A3 = -4.42792e-002, A4 = -7.79999e-002,
A5 = 9.16848e-002, A6 = -8.06985e-003, A8 = -1.69608e-002,
A10 = 6.70296e-003, A12 = -1.10843e-003, A14 = 6.64654e-005
15th page
K = -6.14130e + 001, A3 = -6.87097e-002, A4 = -9.91812e-002,
A5 = 3.63023e-002, A6 = 2.20450e-002, A8 = -2.94886e-003,
A10 = -3.32315e-004, A12 = 8.65810e-005, A14 = -4.83883e-006
16th page
K = -9.29155e + 000, A3 = -1.25830e-002, A4 = -1.28523e-001,
A5 = 1.02833e-001, A6 = -3.15161e-002, A8 = 1.69075e-003,
A10 = -1.99522e-004, A12 = 2.45502e-005, A14 = -1.11388e-006
実施例2の撮像レンズの特性を以下に列挙する。
FL 4.313
Fno 1.64
w 67.60
Ymax 2.921
BF 1.012
TL 5.250
BFa 0.975
TLa 5.213
The characteristics of the imaging lens of Example 2 are listed below.
FL 4.313
Fno 1.64
w 67.60
Ymax 2.921
BF 1.012
TL 5.250
BFa 0.975
TLa 5.213
実施例2の単レンズデータを以下の表6に示す。
〔表6〕
Elem Surfs Focal Length Diameter
1 2- 3 2.8944 2.633
2 4- 5 -4.1550 2.261
3 7- 8 -12.7508 2.279
4 9-10 8.3456 2.996
5 11-12 -213.0273 3.256
6 13-14 2.0645 3.914
7 15-16 -1.7389 5.011
The single lens data of Example 2 is shown in Table 6 below.
[Table 6]
Elem Surfs Focal Length Diameter
1 2- 3 2.8944 2.633
2 4- 5 -4.1550 2.261
3 7- 8 -12.7508 2.279
4 9-10 8.3456 2.996
5 11-12 -213.0273 3.256
6 13-14 2.0645 3.914
7 15-16 -1.7389 5.011
図7は、実施例2の撮像レンズ12等の断面図である。撮像レンズ12は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で負の屈折力を有する両凹の第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有し像側に凸面を向けた略平凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側には、遮光絞りFSが配置されている。なお、例えば第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 7 is a cross-sectional view of the imaging lens 12 and the like of the second embodiment. The imaging lens 12 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. The second lens L2, the third biconcave lens L3 having negative refractive power around the optical axis AX, and the fourth meniscus having positive refractive power around the optical axis AX and having a convex surface facing the object side. Lens L4, a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and having a convex surface facing the object side, and a positive refractive power around the optical axis AX and having a convex surface facing the image side A substantially planoconvex sixth lens L6 and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and a light-shielding stop FS is disposed on the object side of the outer edge of the first lens L1. For example, a parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.
図8(A)〜8(C)は、実施例2の撮像レンズ12の諸収差図(球面収差、非点収差、歪曲収差)を示し、図8(D)及び8(E)は、実施例2の撮像レンズ12の横収差を示している。   8A to 8C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 12 of Example 2, and FIGS. 4 shows lateral aberration of the imaging lens 12 of Example 2.
〔実施例3〕
実施例3のレンズ面のデータを以下の表7に示す。
〔表7〕
面番号 r d nd vd eff. dia.
STO INFINITY -0.2500 2.625
2* 2.0635 0.7031 1.54470 56 2.625
3* -8.2734 0.0500 2.493
4* 2.2022 0.1957 1.63469 23.9 2.290
5* 1.1925 0.4520 2.045
6 FS INFINITY 0.1000 2.040
7* 47.5805 0.3000 1.54470 56 2.074
8* 25.0398 0.0884 2.326
9* 4.6503 0.9065 1.54470 56 2.828
10* 52.3411 0.1642 3.208
11* -1.7499 0.2004 1.63469 23.9 3.326
12* -1.4313 0.0500 3.557
13* 13.9998 0.4818 1.54470 56 3.698
14* -20.0000 0.3261 4.129
15* 1.2751 0.3604 1.54470 56 4.867
16* 0.7678 0.6000 5.318
17 INFINITY 0.1100 1.51633 64.1 5.700
18 INFINITY 0.1419
Example 3
The lens surface data of Example 3 is shown in Table 7 below.
[Table 7]
Surface number rd nd vd eff.dia.
STO INFINITY -0.2500 2.625
2 * 2.0635 0.7031 1.54470 56 2.625
3 * -8.2734 0.0500 2.493
4 * 2.2022 0.1957 1.63469 23.9 2.290
5 * 1.1925 0.4520 2.045
6 FS INFINITY 0.1000 2.040
7 * 47.5805 0.3000 1.54470 56 2.074
8 * 25.0398 0.0884 2.326
9 * 4.6503 0.9065 1.54470 56 2.828
10 * 52.3411 0.1642 3.208
11 * -1.7499 0.2004 1.63469 23.9 3.326
12 * -1.4313 0.0500 3.557
13 * 13.9998 0.4818 1.54470 56 3.698
14 * -20.0000 0.3261 4.129
15 * 1.2751 0.3604 1.54470 56 4.867
16 * 0.7678 0.6000 5.318
17 INFINITY 0.1100 1.51633 64.1 5.700
18 INFINITY 0.1419
実施例3のレンズ面の非球面係数を以下の表8に示す。
〔表8〕
第2面
K=-1.42862e+000, A4=2.77675e-002, A6=5.43424e-003,
A8=-6.07353e-003, A10=8.35891e-003, A12=-4.15242e-003,
A14=9.53612e-004
第3面
K=-8.00000e+001, A4=9.76993e-002, A6=-1.24374e-001,
A8=1.24899e-001, A10=-8.16539e-002, A12=3.04828e-002,
A14=-4.86208e-003
第4面
K=-1.93605e+001, A4=4.29146e-002, A6=-9.25227e-002,
A8=9.66026e-002, A10=-6.67212e-002, A12=2.46267e-002,
A14=-3.54009e-003
第5面
K=-3.93582e+000, A3=-1.12833e-002, A4=-3.64851e-002,
A5=3.27652e-002, A6=9.76461e-002, A8=-1.58322e-001,
A10=1.37490e-001, A12=-6.70341e-002, A14=1.50187e-002
第7面
K=8.00000e+001, A3=-5.10427e-002, A4=1.39741e-001,
A5=-3.81210e-001, A6=3.26202e-001, A8=-1.70718e-001,
A10=7.85483e-002, A12=-2.37923e-002, A14=1.81202e-003
第8面
K=0.00000e+000, A4=-2.73521e-001, A6=1.78928e-001,
A8=-8.65778e-002, A10=2.22277e-002, A12=-1.85128e-003
第9面
K=0.00000e+000, A4=-2.58118e-001, A6=1.43757e-001,
A8=-2.48977e-002, A10=-9.02995e-004, A12=6.19376e-004
第10面
K=8.00000e+001, A3=-1.62229e-002, A4=-1.27850e-001,
A5=6.36093e-002, A6=-8.40529e-002, A8=6.12670e-002,
A10=-2.25320e-002, A12=3.51866e-003
第11面
K=-2.65028e-001, A3=1.68317e-001, A4=-2.36497e-001,
A5=3.68567e-001, A6=-2.97211e-001, A8=9.30939e-002,
A10=-1.81863e-002, A12=1.36314e-003
第12面
K=-5.58624e-001, A3=5.09014e-001, A4=-4.45879e-001,
A5=1.53316e-001, A6=-2.61242e-002, A8=5.47005e-003,
A10=4.88155e-003, A12=-1.93135e-003, A14=1.64661e-004
第13面
K=5.39428e+001, A3=3.27596e-001, A4=-2.71244e-001,
A5=-2.35007e-002, A6=1.23190e-001, A8=-5.87165e-002,
A10=1.46150e-002, A12=-1.99635e-003, A14=9.95736e-005
第14面
K=-8.00000e+001, A3=-4.14744e-001, A4=5.25797e-001,
A5=-1.30899e-001, A6=-1.89797e-002, A8=-1.34729e-002,
A10=5.95330e-003, A12=-8.74575e-004, A14=5.16865e-005
第15面
K=-1.43986e+001, A3=-3.35318e-001, A4=9.71430e-003,
A5=4.59226e-002, A6=1.67337e-002, A8=-3.65987e-003,
A10=-2.80541e-004, A12=9.56718e-005, A14=-5.70973e-006
第16面
K=-6.17418e+000, A3=-1.20474e-002, A4=-1.86539e-001,
A5=1.61058e-001, A6=-4.60649e-002, A8=1.54960e-003,
A10=-1.18236e-004, A12=2.46917e-005, A14=-1.62982e-006
The aspherical coefficients of the lens surfaces of Example 3 are shown in Table 8 below.
[Table 8]
Second side
K = -1.42862e + 000, A4 = 2.77675e-002, A6 = 5.43424e-003,
A8 = -6.07353e-003, A10 = 8.35891e-003, A12 = -4.15242e-003,
A14 = 9.53612e-004
Third side
K = -8.00000e + 001, A4 = 9.76993e-002, A6 = -1.24374e-001,
A8 = 1.24899e-001, A10 = -8.16539e-002, A12 = 3.04828e-002,
A14 = -4.86208e-003
4th page
K = -1.93605e + 001, A4 = 4.29146e-002, A6 = -9.25227e-002,
A8 = 9.66026e-002, A10 = -6.67212e-002, A12 = 2.46267e-002,
A14 = -3.54009e-003
5th page
K = -3.93582e + 000, A3 = -1.12833e-002, A4 = -3.64851e-002,
A5 = 3.27652e-002, A6 = 9.76461e-002, A8 = -1.58322e-001,
A10 = 1.37490e-001, A12 = -6.70341e-002, A14 = 1.50187e-002
7th page
K = 8.00000e + 001, A3 = -5.10427e-002, A4 = 1.39741e-001,
A5 = -3.81210e-001, A6 = 3.26202e-001, A8 = -1.70718e-001,
A10 = 7.85483e-002, A12 = -2.37923e-002, A14 = 1.81202e-003
8th page
K = 0.00000e + 000, A4 = -2.73521e-001, A6 = 1.78928e-001,
A8 = -8.65778e-002, A10 = 2.22277e-002, A12 = -1.85128e-003
9th page
K = 0.00000e + 000, A4 = -2.58118e-001, A6 = 1.43757e-001,
A8 = -2.48977e-002, A10 = -9.02995e-004, A12 = 6.19376e-004
10th page
K = 8.00000e + 001, A3 = -1.62229e-002, A4 = -1.27850e-001,
A5 = 6.36093e-002, A6 = -8.40529e-002, A8 = 6.12670e-002,
A10 = -2.25320e-002, A12 = 3.51866e-003
11th page
K = -2.65028e-001, A3 = 1.68317e-001, A4 = -2.36497e-001,
A5 = 3.68567e-001, A6 = -2.97211e-001, A8 = 9.30939e-002,
A10 = -1.81863e-002, A12 = 1.36314e-003
12th page
K = -5.58624e-001, A3 = 5.09014e-001, A4 = -4.45879e-001,
A5 = 1.53316e-001, A6 = -2.61242e-002, A8 = 5.47005e-003,
A10 = 4.88155e-003, A12 = -1.93135e-003, A14 = 1.64661e-004
Side 13
K = 5.39428e + 001, A3 = 3.27596e-001, A4 = -2.71244e-001,
A5 = -2.35007e-002, A6 = 1.23190e-001, A8 = -5.87165e-002,
A10 = 1.46150e-002, A12 = -1.99635e-003, A14 = 9.95736e-005
14th page
K = -8.00000e + 001, A3 = -4.14744e-001, A4 = 5.25797e-001,
A5 = -1.30899e-001, A6 = -1.89797e-002, A8 = -1.34729e-002,
A10 = 5.95330e-003, A12 = -8.74575e-004, A14 = 5.16865e-005
15th page
K = -1.43986e + 001, A3 = -3.35318e-001, A4 = 9.71430e-003,
A5 = 4.59226e-002, A6 = 1.67337e-002, A8 = -3.65987e-003,
A10 = -2.80541e-004, A12 = 9.56718e-005, A14 = -5.70973e-006
16th page
K = -6.17418e + 000, A3 = -1.20474e-002, A4 = -1.86539e-001,
A5 = 1.61058e-001, A6 = -4.60649e-002, A8 = 1.54960e-003,
A10 = -1.18236e-004, A12 = 2.46917e-005, A14 = -1.62982e-006
実施例3の撮像レンズの特性を以下に列挙する。
FL 3.791
Fno 1.44
w 75.43
Ymax 2.921
BF 0.852
TL 5.231
BFa 0.814
TLa 5.193
The characteristics of the imaging lens of Example 3 are listed below.
FL 3.791
Fno 1.44
w 75.43
Ymax 2.921
BF 0.852
TL 5.231
BFa 0.814
TLa 5.193
実施例3の単レンズデータを以下の表9に示す。
〔表9〕
Elem Surfs Focal Length Diameter
1 2- 3 3.1066 2.625
2 4- 5 -4.4312 2.290
3 7- 8 -97.4945 2.326
4 9-10 9.3074 3.208
5 11-12 9.9549 3.557
6 13-14 15.1947 4.129
7 15-16 -4.7278 5.318
The single lens data of Example 3 is shown in Table 9 below.
[Table 9]
Elem Surfs Focal Length Diameter
1 2- 3 3.1066 2.625
2 4- 5 -4.4312 2.290
3 7-8 -97.4945 2.326
4 9-10 9.3074 3.208
5 11-12 9.9549 3.557
6 13-14 15.1947 4.129
7 15-16 -4.7278 5.318
図9は、実施例3の撮像レンズ13等の断面図である。撮像レンズ13は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い負の屈折力を有する略平板の第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第4レンズL4と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有し像側に凸面を向けた略凸平の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1レンズL1の外縁の物体側には、開口絞り(STO)ASが配置され、第2及び第3レンズL2,L3の間には、遮光絞りFSが配置されている。なお、例えば第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 9 is a cross-sectional view of the imaging lens 13 and the like of the third embodiment. The imaging lens 13 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. The second lens L2, the substantially flat third lens L3 having a weak negative refractive power around the optical axis AX, and a substantially convex flat surface having a positive refractive power around the optical axis AX and having a convex surface facing the object side. The fourth lens L4, a meniscus fifth lens L5 having a positive refractive power around the optical axis AX and having a convex surface facing the image side, and a convex surface having a positive refractive power around the optical axis AX and the image side And a sixth lens L7 of meniscus having a negative refractive power around the optical axis AX and a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed on the object side of the outer edge of the first lens L1, and a light-shielding stop FS is disposed between the second and third lenses L2 and L3. For example, a parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.
図10(A)〜10(C)は、実施例3の撮像レンズ13の諸収差図(球面収差、非点収差、歪曲収差)を示し、図10(D)及び10(E)は、実施例3の撮像レンズ13の横収差を示している。   FIGS. 10A to 10C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 13 of Example 3, and FIGS. 10D and 10E show the examples. The lateral aberration of the imaging lens 13 of Example 3 is shown.
〔実施例4〕
実施例4のレンズ面のデータを以下の表10に示す。
〔表10〕
面番号 r d nd vd eff. dia.
1 FS INFINITY -0.1500 2.700
2* 2.5717 0.6047 1.54470 56 2.610
3* -7.0453 0.1420 2.497
STO INFINITY 0.0000 2.393
5* 1.8236 0.1687 1.63469 23.9 2.264
6* 1.1019 0.4572 2.108
7 FS INFINITY 0.1000 2.080
8* 37.1918 0.3890 1.54470 56 2.135
9* -21.8268 0.1039 2.412
10* 8.3148 0.5705 1.54470 56 2.767
11* 8.1875 0.1528 3.061
12* 2.6709 0.2002 1.63469 23.9 3.376
13* 4.4625 0.3514 3.442
14* -18.8765 0.6658 1.54470 56 3.617
15* -1.0741 0.2265 3.959
16* -34.1129 0.3255 1.54470 56 4.849
17* 0.9139 0.4000 5.376
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.4068
Example 4
The lens surface data of Example 4 is shown in Table 10 below.
[Table 10]
Surface number rd nd vd eff.dia.
1 FS INFINITY -0.1500 2.700
2 * 2.5717 0.6047 1.54470 56 2.610
3 * -7.0453 0.1420 2.497
STO INFINITY 0.0000 2.393
5 * 1.8236 0.1687 1.63469 23.9 2.264
6 * 1.1019 0.4572 2.108
7 FS INFINITY 0.1000 2.080
8 * 37.1918 0.3890 1.54470 56 2.135
9 * -21.8268 0.1039 2.412
10 * 8.3148 0.5705 1.54470 56 2.767
11 * 8.1875 0.1528 3.061
12 * 2.6709 0.2002 1.63469 23.9 3.376
13 * 4.4625 0.3514 3.442
14 * -18.8765 0.6658 1.54470 56 3.617
15 * -1.0741 0.2265 3.959
16 * -34.1129 0.3255 1.54470 56 4.849
17 * 0.9139 0.4000 5.376
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.4068
実施例4のレンズ面の非球面係数を以下の表11に示す。
〔表11〕
第2面
K=-4.83126e+000, A4=4.41063e-002, A6=-6.70306e-003,
A8=9.50319e-005, A10=5.51386e-003, A12=-3.75901e-003,
A14=1.10559e-003
第3面
K=4.36307e+000, A4=1.02298e-001, A6=-1.10820e-001,
A8=1.13887e-001, A10=-7.73968e-002, A12=3.02679e-002,
A14=-4.85976e-003
第5面
K=-1.05288e+001, A4=8.03773e-003, A6=-6.31082e-002,
A8=7.23894e-002, A10=-5.66858e-002, A12=2.19704e-002,
A14=-3.54000e-003
第6面
K=-3.83762e+000, A3=3.29363e-004, A4=-2.84048e-002,
A5=-2.17539e-003, A6=8.56233e-002, A8=-1.51213e-001,
A10=1.60736e-001, A12=-9.79742e-002, A14=2.46623e-002
第8面
K=1.89728e+001, A3=-1.68594e-002, A4=4.52334e-002,
A5=-2.02623e-001, A6=2.12537e-001, A8=-1.83276e-001,
A10=1.49874e-001, A12=-8.31354e-002, A14=1.63616e-002
第9面
K=0.00000e+000, A4=-1.28346e-001, A6=1.68384e-002,
A8=-1.39014e-003, A10=-3.16422e-003, A12=-1.96502e-003
第10面
K=0.00000e+000, A4=-1.07253e-001, A6=1.33674e-002,
A8=8.06280e-003, A10=-3.12697e-003, A12=-2.27241e-005
第11面
K=2.56707e+001, A3=-1.20100e-001, A4=-6.97855e-002,
A5=1.11286e-001, A6=-1.14865e-001, A8=4.31103e-002,
A10=-1.23434e-002, A12=1.21780e-003, A14=0.00000e+000
第12面
K=-2.92093e+000, A3=-7.14420e-002, A4=-3.41254e-001,
A5=3.68325e-001, A6=-2.69803e-001, A8=9.93874e-002,
A10=-1.96777e-002, A12=1.33253e-003, A14=0.00000e+000
第13面
K=-2.13816e+000, A3=3.31706e-002, A4=-2.71094e-001,
A5=1.37274e-001, A6=-4.95022e-002, A8=6.95182e-003,
A10=6.40153e-003, A12=-2.02137e-003, A14=1.40635e-004
第14面
K=-7.97432e+001, A3=2.83515e-002, A4=4.51436e-002,
A5=-1.14595e-001, A6=8.66370e-002, A8=-4.36467e-002,
A10=1.65817e-002, A12=-3.57472e-003, A14=3.46104e-004
第15面
K=-6.84343e+000, A3=-3.72253e-002, A4=-8.26052e-002,
A5=9.87743e-002, A6=-1.12312e-002, A8=-1.75794e-002,
A10=6.75883e-003, A12=-1.08801e-003, A14=6.54569e-005
第16面
K=7.96137e+001, A3=-8.98099e-002, A4=-9.22669e-002,
A5=3.26750e-002, A6=2.22238e-002, A8=-2.53460e-003,
A10=-3.34788e-004, A12=7.56831e-005, A14=-3.86230e-006
第17面
K=-6.46364e+000, A3=1.49818e-004, A4=-1.42290e-001,
A5=1.12197e-001, A6=-3.04811e-002, A8=1.31927e-003,
A10=-2.22673e-004, A12=3.03972e-005, A14=-1.32693e-006
The aspherical coefficients of the lens surfaces of Example 4 are shown in Table 11 below.
[Table 11]
Second side
K = -4.83126e + 000, A4 = 4.41063e-002, A6 = -6.70306e-003,
A8 = 9.50319e-005, A10 = 5.51386e-003, A12 = -3.75901e-003,
A14 = 1.10559e-003
Third side
K = 4.36307e + 000, A4 = 1.02298e-001, A6 = -1.10820e-001,
A8 = 1.13887e-001, A10 = -7.73968e-002, A12 = 3.02679e-002,
A14 = -4.85976e-003
5th page
K = -1.05288e + 001, A4 = 8.03773e-003, A6 = -6.31082e-002,
A8 = 7.23894e-002, A10 = -5.66858e-002, A12 = 2.19704e-002,
A14 = -3.54000e-003
6th page
K = -3.83762e + 000, A3 = 3.29363e-004, A4 = -2.84048e-002,
A5 = -2.17539e-003, A6 = 8.56233e-002, A8 = -1.51213e-001,
A10 = 1.60736e-001, A12 = -9.79742e-002, A14 = 2.46623e-002
8th page
K = 1.89728e + 001, A3 = -1.68594e-002, A4 = 4.52334e-002,
A5 = -2.02623e-001, A6 = 2.12537e-001, A8 = -1.83276e-001,
A10 = 1.49874e-001, A12 = -8.31354e-002, A14 = 1.63616e-002
9th page
K = 0.00000e + 000, A4 = -1.28346e-001, A6 = 1.68384e-002,
A8 = -1.39014e-003, A10 = -3.16422e-003, A12 = -1.96502e-003
10th page
K = 0.00000e + 000, A4 = -1.07253e-001, A6 = 1.33674e-002,
A8 = 8.06280e-003, A10 = -3.12697e-003, A12 = -2.27241e-005
11th page
K = 2.56707e + 001, A3 = -1.20100e-001, A4 = -6.97855e-002,
A5 = 1.11286e-001, A6 = -1.14865e-001, A8 = 4.31103e-002,
A10 = -1.23434e-002, A12 = 1.21780e-003, A14 = 0.00000e + 000
12th page
K = -2.92093e + 000, A3 = -7.14420e-002, A4 = -3.41254e-001,
A5 = 3.68325e-001, A6 = -2.69803e-001, A8 = 9.93874e-002,
A10 = -1.96777e-002, A12 = 1.33253e-003, A14 = 0.00000e + 000
Side 13
K = -2.13816e + 000, A3 = 3.31706e-002, A4 = -2.71094e-001,
A5 = 1.37274e-001, A6 = -4.95022e-002, A8 = 6.95182e-003,
A10 = 6.40153e-003, A12 = -2.02137e-003, A14 = 1.40635e-004
14th page
K = -7.97432e + 001, A3 = 2.83515e-002, A4 = 4.51436e-002,
A5 = -1.14595e-001, A6 = 8.66370e-002, A8 = -4.36467e-002,
A10 = 1.65817e-002, A12 = -3.57472e-003, A14 = 3.46104e-004
15th page
K = -6.84343e + 000, A3 = -3.72253e-002, A4 = -8.26052e-002,
A5 = 9.87743e-002, A6 = -1.12312e-002, A8 = -1.75794e-002,
A10 = 6.75883e-003, A12 = -1.08801e-003, A14 = 6.54569e-005
16th page
K = 7.96137e + 001, A3 = -8.98099e-002, A4 = -9.22669e-002,
A5 = 3.26750e-002, A6 = 2.22238e-002, A8 = -2.53460e-003,
A10 = -3.34788e-004, A12 = 7.56831e-005, A14 = -3.86230e-006
17th page
K = -6.46364e + 000, A3 = 1.49818e-004, A4 = -1.42290e-001,
A5 = 1.12197e-001, A6 = -3.04811e-002, A8 = 1.31927e-003,
A10 = -2.22673e-004, A12 = 3.03972e-005, A14 = -1.32693e-006
実施例4の撮像レンズの特性を以下に列挙する。
FL 3.793
Fno 1.44
w 75.44
Ymax 2.921
BF 0.917
TL 5.375
BFa 0.879
TLa 5.337
The characteristics of the imaging lens of Example 4 are listed below.
FL 3.793
Fno 1.44
w 75.44
Ymax 2.921
BF 0.917
TL 5.375
BFa 0.879
TLa 5.337
実施例4の単レンズデータを以下の表12に示す。
〔表12〕
Elem Surfs Focal Length Diameter
1 2- 3 3.5372 2.610
2 5- 6 -4.8250 2.264
3 8- 9 25.3105 2.412
4 10-11 1691.5727 3.061
5 12-13 10.0455 3.442
6 14-15 2.0637 3.959
7 16-17 -1.6287 5.376
The single lens data of Example 4 is shown in Table 12 below.
[Table 12]
Elem Surfs Focal Length Diameter
1 2- 3 3.5372 2.610
2 5- 6 -4.8250 2.264
3 8- 9 25.3105 2.412
4 10-11 1691.5727 3.061
5 12-13 10.0455 3.442
6 14-15 2.0637 3.959
7 16-17 -1.6287 5.376
図11は、実施例4の撮像レンズ14等の断面図である。撮像レンズ14は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有する略平板の第3レンズL3と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けた略平凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第2及び第3レンズL2,L3の間とには、遮光絞りFSが配置されている。   FIG. 11 is a cross-sectional view of the imaging lens 14 and the like of the fourth embodiment. The imaging lens 14 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. Second lens L2, a substantially flat third lens L3 having a weak positive refractive power around the optical axis AX, and a meniscus having a weak positive refractive power around the optical axis AX and a convex surface facing the object side. The fourth lens L4, a fifth meniscus lens L5 having a positive refractive power around the optical axis AX and having a convex surface facing the object side, and a positive refractive power around the optical axis AX and a convex surface facing the image side A sixth meniscus lens L6 directed to the right side, and a substantially plano-concave seventh lens L7 having negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the second and third lenses L2 and L3, A light-shielding stop FS is disposed.
図12(A)〜12(C)は、実施例4の撮像レンズ14の諸収差図(球面収差、非点収差、歪曲収差)を示し、図12(D)及び12(E)は、実施例4の撮像レンズ14の横収差を示している。   12A to 12C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 14 of Example 4, and FIGS. 12D and 12E show the results. 10 shows lateral aberration of the imaging lens 14 of Example 4. FIG.
〔実施例5〕
実施例5のレンズ面のデータを以下の表13に示す。
〔表13〕
面番号 r d nd vd eff. dia.
1 FS INFINITY -0.2000 2.700
2* 1.7926 0.7626 1.54470 56 2.625
3* -113.1622 0.0500 2.469
4* 2.0165 0.1500 1.64250 22.5 2.266
5* 1.2311 0.3674 2.020
STO INFINITY 0.0000 2.018
7* 4.9714 0.1916 1.54470 56 1.984
8* 4.3740 0.1263 2.117
9 FS INFINITY 0.1000 2.300
10* 7.2467 0.6640 1.54470 56 2.353
11* 17.5412 0.1156 2.897
12* 9.4860 0.2000 1.63469 23.9 3.275
13* 7.6337 0.2788 3.347
14* 4.8348 0.5099 1.54470 56 3.683
15* -1.9176 0.2670 4.073
16* 16.6282 0.3070 1.54470 56 4.440
17* 1.1354 0.7000 4.979
18 INFINITY 0.1100 1.51633 64.1 5.731
19 INFINITY 0.0998
Example 5
The lens surface data of Example 5 is shown in Table 13 below.
[Table 13]
Surface number rd nd vd eff.dia.
1 FS INFINITY -0.2000 2.700
2 * 1.7926 0.7626 1.54470 56 2.625
3 * -113.1622 0.0500 2.469
4 * 2.0165 0.1500 1.64250 22.5 2.266
5 * 1.2311 0.3674 2.020
STO INFINITY 0.0000 2.018
7 * 4.9714 0.1916 1.54470 56 1.984
8 * 4.3740 0.1263 2.117
9 FS INFINITY 0.1000 2.300
10 * 7.2467 0.6640 1.54470 56 2.353
11 * 17.5412 0.1156 2.897
12 * 9.4860 0.2000 1.63469 23.9 3.275
13 * 7.6337 0.2788 3.347
14 * 4.8348 0.5099 1.54470 56 3.683
15 * -1.9176 0.2670 4.073
16 * 16.6282 0.3070 1.54470 56 4.440
17 * 1.1354 0.7000 4.979
18 INFINITY 0.1100 1.51633 64.1 5.731
19 INFINITY 0.0998
実施例5のレンズ面の非球面係数を以下の表14に示す。
〔表14〕
第2面
K=-7.32448e-001, A4=2.12231e-002, A6=6.01622e-003,
A8=-4.42254e-003, A10=8.28630e-003, A12=-5.19321e-003,
A14=1.46425e-003
第3面
K=2.28201e+001, A4=6.82123e-002, A6=-9.93415e-002,
A8=1.09933e-001, A10=-7.95018e-002, A12=3.36150e-002,
A14=-6.08554e-003
第4面
K=-1.26928e+001, A4=3.42206e-003, A6=-7.10144e-002,
A8=7.46353e-002, A10=-3.63313e-002, A12=1.26443e-002,
A14=-3.53992e-003
第5面
K=-4.48550e+000, A3=1.82361e-003, A4=3.33830e-003,
A5=1.21468e-002, A6=4.89244e-002, A8=-1.25901e-001,
A10=1.77743e-001, A12=-1.10878e-001, A14=3.09625e-002
第7面
K=-3.73773e+001, A3=-1.25000e-002, A4=3.00205e-002,
A5=-1.74971e-001, A6=2.33954e-001, A8=-1.97628e-001,
A10=1.32321e-001, A12=-6.23170e-002, A14=2.40171e-002
第8面
K=9.87345e+000, A3=-9.49519e-003, A4=-1.30748e-001,
A5=2.64057e-003, A6=5.47750e-002, A8=-4.64005e-002,
A10=-2.01369e-003, A12=9.48386e-003, A14=4.85948e-003
第10面
K=2.77556e+001, A3=-3.00569e-003, A4=-9.96057e-002,
A5=4.90875e-003, A6=3.29525e-003, A8=-8.50991e-003,
A10=-1.21297e-002, A12=1.19899e-002, A14=-1.27631e-003
第11面
K=-8.00000e+001, A3=-2.32217e-002, A4=-9.75271e-002,
A5=8.65383e-002, A6=-1.05897e-001, A8=5.17257e-002,
A10=-1.57755e-002, A12=2.73074e-003,
第12面
K=2.53322e+001, A3=1.31110e-002, A4=-3.38542e-001,
A5=3.76536e-001, A6=-2.61788e-001, A8=9.73605e-002,
A10=-2.13223e-002, A12=1.55861e-003
第13面
K=1.44930e+001, A3=4.49894e-003, A4=-2.56010e-001,
A5=1.53023e-001, A6=-4.93515e-002, A8=7.42384e-003,
A10=6.52683e-003, A12=-2.39653e-003, A14=1.77958e-004
第14面
K=3.66614e+000, A3=-2.07704e-002, A4=3.71577e-002,
A5=-1.33577e-001, A6=1.09656e-001, A8=-4.95926e-002,
A10=1.56191e-002, A12=-2.48831e-003, A14=1.75730e-004
第15面
K=-1.92320e+001, A3=-1.17213e-001, A4=6.44529e-002,
A5=4.54852e-002, A6=-1.75417e-002, A8=-1.54415e-002,
A10=6.78594e-003, A12=-1.09352e-003, A14=5.85870e-005
第16面
K=8.56893e+000, A3=-2.17398e-001, A4=-4.20510e-002,
A5=4.34765e-002, A6=2.12869e-002, A8=-3.70499e-003,
A10=-3.61592e-004, A12=9.74898e-005, A14=-4.92407e-006
第17面
K=-6.13137e+000, A3=-1.08921e-001, A4=-5.65300e-002,
A5=9.82497e-002, A6=-3.75212e-002, A8=2.17622e-003,
A10=-1.88382e-004, A12=9.43182e-006, A14=6.05016e-007
The aspheric coefficients of the lens surfaces of Example 5 are shown in Table 14 below.
[Table 14]
Second side
K = -7.32448e-001, A4 = 2.12231e-002, A6 = 6.01622e-003,
A8 = -4.42254e-003, A10 = 8.28630e-003, A12 = -5.19321e-003,
A14 = 1.46425e-003
Third side
K = 2.28201e + 001, A4 = 6.82123e-002, A6 = -9.93415e-002,
A8 = 1.09933e-001, A10 = -7.95018e-002, A12 = 3.36150e-002,
A14 = -6.08554e-003
4th page
K = -1.26928e + 001, A4 = 3.42206e-003, A6 = -7.10144e-002,
A8 = 7.46353e-002, A10 = -3.63313e-002, A12 = 1.26443e-002,
A14 = -3.53992e-003
5th page
K = -4.48550e + 000, A3 = 1.82361e-003, A4 = 3.33830e-003,
A5 = 1.21468e-002, A6 = 4.89244e-002, A8 = -1.25901e-001,
A10 = 1.77743e-001, A12 = -1.10878e-001, A14 = 3.09625e-002
7th page
K = -3.73773e + 001, A3 = -1.25000e-002, A4 = 3.00205e-002,
A5 = -1.74971e-001, A6 = 2.33954e-001, A8 = -1.97628e-001,
A10 = 1.32321e-001, A12 = -6.23170e-002, A14 = 2.40171e-002
8th page
K = 9.87345e + 000, A3 = -9.49519e-003, A4 = -1.30748e-001,
A5 = 2.64057e-003, A6 = 5.47750e-002, A8 = -4.64005e-002,
A10 = -2.01369e-003, A12 = 9.48386e-003, A14 = 4.85948e-003
10th page
K = 2.77556e + 001, A3 = -3.00569e-003, A4 = -9.96057e-002,
A5 = 4.90875e-003, A6 = 3.29525e-003, A8 = -8.50991e-003,
A10 = -1.21297e-002, A12 = 1.19899e-002, A14 = -1.27631e-003
11th page
K = -8.00000e + 001, A3 = -2.32217e-002, A4 = -9.75271e-002,
A5 = 8.65383e-002, A6 = -1.05897e-001, A8 = 5.17257e-002,
A10 = -1.57755e-002, A12 = 2.73074e-003,
12th page
K = 2.53322e + 001, A3 = 1.31110e-002, A4 = -3.38542e-001,
A5 = 3.76536e-001, A6 = -2.61788e-001, A8 = 9.73605e-002,
A10 = -2.13223e-002, A12 = 1.55861e-003
Side 13
K = 1.44930e + 001, A3 = 4.49894e-003, A4 = -2.56010e-001,
A5 = 1.53023e-001, A6 = -4.93515e-002, A8 = 7.42384e-003,
A10 = 6.52683e-003, A12 = -2.39653e-003, A14 = 1.77958e-004
14th page
K = 3.66614e + 000, A3 = -2.07704e-002, A4 = 3.71577e-002,
A5 = -1.33577e-001, A6 = 1.09656e-001, A8 = -4.95926e-002,
A10 = 1.56191e-002, A12 = -2.48831e-003, A14 = 1.75730e-004
15th page
K = -1.92320e + 001, A3 = -1.17213e-001, A4 = 6.44529e-002,
A5 = 4.54852e-002, A6 = -1.75417e-002, A8 = -1.54415e-002,
A10 = 6.78594e-003, A12 = -1.09352e-003, A14 = 5.85870e-005
16th page
K = 8.56893e + 000, A3 = -2.17398e-001, A4 = -4.20510e-002,
A5 = 4.34765e-002, A6 = 2.12869e-002, A8 = -3.70499e-003,
A10 = -3.61592e-004, A12 = 9.74898e-005, A14 = -4.92407e-006
17th page
K = -6.13137e + 000, A3 = -1.08921e-001, A4 = -5.65300e-002,
A5 = 9.82497e-002, A6 = -3.75212e-002, A8 = 2.17622e-003,
A10 = -1.88382e-004, A12 = 9.43182e-006, A14 = 6.05016e-007
実施例5の撮像レンズの特性を以下に列挙する。
FL 4.027
Fno 1.53
w 72.16
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.872
TLa 4.962
The characteristics of the imaging lens of Example 5 are listed below.
FL 4.027
Fno 1.53
w 72.16
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.872
TLa 4.962
実施例5の単レンズデータを以下の表15に示す。
〔表15〕
Elem Surfs Focal Length Diameter
1 2- 3 3.2473 2.625
2 4- 5 -5.3172 2.266
3 7- 8 -75.3346 2.117
4 10-11 22.1651 2.897
5 12-13 -64.2873 3.347
6 14-15 2.5897 4.073
7 16-17 -2.2530 4.979
The single lens data of Example 5 is shown in Table 15 below.
[Table 15]
Elem Surfs Focal Length Diameter
1 2- 3 3.2473 2.625
2 4- 5 -5.3172 2.266
3 7-8 -75.3346 2.117
4 10-11 22.1651 2.897
5 12-13 -64.2873 3.347
6 14-15 2.5897 4.073
7 16-17 -2.2530 4.979
図13は、実施例5の撮像レンズ15等の断面図である。撮像レンズ15は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 13 is a cross-sectional view of the imaging lens 15 and the like according to the fifth embodiment. The imaging lens 15 has, in order from the object side, a substantially convex first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a negative refractive power around the optical axis AX. The second meniscus lens L2 having a convex surface facing the object side, the third meniscus lens L3 having a weak negative refractive power around the optical axis AX and the convex surface facing the object side, and weak around the optical axis AX A fourth meniscus lens L4 having a positive refractive power and having a convex surface facing the object side; a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and having a convex surface facing the object side; A biconvex sixth lens L6 having a positive refractive power around the optical axis AX, and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. A light-shielding stop FS is disposed.
図14(A)〜14(C)は、実施例5の撮像レンズ15の諸収差図(球面収差、非点収差、歪曲収差)を示し、図14(D)及び14(E)は、実施例5の撮像レンズ15の横収差を示している。   14A to 14C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 15 of Example 5, and FIGS. 14D and 14E show the results. 10 shows lateral aberrations of the imaging lens 15 of Example 5. FIG.
〔実施例6〕
実施例6のレンズ面のデータを以下の表16に示す。
〔表16〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.2000 2.700
2* -2.0889 0.2000 1.54000 45 2.687
3* -2.3705 0.0500 2.559
4* 2.1019 0.8219 1.54470 56 2.738
5* -9.8545 0.1135 2.620
STO INFINITY 0.0000 2.451
7* 3.4446 0.1500 1.63469 23.9 2.414
8* 1.7619 0.3002 2.366
9 FS INFINITY 0.0600 2.400
10* 8.1526 0.5602 1.54470 56 2.504
11* -8.1776 0.2165 2.608
12* 4.5185 0.2227 1.63469 23.9 2.613
13* 2.9326 0.3031 2.811
14* 6.6293 0.5568 1.54000 45 2.963
15* -2.1898 0.4995 3.416
16* -2.1967 0.3375 1.54470 56 3.634
17* 2.9968 0.4000 4.749
18 INFINITY 0.1100 1.51633 64.1 5.549
19 INFINITY 0.2190
Example 6
The lens surface data of Example 6 is shown in Table 16 below.
[Table 16]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.2000 2.700
2 * -2.0889 0.2000 1.54000 45 2.687
3 * -2.3705 0.0500 2.559
4 * 2.1019 0.8219 1.54470 56 2.738
5 * -9.8545 0.1135 2.620
STO INFINITY 0.0000 2.451
7 * 3.4446 0.1500 1.63469 23.9 2.414
8 * 1.7619 0.3002 2.366
9 FS INFINITY 0.0600 2.400
10 * 8.1526 0.5602 1.54470 56 2.504
11 * -8.1776 0.2165 2.608
12 * 4.5185 0.2227 1.63469 23.9 2.613
13 * 2.9326 0.3031 2.811
14 * 6.6293 0.5568 1.54000 45 2.963
15 * -2.1898 0.4995 3.416
16 * -2.1967 0.3375 1.54470 56 3.634
17 * 2.9968 0.4000 4.749
18 INFINITY 0.1100 1.51633 64.1 5.549
19 INFINITY 0.2190
実施例6のレンズ面の非球面係数を以下の表17に示す。
〔表17〕
第2面
K=0.00000e+000, A4=1.08204e-001, A6=1.53978e-003,
A8=-5.54747e-003, A10=-1.38032e-003, A12=1.40192e-003,
A14=-2.58567e-004
第3面
K=0.00000e+000, A4=1.19656e-001, A6=-1.43168e-003,
A8=5.27745e-003, A10=-1.04529e-002, A12=4.89255e-003,
A14=-8.88685e-004
第4面
K=5.20441e-001, A4=-5.21736e-003, A6=3.15703e-003,
A8=-3.87144e-003, A10=3.81777e-003, A12=-2.00081e-003,
A14=5.29976e-004
第5面
K=-5.23209e+001, A4=-2.53845e-002, A6=2.18393e-002,
A8=-5.82485e-003, A10=-1.05535e-003, A12=2.37441e-003,
A14=-5.73082e-004
第7面
K=-2.43451e+000, A4=-1.29226e-001, A6=6.22107e-002,
A8=-3.85874e-003, A10=-2.94839e-002, A12=2.09031e-002,
A14=-5.06646e-003
第8面
K=-5.78973e+000, A3=-2.43400e-003, A4=-6.17923e-003,
A5=-6.35972e-002, A6=7.12797e-002, A8=-1.94436e-002,
A10=1.56763e-003, A12=-9.26132e-004, A14=1.87076e-003
第10面
K=1.81668e+001, A3=-1.54944e-002, A4=6.26988e-002,
A5=-1.67542e-001, A6=1.48364e-001, A8=-9.76793e-002,
A10=6.94077e-002, A12=-3.56959e-002, A14=8.56531e-003
第11面
K=-8.00000e+001, A3=-7.37532e-003, A4=-1.20632e-001,
A5=5.69881e-003, A6=4.55614e-002, A8=-4.80622e-002,
A10=2.35559e-002, A12=-5.20555e-003
第12面
K=-4.93030e+001, A3=-8.92831e-003, A4=-2.90242e-001,
A5=1.18840e-001, A6=-2.03222e-003, A8=-5.37660e-003,
A10=-1.39227e-002, A12=7.82024e-003
第13面
K=2.95534e+000, A3=-1.83957e-002, A4=-3.44415e-001,
A5=1.29030e-001, A6=3.67448e-002, A8=-4.05159e-002,
A10=8.23677e-003, A12=-1.40783e-003, A14=5.95958e-004
第14面
K=-7.16002e+001, A3=-1.42797e-002, A4=-2.87050e-002,
A5=1.64613e-002, A6=-3.37146e-002, A8=-2.75401e-003,
A10=1.40095e-002, A12=-1.03709e-002, A14=2.16802e-003
第15面
K=-3.34228e+000, A3=-1.76392e-002, A4=2.81902e-002,
A5=-2.74159e-003, A6=-2.48857e-002, A8=5.64171e-003,
A10=2.35754e-003, A12=-3.21260e-004, A14=-7.28734e-005
第16面
K=-3.26893e+000, A3=-8.10578e-002, A4=-4.84912e-002,
A5=1.35498e-002, A6=5.30193e-003, A8=9.34881e-004,
A10=1.14921e-003, A12=-7.90249e-005, A14=-4.11113e-005
第17面
K=-7.81757e+001, A3=9.67677e-002, A4=-1.95207e-001,
A5=1.10902e-001, A6=-2.49769e-002, A8=4.84382e-004,
A10=-6.04934e-007, A12=-3.33133e-006, A14=3.09410e-007
Table 17 below shows the aspheric coefficients of the lens surfaces of Example 6.
[Table 17]
Second side
K = 0.00000e + 000, A4 = 1.08204e-001, A6 = 1.53978e-003,
A8 = -5.54747e-003, A10 = -1.38032e-003, A12 = 1.40192e-003,
A14 = -2.58567e-004
Third side
K = 0.00000e + 000, A4 = 1.19656e-001, A6 = -1.43168e-003,
A8 = 5.27745e-003, A10 = -1.04529e-002, A12 = 4.89255e-003,
A14 = -8.88685e-004
4th page
K = 5.20441e-001, A4 = -5.21736e-003, A6 = 3.15703e-003,
A8 = -3.87144e-003, A10 = 3.81777e-003, A12 = -2.00081e-003,
A14 = 5.29976e-004
5th page
K = -5.23209e + 001, A4 = -2.53845e-002, A6 = 2.18393e-002,
A8 = -5.82485e-003, A10 = -1.05535e-003, A12 = 2.37441e-003,
A14 = -5.73082e-004
7th page
K = -2.43451e + 000, A4 = -1.29226e-001, A6 = 6.22107e-002,
A8 = -3.85874e-003, A10 = -2.94839e-002, A12 = 2.09031e-002,
A14 = -5.06646e-003
8th page
K = -5.78973e + 000, A3 = -2.43400e-003, A4 = -6.17923e-003,
A5 = -6.35972e-002, A6 = 7.12797e-002, A8 = -1.94436e-002,
A10 = 1.56763e-003, A12 = -9.26132e-004, A14 = 1.87076e-003
10th page
K = 1.81668e + 001, A3 = -1.54944e-002, A4 = 6.26988e-002,
A5 = -1.67542e-001, A6 = 1.48364e-001, A8 = -9.76793e-002,
A10 = 6.94077e-002, A12 = -3.56959e-002, A14 = 8.56531e-003
11th page
K = -8.00000e + 001, A3 = -7.37532e-003, A4 = -1.20632e-001,
A5 = 5.69881e-003, A6 = 4.55614e-002, A8 = -4.80622e-002,
A10 = 2.35559e-002, A12 = -5.20555e-003
12th page
K = -4.93030e + 001, A3 = -8.92831e-003, A4 = -2.90242e-001,
A5 = 1.18840e-001, A6 = -2.03222e-003, A8 = -5.37660e-003,
A10 = -1.39227e-002, A12 = 7.82024e-003
Side 13
K = 2.95534e + 000, A3 = -1.83957e-002, A4 = -3.44415e-001,
A5 = 1.29030e-001, A6 = 3.67448e-002, A8 = -4.05159e-002,
A10 = 8.23677e-003, A12 = -1.40783e-003, A14 = 5.95958e-004
14th page
K = -7.16002e + 001, A3 = -1.42797e-002, A4 = -2.87050e-002,
A5 = 1.64613e-002, A6 = -3.37146e-002, A8 = -2.75401e-003,
A10 = 1.40095e-002, A12 = -1.03709e-002, A14 = 2.16802e-003
15th page
K = -3.34228e + 000, A3 = -1.76392e-002, A4 = 2.81902e-002,
A5 = -2.74159e-003, A6 = -2.48857e-002, A8 = 5.64171e-003,
A10 = 2.35754e-003, A12 = -3.21260e-004, A14 = -7.28734e-005
16th page
K = -3.26893e + 000, A3 = -8.10578e-002, A4 = -4.84912e-002,
A5 = 1.35498e-002, A6 = 5.30193e-003, A8 = 9.34881e-004,
A10 = 1.14921e-003, A12 = -7.90249e-005, A14 = -4.11113e-005
17th page
K = -7.81757e + 001, A3 = 9.67677e-002, A4 = -1.95207e-001,
A5 = 1.10902e-001, A6 = -2.49769e-002, A8 = 4.84382e-004,
A10 = -6.04934e-007, A12 = -3.33133e-006, A14 = 3.09410e-007
実施例6の撮像レンズの特性を以下に列挙する。
FL 3.696
Fno 1.45
w 75.43
Ymax 2.921
BF 0.729
TL 5.321
BFa 0.692
TLa 5.283
The characteristics of the imaging lens of Example 6 are listed below.
FL 3.696
Fno 1.45
w 75.43
Ymax 2.921
BF 0.729
TL 5.321
BFa 0.692
TLa 5.283
実施例6の単レンズデータを以下の表18に示す。
〔表18〕
Elem Surfs Focal Length Diameter
1 2- 3 -43.3748 2.687
2 4- 5 3.2594 2.738
3 7- 8 -5.8866 2.414
4 10-11 7.5868 2.608
5 12-13 -13.9241 2.811
6 14-15 3.1173 3.416
7 16-17 -2.2749 4.749
The single lens data of Example 6 is shown in Table 18 below.
[Table 18]
Elem Surfs Focal Length Diameter
1 2- 3 -43.3748 2.687
2 4- 5 3.2594 2.738
3 7-8 -5.8866 2.414
4 10-11 7.5868 2.608
5 12-13 -13.9241 2.811
6 14-15 3.1173 3.416
7 16-17 -2.2749 4.749
図15は、実施例6の撮像レンズ16等の断面図である。撮像レンズ16は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 15 is a cross-sectional view of the imaging lens 16 and the like according to the sixth embodiment. The imaging lens 16 includes, in order from the object side, a meniscus first lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and both having a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a biconvex second lens having a positive refractive power around the optical axis AX. Four lenses L4, a fifth meniscus lens L5 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a biconvex sixth lens L6 having a positive refractive power around the optical axis AX And a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. A light-shielding stop FS is disposed.
図16(A)〜16(C)は、実施例6の撮像レンズ16の諸収差図(球面収差、非点収差、歪曲収差)を示し、図16(D)及び16(E)は、実施例6の撮像レンズ16の横収差を示している。   16A to 16C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 16 of Example 6, and FIGS. 16D and 16E show the examples. The lateral aberration of the imaging lens 16 of Example 6 is shown.
〔実施例7〕
実施例7のレンズ面のデータを以下の表19に示す。
〔表19〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 6.3046 0.2500 1.54470 56.2 2.625
3* -9.4866 0.2399 2.605
STO INFINITY -0.1899 2.618
5* 6.1552 0.8055 1.54470 56.2 2.628
6* -42.4798 0.0500 2.367
7* 1.5502 0.1500 1.63469 23.9 2.231
8* 1.0815 0.4141 2.183
9 FS INFINITY 0.0000 2.300
10* 6.7291 0.4966 1.54470 56.2 2.292
11* -8.4855 0.2285 2.502
12* -12.5714 0.2841 1.63469 23.9 2.744
13* 19.5086 0.4216 3.049
14* 4.1124 0.5854 1.54470 56.2 3.466
15* -2.2595 0.3348 3.777
16* 3.1012 0.3196 1.54470 56.2 4.581
17* 0.9193 0.7000 5.238
18 INFINITY 0.1100 1.51633 64.1 5.732
19 INFINITY 0.1036
Example 7
The lens surface data of Example 7 is shown in Table 19 below.
[Table 19]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 6.3046 0.2500 1.54470 56.2 2.625
3 * -9.4866 0.2399 2.605
STO INFINITY -0.1899 2.618
5 * 6.1552 0.8055 1.54470 56.2 2.628
6 * -42.4798 0.0500 2.367
7 * 1.5502 0.1500 1.63469 23.9 2.231
8 * 1.0815 0.4141 2.183
9 FS INFINITY 0.0000 2.300
10 * 6.7291 0.4966 1.54470 56.2 2.292
11 * -8.4855 0.2285 2.502
12 * -12.5714 0.2841 1.63469 23.9 2.744
13 * 19.5086 0.4216 3.049
14 * 4.1124 0.5854 1.54470 56.2 3.466
15 * -2.2595 0.3348 3.777
16 * 3.1012 0.3196 1.54470 56.2 4.581
17 * 0.9193 0.7000 5.238
18 INFINITY 0.1100 1.51633 64.1 5.732
19 INFINITY 0.1036
実施例7のレンズ面の非球面係数を以下の表20に示す。
〔表20〕
第2面
K=-3.18132e+000, A4=-8.42749e-002, A6=2.98151e-002,
A8=1.20225e-002, A10=-9.90738e-003, A12=3.15687e-003,
A14=-4.83089e-004
第3面
K=0.00000e+000, A4=8.18853e-003, A6=-7.39367e-003,
A8=1.71372e-002, A10=-4.04286e-003
第5面
K=0.00000e+000, A4=1.22121e-001, A6=-5.88922e-002,
A8=2.16243e-002, A10=1.88365e-003, A12=-4.10725e-003,
A14=1.23043e-003
第6面
K=-8.00000e+001, A4=8.97433e-002, A6=-1.43315e-001,
A8=1.22827e-001, A10=-6.63551e-002, A12=2.48543e-002,
A14=-4.86280e-003
第7面
K=-9.98047e+000, A4=-3.05894e-002, A6=-8.63774e-002,
A8=6.45443e-002, A10=-2.29745e-002, A12=7.02732e-003,
A14=-3.54185e-003
第8面
K=-5.00816e+000, A3=6.20312e-005, A4=-3.57506e-002,
A5=-8.86682e-003, A6=5.27635e-002, A8=-1.28898e-001,
A10=1.69685e-001, A12=-1.10465e-001, A14=2.74896e-002
第10面
K=2.92067e+001, A3=-2.25310e-002, A4=7.14700e-002,
A5=-2.64148e-001, A6=2.63231e-001, A8=-1.82365e-001,
A10=1.22328e-001, A12=-6.69479e-002, A14=1.37178e-002
第11面
K=-7.41328e+000, A3=2.78211e-002, A4=-1.76722e-001,
A5=1.10775e-001, A6=-6.83699e-002, A8=2.50527e-002,
A10=-1.16384e-002, A12=6.71983e-004
第12面
K=8.00000e+001, A3=7.44190e-002, A4=-4.75423e-001,
A5=4.00836e-001, A6=-2.07634e-001, A8=1.07831e-001,
A10=-2.43620e-002, A12=-6.00379e-004
第13面
K=-8.00000e+001, A3=3.49696e-002, A4=-3.40559e-001,
A5=1.72525e-001, A6=-1.46331e-002, A8=1.31068e-002,
A10=2.27015e-003, A12=-3.11352e-003, A14=2.70093e-004
第14面
K=9.68760e-002, A3=-1.09570e-002, A4=3.61112e-002,
A5=-1.33785e-001, A6=8.78463e-002, A8=-3.80285e-002,
A10=1.52616e-002, A12=-3.49773e-003, A14=3.26590e-004
第15面
K=-1.85389e+001, A3=-8.90869e-002, A4=5.49142e-002,
A5=1.93718e-002, A6=-3.00384e-002, A8=-1.02180e-002,
A10=7.54221e-003, A12=-1.23949e-003, A14=4.71979e-005
第16面
K=-4.32755e+001, A3=-1.87586e-001, A4=-1.21890e-001,
A5=6.61914e-002, A6=2.75434e-002, A8=-4.72995e-003,
A10=-4.37315e-004, A12=1.32823e-004, A14=-7.74779e-006
第17面
K=-3.90456e+000, A3=-1.42503e-001, A4=-7.46234e-002,
A5=1.17662e-001, A6=-3.72449e-002, A8=1.21959e-003,
A10=-1.07047e-004, A12=1.44805e-005, A14=-5.73559e-007
Table 20 below shows the aspheric coefficients of the lens surfaces of Example 7.
[Table 20]
Second side
K = -3.18132e + 000, A4 = -8.42749e-002, A6 = 2.98151e-002,
A8 = 1.20225e-002, A10 = -9.90738e-003, A12 = 3.15687e-003,
A14 = -4.83089e-004
Third side
K = 0.00000e + 000, A4 = 8.18853e-003, A6 = -7.39367e-003,
A8 = 1.71372e-002, A10 = -4.04286e-003
5th page
K = 0.00000e + 000, A4 = 1.22121e-001, A6 = -5.88922e-002,
A8 = 2.16243e-002, A10 = 1.88365e-003, A12 = -4.10725e-003,
A14 = 1.23043e-003
6th page
K = -8.00000e + 001, A4 = 8.97433e-002, A6 = -1.43315e-001,
A8 = 1.22827e-001, A10 = -6.63551e-002, A12 = 2.48543e-002,
A14 = -4.86280e-003
7th page
K = -9.98047e + 000, A4 = -3.05894e-002, A6 = -8.63774e-002,
A8 = 6.45443e-002, A10 = -2.29745e-002, A12 = 7.02732e-003,
A14 = -3.54185e-003
8th page
K = -5.00816e + 000, A3 = 6.20312e-005, A4 = -3.57506e-002,
A5 = -8.86682e-003, A6 = 5.27635e-002, A8 = -1.28898e-001,
A10 = 1.69685e-001, A12 = -1.10465e-001, A14 = 2.74896e-002
10th page
K = 2.92067e + 001, A3 = -2.25310e-002, A4 = 7.14700e-002,
A5 = -2.64148e-001, A6 = 2.63231e-001, A8 = -1.82365e-001,
A10 = 1.22328e-001, A12 = -6.69479e-002, A14 = 1.37178e-002
11th page
K = -7.41328e + 000, A3 = 2.78211e-002, A4 = -1.76722e-001,
A5 = 1.10775e-001, A6 = -6.83699e-002, A8 = 2.50527e-002,
A10 = -1.16384e-002, A12 = 6.71983e-004
12th page
K = 8.00000e + 001, A3 = 7.44190e-002, A4 = -4.75423e-001,
A5 = 4.00836e-001, A6 = -2.07634e-001, A8 = 1.07831e-001,
A10 = -2.43620e-002, A12 = -6.00379e-004
Side 13
K = -8.00000e + 001, A3 = 3.49696e-002, A4 = -3.40559e-001,
A5 = 1.72525e-001, A6 = -1.46331e-002, A8 = 1.31068e-002,
A10 = 2.27015e-003, A12 = -3.11352e-003, A14 = 2.70093e-004
14th page
K = 9.68760e-002, A3 = -1.09570e-002, A4 = 3.61112e-002,
A5 = -1.33785e-001, A6 = 8.78463e-002, A8 = -3.80285e-002,
A10 = 1.52616e-002, A12 = -3.49773e-003, A14 = 3.26590e-004
15th page
K = -1.85389e + 001, A3 = -8.90869e-002, A4 = 5.49142e-002,
A5 = 1.93718e-002, A6 = -3.00384e-002, A8 = -1.02180e-002,
A10 = 7.54221e-003, A12 = -1.23949e-003, A14 = 4.71979e-005
16th page
K = -4.32755e + 001, A3 = -1.87586e-001, A4 = -1.21890e-001,
A5 = 6.61914e-002, A6 = 2.75434e-002, A8 = -4.72995e-003,
A10 = -4.37315e-004, A12 = 1.32823e-004, A14 = -7.74779e-006
17th page
K = -3.90456e + 000, A3 = -1.42503e-001, A4 = -7.46234e-002,
A5 = 1.17662e-001, A6 = -3.72449e-002, A8 = 1.21959e-003,
A10 = -1.07047e-004, A12 = 1.44805e-005, A14 = -5.73559e-007
実施例7の撮像レンズの特性を以下に列挙する。
FL 3.756
Fno 1.43
w 75.39
Ymax 2.921
BF 0.914
TL 5.304
BFa 0.876
TLa 5.266
The characteristics of the imaging lens of Example 7 are listed below.
FL 3.756
Fno 1.43
w 75.39
Ymax 2.921
BF 0.914
TL 5.304
BFa 0.876
TLa 5.266
実施例7の単レンズデータを以下の表21に示す。
〔表21〕
Elem Surfs Focal Length Diameter
1 2- 3 6.9924 2.625
2 5- 6 9.9281 2.628
3 7- 8 -6.4349 2.231
4 10-11 6.9702 2.502
5 12-13 -12.0039 3.049
6 14-15 2.7668 3.777
7 16-17 -2.5293 5.238
The single lens data of Example 7 is shown in Table 21 below.
[Table 21]
Elem Surfs Focal Length Diameter
1 2- 3 6.9924 2.625
2 5--6 9.9281 2.628
3 7- 8 -6.4349 2.231
4 10-11 6.9702 2.502
5 12-13 -12.0039 3.049
6 14-15 2.7668 3.777
7 16-17 -2.5293 5.238
図17は、実施例7の撮像レンズ17等の断面図である。撮像レンズ17は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 17 is a cross-sectional view of the imaging lens 17 and the like of the seventh embodiment. The imaging lens 17 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a substantially convex surface having a positive refractive power around the optical axis AX and facing the object side. A convex second lens L2, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a biconvex having a positive refractive power around the optical axis AX A fourth lens L4, a biconcave fifth lens L5 having negative refractive power around the optical axis AX, a biconvex sixth lens L6 having positive refractive power around the optical axis AX, and the periphery of the optical axis AX And a meniscus seventh lens L7 having negative refractive power and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4, A light-shielding stop FS is disposed.
図18(A)〜18(C)は、実施例7の撮像レンズ17の諸収差図(球面収差、非点収差、歪曲収差)を示し、図18(D)及び18(E)は、実施例7の撮像レンズ17の横収差を示している。   18A to 18C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 17 of Example 7, and FIGS. 18D and 18E show the examples. 10 shows lateral aberration of the imaging lens 17 of Example 7. FIG.
〔実施例8〕
実施例8のレンズ面のデータを以下の表22に示す。
〔表22〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.1200 2.719
2* -2.6118 0.2000 1.54000 45 2.710
3* -2.9734 0.3803 2.571
4 FS INFINITY -0.3303 2.658
5* 1.9042 0.8622 1.54470 56 2.735
6* -14.3008 0.0000 2.634
STO INFINITY 0.1286 2.548
8* 7.0726 0.1500 1.63469 23.9 2.410
9* 2.2078 0.3030 2.214
10 FS INFINITY 0.0000 2.240
11* 5.5742 0.4916 1.54470 56 2.364
12* -32.1022 0.2345 2.458
13* 3.0804 0.2000 1.63469 23.9 2.478
14* 2.6279 0.2870 2.674
15* 6.6362 0.3426 1.54000 45 2.800
16* -2.9087 0.6350 3.211
17* -2.3861 0.3227 1.54470 56 3.671
18* 3.2217 0.4000 4.617
19 INFINITY 0.1100 1.51633 64.1 5.600
20 INFINITY 0.1648
Example 8
The lens surface data of Example 8 is shown in Table 22 below.
[Table 22]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.1200 2.719
2 * -2.6118 0.2000 1.54000 45 2.710
3 * -2.9734 0.3803 2.571
4 FS INFINITY -0.3303 2.658
5 * 1.9042 0.8622 1.54470 56 2.735
6 * -14.3008 0.0000 2.634
STO INFINITY 0.1286 2.548
8 * 7.0726 0.1500 1.63469 23.9 2.410
9 * 2.2078 0.3030 2.214
10 FS INFINITY 0.0000 2.240
11 * 5.5742 0.4916 1.54470 56 2.364
12 * -32.1022 0.2345 2.458
13 * 3.0804 0.2000 1.63469 23.9 2.478
14 * 2.6279 0.2870 2.674
15 * 6.6362 0.3426 1.54000 45 2.800
16 * -2.9087 0.6350 3.211
17 * -2.3861 0.3227 1.54470 56 3.671
18 * 3.2217 0.4000 4.617
19 INFINITY 0.1100 1.51633 64.1 5.600
20 INFINITY 0.1648
実施例8のレンズ面の非球面係数を以下の表23に示す。
〔表23〕
第2面
K=0.00000e+000, A4=8.66377e-002, A6=3.41365e-003,
A8=-3.10253e-003, A10=-1.32314e-003, A12=8.49806e-004,
A14=-1.57371e-004
第3面
K=0.00000e+000, A4=9.89752e-002, A6=1.97075e-003,
A8=7.77106e-003, A10=-1.02422e-002, A12=5.24427e-003,
A14=-1.11775e-003
第5面
K=2.05205e-001, A4=-6.38897e-003, A6=9.70827e-004,
A8=-4.41012e-003, A10=3.72338e-003, A12=-1.82964e-003,
A14=3.80674e-004
第6面
K=4.04715e+001, A4=-3.44214e-002, A6=1.97723e-002,
A8=-2.55265e-003, A10=-1.51412e-003, A12=1.02973e-003,
A14=-9.06250e-005
第8面
K=1.13228e+001, A4=-1.13344e-001, A6=7.67389e-002,
A8=-4.98718e-003, A10=-3.10363e-002, A12=2.01553e-002,
A14=-4.28410e-003
第9面
K=-7.55781e+000, A3=-3.06228e-003, A4=1.07611e-003,
A5=-5.09050e-002, A6=8.60696e-002, A8=-1.79738e-002,
A10=-1.85391e-003, A12=-2.35451e-004, A14=2.87368e-003
第11面
K=1.21089e+001, A3=-1.78166e-002, A4=5.60649e-002,
A5=-1.74922e-001, A6=1.51516e-001, A8=-9.35294e-002,
A10=6.96969e-002, A12=-3.57119e-002, A14=9.35937e-003
第12面
K=-7.67350e+001, A3=-1.16000e-002, A4=-9.65332e-002,
A5=1.16432e-002, A6=3.14841e-002, A8=-5.38177e-002,
A10=2.92519e-002, A12=-5.95350e-003
第13面
K=-1.76118e+001, A3=-1.66768e-002, A4=-2.82736e-001,
A5=1.18434e-001, A6=-5.69067e-003, A8=-2.08740e-002,
A10=-1.56115e-002, A12=9.87586e-003
第14面
K=2.57198e+000, A3=-2.17822e-002, A4=-3.71147e-001,
A5=1.25519e-001, A6=3.41324e-002, A8=-4.20787e-002,
A10=5.95502e-003, A12=-2.53658e-003, A14=1.14333e-003
第15面
K=-6.89757e+001, A3=-3.37431e-002, A4=-1.10107e-002,
A5=-1.37735e-002, A6=-5.65327e-002, A8=1.22081e-002,
A10=2.08289e-002, A12=-2.00191e-002, A14=4.40044e-003
第16面
K=-1.38743e+001, A3=-3.96781e-002, A4=-2.34418e-003,
A5=-7.77839e-003, A6=-2.94887e-002, A8=1.16843e-002,
A10=3.62369e-003, A12=-6.35622e-004, A14=-1.86518e-004
第17面
K=-3.13432e-001, A3=-1.10807e-001, A4=-6.36104e-002,
A5=4.02999e-002, A6=1.64647e-002, A8=-8.18427e-004,
A10=5.80182e-004, A12=-2.17031e-004, A14=7.91834e-006
第18面
K=-8.00000e+001, A3=2.20638e-002, A4=-1.44001e-001,
A5=1.00504e-001, A6=-2.62785e-002, A8=8.72918e-004,
A10=-4.66588e-005, A12=-1.10324e-005, A14=1.98010e-006
Table 23 below shows the aspheric coefficients of the lens surfaces of Example 8.
[Table 23]
Second side
K = 0.00000e + 000, A4 = 8.66377e-002, A6 = 3.41365e-003,
A8 = -3.10253e-003, A10 = -1.32314e-003, A12 = 8.49806e-004,
A14 = -1.57371e-004
Third side
K = 0.00000e + 000, A4 = 9.89752e-002, A6 = 1.97075e-003,
A8 = 7.77106e-003, A10 = -1.02422e-002, A12 = 5.24427e-003,
A14 = -1.11775e-003
5th page
K = 2.05205e-001, A4 = -6.38897e-003, A6 = 9.70827e-004,
A8 = -4.41012e-003, A10 = 3.72338e-003, A12 = -1.82964e-003,
A14 = 3.80674e-004
6th page
K = 4.04715e + 001, A4 = -3.44214e-002, A6 = 1.97723e-002,
A8 = -2.55265e-003, A10 = -1.51412e-003, A12 = 1.02973e-003,
A14 = -9.06250e-005
8th page
K = 1.13228e + 001, A4 = -1.13344e-001, A6 = 7.67389e-002,
A8 = -4.98718e-003, A10 = -3.10363e-002, A12 = 2.01553e-002,
A14 = -4.28410e-003
9th page
K = -7.55781e + 000, A3 = -3.06228e-003, A4 = 1.07611e-003,
A5 = -5.09050e-002, A6 = 8.60696e-002, A8 = -1.79738e-002,
A10 = -1.85391e-003, A12 = -2.35451e-004, A14 = 2.87368e-003
11th page
K = 1.21089e + 001, A3 = -1.78166e-002, A4 = 5.60649e-002,
A5 = -1.74922e-001, A6 = 1.51516e-001, A8 = -9.35294e-002,
A10 = 6.96969e-002, A12 = -3.57119e-002, A14 = 9.35937e-003
12th page
K = -7.67350e + 001, A3 = -1.16000e-002, A4 = -9.65332e-002,
A5 = 1.16432e-002, A6 = 3.14841e-002, A8 = -5.38177e-002,
A10 = 2.92519e-002, A12 = -5.95350e-003
Side 13
K = -1.76118e + 001, A3 = -1.66768e-002, A4 = -2.82736e-001,
A5 = 1.18434e-001, A6 = -5.69067e-003, A8 = -2.08740e-002,
A10 = -1.56115e-002, A12 = 9.87586e-003
14th page
K = 2.57198e + 000, A3 = -2.17822e-002, A4 = -3.71147e-001,
A5 = 1.25519e-001, A6 = 3.41324e-002, A8 = -4.20787e-002,
A10 = 5.95502e-003, A12 = -2.53658e-003, A14 = 1.14333e-003
15th page
K = -6.89757e + 001, A3 = -3.37431e-002, A4 = -1.10107e-002,
A5 = -1.37735e-002, A6 = -5.65327e-002, A8 = 1.22081e-002,
A10 = 2.08289e-002, A12 = -2.00191e-002, A14 = 4.40044e-003
16th page
K = -1.38743e + 001, A3 = -3.96781e-002, A4 = -2.34418e-003,
A5 = -7.77839e-003, A6 = -2.94887e-002, A8 = 1.16843e-002,
A10 = 3.62369e-003, A12 = -6.35622e-004, A14 = -1.86518e-004
17th page
K = -3.13432e-001, A3 = -1.10807e-001, A4 = -6.36104e-002,
A5 = 4.02999e-002, A6 = 1.64647e-002, A8 = -8.18427e-004,
A10 = 5.80182e-004, A12 = -2.17031e-004, A14 = 7.91834e-006
18th page
K = -8.00000e + 001, A3 = 2.20638e-002, A4 = -1.44001e-001,
A5 = 1.00504e-001, A6 = -2.62785e-002, A8 = 8.72918e-004,
A10 = -4.66588e-005, A12 = -1.10324e-005, A14 = 1.98010e-006
実施例8の撮像レンズの特性を以下に列挙する。
FL 3.695
Fno 1.45
w 75.43
Ymax 2.921
BF 0.675
TL 5.002
BFa 0.637
TLa 4.964
The characteristics of the imaging lens of Example 8 are listed below.
FL 3.695
Fno 1.45
w 75.43
Ymax 2.921
BF 0.675
TL 5.002
BFa 0.637
TLa 4.964
実施例8の単レンズデータを以下の表24に示す。
〔表24〕
Elem Surfs Focal Length Diameter
1 2- 3 -49.3261 2.710
2 5- 6 3.1440 2.735
3 8- 9 -5.1185 2.410
4 11-12 8.7598 2.458
5 13-14 -34.0261 2.674
6 15-16 3.7927 3.211
7 17-18 -2.4666 4.617
The single lens data of Example 8 is shown in Table 24 below.
[Table 24]
Elem Surfs Focal Length Diameter
1 2- 3 -49.3261 2.710
2 5- 6 3.1440 2.735
3 8- 9 -5.1185 2.410
4 11-12 8.7598 2.458
5 13-14 -34.0261 2.674
6 15-16 3.7927 3.211
7 17-18 -2.4666 4.617
図19は、実施例8の撮像レンズ18等の断面図である。撮像レンズ18は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第1及び第2レンズL1,L2の間とには、遮光絞りFSが配置されている。   FIG. 19 is a cross-sectional view of the imaging lens 18 and the like of the eighth embodiment. The imaging lens 18 includes, in order from the object side, a meniscus first lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and both having a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface directed toward the object side, and a positive refractive power around the optical axis AX toward the object side A substantially convex fourth lens L4 having a convex surface, a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and a convex surface facing the object side, and positive refraction around the optical axis AX A biconvex sixth lens L6 having power and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and between the object side of the outer edge of the first lens L1 and between the first and second lenses L1 and L2. A light-shielding stop FS is disposed.
図20(A)〜20(C)は、実施例8の撮像レンズ18の諸収差図(球面収差、非点収差、歪曲収差)を示し、図20(D)及び20(E)は、実施例8の撮像レンズ18の横収差を示している。   20A to 20C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 18 of Example 8, and FIGS. 20D and 20E show the results. 10 shows lateral aberration of the imaging lens 18 of Example 8. FIG.
〔実施例9〕
実施例9のレンズ面のデータを以下の表25に示す。
〔表25〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.1900 2.720
2* -2.0640 0.3010 1.54000 45 2.702
3* -2.5035 0.2330 2.303
STO INFINITY -0.0800 2.369
5* 2.2172 0.8051 1.54470 56 2.550
6* -3.9551 0.0500 2.533
7 FS INFINITY 0.0000 2.400
8* 2.6308 0.1500 1.63469 23.9 2.418
9* 1.4371 0.3675 2.533
10* -3e+003 0.5420 1.54470 56 2.602
11* -4.6031 0.1093 2.620
12* 3.1977 0.2000 1.63469 23.9 2.543
13* 2.0191 0.3014 2.699
14* 4.9249 0.4349 1.54000 45 2.816
15* -2.1746 0.5174 3.152
16* -4.7441 0.3164 1.54470 56 3.711
17* 1.9953 0.4000 4.616
18 INFINITY 0.1100 1.51633 64.1 5.391
19 INFINITY 0.2534
Example 9
The lens surface data of Example 9 is shown in Table 25 below.
[Table 25]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.1900 2.720
2 * -2.0640 0.3010 1.54000 45 2.702
3 * -2.5035 0.2330 2.303
STO INFINITY -0.0800 2.369
5 * 2.2172 0.8051 1.54470 56 2.550
6 * -3.9551 0.0500 2.533
7 FS INFINITY 0.0000 2.400
8 * 2.6308 0.1500 1.63469 23.9 2.418
9 * 1.4371 0.3675 2.533
10 * -3e + 003 0.5420 1.54470 56 2.602
11 * -4.6031 0.1093 2.620
12 * 3.1977 0.2000 1.63469 23.9 2.543
13 * 2.0191 0.3014 2.699
14 * 4.9249 0.4349 1.54000 45 2.816
15 * -2.1746 0.5174 3.152
16 * -4.7441 0.3164 1.54470 56 3.711
17 * 1.9953 0.4000 4.616
18 INFINITY 0.1100 1.51633 64.1 5.391
19 INFINITY 0.2534
実施例9のレンズ面の非球面係数を以下の表26に示す。
〔表26〕
第2面
K=0.00000e+000, A4=1.18496e-001, A6=-1.08715e-002,
A8=6.53424e-004, A10=-1.87619e-003, A12=1.05565e-003,
A14=-1.99488e-004
第3面
K=0.00000e+000, A4=1.30967e-001, A6=-3.82055e-003,
A8=1.83699e-003, A10=-1.74657e-003, A12=1.37785e-003,
A14=-4.68160e-004
第5面
K=-1.58016e-001, A4=-7.22487e-003, A6=1.96485e-003,
A8=-3.49944e-003, A10=2.38231e-003, A12=-8.74902e-004,
A14=-3.10344e-005
第6面
K=3.99718e+000, A4=5.42379e-003, A6=4.64837e-003,
A8=-5.51843e-003, A10=2.98692e-003, A12=-3.23195e-004,
A14=-1.38998e-004
第8面
K=-8.84856e-001, A4=-1.25294e-001, A6=5.26371e-002,
A8=-5.16284e-003, A10=-2.93759e-002, A12=1.95055e-002,
A14=-4.41679e-003
第9面
K=-3.20126e+000, A3=-1.01762e-002, A4=-1.51424e-002,
A5=-6.73742e-002, A6=8.69116e-002, A8=-2.69992e-002,
A10=-3.12997e-003, A12=3.46931e-003, A14=-1.13281e-003
第10面
K=-8.00000e+001, A3=-3.37845e-003, A4=9.41367e-002,
A5=-1.62505e-001, A6=1.41797e-001, A8=-9.17879e-002,
A10=7.39969e-002, A12=-3.12384e-002, A14=4.92381e-003
第11面
K=-5.84934e+001, A3=-1.92715e-003, A4=-9.41768e-002,
A5=7.52025e-003, A6=2.74069e-002, A8=-5.21631e-002,
A10=3.31542e-002, A12=-5.89766e-003
第12面
K=-1.21120e+001, A3=-2.45539e-002, A4=-2.69353e-001,
A5=1.18346e-001, A6=1.63695e-002, A8=-3.13570e-002,
A10=-1.95222e-002, A12=1.38046e-002
第13面
K=1.05933e+000, A3=-1.96768e-002, A4=-4.07223e-001,
A5=1.73465e-001, A6=3.43064e-002, A8=-5.56597e-002,
A10=9.01372e-003, A12=-1.45351e-003, A14=9.96933e-004
第14面
K=-1.22865e+000, A3=-2.14395e-002, A4=-6.76967e-003,
A5=-2.41383e-002, A6=-4.07694e-002, A8=9.68868e-004,
A10=2.41787e-002, A12=-1.91126e-002, A14=3.95700e-003
第15面
K=-4.91745e+000, A3=-1.15474e-002, A4=2.44653e-002,
A5=9.82954e-003, A6=-5.62544e-002, A8=1.08070e-002,
A10=5.84553e-003, A12=-9.12457e-004, A14=-2.11530e-004
第16面
K=6.05456e-001, A3=-1.24505e-001, A4=-6.21168e-002,
A5=2.61098e-002, A6=1.75575e-002, A8=1.30561e-003,
A10=1.17113e-004, A12=-3.16955e-004, A14=3.79497e-005
第17面
K=-2.31247e+001, A3=4.10107e-002, A4=-1.76061e-001,
A5=1.24745e-001, A6=-3.32487e-002, A8=6.17052e-004,
A10=1.19239e-004, A12=-2.82415e-005, A14=2.46103e-006
Table 26 below shows the aspheric coefficients of the lens surfaces of Example 9.
[Table 26]
Second side
K = 0.00000e + 000, A4 = 1.18496e-001, A6 = -1.08715e-002,
A8 = 6.53424e-004, A10 = -1.87619e-003, A12 = 1.05565e-003,
A14 = -1.99488e-004
Third side
K = 0.00000e + 000, A4 = 1.30967e-001, A6 = -3.82055e-003,
A8 = 1.83699e-003, A10 = -1.74657e-003, A12 = 1.37785e-003,
A14 = -4.68160e-004
5th page
K = -1.58016e-001, A4 = -7.22487e-003, A6 = 1.96485e-003,
A8 = -3.49944e-003, A10 = 2.38231e-003, A12 = -8.74902e-004,
A14 = -3.10344e-005
6th page
K = 3.99718e + 000, A4 = 5.42379e-003, A6 = 4.64837e-003,
A8 = -5.51843e-003, A10 = 2.98692e-003, A12 = -3.23195e-004,
A14 = -1.38998e-004
8th page
K = -8.84856e-001, A4 = -1.25294e-001, A6 = 5.26371e-002,
A8 = -5.16284e-003, A10 = -2.93759e-002, A12 = 1.95055e-002,
A14 = -4.41679e-003
9th page
K = -3.20126e + 000, A3 = -1.01762e-002, A4 = -1.51424e-002,
A5 = -6.73742e-002, A6 = 8.69116e-002, A8 = -2.69992e-002,
A10 = -3.12997e-003, A12 = 3.46931e-003, A14 = -1.13281e-003
10th page
K = -8.00000e + 001, A3 = -3.37845e-003, A4 = 9.41367e-002,
A5 = -1.62505e-001, A6 = 1.41797e-001, A8 = -9.17879e-002,
A10 = 7.39969e-002, A12 = -3.12384e-002, A14 = 4.92381e-003
11th page
K = -5.84934e + 001, A3 = -1.92715e-003, A4 = -9.41768e-002,
A5 = 7.52025e-003, A6 = 2.74069e-002, A8 = -5.21631e-002,
A10 = 3.31542e-002, A12 = -5.89766e-003
12th page
K = -1.21120e + 001, A3 = -2.45539e-002, A4 = -2.69353e-001,
A5 = 1.18346e-001, A6 = 1.63695e-002, A8 = -3.13570e-002,
A10 = -1.95222e-002, A12 = 1.38046e-002
Side 13
K = 1.05933e + 000, A3 = -1.96768e-002, A4 = -4.07223e-001,
A5 = 1.73465e-001, A6 = 3.43064e-002, A8 = -5.56597e-002,
A10 = 9.01372e-003, A12 = -1.45351e-003, A14 = 9.96933e-004
14th page
K = -1.22865e + 000, A3 = -2.14395e-002, A4 = -6.76967e-003,
A5 = -2.41383e-002, A6 = -4.07694e-002, A8 = 9.68868e-004,
A10 = 2.41787e-002, A12 = -1.91126e-002, A14 = 3.95700e-003
15th page
K = -4.91745e + 000, A3 = -1.15474e-002, A4 = 2.44653e-002,
A5 = 9.82954e-003, A6 = -5.62544e-002, A8 = 1.08070e-002,
A10 = 5.84553e-003, A12 = -9.12457e-004, A14 = -2.11530e-004
16th page
K = 6.05456e-001, A3 = -1.24505e-001, A4 = -6.21168e-002,
A5 = 2.61098e-002, A6 = 1.75575e-002, A8 = 1.30561e-003,
A10 = 1.17113e-004, A12 = -3.16955e-004, A14 = 3.79497e-005
17th page
K = -2.31247e + 001, A3 = 4.10107e-002, A4 = -1.76061e-001,
A5 = 1.24745e-001, A6 = -3.32487e-002, A8 = 6.17052e-004,
A10 = 1.19239e-004, A12 = -2.82415e-005, A14 = 2.46103e-006
実施例9の撮像レンズの特性を以下に列挙する。
FL 3.235
Fno 1.45
w 83.95
Ymax 2.921
BF 0.763
TL 5.201
BFa 0.726
TLa 5.164
The characteristics of the imaging lens of Example 9 are listed below.
FL 3.235
Fno 1.45
w 83.95
Ymax 2.921
BF 0.763
TL 5.201
BFa 0.726
TLa 5.164
実施例9の単レンズデータを以下の表27に示す。
〔表27〕
Elem Surfs Focal Length Diameter
1 2- 3 -28.6566 2.702
2 5- 6 2.7341 2.550
3 8- 9 -5.2461 2.533
4 10-11 8.4631 2.620
5 12-13 -9.2400 2.699
6 14-15 2.8548 3.152
7 16-17 -2.5366 4.616
The single lens data of Example 9 is shown in Table 27 below.
[Table 27]
Elem Surfs Focal Length Diameter
1 2- 3 -28.6566 2.702
2 5--6 2.7341 2.550
3 8- 9 -5.2461 2.533
4 10-11 8.4631 2.620
5 12-13 -9.2400 2.699
6 14-15 2.8548 3.152
7 16-17 -2.5366 4.616
図21は、実施例9の撮像レンズ19等の断面図である。撮像レンズ19は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けた略平凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第2及び第3レンズL2,L3の間とには、遮光絞りFSが配置されている。   FIG. 21 is a cross-sectional view of the imaging lens 19 and the like of the ninth embodiment. The imaging lens 19 includes, in order from the object side, a meniscus first lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and both having a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a positive refractive power around the optical axis AX and having a positive refractive power on the image side A substantially planoconvex fourth lens L4 having a convex surface, a meniscus fifth lens L5 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX A biconvex sixth lens L6 and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the second and third lenses L2 and L3, A light-shielding stop FS is disposed.
図22(A)〜22(C)は、実施例9の撮像レンズ19の諸収差図(球面収差、非点収差、歪曲収差)を示し、図22(D)及び22(E)は、実施例9の撮像レンズ19の横収差を示している。   22A to 22C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 19 of Example 9, and FIGS. 22D and 22E show the results. 10 shows lateral aberrations of the imaging lens 19 of Example 9. FIG.
〔実施例10〕
実施例10のレンズ面のデータを以下の表28に示す。
〔表28〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.1500 2.700
2* -4.1482 0.3069 1.54470 56 2.573
3* -5.3036 0.2479 2.471
STO INFINITY -0.1979 2.480
5* 2.1867 0.7201 1.54470 56 2.598
6* -9.4776 0.0533 2.524
7* 3.2637 0.1591 1.63469 23.9 2.407
8* 1.6582 0.3000 2.403
9 FS INFINITY -0.0300 2.360
10* 4.9743 0.4519 1.54470 56 2.472
11* -19.1666 0.3289 2.503
12* 2.6601 0.2042 1.63469 23.9 2.453
13* 2.2169 0.3338 2.645
14* 7.6349 0.7167 1.54470 56 2.800
15* -2.0275 0.4107 3.300
16* -3.5168 0.3493 1.54470 56 3.480
17* 1.8358 0.4000 4.760
18 INFINITY 0.1100 1.51633 64.1 5.600
19 INFINITY 0.2649
Example 10
The lens surface data of Example 10 is shown in Table 28 below.
[Table 28]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.1500 2.700
2 * -4.1482 0.3069 1.54470 56 2.573
3 * -5.3036 0.2479 2.471
STO INFINITY -0.1979 2.480
5 * 2.1867 0.7201 1.54470 56 2.598
6 * -9.4776 0.0533 2.524
7 * 3.2637 0.1591 1.63469 23.9 2.407
8 * 1.6582 0.3000 2.403
9 FS INFINITY -0.0300 2.360
10 * 4.9743 0.4519 1.54470 56 2.472
11 * -19.1666 0.3289 2.503
12 * 2.6601 0.2042 1.63469 23.9 2.453
13 * 2.2169 0.3338 2.645
14 * 7.6349 0.7167 1.54470 56 2.800
15 * -2.0275 0.4107 3.300
16 * -3.5168 0.3493 1.54470 56 3.480
17 * 1.8358 0.4000 4.760
18 INFINITY 0.1100 1.51633 64.1 5.600
19 INFINITY 0.2649
実施例10のレンズ面の非球面係数を以下の表29に示す。
〔表29〕
第2面
K=0.00000e+000, A4=5.96877e-002, A6=-1.15602e-003,
A8=-9.60282e-004, A10=-3.09630e-003, A12=1.44483e-003,
A14=-2.28463e-004
第3面
K=0.00000e+000, A4=9.04162e-002, A6=-1.93363e-003,
A8=3.49298e-003, A10=-4.32480e-003, A12=-3.27685e-004,
A14=2.18563e-004
第5面
K=2.79466e-001, A4=-1.22985e-004, A6=1.10119e-003,
A8=-8.40028e-004, A10=2.41108e-003, A12=-1.32580e-003,
A14=2.79306e-004
第6面
K=3.66669e+001, A4=-1.83739e-002, A6=1.96437e-002,
A8=-4.93325e-003, A10=1.92883e-003, A12=-2.82615e-004,
A14=1.48358e-005
第7面
K=-1.37230e+000, A4=-1.27878e-001, A6=5.49794e-002,
A8=-5.58528e-003, A10=-3.18575e-002, A12=1.85001e-002,
A14=-4.26671e-003
第8面
K=-4.10535e+000, A3=-9.49133e-003, A4=-1.73177e-002,
A5=-6.85814e-002, A6=8.21449e-002, A8=-2.92922e-002,
A10=-3.39264e-003, A12=3.13129e-003, A14=-5.58880e-004
第10面
K=-1.47619e+001, A3=-2.34465e-002, A4=9.12355e-002,
A5=-1.58548e-001, A6=1.40968e-001, A8=-9.82761e-002,
A10=7.27274e-002, A12=-2.95451e-002, A14=4.72464e-003
第11面
K=-8.00000e+001, A3=-8.73072e-003, A4=-7.62082e-002,
A5=1.17446e-002, A6=2.39115e-002, A8=-5.41515e-002,
A10=3.19100e-002, A12=-5.54421e-003
第12面
K=-1.36579e+001, A3=6.48169e-003, A4=-2.54841e-001,
A5=1.17885e-001, A6=1.14566e-002, A8=-3.24245e-002,
A10=-1.94061e-002, A12=1.18033e-002
第13面
K=1.47635e+000, A3=1.14752e-002, A4=-4.01103e-001,
A5=1.69711e-001, A6=3.15451e-002, A8=-5.44365e-002,
A10=9.05868e-003, A12=-1.25098e-003, A14=1.14482e-003
第14面
K=7.69308e+000, A3=-2.45655e-003, A4=-5.10921e-002,
A5=-1.74267e-002, A6=-1.59404e-002, A8=-1.19933e-002,
A10=2.64976e-002, A12=-1.67167e-002, A14=3.22577e-003
第15面
K=-6.53250e+000, A3=-6.40765e-003, A4=-1.04050e-002,
A5=1.08573e-002, A6=-4.68058e-002, A8=1.22102e-002,
A10=3.54713e-003, A12=-1.45410e-003, A14=1.06181e-004
第16面
K=2.37754e+000, A3=-6.76175e-002, A4=-1.09426e-001,
A5=2.83541e-002, A6=2.10496e-002, A8=9.86885e-004,
A10=1.47129e-004, A12=-3.14647e-004, A14=7.01794e-005
第17面
K=-1.48036e+001, A3=2.43759e-002, A4=-1.75141e-001,
A5=1.24696e-001, A6=-3.05571e-002, A8=-1.66295e-004,
A10=2.62886e-004, A12=-3.66610e-005, A14=1.79919e-006
Table 29 below shows the aspheric coefficients of the lens surfaces of Example 10.
[Table 29]
Second side
K = 0.00000e + 000, A4 = 5.96877e-002, A6 = -1.15602e-003,
A8 = -9.60282e-004, A10 = -3.09630e-003, A12 = 1.44483e-003,
A14 = -2.28463e-004
Third side
K = 0.00000e + 000, A4 = 9.04162e-002, A6 = -1.93363e-003,
A8 = 3.49298e-003, A10 = -4.32480e-003, A12 = -3.27685e-004,
A14 = 2.18563e-004
5th page
K = 2.79466e-001, A4 = -1.22985e-004, A6 = 1.10119e-003,
A8 = -8.40028e-004, A10 = 2.41108e-003, A12 = -1.32580e-003,
A14 = 2.79306e-004
6th page
K = 3.66669e + 001, A4 = -1.83739e-002, A6 = 1.96437e-002,
A8 = -4.93325e-003, A10 = 1.92883e-003, A12 = -2.82615e-004,
A14 = 1.48358e-005
7th page
K = -1.37230e + 000, A4 = -1.27878e-001, A6 = 5.49794e-002,
A8 = -5.58528e-003, A10 = -3.18575e-002, A12 = 1.85001e-002,
A14 = -4.26671e-003
8th page
K = -4.10535e + 000, A3 = -9.49133e-003, A4 = -1.73177e-002,
A5 = -6.85814e-002, A6 = 8.21449e-002, A8 = -2.92922e-002,
A10 = -3.39264e-003, A12 = 3.13129e-003, A14 = -5.58880e-004
10th page
K = -1.47619e + 001, A3 = -2.34465e-002, A4 = 9.12355e-002,
A5 = -1.58548e-001, A6 = 1.40968e-001, A8 = -9.82761e-002,
A10 = 7.27274e-002, A12 = -2.95451e-002, A14 = 4.72464e-003
11th page
K = -8.00000e + 001, A3 = -8.73072e-003, A4 = -7.62082e-002,
A5 = 1.17446e-002, A6 = 2.39115e-002, A8 = -5.41515e-002,
A10 = 3.19100e-002, A12 = -5.54421e-003
12th page
K = -1.36579e + 001, A3 = 6.48169e-003, A4 = -2.54841e-001,
A5 = 1.17885e-001, A6 = 1.14566e-002, A8 = -3.24245e-002,
A10 = -1.94061e-002, A12 = 1.18033e-002
Side 13
K = 1.47635e + 000, A3 = 1.14752e-002, A4 = -4.01103e-001,
A5 = 1.69711e-001, A6 = 3.15451e-002, A8 = -5.44365e-002,
A10 = 9.05868e-003, A12 = -1.25098e-003, A14 = 1.14482e-003
14th page
K = 7.69308e + 000, A3 = -2.45655e-003, A4 = -5.10921e-002,
A5 = -1.74267e-002, A6 = -1.59404e-002, A8 = -1.19933e-002,
A10 = 2.64976e-002, A12 = -1.67167e-002, A14 = 3.22577e-003
15th page
K = -6.53250e + 000, A3 = -6.40765e-003, A4 = -1.04050e-002,
A5 = 1.08573e-002, A6 = -4.68058e-002, A8 = 1.22102e-002,
A10 = 3.54713e-003, A12 = -1.45410e-003, A14 = 1.06181e-004
16th page
K = 2.37754e + 000, A3 = -6.76175e-002, A4 = -1.09426e-001,
A5 = 2.83541e-002, A6 = 2.10496e-002, A8 = 9.86885e-004,
A10 = 1.47129e-004, A12 = -3.14647e-004, A14 = 7.01794e-005
17th page
K = -1.48036e + 001, A3 = 2.43759e-002, A4 = -1.75141e-001,
A5 = 1.24696e-001, A6 = -3.05571e-002, A8 = -1.66295e-004,
A10 = 2.62886e-004, A12 = -3.66610e-005, A14 = 1.79919e-006
実施例10の撮像レンズの特性を以下に列挙する。
FL 3.613
Fno 1.49
w 76.69
Ymax 2.921
BF 0.775
TL 5.280
BFa 0.737
TLa 5.242
The characteristics of the imaging lens of Example 10 are listed below.
FL 3.613
Fno 1.49
w 76.69
Ymax 2.921
BF 0.775
TL 5.280
BFa 0.737
TLa 5.242
実施例10の単レンズデータを以下の表30に示す。
〔表30〕
Elem Surfs Focal Length Diameter
1 2- 3 -38.5706 2.573
2 5- 6 3.3345 2.598
3 7- 8 -5.5236 2.407
4 10-11 7.2987 2.503
5 12-13 -25.5295 2.645
6 14-15 3.0202 3.300
7 16-17 -2.1646 4.760
The single lens data of Example 10 is shown in Table 30 below.
[Table 30]
Elem Surfs Focal Length Diameter
1 2- 3 -38.5706 2.573
2 5- 6 3.3345 2.598
3 7-8 -5.5236 2.407
4 10-11 7.2987 2.503
5 12-13 -25.5295 2.645
6 14-15 3.0202 3.300
7 16-17 -2.1646 4.760
図23は、実施例10の撮像レンズ20等の断面図である。撮像レンズ20は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 23 is a cross-sectional view of the imaging lens 20 and the like of the tenth embodiment. The imaging lens 20 includes, in order from the object side, a first meniscus lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a biconvex second lens having a positive refractive power around the optical axis AX. Four lenses L4, a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and having a convex surface facing the object side, and a sixth biconvex lens having a positive refractive power around the optical axis AX L6 and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4, A light-shielding stop FS is disposed.
図24(A)〜24(C)は、実施例10の撮像レンズ20の諸収差図(球面収差、非点収差、歪曲収差)を示し、図24(D)及び24(E)は、実施例10の撮像レンズ20の横収差を示している。   24A to 24C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 20 of Example 10, and FIGS. 24D and 24E show the examples. The lateral aberration of the imaging lens 20 of Example 10 is shown.
〔実施例11〕
実施例11のレンズ面のデータを以下の表31に示す。
〔表31〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 3.0877 0.2429 1.54470 56 2.625
3* 10.0569 0.0500 2.537
4* 3.8007 0.6008 1.54470 56 2.584
5* -38.7267 0.1500 2.488
STO INFINITY -0.1000 2.356
7* 1.5698 0.1500 1.64250 22.5 2.301
8* 1.0947 0.4196 2.113
9 FS INFINITY 0.1000 2.160
10* 8.9139 0.4687 1.54470 56 2.260
11* -11.1215 0.2354 2.478
12* -12.0730 0.3091 1.64250 22.5 2.736
13* 155.8189 0.2481 3.052
14* 5.3402 0.6051 1.54470 56 3.268
15* -2.3027 0.2949 3.772
16* 3.5400 0.3154 1.54470 56 4.487
17* 0.9517 0.7000 4.998
18 INFINITY 0.1100 1.51633 64.1 5.800
19 INFINITY 0.0998
Example 11
The lens surface data of Example 11 is shown in Table 31 below.
[Table 31]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 3.0877 0.2429 1.54470 56 2.625
3 * 10.0569 0.0500 2.537
4 * 3.8007 0.6008 1.54470 56 2.584
5 * -38.7267 0.1500 2.488
STO INFINITY -0.1000 2.356
7 * 1.5698 0.1500 1.64250 22.5 2.301
8 * 1.0947 0.4196 2.113
9 FS INFINITY 0.1000 2.160
10 * 8.9139 0.4687 1.54470 56 2.260
11 * -11.1215 0.2354 2.478
12 * -12.0730 0.3091 1.64250 22.5 2.736
13 * 155.8189 0.2481 3.052
14 * 5.3402 0.6051 1.54470 56 3.268
15 * -2.3027 0.2949 3.772
16 * 3.5400 0.3154 1.54470 56 4.487
17 * 0.9517 0.7000 4.998
18 INFINITY 0.1100 1.51633 64.1 5.800
19 INFINITY 0.0998
実施例11のレンズ面の非球面係数を以下の表32に示す。
〔表32〕
第2面
K=3.14469e+000, A4=-6.95429e-002, A6=1.31284e-002,
A8=1.63304e-002, A10=-9.21230e-003, A12=3.19837e-003,
A14=-8.18358e-004
第3面
K=0.00000e+000, A4=2.58570e-002, A6=-8.95477e-003,
A8=1.95481e-002, A10=-1.45187e-003
第4面
K=0.00000e+000, A4=1.28437e-001, A6=-5.40014e-002,
A8=1.69899e-002, A10=3.32878e-003, A12=-4.10499e-003,
A14=1.28852e-003
第5面
K=-7.99672e+001, A4=1.11510e-001, A6=-1.57728e-001,
A8=1.20500e-001, A10=-6.74656e-002, A12=2.67600e-002,
A14=-4.86280e-003
第7面
K=-1.03254e+001, A4=-1.90187e-002, A6=-8.38271e-002,
A8=5.85852e-002, A10=-1.32169e-002, A12=6.99676e-003,
A14=-3.54185e-003
第8面
K=-5.18781e+000, A3=1.38754e-003, A4=-2.37274e-002,
A5=-3.20132e-003, A6=5.23434e-002, A8=-1.27542e-001,
A10=1.74784e-001, A12=-1.04428e-001, A14=2.54802e-002
第10面
K=4.29327e+001, A3=-2.62788e-002, A4=7.21461e-002,
A5=-2.60745e-001, A6=2.51901e-001, A8=-1.73488e-001,
A10=1.23271e-001, A12=-7.38758e-002, A14=1.94337e-002
第11面
K=3.04695e+001, A3=2.32952e-002, A4=-1.88217e-001,
A5=1.02995e-001, A6=-5.89021e-002, A8=2.71134e-002,
A10=-1.63347e-002, A12=2.80196e-003
第12面
K=7.30212e+001, A3=9.58973e-002, A4=-4.80614e-001,
A5=3.96710e-001, A6=-2.12112e-001, A8=1.07657e-001,
A10=-2.35607e-002, A12=-7.15687e-004
第13面
K=5.79513e+001, A3=7.30018e-002, A4=-3.61439e-001,
A5=1.67587e-001, A6=-1.34589e-002, A8=1.20160e-002,
A10=2.99846e-003, A12=-2.61492e-003, A14=9.51885e-005
第14面
K=7.80952e+000, A3=-1.80172e-002, A4=3.57360e-002,
A5=-1.29570e-001, A6=7.05478e-002, A8=-3.21922e-002,
A10=1.38504e-002, A12=-4.03986e-003, A14=5.43929e-004
第15面
K=-1.58022e+001, A3=-1.14890e-001, A4=1.32161e-001,
A5=-1.39512e-002, A6=-3.92826e-002, A8=-5.44582e-003,
A10=7.43779e-003, A12=-1.47065e-003, A14=8.18453e-005
第16面
K=-7.87638e+001, A3=-1.82043e-001, A4=-1.37148e-001,
A5=7.15714e-002, A6=2.93848e-002, A8=-4.85530e-003,
A10=-4.60160e-004, A12=1.31370e-004, A14=-7.23796e-006
第17面
K=-5.01194e+000, A3=-1.18906e-001, A4=-7.87955e-002,
A5=1.07798e-001, A6=-3.49386e-002, A8=1.66878e-003,
A10=-1.65037e-004, A12=3.77975e-006, A14=1.32544e-006
Table 32 below shows the aspheric coefficients of the lens surfaces of Example 11.
[Table 32]
Second side
K = 3.14469e + 000, A4 = -6.95429e-002, A6 = 1.31284e-002,
A8 = 1.63304e-002, A10 = -9.21230e-003, A12 = 3.19837e-003,
A14 = -8.18358e-004
Third side
K = 0.00000e + 000, A4 = 2.58570e-002, A6 = -8.95477e-003,
A8 = 1.95481e-002, A10 = -1.45187e-003
4th page
K = 0.00000e + 000, A4 = 1.28437e-001, A6 = -5.40014e-002,
A8 = 1.69899e-002, A10 = 3.32878e-003, A12 = -4.10499e-003,
A14 = 1.28852e-003
5th page
K = -7.99672e + 001, A4 = 1.11510e-001, A6 = -1.57728e-001,
A8 = 1.20500e-001, A10 = -6.74656e-002, A12 = 2.67600e-002,
A14 = -4.86280e-003
7th page
K = -1.03254e + 001, A4 = -1.90187e-002, A6 = -8.38271e-002,
A8 = 5.85852e-002, A10 = -1.32169e-002, A12 = 6.99676e-003,
A14 = -3.54185e-003
8th page
K = -5.18781e + 000, A3 = 1.38754e-003, A4 = -2.37274e-002,
A5 = -3.20132e-003, A6 = 5.23434e-002, A8 = -1.27542e-001,
A10 = 1.74784e-001, A12 = -1.04428e-001, A14 = 2.54802e-002
10th page
K = 4.29327e + 001, A3 = -2.62788e-002, A4 = 7.21461e-002,
A5 = -2.60745e-001, A6 = 2.51901e-001, A8 = -1.73488e-001,
A10 = 1.23271e-001, A12 = -7.38758e-002, A14 = 1.94337e-002
11th page
K = 3.04695e + 001, A3 = 2.32952e-002, A4 = -1.88217e-001,
A5 = 1.02995e-001, A6 = -5.89021e-002, A8 = 2.71134e-002,
A10 = -1.63347e-002, A12 = 2.80196e-003
12th page
K = 7.30212e + 001, A3 = 9.58973e-002, A4 = -4.80614e-001,
A5 = 3.96710e-001, A6 = -2.12112e-001, A8 = 1.07657e-001,
A10 = -2.35607e-002, A12 = -7.15687e-004
Side 13
K = 5.79513e + 001, A3 = 7.30018e-002, A4 = -3.61439e-001,
A5 = 1.67587e-001, A6 = -1.34589e-002, A8 = 1.20160e-002,
A10 = 2.99846e-003, A12 = -2.61492e-003, A14 = 9.51885e-005
14th page
K = 7.80952e + 000, A3 = -1.80172e-002, A4 = 3.57360e-002,
A5 = -1.29570e-001, A6 = 7.05478e-002, A8 = -3.21922e-002,
A10 = 1.38504e-002, A12 = -4.03986e-003, A14 = 5.43929e-004
15th page
K = -1.58022e + 001, A3 = -1.14890e-001, A4 = 1.32161e-001,
A5 = -1.39512e-002, A6 = -3.92826e-002, A8 = -5.44582e-003,
A10 = 7.43779e-003, A12 = -1.47065e-003, A14 = 8.18453e-005
16th page
K = -7.87638e + 001, A3 = -1.82043e-001, A4 = -1.37148e-001,
A5 = 7.15714e-002, A6 = 2.93848e-002, A8 = -4.85530e-003,
A10 = -4.60160e-004, A12 = 1.31370e-004, A14 = -7.23796e-006
17th page
K = -5.01194e + 000, A3 = -1.18906e-001, A4 = -7.87955e-002,
A5 = 1.07798e-001, A6 = -3.49386e-002, A8 = 1.66878e-003,
A10 = -1.65037e-004, A12 = 3.77975e-006, A14 = 1.32544e-006
実施例11の撮像レンズの特性を以下に列挙する。
FL 3.786
Fno 1.44
w 74.22
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.872
TLa 4.962
The characteristics of the imaging lens of Example 11 are listed below.
FL 3.786
Fno 1.44
w 74.22
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.872
TLa 4.962
実施例11の単レンズデータを以下の表33に示す。
〔表33〕
Elem Surfs Focal Length Diameter
1 2- 3 8.0809 2.625
2 4- 5 6.3857 2.584
3 7- 8 -6.4234 2.301
4 10-11 9.1595 2.478
5 12-13 -17.4268 3.052
6 14-15 3.0386 3.772
7 16-17 -2.4971 4.998
Single lens data of Example 11 are shown in Table 33 below.
[Table 33]
Elem Surfs Focal Length Diameter
1 2- 3 8.0809 2.625
2 4--5 6.3857 2.584
3 7- 8 -6.4234 2.301
4 10-11 9.1595 2.478
5 12-13 -17.4268 3.052
6 14-15 3.0386 3.772
7 16-17 -2.4971 4.998
図25は、実施例11の撮像レンズ21等の断面図である。撮像レンズ21は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凹面を向けた略凹平の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 25 is a cross-sectional view of the imaging lens 21 and the like according to the eleventh embodiment. The imaging lens 21 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and positive around the optical axis AX A biconvex fourth lens L4 having refractive power, a substantially concave fifth lens L5 having negative refractive power around the optical axis AX and having a concave surface facing the object side, and positive refraction around the optical axis AX A biconvex sixth lens L6 having power, and a meniscus seventh lens L7 having negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. A light-shielding stop FS is disposed.
図26(A)〜26(C)は、実施例11の撮像レンズ21の諸収差図(球面収差、非点収差、歪曲収差)を示し、図26(D)及び26(E)は、実施例11の撮像レンズ21の横収差を示している。   FIGS. 26A to 26C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 21 of Example 11, and FIGS. 26D and 26E show the examples. 10 shows lateral aberrations of the imaging lens 21 of Example 11. FIG.
〔実施例12〕
実施例12のレンズ面のデータを以下の表34に示す。
〔表34〕
面番号 r d nd vd eff. dia.
STO INFINITY 0.0000 2.625
2* 3.9844 0.2500 1.54470 56.2 2.625
3* -30.0690 0.0500 2.546
4* 6.0010 0.8255 1.54470 56.2 2.595
5* -59.5129 0.0500 2.362
6* 1.7173 0.1500 1.63469 23.9 2.222
7* 1.1598 0.3360 2.239
8 FS INFINITY 0.0700 2.240
9* 7.3807 0.4852 1.54470 56.2 2.345
10* -8.1001 0.1857 2.535
11* -11.5969 0.2009 1.63469 23.9 2.719
12* 76.2965 0.4224 2.980
13* 4.1635 0.4970 1.54470 56.2 3.487
14* -2.9703 0.3533 3.916
15* 2.7197 0.3145 1.54470 56.2 4.669
16* 0.9380 0.7000 5.118
17 INFINITY 0.1100 1.51633 64.1 5.749
18 INFINITY 0.1000
Example 12
The lens surface data of Example 12 is shown in Table 34 below.
[Table 34]
Surface number rd nd vd eff.dia.
STO INFINITY 0.0000 2.625
2 * 3.9844 0.2500 1.54470 56.2 2.625
3 * -30.0690 0.0500 2.546
4 * 6.0010 0.8255 1.54470 56.2 2.595
5 * -59.5129 0.0500 2.362
6 * 1.7173 0.1500 1.63469 23.9 2.222
7 * 1.1598 0.3360 2.239
8 FS INFINITY 0.0700 2.240
9 * 7.3807 0.4852 1.54470 56.2 2.345
10 * -8.1001 0.1857 2.535
11 * -11.5969 0.2009 1.63469 23.9 2.719
12 * 76.2965 0.4224 2.980
13 * 4.1635 0.4970 1.54470 56.2 3.487
14 * -2.9703 0.3533 3.916
15 * 2.7197 0.3145 1.54470 56.2 4.669
16 * 0.9380 0.7000 5.118
17 INFINITY 0.1100 1.51633 64.1 5.749
18 INFINITY 0.1000
実施例12のレンズ面の非球面係数を以下の表35に示す。
〔表35〕
第2面
K=4.75904e+000, A4=-7.08543e-002, A6=2.55215e-002,
A8=1.38998e-002, A10=-9.41272e-003, A12=3.29702e-003,
A14=-6.31931e-004
第3面
K=0.00000e+000, A4=4.35606e-002, A6=-9.54602e-003,
A8=1.85383e-002, A10=-1.40441e-003
第4面
K=0.00000e+000, A4=1.30180e-001, A6=-5.58269e-002,
A8=1.60864e-002, A10=4.04500e-003, A12=-3.62188e-003,
A14=9.01883e-004
第5面
K=8.00000e+001, A4=9.01890e-002, A6=-1.49124e-001,
A8=1.23306e-001, A10=-6.63402e-002, A12=2.44064e-002,
A14=-4.86280e-003
第6面
K=-1.21402e+001, A4=-2.39782e-002, A6=-8.57697e-002,
A8=6.26993e-002, A10=-2.05358e-002, A12=6.11980e-003,
A14=-3.54185e-003
第7面
K=-5.47502e+000, A3=-2.60490e-003, A4=-3.00630e-002,
A5=-5.35854e-003, A6=5.34571e-002, A8=-1.28165e-001,
A10=1.69419e-001, A12=-1.10209e-001, A14=2.73640e-002
第9面
K=3.57434e+001, A3=-1.96169e-002, A4=6.63363e-002,
A5=-2.56825e-001, A6=2.55907e-001, A8=-1.76594e-001,
A10=1.25144e-001, A12=-7.10711e-002, A14=1.46368e-002
第10面
K=-4.02829e+001, A3=3.52067e-002, A4=-1.76533e-001,
A5=9.55274e-002, A6=-6.44083e-002, A8=3.07867e-002,
A10=-1.38879e-002, A12=4.93146e-004
第11面
K=7.08494e+001, A3=8.14154e-002, A4=-4.95365e-001,
A5=3.98250e-001, A6=-2.00913e-001, A8=1.13885e-001,
A10=-2.31332e-002, A12=-2.02245e-003
第12面
K=-8.00000e+001, A3=3.31536e-002, A4=-3.67414e-001,
A5=1.78404e-001, A6=-5.72966e-003, A8=1.56134e-002,
A10=3.66127e-003, A12=-3.11167e-003, A14=-1.43138e-004
第13面
K=1.41456e+000, A3=-1.51148e-002, A4=3.96559e-002,
A5=-1.33805e-001, A6=8.70433e-002, A8=-3.59301e-002,
A10=1.38929e-002, A12=-3.62507e-003, A14=4.30313e-004
第14面
K=-3.53240e+001, A3=-1.08710e-001, A4=9.12049e-002,
A5=5.94547e-003, A6=-3.25071e-002, A8=-7.49311e-003,
A10=7.15214e-003, A12=-1.40165e-003, A14=8.23359e-005
第15面
K=-3.82502e+001, A3=-2.04424e-001, A4=-1.33618e-001,
A5=7.21841e-002, A6=2.96147e-002, A8=-4.86011e-003,
A10=-4.75408e-004, A12=1.30382e-004, A14=-6.98084e-006
第16面
K=-4.35152e+000, A3=-1.43655e-001, A4=-7.65365e-002,
A5=1.13460e-001, A6=-3.54246e-002, A8=1.30899e-003,
A10=-1.53250e-004, A12=7.21323e-006, A14=8.72515e-007
Table 35 below shows the aspheric coefficients of the lens surfaces of Example 12.
[Table 35]
Second side
K = 4.75904e + 000, A4 = -7.08543e-002, A6 = 2.55215e-002,
A8 = 1.38998e-002, A10 = -9.41272e-003, A12 = 3.29702e-003,
A14 = -6.31931e-004
Third side
K = 0.00000e + 000, A4 = 4.35606e-002, A6 = -9.54602e-003,
A8 = 1.85383e-002, A10 = -1.40441e-003
4th page
K = 0.00000e + 000, A4 = 1.30180e-001, A6 = -5.58269e-002,
A8 = 1.60864e-002, A10 = 4.04500e-003, A12 = -3.62188e-003,
A14 = 9.01883e-004
5th page
K = 8.00000e + 001, A4 = 9.01890e-002, A6 = -1.49124e-001,
A8 = 1.23306e-001, A10 = -6.63402e-002, A12 = 2.44064e-002,
A14 = -4.86280e-003
6th page
K = -1.21402e + 001, A4 = -2.39782e-002, A6 = -8.57697e-002,
A8 = 6.26993e-002, A10 = -2.05358e-002, A12 = 6.11980e-003,
A14 = -3.54185e-003
7th page
K = -5.47502e + 000, A3 = -2.60490e-003, A4 = -3.00630e-002,
A5 = -5.35854e-003, A6 = 5.34571e-002, A8 = -1.28165e-001,
A10 = 1.69419e-001, A12 = -1.10209e-001, A14 = 2.73640e-002
9th page
K = 3.57434e + 001, A3 = -1.96169e-002, A4 = 6.63363e-002,
A5 = -2.56825e-001, A6 = 2.55907e-001, A8 = -1.76594e-001,
A10 = 1.25144e-001, A12 = -7.10711e-002, A14 = 1.46368e-002
10th page
K = -4.02829e + 001, A3 = 3.52067e-002, A4 = -1.76533e-001,
A5 = 9.55274e-002, A6 = -6.44083e-002, A8 = 3.07867e-002,
A10 = -1.38879e-002, A12 = 4.93146e-004
11th page
K = 7.08494e + 001, A3 = 8.14154e-002, A4 = -4.95365e-001,
A5 = 3.98250e-001, A6 = -2.00913e-001, A8 = 1.13885e-001,
A10 = -2.31332e-002, A12 = -2.02245e-003
12th page
K = -8.00000e + 001, A3 = 3.31536e-002, A4 = -3.67414e-001,
A5 = 1.78404e-001, A6 = -5.72966e-003, A8 = 1.56134e-002,
A10 = 3.66127e-003, A12 = -3.11167e-003, A14 = -1.43138e-004
Side 13
K = 1.41456e + 000, A3 = -1.51148e-002, A4 = 3.96559e-002,
A5 = -1.33805e-001, A6 = 8.70433e-002, A8 = -3.59301e-002,
A10 = 1.38929e-002, A12 = -3.62507e-003, A14 = 4.30313e-004
14th page
K = -3.53240e + 001, A3 = -1.08710e-001, A4 = 9.12049e-002,
A5 = 5.94547e-003, A6 = -3.25071e-002, A8 = -7.49311e-003,
A10 = 7.15214e-003, A12 = -1.40165e-003, A14 = 8.23359e-005
15th page
K = -3.82502e + 001, A3 = -2.04424e-001, A4 = -1.33618e-001,
A5 = 7.21841e-002, A6 = 2.96147e-002, A8 = -4.86011e-003,
A10 = -4.75408e-004, A12 = 1.30382e-004, A14 = -6.98084e-006
16th page
K = -4.35152e + 000, A3 = -1.43655e-001, A4 = -7.65365e-002,
A5 = 1.13460e-001, A6 = -3.54246e-002, A8 = 1.30899e-003,
A10 = -1.53250e-004, A12 = 7.21323e-006, A14 = 8.72515e-007
実施例12の撮像レンズの特性を以下に列挙する。
FL 3.774
Fno 1.44
w 75.40
Ymax 2.921
BF 0.910
TL 5.100
BFa 0.873
TLa 5.063
The characteristics of the imaging lens of Example 12 are listed below.
FL 3.774
Fno 1.44
w 75.40
Ymax 2.921
BF 0.910
TL 5.100
BFa 0.873
TLa 5.063
実施例12の単レンズデータを以下の表36に示す。
〔表36〕
Elem Surfs Focal Length Diameter
1 2- 3 6.4758 2.625
2 4- 5 10.0526 2.595
3 6- 7 -6.2855 2.239
4 9-10 7.1691 2.535
5 11-12 -15.8469 2.980
6 13-14 3.2628 3.916
7 15-16 -2.8032 5.118
Single lens data of Example 12 are shown in Table 36 below.
[Table 36]
Elem Surfs Focal Length Diameter
1 2- 3 6.4758 2.625
2 4- 5 10.0526 2.595
3 6- 7 -6.2855 2.239
4 9-10 7.1691 2.535
5 11-12 -15.8469 2.980
6 13-14 3.2628 3.916
7 15-16 -2.8032 5.118
図27は、実施例12の撮像レンズ22等の断面図である。撮像レンズ22は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凹面を向けた略凹平の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1レンズL1の外縁の物体側には、開口絞り(STO)ASが配置され、第3及び第4レンズL3,L4の間には、遮光絞りFSが配置されている。   FIG. 27 is a cross-sectional view of the imaging lens 22 and the like of the twelfth embodiment. The imaging lens 22 has, in order from the object side, a substantially convex first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the object side, a third meniscus lens L3 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a periphery of the optical axis AX. A biconvex fourth lens L4 having positive refractive power, a substantially concave fifth lens L5 having negative refractive power around the optical axis AX and having a concave surface facing the object side, and positive around the optical axis AX A biconvex sixth lens L6 having a refractive power of 5 and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed on the object side of the outer edge of the first lens L1, and a light-shielding stop FS is disposed between the third and fourth lenses L3 and L4.
図28(A)〜28(C)は、実施例12の撮像レンズ22の諸収差図(球面収差、非点収差、歪曲収差)を示し、図28(D)及び28(E)は、実施例12の撮像レンズ22の横収差を示している。   28 (A) to 28 (C) show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 22 of Example 12, and FIGS. 28 (D) and 28 (E) show the results. 10 shows lateral aberrations of the imaging lens 22 of Example 12. FIG.
〔実施例13〕
実施例13のレンズ面のデータを以下の表37に示す。
〔表37〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 3.0000 0.3006 1.54470 56 2.625
3* -29.8652 0.0500 2.517
4* 52.0943 0.7384 1.54470 56 2.537
5* -7.7991 0.1000 2.357
STO INFINITY -0.0500 2.258
7* 1.7513 0.1500 1.63469 23.9 2.203
8* 1.1130 0.3881 2.204
9 FS INFINITY 0.0700 2.220
10* 8.5883 0.5707 1.54470 56 2.478
11* -5.9776 0.1525 2.652
12* -10.6927 0.3030 1.63469 23.9 2.807
13* 17.6055 0.3879 3.158
14* 3.2081 0.5334 1.54470 56 3.536
15* -3.1457 0.5565 3.879
16* -88.2601 0.3275 1.54470 56 4.705
17* 1.4022 0.3000 5.313
18 INFINITY 0.1100 1.51633 64.1 5.646
19 INFINITY 0.3114
Example 13
The lens surface data of Example 13 is shown in Table 37 below.
[Table 37]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 3.0000 0.3006 1.54470 56 2.625
3 * -29.8652 0.0500 2.517
4 * 52.0943 0.7384 1.54470 56 2.537
5 * -7.7991 0.1000 2.357
STO INFINITY -0.0500 2.258
7 * 1.7513 0.1500 1.63469 23.9 2.203
8 * 1.1130 0.3881 2.204
9 FS INFINITY 0.0700 2.220
10 * 8.5883 0.5707 1.54470 56 2.478
11 * -5.9776 0.1525 2.652
12 * -10.6927 0.3030 1.63469 23.9 2.807
13 * 17.6055 0.3879 3.158
14 * 3.2081 0.5334 1.54470 56 3.536
15 * -3.1457 0.5565 3.879
16 * -88.2601 0.3275 1.54470 56 4.705
17 * 1.4022 0.3000 5.313
18 INFINITY 0.1100 1.51633 64.1 5.646
19 INFINITY 0.3114
実施例13のレンズ面の非球面係数を以下の表38に示す。
〔表38〕
第2面
K=2.11148e+000, A4=-2.95136e-002, A6=3.41717e-004,
A8=1.75787e-002, A10=-5.43560e-003, A12=2.86848e-003,
A14=-1.08971e-003
第3面
K=0.00000e+000, A4=5.74093e-002, A6=1.42162e-002,
A8=6.36900e-003, A10=3.22404e-003
第4面
K=0.00000e+000, A4=1.03021e-001, A6=-1.42099e-002,
A8=7.97392e-003, A10=-2.03644e-003, A12=-1.30793e-003,
A14=1.07559e-003
第5面
K=5.54924e+000, A4=1.36177e-001, A6=-1.73239e-001,
A8=1.46216e-001, A10=-8.23902e-002, A12=2.76774e-002,
A14=-4.86281e-003
第7面
K=-1.59241e+001, A4=-9.35509e-003, A6=-5.26647e-002,
A8=3.17607e-002, A10=-1.46649e-002, A12=6.11984e-003,
A14=-3.54185e-003
第8面
K=-6.33742e+000, A3=-1.03631e-004, A4=-2.05910e-002,
A5=2.44461e-003, A6=5.53165e-002, A8=-1.41665e-001,
A10=1.68385e-001, A12=-1.04094e-001, A14=2.61596e-002
第10面
K=3.16638e+001, A3=-2.05322e-002, A4=7.70636e-002,
A5=-2.31548e-001, A6=2.25677e-001, A8=-1.68054e-001,
A10=1.33867e-001, A12=-8.05820e-002, A14=2.16353e-002
第11面
K=-7.04758e+000, A3=2.11213e-002, A4=-1.65440e-001,
A5=9.70462e-002, A6=-5.78489e-002, A8=2.33043e-002,
A10=-9.33734e-003, A12=7.06252e-004
第12面
K=5.61667e+001, A3=7.53586e-002, A4=-4.84332e-001,
A5=4.17171e-001, A6=-1.98178e-001, A8=1.00749e-001,
A10=-2.87920e-002, A12=1.60783e-003
第13面
K=-5.95526e+001, A3=5.00362e-002, A4=-3.74655e-001,
A5=1.89754e-001, A6=-1.88143e-003, A8=4.26196e-003,
A10=9.01876e-004, A12=-1.34422e-003, A14=2.14891e-005
第14面
K=-3.79129e+000, A3=1.28434e-003, A4=1.60638e-002,
A5=-1.04100e-001, A6=6.97150e-002, A8=-3.46793e-002,
A10=1.38857e-002, A12=-2.90033e-003, A14=2.33414e-004
第15面
K=-1.78695e+000, A3=-6.95183e-003, A4=1.02116e-001,
A5=-3.11562e-002, A6=-3.29689e-002, A8=-6.06059e-003,
A10=7.19149e-003, A12=-1.27079e-003, A14=5.41600e-005
第16面
K=8.00000e+001, A3=-5.30569e-002, A4=-2.41895e-001,
A5=8.00129e-002, A6=3.81682e-002, A8=-5.01910e-003,
A10=-6.00123e-004, A12=1.46593e-004, A14=-7.72897e-006
第17面
K=-3.27599e+000, A3=-7.07506e-002, A4=-1.74522e-001,
A5=1.43329e-001, A6=-3.06257e-002, A8=1.78898e-005,
A10=-9.87526e-005, A12=2.07509e-005, A14=-7.30726e-007
The aspherical coefficients of the lens surfaces of Example 13 are shown in Table 38 below.
[Table 38]
Second side
K = 2.11148e + 000, A4 = -2.95136e-002, A6 = 3.41717e-004,
A8 = 1.75787e-002, A10 = -5.43560e-003, A12 = 2.86848e-003,
A14 = -1.08971e-003
Third side
K = 0.00000e + 000, A4 = 5.74093e-002, A6 = 1.42162e-002,
A8 = 6.36900e-003, A10 = 3.22404e-003
4th page
K = 0.00000e + 000, A4 = 1.03021e-001, A6 = -1.42099e-002,
A8 = 7.97392e-003, A10 = -2.03644e-003, A12 = -1.30793e-003,
A14 = 1.07559e-003
5th page
K = 5.54924e + 000, A4 = 1.36177e-001, A6 = -1.73239e-001,
A8 = 1.46216e-001, A10 = -8.23902e-002, A12 = 2.76774e-002,
A14 = -4.86281e-003
7th page
K = -1.59241e + 001, A4 = -9.35509e-003, A6 = -5.26647e-002,
A8 = 3.17607e-002, A10 = -1.46649e-002, A12 = 6.11984e-003,
A14 = -3.54185e-003
8th page
K = -6.33742e + 000, A3 = -1.03631e-004, A4 = -2.05910e-002,
A5 = 2.44461e-003, A6 = 5.53165e-002, A8 = -1.41665e-001,
A10 = 1.68385e-001, A12 = -1.04094e-001, A14 = 2.61596e-002
10th page
K = 3.16638e + 001, A3 = -2.05322e-002, A4 = 7.70636e-002,
A5 = -2.31548e-001, A6 = 2.25677e-001, A8 = -1.68054e-001,
A10 = 1.33867e-001, A12 = -8.05820e-002, A14 = 2.16353e-002
11th page
K = -7.04758e + 000, A3 = 2.11213e-002, A4 = -1.65440e-001,
A5 = 9.70462e-002, A6 = -5.78489e-002, A8 = 2.33043e-002,
A10 = -9.33734e-003, A12 = 7.06252e-004
12th page
K = 5.61667e + 001, A3 = 7.53586e-002, A4 = -4.84332e-001,
A5 = 4.17171e-001, A6 = -1.98178e-001, A8 = 1.00749e-001,
A10 = -2.87920e-002, A12 = 1.60783e-003
Side 13
K = -5.95526e + 001, A3 = 5.00362e-002, A4 = -3.74655e-001,
A5 = 1.89754e-001, A6 = -1.88143e-003, A8 = 4.26196e-003,
A10 = 9.01876e-004, A12 = -1.34422e-003, A14 = 2.14891e-005
14th page
K = -3.79129e + 000, A3 = 1.28434e-003, A4 = 1.60638e-002,
A5 = -1.04100e-001, A6 = 6.97150e-002, A8 = -3.46793e-002,
A10 = 1.38857e-002, A12 = -2.90033e-003, A14 = 2.33414e-004
15th page
K = -1.78695e + 000, A3 = -6.95183e-003, A4 = 1.02116e-001,
A5 = -3.11562e-002, A6 = -3.29689e-002, A8 = -6.06059e-003,
A10 = 7.19149e-003, A12 = -1.27079e-003, A14 = 5.41600e-005
16th page
K = 8.00000e + 001, A3 = -5.30569e-002, A4 = -2.41895e-001,
A5 = 8.00129e-002, A6 = 3.81682e-002, A8 = -5.01910e-003,
A10 = -6.00123e-004, A12 = 1.46593e-004, A14 = -7.72897e-006
17th page
K = -3.27599e + 000, A3 = -7.07506e-002, A4 = -1.74522e-001,
A5 = 1.43329e-001, A6 = -3.06257e-002, A8 = 1.78898e-005,
A10 = -9.87526e-005, A12 = 2.07509e-005, A14 = -7.30726e-007
実施例13の撮像レンズの特性を以下に列挙する。
FL 3.746
Fno 1.43
w 75.42
Ymax 2.921
BF 0.721
TL 5.300
BFa 0.684
TLa 5.263
The characteristics of the imaging lens of Example 13 are listed below.
FL 3.746
Fno 1.43
w 75.42
Ymax 2.921
BF 0.721
TL 5.300
BFa 0.684
TLa 5.263
実施例13の単レンズデータを以下の表39に示す。
〔表39〕
Elem Surfs Focal Length Diameter
1 2- 3 5.0211 2.625
2 4- 5 12.5080 2.537
3 7- 8 -5.2952 2.204
4 10-11 6.5611 2.652
5 12-13 -10.4379 3.158
6 14-15 3.0049 3.879
7 16-17 -2.5307 5.313
The single lens data of Example 13 is shown in Table 39 below.
[Table 39]
Elem Surfs Focal Length Diameter
1 2- 3 5.0211 2.625
2 4--5 12.5080 2.537
3 7-8 -5.2952 2.204
4 10-11 6.5611 2.652
5 12-13 -10.4379 3.158
6 14-15 3.0049 3.879
7 16-17 -2.5307 5.313
図29は、実施例13の撮像レンズ23等の断面図である。撮像レンズ23は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側にゆるい凸面を向けた略平凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けた略平凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 29 is a cross-sectional view of the imaging lens 23 and the like of the thirteenth embodiment. The imaging lens 23 has, in order from the object side, a substantially convex first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX. A substantially plano-convex second lens L2 having a loose convex surface facing the object side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and the periphery of the optical axis AX And a biconvex fourth lens L4 having a positive refractive power, a biconcave fifth lens L5 having a negative refractive power around the optical axis AX, and a biconvex having a positive refractive power around the optical axis AX. A sixth lens L6 and a substantially plano-concave seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. A light-shielding stop FS is disposed.
図30(A)〜30(C)は、実施例13の撮像レンズ23の諸収差図(球面収差、非点収差、歪曲収差)を示し、図30(D)及び30(E)は、実施例13の撮像レンズ23の横収差を示している。   30A to 30C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 23 of Example 13, and FIGS. 30D and 30E show the results. The lateral aberration of the imaging lens 23 of Example 13 is shown.
〔実施例14〕
実施例14のレンズ面のデータを以下の表40に示す。
〔表40〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 2.6382 0.3151 1.54470 56 2.625
3* 13.0451 0.0500 2.560
4* 4.1532 0.6042 1.54470 56 2.565
5* -24.1768 0.1000 2.447
STO INFINITY -0.0500 2.343
7* 1.7267 0.1554 1.64250 22.5 2.235
8* 1.1061 0.4257 2.003
9 FS INFINITY 0.1500 2.080
10* 10.8150 0.4020 1.54470 56 2.299
11* -17.4966 0.1725 2.560
12* -13.0397 0.2500 1.64250 22.5 2.833
13* -24.3648 0.3079 3.096
14* 7.5523 0.4919 1.54470 56 3.395
15* -2.1375 0.2544 3.795
16* 3.0841 0.3093 1.54470 56 4.618
17* 0.9108 0.7000 5.004
18 INFINITY 0.1100 1.51633 64.1 5.757
19 INFINITY 0.1009
Example 14
The lens surface data of Example 14 is shown in Table 40 below.
[Table 40]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 2.6382 0.3151 1.54470 56 2.625
3 * 13.0451 0.0500 2.560
4 * 4.1532 0.6042 1.54470 56 2.565
5 * -24.1768 0.1000 2.447
STO INFINITY -0.0500 2.343
7 * 1.7267 0.1554 1.64250 22.5 2.235
8 * 1.1061 0.4257 2.003
9 FS INFINITY 0.1500 2.080
10 * 10.8150 0.4020 1.54470 56 2.299
11 * -17.4966 0.1725 2.560
12 * -13.0397 0.2500 1.64250 22.5 2.833
13 * -24.3648 0.3079 3.096
14 * 7.5523 0.4919 1.54470 56 3.395
15 * -2.1375 0.2544 3.795
16 * 3.0841 0.3093 1.54470 56 4.618
17 * 0.9108 0.7000 5.004
18 INFINITY 0.1100 1.51633 64.1 5.757
19 INFINITY 0.1009
実施例14のレンズ面の非球面係数を以下の表41に示す。
〔表41〕
第2面
K=2.03116e+000, A4=-6.56064e-002, A6=-9.47667e-003,
A8=1.29845e-002, A10=-7.34348e-003, A12=5.03976e-003,
A14=-1.49643e-003
第3面
K=0.00000e+000, A4=1.62399e-002, A6=-2.17529e-002,
A8=1.59065e-002, A10=2.76162e-004
第4面
K=0.00000e+000, A4=1.16481e-001, A6=-4.19262e-002,
A8=1.62885e-002, A10=3.62132e-004, A12=-3.16641e-003,
A14=1.15655e-003
第5面
K=8.00000e+001, A4=1.15928e-001, A6=-1.58272e-001,
A8=1.18731e-001, A10=-6.70291e-002, A12=2.67578e-002,
A14=-4.86297e-003
第7面
K=-1.36106e+001, A4=-3.54561e-002, A6=-4.45993e-002,
A8=5.44551e-002, A10=-2.50577e-002, A12=1.13259e-002,
A14=-3.54209e-003
第8面
K=-5.67795e+000, A3=6.93725e-003, A4=-2.87158e-002,
A5=9.76236e-003, A6=7.14634e-002, A8=-1.22123e-001,
A10=1.67693e-001, A12=-1.06336e-001, A14=2.79996e-002
第10面
K=2.01392e+001, A3=-2.21876e-002, A4=6.94020e-002,
A5=-2.49838e-001, A6=2.42710e-001, A8=-1.73201e-001,
A10=1.32080e-001, A12=-7.56022e-002, A14=1.88769e-002
第11面
K=-8.00000e+001, A3=3.74533e-002, A4=-1.82862e-001,
A5=1.09505e-001, A6=-6.57678e-002, A8=2.57443e-002,
A10=-1.46604e-002, A12=2.96350e-003
第12面
K=7.84932e+001, A3=1.18753e-001, A4=-4.75527e-001,
A5=4.01828e-001, A6=-2.26950e-001, A8=1.02720e-001,
A10=-1.77362e-002, A12=-2.10829e-003
第13面
K=-7.85381e+001, A3=9.13893e-002, A4=-3.34887e-001,
A5=1.27675e-001, A6=-1.43744e-002, A8=2.16811e-002,
A10=2.17996e-003, A12=-2.93847e-003, A14=1.39523e-005
第14面
K=1.75964e+001, A3=1.86480e-002, A4=2.60090e-002,
A5=-1.07705e-001, A6=4.43507e-002, A8=-2.90545e-002,
A10=1.63260e-002, A12=-4.67132e-003, A14=5.24325e-004
第15面
K=-8.96742e+000, A3=-1.02219e-001, A4=1.95108e-001,
A5=-7.87731e-002, A6=-3.64803e-002, A8=1.32953e-003,
A10=6.95241e-003, A12=-1.74240e-003, A14=1.25095e-004
第16面
K=-7.99995e+001, A3=-2.00086e-001, A4=-1.29172e-001,
A5=7.80963e-002, A6=2.75812e-002, A8=-5.40552e-003,
A10=-4.50625e-004, A12=1.45536e-004, A14=-8.37510e-006
第17面
K=-5.18659e+000, A3=-1.42142e-001, A4=-5.81749e-002,
A5=1.01091e-001, A6=-3.31283e-002, A8=7.74213e-004,
A10=-9.90054e-005, A12=1.39436e-005, A14=2.40490e-007
Table 41 below shows the aspheric coefficients of the lens surfaces of Example 14.
[Table 41]
Second side
K = 2.03116e + 000, A4 = -6.56064e-002, A6 = -9.47667e-003,
A8 = 1.29845e-002, A10 = -7.34348e-003, A12 = 5.03976e-003,
A14 = -1.49643e-003
Third side
K = 0.00000e + 000, A4 = 1.62399e-002, A6 = -2.17529e-002,
A8 = 1.59065e-002, A10 = 2.76162e-004
4th page
K = 0.00000e + 000, A4 = 1.16481e-001, A6 = -4.19262e-002,
A8 = 1.62885e-002, A10 = 3.62132e-004, A12 = -3.16641e-003,
A14 = 1.15655e-003
5th page
K = 8.00000e + 001, A4 = 1.15928e-001, A6 = -1.58272e-001,
A8 = 1.18731e-001, A10 = -6.70291e-002, A12 = 2.67578e-002,
A14 = -4.86297e-003
7th page
K = -1.36106e + 001, A4 = -3.54561e-002, A6 = -4.45993e-002,
A8 = 5.44551e-002, A10 = -2.50577e-002, A12 = 1.13259e-002,
A14 = -3.54209e-003
8th page
K = -5.67795e + 000, A3 = 6.93725e-003, A4 = -2.87158e-002,
A5 = 9.76236e-003, A6 = 7.14634e-002, A8 = -1.22123e-001,
A10 = 1.67693e-001, A12 = -1.06336e-001, A14 = 2.79996e-002
10th page
K = 2.01392e + 001, A3 = -2.21876e-002, A4 = 6.94020e-002,
A5 = -2.49838e-001, A6 = 2.42710e-001, A8 = -1.73201e-001,
A10 = 1.32080e-001, A12 = -7.56022e-002, A14 = 1.88769e-002
11th page
K = -8.00000e + 001, A3 = 3.74533e-002, A4 = -1.82862e-001,
A5 = 1.09505e-001, A6 = -6.57678e-002, A8 = 2.57443e-002,
A10 = -1.46604e-002, A12 = 2.96350e-003
12th page
K = 7.84932e + 001, A3 = 1.18753e-001, A4 = -4.75527e-001,
A5 = 4.01828e-001, A6 = -2.26950e-001, A8 = 1.02720e-001,
A10 = -1.77362e-002, A12 = -2.10829e-003
Side 13
K = -7.85381e + 001, A3 = 9.13893e-002, A4 = -3.34887e-001,
A5 = 1.27675e-001, A6 = -1.43744e-002, A8 = 2.16811e-002,
A10 = 2.17996e-003, A12 = -2.93847e-003, A14 = 1.39523e-005
14th page
K = 1.75964e + 001, A3 = 1.86480e-002, A4 = 2.60090e-002,
A5 = -1.07705e-001, A6 = 4.43507e-002, A8 = -2.90545e-002,
A10 = 1.63260e-002, A12 = -4.67132e-003, A14 = 5.24325e-004
15th page
K = -8.96742e + 000, A3 = -1.02219e-001, A4 = 1.95108e-001,
A5 = -7.87731e-002, A6 = -3.64803e-002, A8 = 1.32953e-003,
A10 = 6.95241e-003, A12 = -1.74240e-003, A14 = 1.25095e-004
16th page
K = -7.99995e + 001, A3 = -2.00086e-001, A4 = -1.29172e-001,
A5 = 7.80963e-002, A6 = 2.75812e-002, A8 = -5.40552e-003,
A10 = -4.50625e-004, A12 = 1.45536e-004, A14 = -8.37510e-006
17th page
K = -5.18659e + 000, A3 = -1.42142e-001, A4 = -5.81749e-002,
A5 = 1.01091e-001, A6 = -3.31283e-002, A8 = 7.74213e-004,
A10 = -9.90054e-005, A12 = 1.39436e-005, A14 = 2.40490e-007
実施例14の撮像レンズの特性を以下に列挙する。
FL 3.786
Fno 1.44
w 74.37
Ymax 2.921
BF 0.911
TL 4.849
BFa 0.873
TLa 4.812
The characteristics of the imaging lens of Example 14 are listed below.
FL 3.786
Fno 1.44
w 74.37
Ymax 2.921
BF 0.911
TL 4.849
BFa 0.873
TLa 4.812
実施例14の単レンズデータを以下の表42に示す。
〔表42〕
Elem Surfs Focal Length Diameter
1 2- 3 6.0072 2.625
2 4- 5 6.5563 2.565
3 7- 8 -5.3095 2.235
4 10-11 12.3321 2.560
5 12-13 -44.0432 3.096
6 14-15 3.1143 3.795
7 16-17 -2.4981 5.004
The single lens data of Example 14 is shown in Table 42 below.
[Table 42]
Elem Surfs Focal Length Diameter
1 2- 3 6.0072 2.625
2 4- 5 6.5563 2.565
3 7-8 -5.3095 2.235
4 10-11 12.3321 2.560
5 12-13 -44.0432 3.096
6 14-15 3.1143 3.795
7 16-17 -2.4981 5.004
図31は、実施例14の撮像レンズ24等の断面図である。撮像レンズ24は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凹面を向けた略凹平の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 31 is a cross-sectional view of the imaging lens 24 and the like of the fourteenth embodiment. The imaging lens 24 includes, in order from the object side, a meniscus first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and positive around the optical axis AX A biconvex fourth lens L4 having refractive power, a substantially concave fifth lens L5 having a weak negative refractive power around the optical axis AX and having a concave surface facing the object side, and positive around the optical axis AX A biconvex sixth lens L6 having a refractive power and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. A light-shielding stop FS is disposed.
図32(A)〜32(C)は、実施例14の撮像レンズ24の諸収差図(球面収差、非点収差、歪曲収差)を示し、図32(D)及び32(E)は、実施例14の撮像レンズ24の横収差を示している。   32A to 32C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 24 of Example 14, and FIGS. 32D and 32E show the results. The lateral aberration of the imaging lens 24 of Example 14 is shown.
〔実施例15〕
実施例15のレンズ面のデータを以下の表43に示す。
〔表43〕
面番号 r d nd vd eff. dia.
STO INFINITY 0.0000 2.625
2* 12.7631 0.2435 1.54470 56 2.625
3* -5.4843 0.0500 2.574
4* 9.0345 0.5529 1.54470 56 2.650
5* -12.5803 0.0500 2.597
6* 1.3123 0.1512 1.63469 23.9 2.362
7* 0.9809 0.4167 2.281
8 FS INFINITY 0.0500 2.340
9* 7.7483 0.5607 1.54470 56 2.403
10* -6.9181 0.1807 2.621
11* -12.6546 0.2029 1.63469 23.9 2.826
12* 7.7098 0.2989 3.080
13* 3.2773 0.7704 1.54470 56 3.394
14* -2.7895 0.3447 3.860
15* 1.6964 0.3174 1.54470 56 4.780
16* 0.8038 0.7000 5.268
17 INFINITY 0.1100 1.51633 64.1 5.753
18 INFINITY 0.1000
Example 15
The lens surface data of Example 15 is shown in Table 43 below.
[Table 43]
Surface number rd nd vd eff.dia.
STO INFINITY 0.0000 2.625
2 * 12.7631 0.2435 1.54470 56 2.625
3 * -5.4843 0.0500 2.574
4 * 9.0345 0.5529 1.54470 56 2.650
5 * -12.5803 0.0500 2.597
6 * 1.3123 0.1512 1.63469 23.9 2.362
7 * 0.9809 0.4167 2.281
8 FS INFINITY 0.0500 2.340
9 * 7.7483 0.5607 1.54470 56 2.403
10 * -6.9181 0.1807 2.621
11 * -12.6546 0.2029 1.63469 23.9 2.826
12 * 7.7098 0.2989 3.080
13 * 3.2773 0.7704 1.54470 56 3.394
14 * -2.7895 0.3447 3.860
15 * 1.6964 0.3174 1.54470 56 4.780
16 * 0.8038 0.7000 5.268
17 INFINITY 0.1100 1.51633 64.1 5.753
18 INFINITY 0.1000
実施例15のレンズ面の非球面係数を以下の表44に示す。
〔表44〕
第2面
K=-8.00000e+001, A4=-7.48850e-002, A6=6.33439e-002,
A8=6.15877e-003, A10=-1.76732e-002, A12=7.02102e-003,
A14=-1.09000e-003
第3面
K=0.00000e+000, A4=4.85267e-002, A6=8.42381e-003,
A8=1.31801e-002, A10=-4.45043e-003
第4面
K=0.00000e+000, A4=1.55158e-001, A6=-8.42838e-002,
A8=2.37956e-002, A10=4.07474e-003, A12=-4.23186e-003,
A14=7.28622e-004
第5面
K=3.67867e+001, A4=9.08050e-002, A6=-1.45772e-001,
A8=1.28885e-001, A10=-7.77015e-002, A12=2.89308e-002,
A14=-4.86280e-003
第6面
K=-6.97649e+000, A4=1.05634e-002, A6=-1.00130e-001,
A8=5.43288e-002, A10=-1.85670e-002, A12=9.55016e-003,
A14=-3.54185e-003
第7面
K=-3.94862e+000, A3=-2.59698e-003, A4=-2.62087e-002,
A5=6.06741e-003, A6=5.23030e-002, A8=-1.57099e-001,
A10=1.72952e-001, A12=-9.17431e-002, A14=1.92141e-002
第9面
K=3.66418e+001, A3=-1.45238e-002, A4=7.28277e-002,
A5=-2.43294e-001, A6=2.47363e-001, A8=-1.77780e-001,
A10=1.33870e-001, A12=-7.54842e-002, A14=1.58978e-002
第10面
K=-6.20010e+001, A3=5.12275e-002, A4=-1.72624e-001,
A5=9.19663e-002, A6=-6.96915e-002, A8=2.91927e-002,
A10=-1.07735e-002, A12=2.59681e-004
第11面
K=7.72015e+001, A3=1.13745e-001, A4=-4.78981e-001,
A5=3.97688e-001, A6=-2.10616e-001, A8=1.05312e-001,
A10=-2.45212e-002, A12=3.26595e-004
第12面
K=2.18339e+001, A3=5.27999e-002, A4=-3.67919e-001,
A5=1.73977e-001, A6=-9.16990e-003, A8=1.33268e-002,
A10=2.47047e-003, A12=-2.98596e-003, A14=1.55616e-004
第13面
K=2.33931e+000, A3=-2.71900e-002, A4=2.93736e-002,
A5=-1.34640e-001, A6=8.36348e-002, A8=-3.59132e-002,
A10=1.47597e-002, A12=-3.49934e-003, A14=3.03570e-004
第14面
K=-1.34903e+001, A3=-9.56336e-002, A4=8.04709e-002,
A5=3.58988e-003, A6=-3.11515e-002, A8=-6.77177e-003,
A10=7.14834e-003, A12=-1.42848e-003, A14=8.21393e-005
第15面
K=-1.35283e+001, A3=-2.18794e-001, A4=-1.36817e-001,
A5=7.20456e-002, A6=3.00213e-002, A8=-4.72429e-003,
A10=-4.67307e-004, A12=1.25999e-004, A14=-6.74112e-006
第16面
K=-4.17944e+000, A3=-1.21792e-001, A4=-8.51573e-002,
A5=1.12526e-001, A6=-3.48332e-002, A8=1.48839e-003,
A10=-1.36324e-004, A12=7.15732e-006, A14=3.36690e-007
Table 44 below shows the aspheric coefficients of the lens surfaces of Example 15.
[Table 44]
Second side
K = -8.00000e + 001, A4 = -7.48850e-002, A6 = 6.33439e-002,
A8 = 6.15877e-003, A10 = -1.76732e-002, A12 = 7.02102e-003,
A14 = -1.09000e-003
Third side
K = 0.00000e + 000, A4 = 4.85267e-002, A6 = 8.42381e-003,
A8 = 1.31801e-002, A10 = -4.45043e-003
4th page
K = 0.00000e + 000, A4 = 1.55158e-001, A6 = -8.42838e-002,
A8 = 2.37956e-002, A10 = 4.07474e-003, A12 = -4.23186e-003,
A14 = 7.28622e-004
5th page
K = 3.67867e + 001, A4 = 9.08050e-002, A6 = -1.45772e-001,
A8 = 1.28885e-001, A10 = -7.77015e-002, A12 = 2.89308e-002,
A14 = -4.86280e-003
6th page
K = -6.97649e + 000, A4 = 1.05634e-002, A6 = -1.00130e-001,
A8 = 5.43288e-002, A10 = -1.85670e-002, A12 = 9.55016e-003,
A14 = -3.54185e-003
7th page
K = -3.94862e + 000, A3 = -2.59698e-003, A4 = -2.62087e-002,
A5 = 6.06741e-003, A6 = 5.23030e-002, A8 = -1.57099e-001,
A10 = 1.72952e-001, A12 = -9.17431e-002, A14 = 1.92141e-002
9th page
K = 3.66418e + 001, A3 = -1.45238e-002, A4 = 7.28277e-002,
A5 = -2.43294e-001, A6 = 2.47363e-001, A8 = -1.77780e-001,
A10 = 1.33870e-001, A12 = -7.54842e-002, A14 = 1.58978e-002
10th page
K = -6.20010e + 001, A3 = 5.12275e-002, A4 = -1.72624e-001,
A5 = 9.19663e-002, A6 = -6.96915e-002, A8 = 2.91927e-002,
A10 = -1.07735e-002, A12 = 2.59681e-004
11th page
K = 7.72015e + 001, A3 = 1.13745e-001, A4 = -4.78981e-001,
A5 = 3.97688e-001, A6 = -2.10616e-001, A8 = 1.05312e-001,
A10 = -2.45212e-002, A12 = 3.26595e-004
12th page
K = 2.18339e + 001, A3 = 5.27999e-002, A4 = -3.67919e-001,
A5 = 1.73977e-001, A6 = -9.16990e-003, A8 = 1.33268e-002,
A10 = 2.47047e-003, A12 = -2.98596e-003, A14 = 1.55616e-004
Side 13
K = 2.33931e + 000, A3 = -2.71900e-002, A4 = 2.93736e-002,
A5 = -1.34640e-001, A6 = 8.36348e-002, A8 = -3.59132e-002,
A10 = 1.47597e-002, A12 = -3.49934e-003, A14 = 3.03570e-004
14th page
K = -1.34903e + 001, A3 = -9.56336e-002, A4 = 8.04709e-002,
A5 = 3.58988e-003, A6 = -3.11515e-002, A8 = -6.77177e-003,
A10 = 7.14834e-003, A12 = -1.42848e-003, A14 = 8.21393e-005
15th page
K = -1.35283e + 001, A3 = -2.18794e-001, A4 = -1.36817e-001,
A5 = 7.20456e-002, A6 = 3.00213e-002, A8 = -4.72429e-003,
A10 = -4.67307e-004, A12 = 1.25999e-004, A14 = -6.74112e-006
16th page
K = -4.17944e + 000, A3 = -1.21792e-001, A4 = -8.51573e-002,
A5 = 1.12526e-001, A6 = -3.48332e-002, A8 = 1.48839e-003,
A10 = -1.36324e-004, A12 = 7.15732e-006, A14 = 3.36690e-007
実施例15の撮像レンズの特性を以下に列挙する。
FL 3.474
Fno 1.32
w 79.98
Ymax 2.921
BF 0.910
TL 5.100
BFa 0.873
TLa 5.063
The characteristics of the imaging lens of Example 15 are listed below.
FL 3.474
Fno 1.32
w 79.98
Ymax 2.921
BF 0.910
TL 5.100
BFa 0.873
TLa 5.063
実施例15の単レンズデータを以下の表45に示す。
〔表45〕
Elem Surfs Focal Length Diameter
1 2- 3 7.0756 2.625
2 4- 5 9.7414 2.650
3 6- 7 -7.4386 2.362
4 9-10 6.8015 2.621
5 11-12 -7.5194 3.080
6 13-14 2.8962 3.860
7 15-16 -3.2066 5.268
The single lens data of Example 15 is shown in Table 45 below.
[Table 45]
Elem Surfs Focal Length Diameter
1 2- 3 7.0756 2.625
2 4- 5 9.7414 2.650
3 6- 7 -7.4386 2.362
4 9-10 6.8015 2.621
5 11-12 -7.5194 3.080
6 13-14 2.8962 3.860
7 15-16 -3.2066 5.268
図33は、実施例15の撮像レンズ25等の断面図である。撮像レンズ25は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1レンズL1の外縁の物体側には、開口絞り(STO)ASが配置され、第3及び第4レンズL3,L4の間には、遮光絞りFSが配置されている。   FIG. 33 is a cross-sectional view of the imaging lens 25 and the like of the fifteenth embodiment. The imaging lens 25 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, a biconvex second lens L2 having a positive refractive power around the optical axis AX, A meniscus third lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, a biconvex fourth lens L4 having a positive refractive power around the optical axis AX, and the optical axis AX Bi-concave fifth lens L5 having negative refractive power around the periphery, biconvex sixth lens L6 having positive refractive power around the optical axis AX, and an image having negative refractive power around the optical axis AX And a meniscus seventh lens L7 having a concave surface on the side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed on the object side of the outer edge of the first lens L1, and a light-shielding stop FS is disposed between the third and fourth lenses L3 and L4.
図34(A)〜34(C)は、実施例15の撮像レンズ25の諸収差図(球面収差、非点収差、歪曲収差)を示し、図34D及び34(E)は、実施例15の撮像レンズ25の横収差を示している。   34A to 34C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 25 of Example 15, and FIGS. 34D and 34E show the aberrations of Example 15. FIG. The lateral aberration of the imaging lens 25 is shown.
〔実施例16〕
実施例16のレンズ面のデータを以下の表46に示す。
〔表46〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.740
2* 1.8993 0.7256 1.54470 56 2.627
3* -10.3468 0.1000 2.485
STO INFINITY -0.0500 2.412
5* 2.3319 0.1500 1.63469 23.9 2.290
6* 1.2505 0.4048 2.059
7 FS INFINITY 0.1500 2.100
8* 15.3914 0.4247 1.54470 56 2.214
9* 25.1274 0.1331 2.496
10* 2.5185 0.2088 1.63469 23.9 2.799
11* 2.3168 0.3339 3.034
12* 9.5172 0.8615 1.54470 56 3.378
13* -1.2930 0.2838 3.826
14* 25.1583 0.3216 1.54470 56 4.991
15* 1.0816 0.5000 5.288
16 INFINITY 0.1100 1.51633 64.1 5.601
17 INFINITY 0.3020
Example 16
The lens surface data of Example 16 is shown in Table 46 below.
[Table 46]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.740
2 * 1.8993 0.7256 1.54470 56 2.627
3 * -10.3468 0.1000 2.485
STO INFINITY -0.0500 2.412
5 * 2.3319 0.1500 1.63469 23.9 2.290
6 * 1.2505 0.4048 2.059
7 FS INFINITY 0.1500 2.100
8 * 15.3914 0.4247 1.54470 56 2.214
9 * 25.1274 0.1331 2.496
10 * 2.5185 0.2088 1.63469 23.9 2.799
11 * 2.3168 0.3339 3.034
12 * 9.5172 0.8615 1.54470 56 3.378
13 * -1.2930 0.2838 3.826
14 * 25.1583 0.3216 1.54470 56 4.991
15 * 1.0816 0.5000 5.288
16 INFINITY 0.1100 1.51633 64.1 5.601
17 INFINITY 0.3020
実施例16のレンズ面の非球面係数を以下の表47に示す。
〔表47〕
第2面
K=-2.39449e-002, A4=5.58481e-003, A6=2.06612e-003,
A8=-3.07646e-003, A10=5.65811e-003, A12=-3.14644e-003,
A14=8.16023e-004
第3面
K=-8.00000e+001, A4=1.05929e-001, A6=-1.20368e-001,
A8=1.14068e-001, A10=-7.43080e-002, A12=2.86019e-002,
A14=-4.86279e-003
第5面
K=-2.91189e+001, A4=3.95298e-002, A6=-4.85696e-002,
A8=5.37086e-002, A10=-4.45093e-002, A12=1.91345e-002,
A14=-3.54000e-003
第6面
K=-6.16593e+000, A3=-1.36116e-002, A4=2.41257e-002,
A5=2.21024e-002, A6=6.61235e-002, A8=-1.47064e-001,
A10=1.68672e-001, A12=-1.05597e-001, A14=2.90830e-002
第8面
K=4.90837e+001, A3=-2.20527e-002, A4=6.40051e-002,
A5=-2.18089e-001, A6=1.96471e-001, A8=-1.69893e-001,
A10=1.59744e-001, A12=-1.02202e-001, A14=2.22018e-002
第9面
K=8.00000e+001, A3=-5.97772e-002, A4=-1.15158e-001,
A5=1.07951e-001, A6=-1.05467e-001, A8=3.87722e-002,
A10=-1.03260e-002, A12=-2.82006e-003
第10面
K=-1.27547e+001, A3=-6.15540e-002, A4=-3.57831e-001,
A5=3.62974e-001, A6=-2.66449e-001, A8=1.14702e-001,
A10=-1.51594e-002, A12=-2.23672e-003
第11面
K=-7.28835e+000, A3=-4.88579e-002, A4=-2.61960e-001,
A5=1.53657e-001, A6=-4.20626e-002, A8=6.17673e-003,
A10=6.76305e-003, A12=-1.70706e-003, A14=-5.89432e-005
第12面
K=-8.00000e+001, A3=-3.96204e-002, A4=7.90492e-002,
A5=-1.36173e-001, A6=8.32349e-002, A8=-3.73885e-002,
A10=1.63306e-002, A12=-4.12975e-003, A14=4.64192e-004
第13面
K=-9.52678e+000, A3=-1.28867e-001, A4=-2.44286e-002,
A5=8.56721e-002, A6=-1.81894e-002, A8=-1.49643e-002,
A10=7.02380e-003, A12=-1.18173e-003, A14=5.59535e-005
第14面
K=8.00000e+001, A3=-1.20707e-001, A4=-8.63150e-002,
A5=3.37030e-002, A6=2.20851e-002, A8=-2.50638e-003,
A10=-3.30695e-004, A12=7.19533e-005, A14=-3.53817e-006
第15面
K=-7.05628e+000, A3=1.57420e-002, A4=-1.56593e-001,
A5=1.11464e-001, A6=-2.93837e-002, A8=1.42233e-003,
A10=-2.26203e-004, A12=3.07229e-005, A14=-1.35985e-006
The aspheric coefficient of the lens surface of Example 16 is shown in Table 47 below.
[Table 47]
Second side
K = -2.39449e-002, A4 = 5.58481e-003, A6 = 2.06612e-003,
A8 = -3.07646e-003, A10 = 5.65811e-003, A12 = -3.14644e-003,
A14 = 8.16023e-004
Third side
K = -8.00000e + 001, A4 = 1.05929e-001, A6 = -1.20368e-001,
A8 = 1.14068e-001, A10 = -7.43080e-002, A12 = 2.86019e-002,
A14 = -4.86279e-003
5th page
K = -2.91189e + 001, A4 = 3.95298e-002, A6 = -4.85696e-002,
A8 = 5.37086e-002, A10 = -4.45093e-002, A12 = 1.91345e-002,
A14 = -3.54000e-003
6th page
K = -6.16593e + 000, A3 = -1.36116e-002, A4 = 2.41257e-002,
A5 = 2.21024e-002, A6 = 6.61235e-002, A8 = -1.47064e-001,
A10 = 1.68672e-001, A12 = -1.05597e-001, A14 = 2.90830e-002
8th page
K = 4.90837e + 001, A3 = -2.20527e-002, A4 = 6.40051e-002,
A5 = -2.18089e-001, A6 = 1.96471e-001, A8 = -1.69893e-001,
A10 = 1.59744e-001, A12 = -1.02202e-001, A14 = 2.22018e-002
9th page
K = 8.00000e + 001, A3 = -5.97772e-002, A4 = -1.15158e-001,
A5 = 1.07951e-001, A6 = -1.05467e-001, A8 = 3.87722e-002,
A10 = -1.03260e-002, A12 = -2.82006e-003
10th page
K = -1.27547e + 001, A3 = -6.15540e-002, A4 = -3.57831e-001,
A5 = 3.62974e-001, A6 = -2.66449e-001, A8 = 1.14702e-001,
A10 = -1.51594e-002, A12 = -2.23672e-003
11th page
K = -7.28835e + 000, A3 = -4.88579e-002, A4 = -2.61960e-001,
A5 = 1.53657e-001, A6 = -4.20626e-002, A8 = 6.17673e-003,
A10 = 6.76305e-003, A12 = -1.70706e-003, A14 = -5.89432e-005
12th page
K = -8.00000e + 001, A3 = -3.96204e-002, A4 = 7.90492e-002,
A5 = -1.36173e-001, A6 = 8.32349e-002, A8 = -3.73885e-002,
A10 = 1.63306e-002, A12 = -4.12975e-003, A14 = 4.64192e-004
Side 13
K = -9.52678e + 000, A3 = -1.28867e-001, A4 = -2.44286e-002,
A5 = 8.56721e-002, A6 = -1.81894e-002, A8 = -1.49643e-002,
A10 = 7.02380e-003, A12 = -1.18173e-003, A14 = 5.59535e-005
14th page
K = 8.00000e + 001, A3 = -1.20707e-001, A4 = -8.63150e-002,
A5 = 3.37030e-002, A6 = 2.20851e-002, A8 = -2.50638e-003,
A10 = -3.30695e-004, A12 = 7.19533e-005, A14 = -3.53817e-006
15th page
K = -7.05628e + 000, A3 = 1.57420e-002, A4 = -1.56593e-001,
A5 = 1.11464e-001, A6 = -2.93837e-002, A8 = 1.42233e-003,
A10 = -2.26203e-004, A12 = 3.07229e-005, A14 = -1.35985e-006
実施例16の撮像レンズの特性を以下に列挙する。
FL 3.786
Fno 1.44
w 75.45
Ymax 2.921
BF 0.912
TL 4.960
BFa 0.875
TLa 4.922
The characteristics of the imaging lens of Example 16 are listed below.
FL 3.786
Fno 1.44
w 75.45
Ymax 2.921
BF 0.912
TL 4.960
BFa 0.875
TLa 4.922
実施例15の単レンズデータを以下の表48に示す。
〔表48〕
Elem Surfs Focal Length Diameter
1 2- 3 3.0089 2.627
2 5- 6 -4.4904 2.290
3 8- 9 71.8223 2.496
4 10-11 -76.2331 3.034
5 12-13 2.1503 3.826
6 14-15 -2.0848 5.288
Single lens data of Example 15 is shown in Table 48 below.
[Table 48]
Elem Surfs Focal Length Diameter
1 2- 3 3.0089 2.627
2 5- 6 -4.4904 2.290
3 8- 9 71.8223 2.496
4 10-11 -76.2331 3.034
5 12-13 2.1503 3.826
6 14-15 -2.0848 5.288
図35は、実施例16の撮像レンズ26等の断面図である。撮像レンズ26は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けた略凸平の第3レンズL3と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で正の屈折力を有する両凸の第5レンズL5と、光軸AX周辺で負の屈折力を有し像側に凹面を向けた略平凹の第6レンズL6とを備える。全てのレンズL1〜L6は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第2及び第3レンズL2,L3の間とには、遮光絞りFSが配置されている。   FIG. 35 is a sectional view of the imaging lens 26 and the like of the sixteenth embodiment. The imaging lens 26 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. The second lens L2, the third lens L3 having a generally positive convexity having a weak positive refractive power around the optical axis AX and a convex surface facing the object side, and a weak negative refractive power around the optical axis AX. A fourth meniscus lens L4 having a convex surface facing the object side, a biconvex fifth lens L5 having a positive refractive power around the optical axis AX, and a negative refractive power around the optical axis AX and having a negative refractive power on the image side And a substantially plano-concave sixth lens L6 having a concave surface. All the lenses L1 to L6 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the second and third lenses L2 and L3, A light-shielding stop FS is disposed.
図36(A)〜36(C)は、実施例16の撮像レンズ26の諸収差図(球面収差、非点収差、歪曲収差)を示し、図36(D)及び36(E)は、実施例16の撮像レンズ26の横収差を示している。   36 (A) to 36 (C) show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 26 of Example 16, and FIGS. 36 (D) and 36 (E) show the examples. 10 shows lateral aberrations of the imaging lens 26 of Example 16. FIG.
以下の表49は、参考のため、各条件式(1)、(3)〜(6)に対応する各実施例1〜16の値をまとめたものである。
〔表49〕
For reference, Table 49 below summarizes the values of Examples 1 to 16 corresponding to the conditional expressions (1) and (3) to (6).
[Table 49]
以上では、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。例えば、開口絞りASは、鏡筒部分54aに直接的に支持させることができるが、これに隣接する1つのレンズの外側に延びるフランジ部に固定することができ、あるいは隣接する一対のレンズの外側に延びるフランジ部に挟んで固定することができる。遮光絞りFSも、鏡筒部分54aに直接的に支持させることができるが、これに隣接する1つのレンズの外側に延びるフランジ部に固定することができ、あるいは隣接する一対のレンズの外側に延びるフランジ部に挟んで固定することができる。   In the above, the present invention has been described based on the embodiments and examples, but the present invention is not limited to the above-described embodiments and the like. For example, the aperture stop AS can be directly supported by the lens barrel portion 54a, but can be fixed to a flange portion extending to the outside of one adjacent lens, or the outside of a pair of adjacent lenses. And can be fixed by being sandwiched between flange portions extending in the direction. Although the light-shielding stop FS can also be directly supported by the lens barrel portion 54a, it can be fixed to a flange portion that extends to the outside of one adjacent lens, or extends to the outside of a pair of adjacent lenses. It can be fixed by being sandwiched between flange portions.
開口絞りASや遮光絞りFSは、金属板に限らず、樹脂又はセラミックスの板状部材とすることができ、レンズのフランジ部を遮光性の材料で塗装することによっても組み込むことができる。さらに、開口絞りASや遮光絞りFSは、完全な遮光体に限らず、口径外で減光を行うものであってもよい。遮光絞りFSを遮光板等とする場合、一対のレンズ間に複数の遮光板等を配置することもできる。   The aperture stop AS and the light-shielding stop FS are not limited to metal plates, but can be plate members made of resin or ceramics, and can also be incorporated by painting the flange portion of the lens with a light-shielding material. Further, the aperture stop AS and the light-shielding stop FS are not limited to a complete light-shielding body, and may be one that performs light reduction outside the aperture. When the light-shielding stop FS is a light-shielding plate or the like, a plurality of light-shielding plates or the like can be arranged between a pair of lenses.
10,11〜26…撮像レンズ、 50…カメラモジュール、 51…撮像素子、 100…撮像装置、 300…携帯通信端末、 AX…光軸、 L1−L7…レンズ、 AS,FS…絞り   DESCRIPTION OF SYMBOLS 10, 11-26 ... Imaging lens, 50 ... Camera module, 51 ... Imaging device, 100 ... Imaging device, 300 ... Portable communication terminal, AX ... Optical axis, L1-L7 ... Lens, AS, FS ... Aperture

Claims (12)

  1. 6枚から8枚までのレンズからなり、
    最も像側に配置されたレンズの像側面は非球面で中心以外の有効径内に極値を有し、
    最も物体側から連続して配置される第1レンズ、第2レンズ及び第3レンズは、少なくとも1枚の正レンズと少なくとも1枚の負レンズとを含み、
    前記第1、第2及び第3レンズのうち、最もパワーの大きい正レンズを主正レンズとし、最もパワーの大きい負レンズを主負レンズとし、
    前記第1レンズの物体側には所定の第1開口を持った第1絞り部材が配置され、
    前記主負レンズと隣接するレンズとの間には所定の第2開口を持った第2絞り部材が配置され、
    下記の条件式を満たす、撮像レンズ。
    1.5<Dn/s1<2.3 … (1)
    s1≧s2 … (2)
    Dn:前記主負レンズの像側面から撮像面までの距離
    s1:前記第1絞り部材の開口径
    s2:前記第2絞り部材の開口径で、第2絞り部材とみなせる絞り部材が複数ある場合最も小さい開口径
    It consists of 6 to 8 lenses,
    The image side surface of the lens arranged closest to the image side is aspheric and has an extreme value within an effective diameter other than the center,
    The first lens, the second lens, and the third lens that are continuously arranged from the most object side include at least one positive lens and at least one negative lens.
    Among the first, second and third lenses, the positive lens with the highest power is the main positive lens, the negative lens with the highest power is the main negative lens,
    A first diaphragm member having a predetermined first opening is disposed on the object side of the first lens,
    A second diaphragm member having a predetermined second opening is disposed between the main negative lens and the adjacent lens;
    An imaging lens that satisfies the following conditional expression.
    1.5 <Dn / s1 <2.3 (1)
    s1 ≧ s2 (2)
    Dn: distance from the image side surface of the main negative lens to the imaging surface s1: aperture diameter of the first aperture member s2: the aperture diameter of the second aperture member, and when there are a plurality of aperture members that can be regarded as second aperture members Small opening diameter
  2. 最も像側のレンズは、負レンズである、請求項1に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the most image side lens is a negative lens.
  3. 前記第4レンズよりも物体側に開口絞りを有する、請求項2に記載の撮像レンズ。   The imaging lens according to claim 2, further comprising an aperture stop closer to the object side than the fourth lens.
  4. 下記の条件式を満たす、請求項1〜3のいずれか一項に記載の撮像レンズ。
    1.0≦Φmax/EPD<1.25 … (3)
    Φmax:前記第1レンズから前記第3レンズまでのうち、最も有効径が大きいレンズの有効径
    EPD:入射瞳直径
    The imaging lens according to claim 1, which satisfies the following conditional expression.
    1.0 ≦ Φmax / EPD <1.25 (3)
    Φmax: effective diameter of the lens having the largest effective diameter among the first lens to the third lens EPD: entrance pupil diameter
  5. 下記の条件式を満たす、請求項1〜4のいずれか一項に記載の撮像レンズ。
    0.70<s2/s1≦1.0 … (4)
    The imaging lens according to claim 1, which satisfies the following conditional expression.
    0.70 <s2 / s1 ≦ 1.0 (4)
  6. 前記主負レンズの像側面は、凹面であり、全系の中で有効径が最も小さい面である、請求項1〜5のいずれか一項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 5, wherein an image side surface of the main negative lens is a concave surface and has a smallest effective diameter in the entire system.
  7. 下記の条件式を満たす、請求項1〜6のいずれか一項に記載の撮像レンズ。
    1.0<f123/f<4.0 … (5)
    f123:前記第1レンズから前記第3レンズまでの合成焦点距離
    f:全系の焦点距離
    The imaging lens according to claim 1, which satisfies the following conditional expression.
    1.0 <f123 / f <4.0 (5)
    f123: composite focal length from the first lens to the third lens f: focal length of the entire system
  8. 前記主負レンズの像側に連続して配置される3枚のレンズが、下記の条件式をそれぞれ満たす、請求項1〜7のいずれか一項に記載の撮像レンズ。
    0.01<SAG_A/ΦA<0.20 … (6)
    SAG_A:物体側面の有効径内のサグ量
    ΦA:物体側面の有効径
    The imaging lens according to any one of claims 1 to 7, wherein three lenses arranged continuously on the image side of the main negative lens satisfy the following conditional expressions, respectively.
    0.01 <SAG_A / ΦA <0.20 (6)
    SAG_A: Sag amount within the effective diameter of the object side surface ΦA: Effective diameter of the object side surface
  9. 前記主負レンズは、前記主正レンズの直後の像側に配置されている、請求項1〜8のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the main negative lens is disposed on an image side immediately after the main positive lens.
  10. 実質的にパワーを持たない光学素子をさらに有する、請求項1〜9のいずれか一項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 9, further comprising an optical element having substantially no power.
  11. 請求項1〜10のいずれか一項に記載の撮像レンズと、前記撮像素子とを備える、撮像装置。   An imaging device comprising the imaging lens according to claim 1 and the imaging element.
  12. 請求項11に記載の撮像装置を備える、携帯端末。   A portable terminal comprising the imaging device according to claim 11.
JP2013208754A 2013-10-04 2013-10-04 Imaging lens, imaging device, and portable terminal Active JP6191820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208754A JP6191820B2 (en) 2013-10-04 2013-10-04 Imaging lens, imaging device, and portable terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208754A JP6191820B2 (en) 2013-10-04 2013-10-04 Imaging lens, imaging device, and portable terminal

Publications (2)

Publication Number Publication Date
JP2015072405A true JP2015072405A (en) 2015-04-16
JP6191820B2 JP6191820B2 (en) 2017-09-06

Family

ID=53014807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208754A Active JP6191820B2 (en) 2013-10-04 2013-10-04 Imaging lens, imaging device, and portable terminal

Country Status (1)

Country Link
JP (1) JP6191820B2 (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301738A (en) * 2015-07-21 2016-02-03 瑞声声学科技(深圳)有限公司 Camera lens
JP5890947B1 (en) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5890948B1 (en) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5951912B1 (en) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5951913B1 (en) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
CN106802478A (en) * 2015-11-26 2017-06-06 三星电机株式会社 Optical imaging system
US9671591B2 (en) 2015-04-16 2017-06-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
TWI586999B (en) * 2015-10-23 2017-06-11 大立光電股份有限公司 Imaging lens assembly, image capturing unit and electronic device
JP2017116912A (en) * 2015-12-24 2017-06-29 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical system
JP2017116911A (en) * 2015-12-24 2017-06-29 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical system
JP2017116910A (en) * 2015-12-24 2017-06-29 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical system
CN106908932A (en) * 2016-12-30 2017-06-30 玉晶光电(厦门)有限公司 Optical imaging lens
WO2017199633A1 (en) * 2016-05-19 2017-11-23 ソニー株式会社 Imaging lens and imaging device
US9835823B2 (en) 2012-08-13 2017-12-05 Largan Precision Co., Ltd. Image lens assembly system
CN107918194A (en) * 2017-11-18 2018-04-17 瑞声科技(新加坡)有限公司 Camera optical camera lens
US9977224B2 (en) 2016-08-22 2018-05-22 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device
CN108089303A (en) * 2017-12-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108089301A (en) * 2017-12-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108132512A (en) * 2017-11-16 2018-06-08 玉晶光电(厦门)有限公司 Optical imaging lens
CN108132518A (en) * 2017-12-18 2018-06-08 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108152916A (en) * 2017-12-18 2018-06-12 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108152917A (en) * 2017-12-18 2018-06-12 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108227119A (en) * 2017-12-04 2018-06-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108227133A (en) * 2017-12-18 2018-06-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
JP6351820B1 (en) * 2017-10-19 2018-07-04 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
CN108267843A (en) * 2017-12-18 2018-07-10 瑞声科技(新加坡)有限公司 Camera optical camera lens
TWI629535B (en) * 2017-02-18 2018-07-11 大立光電股份有限公司 Image capturing optical system, imaging apparatus and electronic device
JP6360612B1 (en) * 2017-10-19 2018-07-18 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362200B1 (en) * 2017-11-18 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362195B1 (en) * 2017-10-30 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362194B1 (en) * 2017-10-19 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362202B1 (en) * 2017-11-18 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362196B1 (en) * 2017-10-30 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362201B1 (en) * 2017-11-18 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6366152B1 (en) * 2017-11-18 2018-08-01 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6371897B1 (en) * 2017-10-30 2018-08-08 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
CN108490582A (en) * 2018-03-29 2018-09-04 广东旭业光电科技股份有限公司 A kind of imaging lens and the image capture device with the imaging lens
JP6386156B1 (en) * 2017-10-19 2018-09-05 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6384939B1 (en) * 2017-10-19 2018-09-05 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6404443B1 (en) * 2017-10-19 2018-10-10 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6405031B1 (en) * 2017-10-19 2018-10-17 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
CN108761715A (en) * 2018-03-08 2018-11-06 瑞声声学科技(深圳)有限公司 Pick-up lens
JP6420000B1 (en) * 2017-12-18 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6420001B1 (en) * 2017-12-18 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
TWI644142B (en) * 2018-01-25 2018-12-11 大立光電股份有限公司 Imaging optical lens assembly, imaging apparatus and electronic device
CN109270666A (en) * 2018-12-04 2019-01-25 广东旭业光电科技股份有限公司 A kind of optical imaging lens and electronic equipment
CN109283660A (en) * 2015-07-03 2019-01-29 大立光电股份有限公司 Capture lens systems and image-taking device
US10191248B2 (en) 2014-10-29 2019-01-29 Kantatsu Co., Ltd. Imaging lens
CN109828361A (en) * 2018-12-31 2019-05-31 瑞声科技(新加坡)有限公司 Camera optical camera lens
TWI664468B (en) * 2018-05-21 2019-07-01 大立光電股份有限公司 Photographing optical lens assembly, imaging apparatus and electronic device
TWI667509B (en) * 2018-05-10 2019-08-01 大立光電股份有限公司 Photographing optical lens assembly, imaging apparatus and electronic device
CN110383114A (en) * 2017-02-24 2019-10-25 富士胶片株式会社 Lens, zoom lens and imaging lens
CN110398820A (en) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN110426829A (en) * 2016-02-04 2019-11-08 大立光电股份有限公司 Optical lens for shooting group, image-taking device and electronic device
CN110554481A (en) * 2016-08-26 2019-12-10 大立光电股份有限公司 Image lens and image capturing device
CN110596869A (en) * 2019-08-16 2019-12-20 瑞声通讯科技(常州)有限公司 Image pickup optical lens
US10558020B2 (en) 2014-01-10 2020-02-11 Kantatsu Co., Ltd. Imaging lens
CN110908075A (en) * 2019-12-05 2020-03-24 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111025548A (en) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 Image pickup optical lens
US10627600B2 (en) 2017-12-22 2020-04-21 Largan Precision Co., Ltd. Imaging optical lens system, image capturing unit and electronic device
WO2020088024A1 (en) * 2018-10-30 2020-05-07 浙江舜宇光学有限公司 Optical imaging camera
CN111208628A (en) * 2020-03-06 2020-05-29 玉晶光电(厦门)有限公司 Optical imaging lens
US10670837B2 (en) 2017-07-19 2020-06-02 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US10690886B2 (en) 2017-06-30 2020-06-23 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
CN112285909A (en) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 Image pickup optical lens
CN112285908A (en) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 Image pickup optical lens

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486190B2 (en) 2006-01-20 2014-05-07 エイエムジー・アイデアルキャスト・ソーラー・コーポレーション Single crystal molded silicon for photoelectric conversion and method and apparatus for manufacturing single crystal molded silicon body
US20100203350A1 (en) 2007-07-20 2010-08-12 Bp Corporation Noth America Inc. Methods and Apparatuses for Manufacturing Cast Silicon from Seed Crystals
WO2009015168A1 (en) 2007-07-25 2009-01-29 Bp Corporation North America Inc. Methods for manufacturing geometric multi-crystalline cast materials
WO2009015167A1 (en) 2007-07-25 2009-01-29 Bp Corporation North America Inc. Methods for manufacturing monocrystalline or near-monocrystalline cast materials
CN107966790B (en) * 2017-12-18 2020-02-04 瑞声科技(新加坡)有限公司 Image pickup optical lens
CN109828353A (en) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 Camera optical camera lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008357A1 (en) * 2010-07-16 2012-01-19 コニカミノルタオプト株式会社 Image capture lens
US20120194726A1 (en) * 2011-01-27 2012-08-02 Largan Precision Co., Ltd. Image capturing lens assembly
US20130033762A1 (en) * 2011-08-05 2013-02-07 Largan Precision Co. Ltd. Photographing optical lens assembly
US20130070346A1 (en) * 2011-09-15 2013-03-21 Largan Precision Co., Ltd. Optical image capturing lens assembly
JP2014102408A (en) * 2012-11-21 2014-06-05 Kantatsu Co Ltd Image capturing lens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008357A1 (en) * 2010-07-16 2012-01-19 コニカミノルタオプト株式会社 Image capture lens
US20130120858A1 (en) * 2010-07-16 2013-05-16 Eigo Sano Image Capture Lens
US20120194726A1 (en) * 2011-01-27 2012-08-02 Largan Precision Co., Ltd. Image capturing lens assembly
US20130033762A1 (en) * 2011-08-05 2013-02-07 Largan Precision Co. Ltd. Photographing optical lens assembly
US20130070346A1 (en) * 2011-09-15 2013-03-21 Largan Precision Co., Ltd. Optical image capturing lens assembly
JP2014102408A (en) * 2012-11-21 2014-06-05 Kantatsu Co Ltd Image capturing lens
US20150226941A1 (en) * 2012-11-21 2015-08-13 Kantatsu Co., Ltd. Imaging lens

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10101564B2 (en) 2012-08-13 2018-10-16 Largan Precision Co., Ltd. Image lens assembly system
US11009683B2 (en) 2012-08-13 2021-05-18 Largan Precision Co., Ltd. Image lens assembly system
US10401595B2 (en) 2012-08-13 2019-09-03 Largan Precision Co., Ltd. Image lens assembly system
US9835823B2 (en) 2012-08-13 2017-12-05 Largan Precision Co., Ltd. Image lens assembly system
US10558020B2 (en) 2014-01-10 2020-02-11 Kantatsu Co., Ltd. Imaging lens
US10690888B2 (en) 2014-01-10 2020-06-23 Kantatsu Co., Ltd. Imaging lens
US10732388B2 (en) 2014-10-29 2020-08-04 Kantatsu Co., Ltd. Imaging lens
US10678027B2 (en) 2014-10-29 2020-06-09 Kantatsu Co., Ltd. Imaging lens
US10191248B2 (en) 2014-10-29 2019-01-29 Kantatsu Co., Ltd. Imaging lens
US10656390B2 (en) 2014-10-29 2020-05-19 Kantatsu Co., Ltd. Imaging lens
US10725270B2 (en) 2014-10-29 2020-07-28 Kantatsu Co., Ltd. Imaging lens
US9671591B2 (en) 2015-04-16 2017-06-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US10481368B2 (en) 2015-04-16 2019-11-19 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US10788650B2 (en) 2015-04-16 2020-09-29 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US10133033B2 (en) 2015-04-16 2018-11-20 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
CN109283660A (en) * 2015-07-03 2019-01-29 大立光电股份有限公司 Capture lens systems and image-taking device
CN109283660B (en) * 2015-07-03 2021-03-02 大立光电股份有限公司 Image capturing lens system and image capturing device
CN105301738A (en) * 2015-07-21 2016-02-03 瑞声声学科技(深圳)有限公司 Camera lens
US9753249B2 (en) 2015-10-23 2017-09-05 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
US10241295B2 (en) 2015-10-23 2019-03-26 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
TWI586999B (en) * 2015-10-23 2017-06-11 大立光電股份有限公司 Imaging lens assembly, image capturing unit and electronic device
US10976521B2 (en) 2015-11-26 2021-04-13 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN106802478A (en) * 2015-11-26 2017-06-06 三星电机株式会社 Optical imaging system
JP2017116911A (en) * 2015-12-24 2017-06-29 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical system
JP2017116910A (en) * 2015-12-24 2017-06-29 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical system
JP2017116912A (en) * 2015-12-24 2017-06-29 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical system
JP5890947B1 (en) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5890948B1 (en) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
US9703078B1 (en) 2016-01-07 2017-07-11 AAC Technologies Pte. Ltd. Camera lens
CN105866925A (en) * 2016-01-07 2016-08-17 瑞声科技(新加坡)有限公司 Camera lens
US9759894B2 (en) 2016-01-07 2017-09-12 AAC Technologies Pte. Ltd. Camera lens
JP5951912B1 (en) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5951913B1 (en) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
US10168509B2 (en) 2016-01-08 2019-01-01 AAC Technologies Pte. Ltd. Camera lens
CN105866921A (en) * 2016-01-08 2016-08-17 瑞声科技(新加坡)有限公司 Camera lens
CN105866921B (en) * 2016-01-08 2018-09-21 瑞声科技(新加坡)有限公司 Pick-up lens
US9835832B2 (en) 2016-01-08 2017-12-05 AAC Technologies Pte. Ltd. Camera lens
CN110426829A (en) * 2016-02-04 2019-11-08 大立光电股份有限公司 Optical lens for shooting group, image-taking device and electronic device
WO2017199633A1 (en) * 2016-05-19 2017-11-23 ソニー株式会社 Imaging lens and imaging device
CN109073862A (en) * 2016-05-19 2018-12-21 索尼公司 Imaging len and imaging device
US9977224B2 (en) 2016-08-22 2018-05-22 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device
US10746968B2 (en) 2016-08-22 2020-08-18 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device
US10254516B2 (en) 2016-08-22 2019-04-09 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device
CN110568589A (en) * 2016-08-26 2019-12-13 大立光电股份有限公司 Image lens, image capturing device and electronic device
CN110554481A (en) * 2016-08-26 2019-12-10 大立光电股份有限公司 Image lens and image capturing device
CN106908932A (en) * 2016-12-30 2017-06-30 玉晶光电(厦门)有限公司 Optical imaging lens
US10564403B2 (en) 2017-02-18 2020-02-18 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
TWI629535B (en) * 2017-02-18 2018-07-11 大立光電股份有限公司 Image capturing optical system, imaging apparatus and electronic device
US10310227B2 (en) 2017-02-18 2019-06-04 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
CN110383114A (en) * 2017-02-24 2019-10-25 富士胶片株式会社 Lens, zoom lens and imaging lens
CN110383114B (en) * 2017-02-24 2020-12-29 富士胶片株式会社 Lens, zoom lens and imaging lens
US10690886B2 (en) 2017-06-30 2020-06-23 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
US10670837B2 (en) 2017-07-19 2020-06-02 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
JP2019079017A (en) * 2017-10-19 2019-05-23 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6360612B1 (en) * 2017-10-19 2018-07-18 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019079023A (en) * 2017-10-19 2019-05-23 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6351820B1 (en) * 2017-10-19 2018-07-04 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019078995A (en) * 2017-10-19 2019-05-23 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6404443B1 (en) * 2017-10-19 2018-10-10 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362194B1 (en) * 2017-10-19 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6386156B1 (en) * 2017-10-19 2018-09-05 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6405031B1 (en) * 2017-10-19 2018-10-17 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6384939B1 (en) * 2017-10-19 2018-09-05 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019079022A (en) * 2017-10-19 2019-05-23 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019079018A (en) * 2017-10-19 2019-05-23 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362195B1 (en) * 2017-10-30 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6371897B1 (en) * 2017-10-30 2018-08-08 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019082661A (en) * 2017-10-30 2019-05-30 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362196B1 (en) * 2017-10-30 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
CN108132512A (en) * 2017-11-16 2018-06-08 玉晶光电(厦门)有限公司 Optical imaging lens
JP6362202B1 (en) * 2017-11-18 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
CN107918194A (en) * 2017-11-18 2018-04-17 瑞声科技(新加坡)有限公司 Camera optical camera lens
JP6366152B1 (en) * 2017-11-18 2018-08-01 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362200B1 (en) * 2017-11-18 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6362201B1 (en) * 2017-11-18 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019095741A (en) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
CN108227119A (en) * 2017-12-04 2018-06-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108267843B (en) * 2017-12-18 2020-07-17 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108089303B (en) * 2017-12-18 2020-06-16 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108132518B (en) * 2017-12-18 2020-06-16 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108152917A (en) * 2017-12-18 2018-06-12 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108132518A (en) * 2017-12-18 2018-06-08 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108267843A (en) * 2017-12-18 2018-07-10 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108152916A (en) * 2017-12-18 2018-06-12 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108089303A (en) * 2017-12-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108227133A (en) * 2017-12-18 2018-06-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108089301A (en) * 2017-12-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
JP6420000B1 (en) * 2017-12-18 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP6420001B1 (en) * 2017-12-18 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
US10627600B2 (en) 2017-12-22 2020-04-21 Largan Precision Co., Ltd. Imaging optical lens system, image capturing unit and electronic device
TWI644142B (en) * 2018-01-25 2018-12-11 大立光電股份有限公司 Imaging optical lens assembly, imaging apparatus and electronic device
CN108761715A (en) * 2018-03-08 2018-11-06 瑞声声学科技(深圳)有限公司 Pick-up lens
CN108761715B (en) * 2018-03-08 2019-05-07 瑞声声学科技(深圳)有限公司 Pick-up lens
CN108490582B (en) * 2018-03-29 2020-11-24 广东旭业光电科技股份有限公司 Imaging lens and image acquisition equipment with same
CN108490582A (en) * 2018-03-29 2018-09-04 广东旭业光电科技股份有限公司 A kind of imaging lens and the image capture device with the imaging lens
TWI667509B (en) * 2018-05-10 2019-08-01 大立光電股份有限公司 Photographing optical lens assembly, imaging apparatus and electronic device
CN110471161A (en) * 2018-05-10 2019-11-19 大立光电股份有限公司 Photographing optical microscope group, image-taking device and electronic device
US11016270B2 (en) 2018-05-10 2021-05-25 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
TWI664468B (en) * 2018-05-21 2019-07-01 大立光電股份有限公司 Photographing optical lens assembly, imaging apparatus and electronic device
WO2020088024A1 (en) * 2018-10-30 2020-05-07 浙江舜宇光学有限公司 Optical imaging camera
CN109270666B (en) * 2018-12-04 2021-02-05 广东旭业光电科技股份有限公司 Optical imaging lens and electronic equipment
CN109270666A (en) * 2018-12-04 2019-01-25 广东旭业光电科技股份有限公司 A kind of optical imaging lens and electronic equipment
CN109828361A (en) * 2018-12-31 2019-05-31 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN109828361B (en) * 2018-12-31 2021-05-04 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN110398820A (en) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN110596869A (en) * 2019-08-16 2019-12-20 瑞声通讯科技(常州)有限公司 Image pickup optical lens
WO2021031278A1 (en) * 2019-08-16 2021-02-25 诚瑞光学(常州)股份有限公司 Photographing optical lens
CN110908075B (en) * 2019-12-05 2020-10-30 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN110908075A (en) * 2019-12-05 2020-03-24 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111025548A (en) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111208628A (en) * 2020-03-06 2020-05-29 玉晶光电(厦门)有限公司 Optical imaging lens
CN112285908A (en) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 Image pickup optical lens
CN112285909A (en) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 Image pickup optical lens

Also Published As

Publication number Publication date
JP6191820B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
CN106896473B (en) Camera lens
US9229194B2 (en) Imaging lens and imaging apparatus including the imaging lens
WO2017199633A1 (en) Imaging lens and imaging device
JP5698872B2 (en) Imaging lens and imaging device provided with imaging lens
JP5904623B2 (en) Imaging lens and imaging device provided with imaging lens
JP5823527B2 (en) Imaging lens and imaging device provided with imaging lens
JP5827688B2 (en) Imaging lens and imaging device provided with imaging lens
JP6167348B2 (en) Imaging lens
JP2016095460A (en) Imaging lens and imaging apparatus including imaging lens
JP5370619B1 (en) Imaging optical system, imaging apparatus, and digital device
JP5177776B2 (en) Imaging lens, imaging device, and portable terminal
JP5698834B2 (en) Imaging lens and imaging apparatus
JP4947236B2 (en) Imaging lens, imaging device, and portable terminal
TWI619964B (en) Imaging lens and imaging apparatus
JP5886230B2 (en) Imaging lens and imaging device provided with imaging lens
JP6452643B2 (en) Imaging lens
JP5752850B2 (en) Imaging lens and imaging device provided with imaging lens
JP6105317B2 (en) Wide-angle imaging lens
JP2017003703A (en) Image capturing lens
JP5201679B2 (en) Imaging lens
JP5206688B2 (en) Imaging lens, imaging device, and portable terminal
JP5574049B2 (en) Imaging optical system, imaging apparatus, and digital device
JP2016099550A (en) Imaging lens and imaging apparatus including imaging lens
JP2015161871A (en) imaging lens
JP5318895B2 (en) Imaging optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170725

R150 Certificate of patent or registration of utility model

Ref document number: 6191820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150