JP2015072402A - Image capturing lens, image capturing device, and mobile terminal - Google Patents

Image capturing lens, image capturing device, and mobile terminal Download PDF

Info

Publication number
JP2015072402A
JP2015072402A JP2013208751A JP2013208751A JP2015072402A JP 2015072402 A JP2015072402 A JP 2015072402A JP 2013208751 A JP2013208751 A JP 2013208751A JP 2013208751 A JP2013208751 A JP 2013208751A JP 2015072402 A JP2015072402 A JP 2015072402A
Authority
JP
Japan
Prior art keywords
lens
imaging
object side
imaging lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013208751A
Other languages
Japanese (ja)
Inventor
貴志 川崎
Takashi Kawasaki
貴志 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013208751A priority Critical patent/JP2015072402A/en
Publication of JP2015072402A publication Critical patent/JP2015072402A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image capturing lens which is as compact as conventional lenses and yet offers a larger aperture, good correction for various aberrations, and a seven-lens configuration.SOLUTION: An image capturing lens 10 comprises, in order from the object side, a positive first lens L1, a positive second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a seventh lens L7, where the seventh lens L7 has an aspherically shaped image-side surface S72 having an extremum at a position P other than the center within an effective diameter thereof. The image capturing lens 10 satisfies the following conditional expression: 15.0<θSp<50.0...(1), where θSp represents a maximum surface angle of an object-side surface S21 of the second lens L2 within an effective diameter thereof.

Description

本発明は、小型の撮像レンズ、並びにこれを組み込んだ撮像装置及び携帯端末に関し、特に7枚のレンズを有する低背に好適な撮像レンズ、撮像装置及び携帯端末に関する。   The present invention relates to a small imaging lens, and an imaging apparatus and a portable terminal incorporating the same, and more particularly, to an imaging lens, an imaging apparatus, and a portable terminal suitable for a low profile having seven lenses.

近年、CCD(Charge Coupled Device)型イメージセンサーあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子を用いた撮像素子の高性能化及び小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及しつつある。さらに最近では、上記のような携帯情報端末等に搭載される表示素子の大型化・高精細化を受け、撮像素子も高画素化が求められており、これらの携帯情報端末等に搭載される撮像レンズに対しては、さらなる高性能化への要求が高まっている。このような用途の撮像レンズとして、5枚や6枚構成の撮像レンズが提案されている。最近では、さらなる高性能化を目指し5枚や6枚構成のレンズに比べ収差補正能力の優れた7枚構成のレンズも提案されている(例えば特許文献1、2等参照)。   In recent years, with the improvement in performance and miniaturization of imaging devices using solid-state imaging devices such as CCD (Charge Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, Portable information terminals are becoming popular. More recently, with the increase in size and definition of display elements mounted on the above-described portable information terminals and the like, the imaging elements are also required to have higher pixels, and are mounted on these portable information terminals and the like. There is a growing demand for higher performance for imaging lenses. As imaging lenses for such applications, imaging lenses having five or six lenses have been proposed. Recently, a seven-lens lens having an excellent aberration correction capability compared to a five- or six-lens lens has been proposed for higher performance (see, for example, Patent Documents 1 and 2).

撮像素子に対する高画素化の要求の一方で、撮像装置の小型化の要求も強く、撮像素子については、高画素化と小型化とを両立するために、画素サイズの小型化が進んでいる。撮像素子の画素サイズが小さくなると、その分1画素当たりで受光できる光量が減少するため、S/N比が小さくなることによるノイズや、露光時間が長くなるため発生する手振れによる画像劣化が問題となる。この1画素当たりで受光できる光量の減少に起因する問題の対策のため、より明るいレンズが求められており、最近ではF1.9以下の大口径のレンズが求められている。一方で、大口径化は、受光光量の増加には寄与するが、球面収差やコマ収差などの単色収差の発生に繋がり、光学性能を劣化させてしまう。上記特許文献1には、第1レンズが正レンズ、第2レンズが負レンズの7枚構成の撮像レンズが記載されているが、F2.0以上の暗い撮像レンズしか記載されておらず、十分な大口径化ができていない。また、第1レンズの正のパワーが強すぎるため、F1.9以下に大口径化した際に球面収差やコマ収差の補正が不足し、性能の維持が難しい。また、特許文献2には、第1レンズが負レンズ、第2レンズが正レンズの7枚構成の撮像レンズが記載されているが、特許文献1と同様に、F2.0以上の暗い撮像レンズしか記載されておらず、十分な大口径化ができていない。また、大口径化の際に各レンズの有効径が大きくなり、それに伴い光軸方向への厚みも増加するが、負の第1レンズの厚みが増すと、正の第2レンズが像側へ寄ることになるため、全系の主点位置も像側に寄り、光学全長の短縮が難しくなる。   On the other hand, there is a strong demand for downsizing of the image pickup apparatus on the other hand, while the demand for downsizing of the image pickup device is strong. In order to achieve both high downsizing and downsizing of the image pickup device, downsizing of the pixel size is progressing. As the pixel size of the image sensor becomes smaller, the amount of light that can be received per pixel decreases accordingly, and noise due to a decrease in the S / N ratio and image degradation due to camera shake that occurs due to a longer exposure time are problematic. Become. In order to solve the problem caused by the decrease in the amount of light that can be received per pixel, a brighter lens is demanded, and recently, a lens having a large aperture of F1.9 or less is demanded. On the other hand, increasing the diameter contributes to an increase in the amount of received light, but leads to the occurrence of monochromatic aberrations such as spherical aberration and coma aberration, and degrades optical performance. The above-mentioned Patent Document 1 describes an imaging lens having a seven-lens configuration in which the first lens is a positive lens and the second lens is a negative lens. However, only a dark imaging lens of F2.0 or higher is described, which is sufficient. A large aperture has not been achieved. Further, since the positive power of the first lens is too strong, correction of spherical aberration and coma aberration is insufficient when the aperture is increased to F1.9 or less, and it is difficult to maintain performance. Patent Document 2 describes a seven-lens imaging lens in which the first lens is a negative lens and the second lens is a positive lens. As in Patent Document 1, a dark imaging lens of F2.0 or higher is described. However, only a large diameter has not been described. Further, when the diameter is increased, the effective diameter of each lens is increased, and the thickness in the optical axis direction is increased accordingly. However, when the thickness of the negative first lens is increased, the positive second lens is moved to the image side. Therefore, the principal point position of the entire system is also closer to the image side, making it difficult to shorten the optical total length.

中国実用新案公告第202886720号明細書China Utility Model Publication No. 2028886720 Specification 中国実用新案公告第202886713号明細書China Utility Model Notification No. 202886713

本発明は、このような問題点に鑑みてなされたものであり、従来タイプと同程度の小型の撮像レンズとしつつも、大口径化されたうえで、諸収差が良好に補正された、7枚構成の撮像レンズを提供することを目的とする。ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。
L/2Y<1.00 … (7)
ただし、
L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:撮像素子の撮像面対角線長(撮像素子の矩形実効画素領域の対角線長)
ここで、像側焦点とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記Lの値を計算するものとする。
The present invention has been made in view of such a problem, and while making the imaging lens as small as that of the conventional type, the various apertures were corrected satisfactorily after being increased in diameter. An object of the present invention is to provide an imaging lens having a sheet configuration. Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
L / 2Y <1.00 (7)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: Diagonal length of the imaging surface of the imaging device (diagonal length of the rectangular effective pixel area of the imaging device)
Here, the image side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens. When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of the image pickup device package is disposed between the most image side surface of the image pickup lens and the image side focal position, the parallel plate is used. The part is assumed to be the air conversion distance and the value of L is calculated.

値L/2Yについては、より望ましくは、下式の範囲がよい。
L/2Y<0.95 … (7)'
The value L / 2Y is more preferably in the range of the following formula.
L / 2Y <0.95 (7) '

上記目的を達成するため、本発明に係る撮像レンズは、物体側より順に、正の第1レンズと、正の第2レンズと、第3レンズと、第4レンズと、第5レンズと、第6レンズと、第7レンズと、からなり、第7レンズの像側面は非球面形状であり、中心以外の有効径内に極値を有し、以下の条件式を満たす。
15.0<θSp<50.0 … (1)
ただし、
θSp:第2レンズの物体側面の有効径内における最大面角度
なお、有効径とは、撮像面対角に結像する光束がレンズ面を通過する範囲のことをいう。また、極値とは、有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面又は接線が光軸と垂直な平面又は線分となるような非球面上の点のことである。また、面角度は、光軸垂線に平行な場合を0°とし、像側に傾いている場合を正の角度とし、物体側に傾いている場合を負の角度とする。
In order to achieve the above object, an imaging lens according to the present invention includes, in order from the object side, a positive first lens, a positive second lens, a third lens, a fourth lens, a fifth lens, The image side surface of the seventh lens has an aspherical shape, has an extreme value within an effective diameter other than the center, and satisfies the following conditional expression.
15.0 <θSp <50.0 (1)
However,
θSp: Maximum surface angle within the effective diameter of the object side surface of the second lens Note that the effective diameter refers to a range in which a light beam focused on the imaging surface diagonally passes through the lens surface. The extreme value is a point on the aspheric surface where the tangential plane or tangent of the apex of the aspheric surface is a plane or line segment perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius. . The surface angle is 0 ° when parallel to the optical axis normal, is positive when tilted to the image side, and is negative when tilted to the object side.

本発明に係る撮像レンズでは、最も物体側に配置される第1レンズと第2レンズとを正レンズとすることで、撮像レンズ全系の主点位置が物体側に寄るため、光学全長の短縮に有利になる。また、強い正のパワーを2枚のレンズで分担できるため、球面収差やコマ収差の補正を良好にすることができ、高性能化することができる。また、第7レンズの像側面を中心以外の有効径内に極値を持った非球面とすることで、周辺像高の光線が像面へ入射する際の入射角を小さく抑えることが可能になる。そのため、撮像素子を用いた場合のセンサーの受光効率を向上させることができる。   In the imaging lens according to the present invention, the first lens and the second lens arranged closest to the object side are positive lenses, so that the principal point position of the entire imaging lens system is closer to the object side. To be advantageous. Further, since strong positive power can be shared by the two lenses, spherical aberration and coma can be favorably corrected, and high performance can be achieved. In addition, by making the image side surface of the seventh lens an aspherical surface having an extreme value within an effective diameter other than the center, it is possible to suppress the incident angle when a light beam having a peripheral image height is incident on the image surface. Become. Therefore, it is possible to improve the light receiving efficiency of the sensor when the image sensor is used.

条件式(1)は、第2レンズの有効径内における最大面角度を規定している。条件式(1)の下限を上回ることで、第2レンズの物体側面の一部が像側に傾いた面となるが、正のパワーを持った第1レンズで収束された光が第2レンズに入射する際に、大きな入射角にならない。そのため、球面収差の発生を小さくすることができ、高性能化に有利になる。一方、条件式(1)の上限を下回ることで、第2レンズの物体側面に面角度がつきすぎないため、過剰な正のパワーを持つことによる、球面収差やコマ収差の発生を防ぐことができる。   Conditional expression (1) defines the maximum surface angle within the effective diameter of the second lens. By exceeding the lower limit of conditional expression (1), a part of the object side surface of the second lens becomes a surface inclined to the image side, but the light converged by the first lens having positive power is the second lens. When incident on, the incident angle does not become large. Therefore, the occurrence of spherical aberration can be reduced, which is advantageous for high performance. On the other hand, since the surface angle is not excessively applied to the object side surface of the second lens by falling below the upper limit of the conditional expression (1), it is possible to prevent occurrence of spherical aberration and coma aberration due to excessive positive power. it can.

条件式(1)の値については、より望ましくは、下式の範囲がよい。
25.0<θSp<50.0 … (1)'
さらに望ましくは、下式の範囲がよい。
35.0<θSp<50.0 … (1)"
As for the value of conditional expression (1), the range of the following expression is more desirable.
25.0 <θSp <50.0 (1) ′
More preferably, the range of the following formula is good.
35.0 <θSp <50.0 (1) "

本発明の具体的な側面によれば、上記撮像レンズにおいて、第7レンズは像側面が光軸近傍において凹面であり、かつ負レンズである。この場合、最終レンズである第7レンズを負レンズとし、かつ像側面を凹面とすることで、第7レンズから像面を遠ざけることになるため、必要なバックフォーカスを確保することができる。例えばオートフォーカスの撮像装置においては、レンズとセンサーとの距離を変動させる機構が付与されるため、レンズとセンサーとの距離はある程度大きいことが求められ、上記のようにバックフォーカスを確保することが重要になる。   According to a specific aspect of the present invention, in the imaging lens, the seventh lens is a negative lens whose image side surface is concave in the vicinity of the optical axis. In this case, since the seventh lens as the final lens is a negative lens and the image side surface is concave, the image surface is moved away from the seventh lens, so that necessary back focus can be ensured. For example, in an auto-focus imaging device, a mechanism for changing the distance between the lens and the sensor is provided. Therefore, the distance between the lens and the sensor is required to be large to some extent, and the back focus can be ensured as described above. Become important.

本発明の別の側面によれば、上記撮像レンズは、第4レンズよりも物体側に開口絞りを有する。この場合、開口絞りを第4レンズよりも物体側に配置することで、射出瞳位置を像面から遠ざけることができるため、像面への光線の入射角を小さく抑えることができる。   According to another aspect of the present invention, the imaging lens has an aperture stop closer to the object side than the fourth lens. In this case, by arranging the aperture stop closer to the object side than the fourth lens, the exit pupil position can be moved away from the image plane, so that the incident angle of the light beam on the image plane can be kept small.

本発明のさらに別の側面では、第3レンズは像側に凹面を向けた負レンズである。この場合、第3レンズを負レンズとすることで、軸上光束径の太い位置に負レンズを配置することになるため、色収差の補正が良好にでき、高性能化が可能になる。また、第3レンズが像側に凹面を向けることで、第1レンズと第2レンズとで収束されてきた軸上光線束の光線が第3レンズの像側面へ入射する際の入射角が小さくなるため、球面収差の発生が小さくなり、収差補正が良好になる。   In still another aspect of the present invention, the third lens is a negative lens having a concave surface facing the image side. In this case, if the third lens is a negative lens, the negative lens is disposed at a position where the axial light beam diameter is large, so that the chromatic aberration can be corrected well and high performance can be achieved. Further, since the third lens directs the concave surface to the image side, the incident angle when the light beam of the axial ray bundle converged by the first lens and the second lens is incident on the image side surface of the third lens is small. Therefore, the occurrence of spherical aberration is reduced, and aberration correction is improved.

本発明のさらに別の側面では、第1レンズと第2レンズとは、物体側に凸面を向けている。この場合、正のパワーを持った第1レンズと第2レンズとが物体側に凸面を向けていることで、主点位置が物体側に寄るため、撮像レンズ全系の主点位置も物体側に寄せることが容易になり、光学全長の短縮に有利になる。   In still another aspect of the present invention, the first lens and the second lens have convex surfaces facing the object side. In this case, since the first lens and the second lens having positive power have their convex surfaces facing the object side, the principal point position is closer to the object side, so the principal point position of the entire imaging lens system is also the object side. This is advantageous in shortening the total optical length.

本発明のさらに別の側面では、第1レンズは物体側に所定の開口を持つ第1絞り部材を有し、第3レンズは物体側及び像側の少なくとも一方に所定の開口を持つ第2絞り部材を有し、以下の条件式を満たす。
0.70<Φs3/Φs1<1.00 … (2)
ただし、
Φs1:第1絞り部材の開口径
Φs3:第2絞り部材の開口径
なお、第3レンズの物体側及び像側のいずれにも第2絞り部材が配置される場合、第3レンズの物体側及び像側のいずれの値Φs3を用いても条件式(2)を満たす。また、第1絞り部材及び第2絞り部材のいずれか一方が開口絞りであってもよい。
In still another aspect of the invention, the first lens has a first aperture member having a predetermined aperture on the object side, and the third lens has a second aperture having a predetermined aperture on at least one of the object side and the image side. It has members and satisfies the following conditional expression.
0.70 <Φs3 / Φs1 <1.00 (2)
However,
Φs1: Aperture diameter of the first diaphragm member Φs3: Aperture diameter of the second diaphragm member When the second diaphragm member is disposed on both the object side and the image side of the third lens, Condition (2) is satisfied regardless of which value Φs3 on the image side is used. Further, one of the first diaphragm member and the second diaphragm member may be an aperture diaphragm.

条件式(2)は、第1レンズの物体側に配置された第1絞り部材の開口径と第3レンズの物体側及び像側の少なくとも一方に配置された第2絞り部材の開口径の比を規定している。大口径レンズにおいては、コマ収差の発生が顕著になり、補正することが難しい。コマ収差を改善させるためには、絞り部材を配置し周辺像高に結像する光束の一部を遮断することが考えられるが、条件式(2)の上限を下回ることで、負レンズの第3レンズ近傍に配置された第2絞り部材の開口径を、最も物体側に配置される第1絞り部材の径に対して比較的小さくすることになるため、周辺像高の光束を適切に遮断することができ、コマ収差を改善することができる。一方、条件式(2)の下限を上回ることで、第3レンズ近傍の第2絞り部材の開口径が小さくなりすぎないため、光を遮断しすぎることによる、周辺像高の光量の不足を防ぐことができる。   Conditional expression (2) is a ratio of the aperture diameter of the first diaphragm member disposed on the object side of the first lens and the aperture diameter of the second diaphragm member disposed on at least one of the object side and the image side of the third lens. Is stipulated. In a large-aperture lens, coma aberration is prominent and difficult to correct. In order to improve the coma aberration, it is conceivable to dispose a diaphragm member and block a part of the light beam formed at the peripheral image height. However, by lowering the upper limit of the conditional expression (2), Since the aperture diameter of the second diaphragm member disposed in the vicinity of the three lenses is made relatively smaller than the diameter of the first diaphragm member disposed closest to the object side, the light flux at the peripheral image height is appropriately blocked. The coma aberration can be improved. On the other hand, exceeding the lower limit of conditional expression (2) prevents the aperture diameter of the second diaphragm member in the vicinity of the third lens from becoming too small. be able to.

条件式(2)の値については、より望ましくは、下式の範囲がよい。
0.75<Φs3/Φs1<0.95 … (2)'
さらに望ましくは、下式の範囲がよい。
0.80<Φs3/Φs1<0.90 … (2)"
As for the value of conditional expression (2), the range of the following expression is more desirable.
0.75 <Φs3 / Φs1 <0.95 (2) ′
More preferably, the range of the following formula is good.
0.80 <Φs3 / Φs1 <0.90 (2) "

本発明のさらに別の側面では、上記撮像レンズは、以下の条件式を満たす。
1.0<ΦL1/ΦL3<1.4 … (3)
ただし、
ΦL1:第1レンズの物体側面と像側面のうち、大きい方の有効径
ΦL3:第3レンズの物体側面と像側面のうち、大きい方の有効径
In still another aspect of the present invention, the imaging lens satisfies the following conditional expression.
1.0 <ΦL1 / ΦL3 <1.4 (3)
However,
ΦL1: The larger effective diameter of the object side surface and the image side surface of the first lens ΦL3: The larger effective diameter of the object side surface and the image side surface of the third lens

条件式(3)は、第1レンズと第3レンズの有効径の比を規定している。第3レンズは軸上光束に対しては軸上色収差や球面収差の補正、周辺光束に対してはコマ収差の補正の効果がある。低背化する際に強い正のパワーを持った第1レンズ又は第2レンズで発生する上記諸収差を補正するために第3レンズには強いパワーが必要になる。しかしながら、第3レンズの有効径が大きくなってしまうと、軸上光束と周辺光束とが第3レンズの異なる位置を通過することになるため、軸上光束と周辺光束との両方に対して強いパワーを発揮することができない。条件式(3)の下限を上回ることで、第3レンズの有効径が小さくなり、軸上光束と周辺光束とが第3レンズ内の近い位置を通過するようになる。結果として、両方に対して強いパワーを発揮できるようになるため、球面収差や軸上色収差とコマ収差との両方を補正することが可能になる。また、条件式(3)の上限を下回ることで、第3レンズの有効径が小さくなりすぎることによる周辺像高の光束のケラレが発生し、周辺像高の光量が不足することを防ぐことができる。また、第1レンズ又は第2レンズの有効径が大きくなりすぎ、第1レンズ又は第2レンズが光軸方向に厚くなってしまうことによる光学全長の大型化を避けることができる。   Conditional expression (3) defines the ratio of the effective diameters of the first lens and the third lens. The third lens has an effect of correcting axial chromatic aberration and spherical aberration for the axial light beam and correcting coma aberration for the peripheral light beam. In order to correct the various aberrations generated in the first lens or the second lens having a strong positive power when the height is lowered, the third lens needs a strong power. However, if the effective diameter of the third lens is increased, the axial light beam and the peripheral light beam pass through different positions of the third lens, and thus are strong against both the axial light beam and the peripheral light beam. The power cannot be demonstrated. By exceeding the lower limit of conditional expression (3), the effective diameter of the third lens is reduced, and the axial light beam and the peripheral light beam pass through close positions in the third lens. As a result, since strong power can be exhibited for both, it is possible to correct both spherical aberration, axial chromatic aberration and coma. Further, by falling below the upper limit of the conditional expression (3), it is possible to prevent the vignetting of the peripheral image height due to the effective diameter of the third lens becoming too small, and the shortage of the light amount of the peripheral image height. it can. In addition, it is possible to avoid an increase in the total optical length due to the effective diameter of the first lens or the second lens becoming too large and the first lens or the second lens becoming thick in the optical axis direction.

条件式(3)の値については、より望ましくは、下式の範囲がよい。
1.05<ΦL1/ΦL3<1.35 … (3)'
さらに望ましくは、下式の範囲がよい。
1.1<ΦL1/ΦL3<1.3 … (3)"
As for the value of conditional expression (3), the range of the following expression is more desirable.
1.05 <ΦL1 / ΦL3 <1.35 (3) ′
More preferably, the range of the following formula is good.
1.1 <ΦL1 / ΦL3 <1.3 (3) "

本発明のさらに別の側面では、上記撮像レンズは、以下の条件式を満たす。
0.2<f1/f2<1.4 … (4)
ただし、
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
In still another aspect of the present invention, the imaging lens satisfies the following conditional expression.
0.2 <f1 / f2 <1.4 (4)
However,
f1: Focal length of the first lens f2: Focal length of the second lens

条件式(4)は、第1レンズと第2レンズの焦点距離の比を規定している。条件式(4)の範囲を満たすことで、正レンズである第1レンズと第2レンズのパワーのバランスが適切になる。そのため、レンズのパワーが偏り、どちらかのレンズが極端に強いパワーを持って発生する収差が大きくなることを防ぐことができる。   Conditional expression (4) defines the ratio of the focal lengths of the first lens and the second lens. By satisfying the range of conditional expression (4), the power balance between the first lens and the second lens, which are positive lenses, becomes appropriate. For this reason, it is possible to prevent the lens power from being biased and the aberration generated by either lens having an extremely strong power from increasing.

条件式(4)の値については、より望ましくは、下式の範囲がよい。
0.35<f1/f2<1.35 … (4)'
さらに望ましくは、下式の範囲がよい。
0.4<f1/f2<1.3 … (4)"
As for the value of conditional expression (4), the range of the following expression is more desirable.
0.35 <f1 / f2 <1.35 (4) ′
More preferably, the range of the following formula is good.
0.4 <f1 / f2 <1.3 (4) "

本発明のさらに別の側面では、上記撮像レンズは、以下の条件式を満たす。
−1.0<f12/f3<−0.4 … (5)
ただし、
f12:第1レンズ及び第2レンズの合成焦点距離
f3:第3レンズの焦点距離
In still another aspect of the present invention, the imaging lens satisfies the following conditional expression.
−1.0 <f12 / f3 <−0.4 (5)
However,
f12: Composite focal length of the first lens and the second lens f3: Focal length of the third lens

条件式(5)は、第1レンズ及び第2レンズの合成焦点距離と、第3レンズの焦点距離の比を規定している。条件式(5)の下限を上回ることで、正の第1レンズと正の第2レンズとに対し、負の第3レンズのパワーが強くなりすぎないため、球面収差やコマ収差の補正を適切にすることができる。また、条件式(5)の上限を下回ることで、負の第3レンズが第1レンズと第2レンズとに対し、ある程度強いパワーを持つため、色収差の補正が良好になり、高性能化することができる。   Conditional expression (5) defines the ratio of the combined focal length of the first lens and the second lens to the focal length of the third lens. By exceeding the lower limit of conditional expression (5), the power of the negative third lens does not become excessively strong with respect to the positive first lens and the positive second lens. Can be. In addition, by falling below the upper limit of the conditional expression (5), the negative third lens has a somewhat strong power with respect to the first lens and the second lens, so that the correction of chromatic aberration is improved and the performance is improved. be able to.

条件式(5)の値については、より望ましくは、下式の範囲がよい。
−0.9<f12/f3<−0.45 … (5)'
さらに望ましくは、下式の範囲がよい。
−0.8<f12/f3<−0.5 … (5)"
The value of conditional expression (5) is more preferably in the range of the following expression.
−0.9 <f12 / f3 <−0.45 (5) ′
More preferably, the range of the following formula is good.
−0.8 <f12 / f3 <−0.5 (5) ”

本発明のさらに別の側面では、第4レンズは正レンズであり、以下の条件式を満たす。
1.5<f4/f<5.0 … (6)
ただし、
f4:第4レンズの焦点距離
f:撮像レンズ全系の焦点距離
In still another aspect of the invention, the fourth lens is a positive lens and satisfies the following conditional expression.
1.5 <f4 / f <5.0 (6)
However,
f4: focal length of the fourth lens f: focal length of the entire imaging lens system

条件式(6)は、第4レンズの焦点距離と撮像レンズ全系の焦点距離の比を規定している。第4レンズは正のパワーを持つことで、第1レンズや第2レンズとの間で正のパワーを分担し、収差の発生を抑えることができるが、パワーが強くなりすぎると撮像レンズ全系の主点位置が像側に寄ってしまい、光学全長の短縮に不利になる。また、第4レンズのパワーが弱すぎると撮像レンズ全系の焦点距離を短くすることができず、望遠化してしまう。条件式(6)の下限を上回ることで、第4レンズの正のパワーが強くなりすぎることがないため、撮像レンズ全系の主点位置を物体側に寄せておくことができ、光学全長の短縮に有利になる。また、条件式(6)の上限を下回ることで、第4レンズがある程度強い正のパワーを持つことになるため、撮像レンズ全系の焦点距離を短くすることができ、望遠化することを防ぐことができる。   Conditional expression (6) defines the ratio between the focal length of the fourth lens and the focal length of the entire imaging lens system. Since the fourth lens has a positive power, it can share the positive power with the first lens and the second lens and suppress the occurrence of aberration, but if the power becomes too strong, the entire imaging lens system This is disadvantageous for shortening the optical total length. On the other hand, if the power of the fourth lens is too weak, the focal length of the entire imaging lens system cannot be shortened, resulting in telephoto. By exceeding the lower limit of conditional expression (6), the positive power of the fourth lens does not become too strong, so that the principal point position of the entire imaging lens system can be moved closer to the object side, and the optical total length It is advantageous for shortening. In addition, by falling below the upper limit of conditional expression (6), the fourth lens has a strong positive power to some extent, so that the focal length of the entire imaging lens system can be shortened, and telephotometry is prevented. be able to.

条件式(6)の値については、より望ましくは、下式の範囲がよい。
1.6<f4/f<4.0 … (6)'
さらに望ましくは、下式の範囲がよい。
1.7<f4/f<3.5 … (6)"
As for the value of conditional expression (6), the range of the following expression is more desirable.
1.6 <f4 / f <4.0 (6) ′
More preferably, the range of the following formula is good.
1.7 <f4 / f <3.5 (6) "

本発明のさらに別の側面では、実質的にパワーを持たない光学素子をさらに有する。   In still another aspect of the present invention, the optical device further includes an optical element having substantially no power.

本発明に係る撮像装置は、上述の撮像レンズと、撮像素子とを備える。本発明の撮像レンズを用いることで、小型で明るく高性能の撮像装置を得ることができる。   An imaging apparatus according to the present invention includes the imaging lens described above and an imaging element. By using the imaging lens of the present invention, a small, bright and high-performance imaging device can be obtained.

本発明に係る携帯端末は、上述の撮像装置を備える。本発明の撮像装置を用いることで、小型で高性能の携帯端末を得ることができる。   The portable terminal which concerns on this invention is provided with the above-mentioned imaging device. By using the imaging device of the present invention, a small and high performance portable terminal can be obtained.

本発明の一実施形態の撮像レンズを備える撮像装置を説明する図である。It is a figure explaining an imaging device provided with the imaging lens of one embodiment of the present invention. レンズや絞り部材等の状態を説明する部分拡大断面図である。It is a partial expanded sectional view explaining states, such as a lens and a diaphragm member. 図1の撮像装置を備える携帯端末を説明するブロック図である。It is a block diagram explaining a portable terminal provided with the imaging device of FIG. (A)及び(B)は、それぞれ携帯端末の表面側及び裏面側の斜視図である。(A) And (B) is a perspective view of the surface side and back surface side of a portable terminal, respectively. 実施例1の撮像レンズの断面図である。2 is a cross-sectional view of an imaging lens of Example 1. FIG. (A)〜(E)は、実施例1の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 1. FIG. 実施例2の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 2. FIG. (A)〜(E)は、実施例2の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 3. FIG. (A)〜(E)は、実施例3の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 3. FIGS. 実施例4の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 4. FIG. (A)〜(E)は、実施例4の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 4. FIGS. 実施例5の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 5. FIG. (A)〜(E)は、実施例5の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 5. FIGS. 実施例6の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 6. FIG. (A)〜(E)は、実施例6の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 6. FIG. 実施例7の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 7. FIG. (A)〜(E)は、実施例7の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 7. FIGS. 実施例8の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 8. FIG. (A)〜(E)は、実施例8の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 8. FIGS.

以下、図1等を参照して、本発明の一実施形態である撮像レンズ等について説明する。なお、図1で例示した撮像レンズ10は、後述する実施例1の撮像レンズ11と同一の構成となっている。   Hereinafter, with reference to FIG. 1 etc., the imaging lens etc. which are one Embodiment of this invention are demonstrated. The imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.

図1は、本発明の一実施形態である撮像レンズを備えるカメラモジュールを説明する断面図である。   FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.

カメラモジュール50は、被写体像を形成する撮像レンズ10と、撮像レンズ10によって形成された被写体像を検出する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、撮像レンズ10等を保持するとともに物体側からの光束を入射させる開口部OPを有する鏡筒部54とを備える。撮像レンズ10は、被写体像を撮像素子51の像面又は撮像面(被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述する撮像装置に組み込まれて使用されるが、単独でも撮像装置と呼ぶものとする。   The camera module 50 includes an imaging lens 10 that forms a subject image, an imaging device 51 that detects a subject image formed by the imaging lens 10, and a wiring board 52 that holds the imaging device 51 from behind and has wiring and the like. And a lens barrel portion 54 having an opening OP for holding the imaging lens 10 and the like and allowing a light beam from the object side to enter. The imaging lens 10 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element 51. The camera module 50 is used by being incorporated in an imaging device to be described later.

撮像レンズ10は、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6と、第7レンズL7とを備える。これらの第1〜第7レンズL1〜L7の間、第1レンズL1の物体側等の適所には、開口絞りASや第1及び第2絞り部材FS1,FS2が配置されている。なお、第1及び第2絞り部材FS1,FS2の位置に配置されるものは、開口絞りASとなる場合もある。   The imaging lens 10 includes, in order from the object side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a seventh lens L7. With. Between these first to seventh lenses L1 to L7, an aperture stop AS and first and second stop members FS1 and FS2 are disposed at appropriate positions such as the object side of the first lens L1. In addition, what is arranged at the position of the first and second diaphragm members FS1, FS2 may be an aperture diaphragm AS.

撮像レンズ10は、小型であり、その尺度として、以下の式(7)を満たすレベルの小型化を目指している。
L/2Y<1.00 … (7)
ここで、Lは、撮像レンズ10全系の最も物体側のレンズ面(物体側面S11)から像側焦点までの光軸AX上の距離であり、2Yは、撮像素子51の撮像面対角線長(撮像素子51の矩形実効画素領域の対角線長)である。像側焦点とは、撮像レンズ10に光軸AXと平行な平行光線が入射した場合の像点をいう。この範囲を満たすことで、カメラモジュール50全体の小型化が可能となる。
The imaging lens 10 is small in size, and as a scale, it aims at miniaturization at a level satisfying the following expression (7).
L / 2Y <1.00 (7)
Here, L is the distance on the optical axis AX from the most object side lens surface (object side surface S11) of the entire imaging lens 10 system to the image side focal point, and 2Y is the diagonal length of the imaging surface of the image sensor 51 ( (Diagonal length of the rectangular effective pixel area of the image sensor 51). The image-side focal point refers to an image point when parallel light rays parallel to the optical axis AX are incident on the imaging lens 10. By satisfying this range, the entire camera module 50 can be reduced in size.

なお、撮像レンズ10の最も像側の面(像側面S72)と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板Fが配置される場合には、平行平板F部分は空気換算距離としたうえで上記Lの値を計算するものとする。また、値L/2Yについては、より望ましくは下式の範囲とする。
L/2Y<0.95 … (7)'
A parallel flat plate F such as an optical low-pass filter, an infrared cut filter, or a seal glass of an image pickup device package is disposed between the most image side surface (image side surface S72) of the image pickup lens 10 and the image side focal position. In this case, the value of L is calculated for the parallel flat plate F portion as an air conversion distance. The value L / 2Y is more preferably in the range of the following formula.
L / 2Y <0.95 (7) '

撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部51aの光電変換面は、像面又は撮像面(被投影面)Iとなっている。   The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof. The photoelectric conversion surface of the photoelectric conversion unit 51a as the light receiving unit is an image surface or an imaging surface (projected surface) I.

配線基板52は、撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や駆動機構55aを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。   The wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54). The wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.

撮像素子51の撮像レンズ10側には、不図示のホルダー部材によって、平行平板Fが撮像素子51等を覆うように配置・固定されている。   On the imaging lens 10 side of the imaging element 51, a parallel plate F is disposed and fixed by a holder member (not shown) so as to cover the imaging element 51 and the like.

鏡筒部54は、撮像レンズ10を収納し保持している。鏡筒部54は、撮像レンズ10を構成するレンズL1〜L7のうちいずれか1つ以上のレンズを光軸AXに沿って移動させることにより、撮像レンズ10の合焦の動作を可能にするため、例えば駆動機構55aを有している。駆動機構55aは、例えばボイスコイルモーターとガイドとを備え、特定レンズ又は全レンズを光軸AXに沿って往復移動させる。   The lens barrel 54 houses and holds the imaging lens 10. The lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L7 constituting the imaging lens 10 along the optical axis AX. For example, it has a drive mechanism 55a. The drive mechanism 55a includes, for example, a voice coil motor and a guide, and reciprocates the specific lens or all the lenses along the optical axis AX.

図2等を参照して、鏡筒部54に保持される撮像レンズ10の状態を説明する。撮像レンズ10を構成する第1〜第7レンズL1〜L7は、周囲外側に支持用の比較的肉厚のフランジ部39をそれぞれ有しており、フランジ部39を介して隣接するレンズと積層され、鏡筒部分54a内に保持されている。これらのレンズL1〜L7の間には、例えばフランジ部39に挟まれて1つの開口絞りASと、5つの遮光絞りFSとが配置され、迷光の発生を防止している。鏡筒部分54aの物体側には、例えば第1レンズL1の有効径の周囲を覆うような遮光絞りFSが形成されている。また、第7レンズL7の像側にも遮光絞りFSが配置されている。   With reference to FIG. 2 etc., the state of the imaging lens 10 hold | maintained at the lens-barrel part 54 is demonstrated. The first to seventh lenses L <b> 1 to L <b> 7 constituting the imaging lens 10 each have a relatively thick flange portion 39 for support on the outer periphery, and are laminated with adjacent lenses via the flange portion 39. Is held in the lens barrel portion 54a. Between these lenses L <b> 1 to L <b> 7, for example, one aperture stop AS and five light-shielding stops FS sandwiched between the flange portions 39 are arranged to prevent the generation of stray light. On the object side of the lens barrel portion 54a, for example, a light-shielding stop FS that covers the periphery of the effective diameter of the first lens L1 is formed. A light-shielding stop FS is also disposed on the image side of the seventh lens L7.

次に、図3、図4(A)及び4(B)を参照して、図1に例示されるカメラモジュール50を搭載した携帯電話機その他の携帯端末300の一例について説明する。   Next, an example of a cellular phone or other portable terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 3, 4A, and 4B.

携帯端末300は、スマートフォン型の携帯通信端末であり、カメラモジュール50を有する撮像装置100と、各部を統括的に制御するとともに各処理に応じたプログラムを実行する制御部(CPU)310と、通信に関連するデータ、撮像した映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである表示操作部320と、電源スイッチ等を含む操作部330と、アンテナ341を介して外部サーバー等との間の各種情報通信を実現するための無線通信部340と、携帯端末300のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)360と、制御部310によって実行される各種処理プログラムやデータ、処理データ、若しくは撮像装置100による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)370とを備えている。   The mobile terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging device 100 having a camera module 50, a control unit (CPU) 310 that performs overall control of each unit and executes a program corresponding to each process, and communication. Various operations between a display operation unit 320 that is a touch panel that displays data related to the image, captured video, and the like and receives a user operation, an operation unit 330 including a power switch, and an external server via the antenna 341 Executed by a wireless communication unit 340 for realizing information communication, a storage unit (ROM) 360 storing necessary data such as a system program, various processing programs, and a terminal ID of the mobile terminal 300, and the control unit 310 Various processing programs and data, processing data, or imaging data by the imaging device 100 Temporary storage unit used as a work area for temporarily storing data or the like and a (RAM) 370.

撮像装置100は、既に説明したカメラモジュール50のほかに、制御部103、光学系駆動部105、撮像素子駆動部107、画像メモリー108等を備える。   In addition to the camera module 50 described above, the imaging apparatus 100 includes a control unit 103, an optical system driving unit 105, an imaging element driving unit 107, an image memory 108, and the like.

制御部103は、撮像装置100の各部を制御する。制御部103は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、ROMから読み出されてRAMに展開された各種プログラムとCPUとの協働によって各種処理を実行する。なお、制御部103は、撮像装置100外の制御部310と通信可能に接続されており、制御信号や画像データの授受が可能になっている。   The control unit 103 controls each unit of the imaging device 100. The control unit 103 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs are read out from the ROM and expanded in the RAM, in cooperation with the CPU. Execute the process. The control unit 103 is communicably connected to the control unit 310 outside the imaging apparatus 100, and can exchange control signals and image data.

光学系駆動部105は、制御部103の制御により合焦、露出等を行う際に、撮像レンズ10の駆動機構55aを動作させて撮像レンズ10の状態を制御する。光学系駆動部105は、駆動機構55aを動作させて撮像レンズ10中の特定レンズ又は全レンズを光軸AXに沿って適宜移動させることにより、撮像レンズ10に合焦動作等を行わせる。   The optical system driving unit 105 controls the state of the imaging lens 10 by operating the driving mechanism 55 a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the control unit 103. The optical system driving unit 105 operates the driving mechanism 55a to appropriately move the specific lens or all the lenses in the imaging lens 10 along the optical axis AX, thereby causing the imaging lens 10 to perform a focusing operation or the like.

撮像素子駆動部107は、制御部103の制御により露出等を行う際に、撮像素子51の動作を制御する。具体的には、撮像素子駆動部107は、タイミング信号に基づいて撮像素子51を走査駆動し、これから画像信号を取り出す。また、撮像素子駆動部107は、撮像素子51によって検出されデジタル化された画像信号に対して、歪み補正、色補正、圧縮等の各種画像処理を施すことができる。   The image sensor drive unit 107 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control unit 103. Specifically, the image sensor driving unit 107 scans and drives the image sensor 51 based on the timing signal, and extracts an image signal therefrom. The image sensor driving unit 107 can perform various image processing such as distortion correction, color correction, and compression on the image signal detected and digitized by the image sensor 51.

画像メモリー108は、デジタル化された画像信号を撮像素子駆動部107から受け取って、読み出し及び書き込み可能な画像データとして記憶する。   The image memory 108 receives the digitized image signal from the image sensor driving unit 107 and stores it as readable and writable image data.

ここで、上記撮像装置100を含む携帯端末300の撮影動作を説明する。携帯端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、撮像レンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1参照)に結像される。撮像素子51は、撮像素子駆動部107によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分検出する。   Here, the photographing operation of the mobile terminal 300 including the imaging device 100 will be described. When the camera mode in which the mobile terminal 300 is operated as a camera is set, subject monitoring (through image display) and image shooting execution are performed. In monitoring, an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51. The image sensor 51 is scanned and driven by the image sensor driving unit 107 and detects an analog signal corresponding to one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.

このアナログ信号は、撮像素子51に付属する回路においてRGBの各原色成分毎に適宜ゲイン調整された後に、デジタルデータに変換される。そのデジタルデータに対しては、撮像素子駆動部107にて画素補間処理及びY補正処理を含むカラープロセス処理が行われて、デジタル値の輝度信号Y及び色差信号Cb,Cr(画像データ)が生成されて画像メモリー108に格納される。格納されたデジタルデータは、画像メモリー108から定期的に読み出されてビデオ信号の生成に利用され、制御部103及び制御部310を介して、表示操作部320に出力される。   This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51. The digital data is subjected to color process processing including pixel interpolation processing and Y correction processing in the image sensor driving unit 107 to generate a digital luminance signal Y and color difference signals Cb, Cr (image data). And stored in the image memory 108. The stored digital data is periodically read out from the image memory 108 and used to generate a video signal, and is output to the display operation unit 320 via the control unit 103 and the control unit 310.

この表示操作部320は、モニタリングにおいてはファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部320を介して行う操作入力に基づいて、光学系駆動部105の駆動により撮像レンズ10の合焦、露出等が設定される。   The display operation unit 320 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 105 based on an operation input performed by the user via the display operation unit 320 at any time.

このようなモニタリング状態において、ユーザーが表示操作部320を適宜操作することにより、静止画像データが撮影される。表示操作部320の操作内容に応じて、画像メモリー108に格納された1コマの画像データが読み出されて、撮像素子駆動部107により圧縮等の処理が施される。その処理された画像データは、制御部103及び制御部310を介して、例えば一時記憶部370等に記録される。   In such a monitoring state, when the user appropriately operates the display operation unit 320, still image data is captured. One frame of image data stored in the image memory 108 is read in accordance with the operation content of the display operation unit 320, and processing such as compression is performed by the image sensor driving unit 107. The processed image data is recorded in the temporary storage unit 370, for example, via the control unit 103 and the control unit 310.

なお、上述の撮像装置100は、本発明に好適な撮像装置の一例であり、本発明は、これに限定されるものではない。   The above-described imaging apparatus 100 is an example of an imaging apparatus suitable for the present invention, and the present invention is not limited to this.

すなわち、カメラモジュール50又は撮像レンズ10を搭載した撮像装置は、スマートフォン型の携帯端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるであってもよい。   That is, the imaging device equipped with the camera module 50 or the imaging lens 10 is not limited to being built in the smartphone-type mobile terminal 300, but may be built into a mobile phone, a PHS (Personal Handyphone System), or the like. Of course, it may be incorporated in a PDA (Personal Digital Assistant), a tablet personal computer, a mobile personal computer, a digital still camera, a video camera, or the like.

以下、図1等に戻って、本発明の一実施形態である撮像レンズ10について詳細に説明する。図1に示す撮像レンズ10は、撮像素子51の撮像面(被投影面)Iに被写体像を結像させるものであって、物体側から順に、物体側に凸面を向けた正の第1レンズL1と、物体側に凸面を向けた正の第2レンズL2と、像側に凹面を向けた負の第3レンズL3と、正の第4レンズL4と、第5レンズL5と、第6レンズL6と、光軸AX近傍で像側に凹面を向けた負の第7レンズL7と、を備える。上記撮像レンズ10において、最も像側の第7レンズL7の物体側面S71及び像側面S72は、非球面であり、特に像側面S72は、中心以外の有効径内の位置Pに極値を持つ。撮像レンズ10は、第4レンズL4より物体側に開口絞りASを有する。図示の例では、開口絞りASが第2及び第3レンズL2,L3の間に配置されている。この撮像レンズ10において、第1レンズL1の物体側に第1絞り部材FS1と、第3レンズL3の物体側及び像側の少なくとも一方に第2絞り部材FS2とが配置されている。ここで、第1絞り部材FS1は、所定の第1開口を持った遮光絞りFSとして機能し、第2絞り部材FS2は、所定の第2開口を持った遮光絞りFSとして機能している。また、第1絞り部材FS1及び第2絞り部材FS2のいずれか一方が開口絞りASであってもよい。図示の例では、第3レンズL3の物体側に配置された開口絞りASは、第2絞り部材FS2として、条件式(2)を満たす。また、図2中の値Φs3/2は、便宜上、第3レンズL3の像側の第2絞り部材FS2の開口径の半分を示している。   Hereinafter, returning to FIG. 1 and the like, the imaging lens 10 according to an embodiment of the present invention will be described in detail. An imaging lens 10 shown in FIG. 1 forms a subject image on an imaging surface (projected surface) I of an imaging device 51, and is a positive first lens with a convex surface facing the object side in order from the object side. L1, a positive second lens L2 having a convex surface facing the object side, a negative third lens L3 having a concave surface facing the image side, a positive fourth lens L4, a fifth lens L5, and a sixth lens L6 and a negative seventh lens L7 having a concave surface facing the image side in the vicinity of the optical axis AX. In the imaging lens 10, the object side surface S71 and the image side surface S72 of the seventh lens L7 closest to the image side are aspheric surfaces, and in particular, the image side surface S72 has an extreme value at a position P within the effective diameter other than the center. The imaging lens 10 has an aperture stop AS on the object side from the fourth lens L4. In the illustrated example, the aperture stop AS is disposed between the second and third lenses L2 and L3. In the imaging lens 10, a first diaphragm member FS1 is disposed on the object side of the first lens L1, and a second diaphragm member FS2 is disposed on at least one of the object side and the image side of the third lens L3. Here, the first diaphragm member FS1 functions as a light-shielding diaphragm FS having a predetermined first opening, and the second diaphragm member FS2 functions as a light-shielding diaphragm FS having a predetermined second opening. Further, one of the first diaphragm member FS1 and the second diaphragm member FS2 may be the aperture diaphragm AS. In the illustrated example, the aperture stop AS arranged on the object side of the third lens L3 satisfies the conditional expression (2) as the second stop member FS2. Further, the value Φs3 / 2 in FIG. 2 indicates half of the aperture diameter of the second diaphragm member FS2 on the image side of the third lens L3 for convenience.

上記撮像レンズ10によれば、最も物体側に配置される第1レンズL1と第2レンズL2とを正レンズとすることで、撮像レンズ10全系の主点位置が物体側に寄るため、光学全長の短縮に有利になる。また、同時に強い正のパワーを2枚のレンズで分担できるため、球面収差やコマ収差の補正を良好にすることができ、高性能化することができる。また、第7レンズL7の像側面S72を中心以外の有効径内の位置Pに極値を持った非球面とすることで、周辺像高の光線が像面又は撮像面Iへ入射する際の入射角を小さく抑えることが可能になる。そのため、撮像素子51の受光効率を向上させることができる。   According to the imaging lens 10, the first lens L1 and the second lens L2 arranged closest to the object side are positive lenses, so that the principal point position of the entire imaging lens 10 system is closer to the object side. This is advantageous for shortening the overall length. At the same time, since strong positive power can be shared by the two lenses, spherical aberration and coma can be corrected well, and high performance can be achieved. Further, by making the image side surface S72 of the seventh lens L7 an aspherical surface having an extreme value at a position P within the effective diameter other than the center, a light beam having a peripheral image height is incident on the image plane or the imaging plane I. The incident angle can be kept small. Therefore, the light receiving efficiency of the image sensor 51 can be improved.

上記撮像レンズ10においては、値θSpを第2レンズL2の物体側面S21の有効径内における最大面角度として、以下の条件式(1)
15.0<θSp<50.0 … (1)
を満足するものとなっている。
In the imaging lens 10, the value θSp is defined as the maximum surface angle within the effective diameter of the object side surface S21 of the second lens L2, and the following conditional expression (1)
15.0 <θSp <50.0 (1)
Is satisfied.

なお、条件式(1)の値θSpについては、下記の条件式(1)'及び(1)"の範囲内とすることがより望ましい。
25.0<θSp<50.0 … (1)'
35.0<θSp<50.0 … (1)"
The value θSp of the conditional expression (1) is more preferably within the range of the following conditional expressions (1) ′ and (1) ″.
25.0 <θSp <50.0 (1) ′
35.0 <θSp <50.0 (1) "

上記撮像レンズ10によれば、値θSpが条件式(1)の下限を上回ることで、第2レンズL2の物体側面S21の一部が像側に傾いた面となるが、正のパワーを持った第1レンズL1で収束された光が第2レンズL2に入射する際に、大きな入射角にならない。そのため、球面収差の発生を小さくすることができ、高性能化に有利になる。一方、値θSpが条件式(1)の上限を下回ることで、第2レンズL2の物体側面S21に面角度がつきすぎないため、過剰な正のパワーを持つことによる、球面収差やコマ収差の発生を防ぐことができる。   According to the imaging lens 10, when the value θSp exceeds the lower limit of the conditional expression (1), a part of the object side surface S21 of the second lens L2 becomes a surface inclined toward the image side, but has a positive power. When the light converged by the first lens L1 enters the second lens L2, the incident angle does not become large. Therefore, the occurrence of spherical aberration can be reduced, which is advantageous for high performance. On the other hand, since the value θSp is below the upper limit of the conditional expression (1), the object side surface S21 of the second lens L2 does not have an excessive surface angle. Occurrence can be prevented.

本実施形態の撮像レンズ10は、上記条件式(1)に加えて、既に説明した条件式(2)
0.70<Φs3/Φs1<1.00 … (2)
を満足する。ただし、値Φs1は、第1絞り部材FS1の開口径であり、値Φs3は、第2絞り部材FS2の開口径である。第3レンズL3の物体側及び像側のいずれにも第2絞り部材FS2が配置される場合、第3レンズL3の物体側及び像側のいずれの値Φs3を用いても条件式(2)を満たす。
なお、条件式(2)の値Φs3/Φs1については、下記の条件式(2)'及び(2)"の範囲内とすることがより望ましい。
0.75<Φs3/Φs1<0.95 … (2)'
0.80<Φs3/Φs1<0.90 … (2)"
In addition to the conditional expression (1), the imaging lens 10 of the present embodiment has the conditional expression (2) already described.
0.70 <Φs3 / Φs1 <1.00 (2)
Satisfied. However, the value Φs1 is the opening diameter of the first diaphragm member FS1, and the value Φs3 is the opening diameter of the second diaphragm member FS2. When the second diaphragm member FS2 is disposed on both the object side and the image side of the third lens L3, the conditional expression (2) can be obtained by using any value Φs3 on the object side and the image side of the third lens L3. Fulfill.
The value Φs3 / Φs1 of the conditional expression (2) is more preferably within the range of the following conditional expressions (2) ′ and (2) ″.
0.75 <Φs3 / Φs1 <0.95 (2) ′
0.80 <Φs3 / Φs1 <0.90 (2) "

本実施形態の撮像レンズ10は、上記条件式(1)に加えて、既に説明した条件式(3)
1.0<ΦL1/ΦL3<1.4 … (3)
を満足する。ただし、値ΦL1は、第1レンズL1の物体側面S11と像側面S12のうち、大きい方の有効径であり、値ΦL3は、第3レンズL3の物体側面S31と像側面S32のうち、大きい方の有効径である。
なお、条件式(3)の値ΦL1/ΦL3については、下記の条件式(3)'及び(3)"の範囲内とすることがより望ましい。
1.05<ΦL1/ΦL3<1.35 … (3)'
1.1<ΦL1/ΦL3<1.3 … (3)"
In addition to the conditional expression (1), the imaging lens 10 of the present embodiment has the conditional expression (3) already described.
1.0 <ΦL1 / ΦL3 <1.4 (3)
Satisfied. However, the value ΦL1 is the larger effective diameter of the object side surface S11 and the image side surface S12 of the first lens L1, and the value ΦL3 is the larger of the object side surface S31 and the image side surface S32 of the third lens L3. Is the effective diameter.
The value ΦL1 / ΦL3 of the conditional expression (3) is more preferably within the range of the following conditional expressions (3) ′ and (3) ″.
1.05 <ΦL1 / ΦL3 <1.35 (3) ′
1.1 <ΦL1 / ΦL3 <1.3 (3) "

本実施形態の撮像レンズ10は、上記条件式(1)に加えて、既に説明した条件式(4)
0.2<f1/f2<1.4 … (4)
を満足する。ただし、値f1は、第1レンズL1の焦点距離であり、値f2は、第2レンズL2の焦点距離である。
なお、条件式(4)の値f1/f2については、下記の条件式(4)'及び(4)"の範囲内とすることがより望ましい。
0.35<f1/f2<1.35 … (4)'
0.4<f1/f2<1.3 … (4)"
In addition to the conditional expression (1), the imaging lens 10 of the present embodiment has the conditional expression (4) already described.
0.2 <f1 / f2 <1.4 (4)
Satisfied. However, the value f1 is the focal length of the first lens L1, and the value f2 is the focal length of the second lens L2.
The value f1 / f2 of the conditional expression (4) is more preferably within the range of the following conditional expressions (4) ′ and (4) ″.
0.35 <f1 / f2 <1.35 (4) ′
0.4 <f1 / f2 <1.3 (4) "

本実施形態の撮像レンズ10は、上記条件式(1)に加えて、既に説明した条件式(5)
−1.0<f12/f3<−0.4 … (5)
を満足する。ただし、値f12は、第1レンズL1及び第2レンズL2の合成焦点距離であり、値f3は、第3レンズL3の焦点距離である。
なお、条件式(5)の値f12/f3については、下記の条件式(5)'及び(5)"の範囲内とすることがより望ましい。
−0.9<f12/f3<−0.45 … (5)'
−0.8<f12/f3<−0.5 … (5)"
In addition to the conditional expression (1), the imaging lens 10 of the present embodiment has the conditional expression (5) already described.
−1.0 <f12 / f3 <−0.4 (5)
Satisfied. However, the value f12 is the combined focal length of the first lens L1 and the second lens L2, and the value f3 is the focal length of the third lens L3.
The value f12 / f3 of the conditional expression (5) is more preferably within the range of the following conditional expressions (5) ′ and (5) ″.
−0.9 <f12 / f3 <−0.45 (5) ′
−0.8 <f12 / f3 <−0.5 (5) ”

本実施形態の撮像レンズ10は、上記条件式(1)に加えて、既に説明した条件式(6)
1.5<f4/f<5.0 … (6)
を満足する。ただし、値f4は、第4レンズL4の焦点距離であり、値fは、撮像レンズ10全系の焦点距離である。
なお、条件式(6)の値f4/fについては、下記の条件式(6)'及び(6)"の範囲内とすることがより望ましい。
1.6<f4/f<4.0 … (6)'
1.7<f4/f<3.5 … (6)"
In addition to the conditional expression (1), the imaging lens 10 of the present embodiment has the conditional expression (6) already described.
1.5 <f4 / f <5.0 (6)
Satisfied. However, the value f4 is the focal length of the fourth lens L4, and the value f is the focal length of the entire imaging lens 10.
The value f4 / f of conditional expression (6) is more preferably within the range of the following conditional expressions (6) ′ and (6) ″.
1.6 <f4 / f <4.0 (6) ′
1.7 <f4 / f <3.5 (6) "

本実施形態の撮像レンズ10では、特に図示していないが、実質的にパワーを持たない光学素子をさらに備えるものとできる。   Although not particularly illustrated, the imaging lens 10 according to the present embodiment may further include an optical element having substantially no power.

〔実施例〕
以下、本発明に係る撮像レンズの具体的な実施例について説明する。各実施例において、rは曲率半径を意味し、dは軸上面間隔を意味し、ndはレンズ材料のd線に対する屈折率を意味し、vdはレンズ材料のアッベ数を意味し、「eff.dia.」は有効径を意味する。また、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸AX方向にX軸をとり、光軸AXと垂直方向の高さをhとして以下の「数1」で表す。

Figure 2015072402
ただし、
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
さらに、各実施例において、「STO」は開口絞りASを意味し、「FS」は遮光絞りFSを意味する。
なお、各実施例の撮像レンズ10が前提とする使用基本波長は587.56nmであり、曲率半径等の面形状の単位はmmである。 〔Example〕
Hereinafter, specific examples of the imaging lens according to the present invention will be described. In each embodiment, r represents the radius of curvature, d represents the axial top surface spacing, nd represents the refractive index of the lens material with respect to the d-line, vd represents the Abbe number of the lens material, “eff. “dia.” means an effective diameter. In addition, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin, the X axis in the optical axis AX direction, The height in the direction perpendicular to the axis AX is represented by “Equation 1” below.
Figure 2015072402
However,
Ai: i-order aspherical coefficient R: radius of curvature K: conical constant Further, in each embodiment, “STO” means the aperture stop AS, and “FS” means the light blocking stop FS.
In addition, the use fundamental wavelength which the imaging lens 10 of each Example presupposes is 587.56 nm, and the unit of surface shape, such as a curvature radius, is mm.

〔実施例1〕
実施例1のレンズ面のデータを以下の表1に示す。
〔表1〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 3.0877 0.2429 1.54470 56 2.625
3* 10.0569 0.0500 2.537
4* 3.8007 0.6008 1.54470 56 2.584
5* -38.7267 0.1500 2.488
STO INFINITY -0.1000 2.356
7* 1.5698 0.1500 1.64250 22.5 2.301
8* 1.0947 0.4196 2.113
9 FS INFINITY 0.1000 2.160
10* 8.9139 0.4687 1.54470 56 2.260
11* -11.1215 0.2354 2.478
12* -12.0730 0.3091 1.64250 22.5 2.736
13* 155.8189 0.2481 3.052
14* 5.3402 0.6051 1.54470 56 3.268
15* -2.3027 0.2949 3.772
16* 3.5400 0.3154 1.54470 56 4.487
17* 0.9517 0.7000 4.998
18 INFINITY 0.1100 1.51633 64.1 5.800
19 INFINITY 0.0998
[Example 1]
The lens surface data of Example 1 is shown in Table 1 below.
[Table 1]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 3.0877 0.2429 1.54470 56 2.625
3 * 10.0569 0.0500 2.537
4 * 3.8007 0.6008 1.54470 56 2.584
5 * -38.7267 0.1500 2.488
STO INFINITY -0.1000 2.356
7 * 1.5698 0.1500 1.64250 22.5 2.301
8 * 1.0947 0.4196 2.113
9 FS INFINITY 0.1000 2.160
10 * 8.9139 0.4687 1.54470 56 2.260
11 * -11.1215 0.2354 2.478
12 * -12.0730 0.3091 1.64250 22.5 2.736
13 * 155.8189 0.2481 3.052
14 * 5.3402 0.6051 1.54470 56 3.268
15 * -2.3027 0.2949 3.772
16 * 3.5400 0.3154 1.54470 56 4.487
17 * 0.9517 0.7000 4.998
18 INFINITY 0.1100 1.51633 64.1 5.800
19 INFINITY 0.0998

実施例1のレンズ面の非球面係数を以下の表2に示す。
〔表2〕
第2面
K=3.14469e+000, A4=-6.95429e-002, A6=1.31284e-002,
A8=1.63304e-002, A10=-9.21230e-003, A12=3.19837e-003,
A14=-8.18358e-004
第3面
K=0.00000e+000, A4=2.58570e-002, A6=-8.95477e-003,
A8=1.95481e-002, A10=-1.45187e-003
第4面
K=0.00000e+000, A4=1.28437e-001, A6=-5.40014e-002,
A8=1.69899e-002, A10=3.32878e-003, A12=-4.10499e-003,
A14=1.28852e-003
第5面
K=-7.99672e+001, A4=1.11510e-001, A6=-1.57728e-001,
A8=1.20500e-001, A10=-6.74656e-002, A12=2.67600e-002,
A14=-4.86280e-003
第7面
K=-1.03254e+001, A4=-1.90187e-002, A6=-8.38271e-002,
A8=5.85852e-002, A10=-1.32169e-002, A12=6.99676e-003,
A14=-3.54185e-003
第8面
K=-5.18781e+000, A3=1.38754e-003, A4=-2.37274e-002,
A5=-3.20132e-003, A6=5.23434e-002, A8=-1.27542e-001,
A10=1.74784e-001, A12=-1.04428e-001, A14=2.54802e-002
第10面
K=4.29327e+001, A3=-2.62788e-002, A4=7.21461e-002,
A5=-2.60745e-001, A6=2.51901e-001, A8=-1.73488e-001,
A10=1.23271e-001, A12=-7.38758e-002, A14=1.94337e-002
第11面
K=3.04695e+001, A3=2.32952e-002, A4=-1.88217e-001,
A5=1.02995e-001, A6=-5.89021e-002, A8=2.71134e-002,
A10=-1.63347e-002, A12=2.80196e-003
第12面
K=7.30212e+001, A3=9.58973e-002, A4=-4.80614e-001,
A5=3.96710e-001, A6=-2.12112e-001, A8=1.07657e-001,
A10=-2.35607e-002, A12=-7.15687e-004
第13面
K=5.79513e+001, A3=7.30018e-002, A4=-3.61439e-001,
A5=1.67587e-001, A6=-1.34589e-002, A8=1.20160e-002,
A10=2.99846e-003, A12=-2.61492e-003, A14=9.51885e-005
第14面
K=7.80952e+000, A3=-1.80172e-002, A4=3.57360e-002,
A5=-1.29570e-001, A6=7.05478e-002, A8=-3.21922e-002,
A10=1.38504e-002, A12=-4.03986e-003, A14=5.43929e-004
第15面
K=-1.58022e+001, A3=-1.14890e-001, A4=1.32161e-001,
A5=-1.39512e-002, A6=-3.92826e-002, A8=-5.44582e-003,
A10=7.43779e-003, A12=-1.47065e-003, A14=8.18453e-005
第16面
K=-7.87638e+001, A3=-1.82043e-001, A4=-1.37148e-001,
A5=7.15714e-002, A6=2.93848e-002, A8=-4.85530e-003,
A10=-4.60160e-004, A12=1.31370e-004, A14=-7.23796e-006
第17面
K=-5.01194e+000, A3=-1.18906e-001, A4=-7.87955e-002,
A5=1.07798e-001, A6=-3.49386e-002, A8=1.66878e-003,
A10=-1.65037e-004, A12=3.77975e-006, A14=1.32544e-006
なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10−002)を、e(たとえば2.5e−002)を用いて表すものとする。
The aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below.
[Table 2]
Second side
K = 3.14469e + 000, A4 = -6.95429e-002, A6 = 1.31284e-002,
A8 = 1.63304e-002, A10 = -9.21230e-003, A12 = 3.19837e-003,
A14 = -8.18358e-004
Third side
K = 0.00000e + 000, A4 = 2.58570e-002, A6 = -8.95477e-003,
A8 = 1.95481e-002, A10 = -1.45187e-003
4th page
K = 0.00000e + 000, A4 = 1.28437e-001, A6 = -5.40014e-002,
A8 = 1.69899e-002, A10 = 3.32878e-003, A12 = -4.10499e-003,
A14 = 1.28852e-003
5th page
K = -7.99672e + 001, A4 = 1.11510e-001, A6 = -1.57728e-001,
A8 = 1.20500e-001, A10 = -6.74656e-002, A12 = 2.67600e-002,
A14 = -4.86280e-003
7th page
K = -1.03254e + 001, A4 = -1.90187e-002, A6 = -8.38271e-002,
A8 = 5.85852e-002, A10 = -1.32169e-002, A12 = 6.99676e-003,
A14 = -3.54185e-003
8th page
K = -5.18781e + 000, A3 = 1.38754e-003, A4 = -2.37274e-002,
A5 = -3.20132e-003, A6 = 5.23434e-002, A8 = -1.27542e-001,
A10 = 1.74784e-001, A12 = -1.04428e-001, A14 = 2.54802e-002
10th page
K = 4.29327e + 001, A3 = -2.62788e-002, A4 = 7.21461e-002,
A5 = -2.60745e-001, A6 = 2.51901e-001, A8 = -1.73488e-001,
A10 = 1.23271e-001, A12 = -7.38758e-002, A14 = 1.94337e-002
11th page
K = 3.04695e + 001, A3 = 2.32952e-002, A4 = -1.88217e-001,
A5 = 1.02995e-001, A6 = -5.89021e-002, A8 = 2.71134e-002,
A10 = -1.63347e-002, A12 = 2.80196e-003
12th page
K = 7.30212e + 001, A3 = 9.58973e-002, A4 = -4.80614e-001,
A5 = 3.96710e-001, A6 = -2.12112e-001, A8 = 1.07657e-001,
A10 = -2.35607e-002, A12 = -7.15687e-004
Side 13
K = 5.79513e + 001, A3 = 7.30018e-002, A4 = -3.61439e-001,
A5 = 1.67587e-001, A6 = -1.34589e-002, A8 = 1.20160e-002,
A10 = 2.99846e-003, A12 = -2.61492e-003, A14 = 9.51885e-005
14th page
K = 7.80952e + 000, A3 = -1.80172e-002, A4 = 3.57360e-002,
A5 = -1.29570e-001, A6 = 7.05478e-002, A8 = -3.21922e-002,
A10 = 1.38504e-002, A12 = -4.03986e-003, A14 = 5.43929e-004
15th page
K = -1.58022e + 001, A3 = -1.14890e-001, A4 = 1.32161e-001,
A5 = -1.39512e-002, A6 = -3.92826e-002, A8 = -5.44582e-003,
A10 = 7.43779e-003, A12 = -1.47065e-003, A14 = 8.18453e-005
16th page
K = -7.87638e + 001, A3 = -1.82043e-001, A4 = -1.37148e-001,
A5 = 7.15714e-002, A6 = 2.93848e-002, A8 = -4.85530e-003,
A10 = -4.60160e-004, A12 = 1.31370e-004, A14 = -7.23796e-006
17th page
K = -5.01194e + 000, A3 = -1.18906e-001, A4 = -7.87955e-002,
A5 = 1.07798e-001, A6 = -3.49386e-002, A8 = 1.66878e-003,
A10 = -1.65037e-004, A12 = 3.77975e-006, A14 = 1.32544e-006
In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −002 ) is expressed using e (for example, 2.5e−002).

実施例1の撮像レンズ10の特性を以下に列挙する。
FL 3.786
Fno 1.44
w 74.22
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.872
TLa 4.962
ここで、FLは撮像レンズ10全系の焦点距離を意味し、FnoはFナンバーを意味し、wは対角線画角を意味し、Ymaxは最大像高、すなわち撮像素子の撮像面対角線長の半値を意味し、BFはバックフォーカス(最終レンズ〜像面)を意味し、TLは系全長を意味する。また、BFaはバックフォーカス(最終レンズ〜撮像面I(ただし、平行平板Fを空気換算長としたときのバックフォーカス)を意味し、TLaは系全長(最終レンズ〜撮像面I(ただし、平行平板Fを空気換算長としたときの系全長)を意味する。なお、以上の符号は、これ以降の実施例でも同様の意味を有するものとする。
The characteristics of the imaging lens 10 of Example 1 are listed below.
FL 3.786
Fno 1.44
w 74.22
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.872
TLa 4.962
Here, FL means the focal length of the entire imaging lens 10, Fno means the F number, w means the diagonal field angle, Ymax means the maximum image height, that is, the half value of the diagonal length of the imaging surface of the imaging device. BF means back focus (final lens to image plane), and TL means the entire length of the system. BFa means back focus (final lens to imaging surface I (however, back focus when the parallel plate F is the air conversion length), and TLa is the entire system length (final lens to imaging surface I (how to parallel plate). This means the total length of the system when F is the air equivalent length. Note that the above symbols have the same meaning in the following embodiments.

実施例1の単レンズデータを以下の表3に示す。
〔表3〕
レンズ番号 面番号 焦点距離 有効径
Elem Surfs Focal Length Diameter
1 2- 3 8.0809 2.625
2 4- 5 6.3857 2.584
3 7- 8 -6.4234 2.301
4 10-11 9.1595 2.478
5 12-13 -17.4268 3.052
6 14-15 3.0386 3.772
7 16-17 -2.4971 4.998
The single lens data of Example 1 is shown in Table 3 below.
[Table 3]
Lens number Surface number Focal length Effective diameter
Elem Surfs Focal Length Diameter
1 2- 3 8.0809 2.625
2 4--5 6.3857 2.584
3 7- 8 -6.4234 2.301
4 10-11 9.1595 2.478
5 12-13 -17.4268 3.052
6 14-15 3.0386 3.772
7 16-17 -2.4971 4.998

図5は、実施例1の撮像レンズ11等の断面図である。撮像レンズ11は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凹面を向けた略凹平の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置されている。つまり、第3レンズL3の物体側には、開口絞りASとして第2絞り部材FS2が配置されている。第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。具体的には、第1レンズL1の物体側には、第1絞り部材FS1が配置され、第3レンズL3の像側には、第2絞り部材FS2が配置されている。なお、例えば第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 5 is a cross-sectional view of the imaging lens 11 and the like of the first embodiment. The imaging lens 11 includes, in order from the object side, a meniscus first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a concave surface facing the image side, and a positive lens around the optical axis AX. A biconvex fourth lens L4 having refractive power, a substantially concave fifth lens L5 having negative refractive power around the optical axis AX and having a concave surface facing the object side, and positive refraction around the optical axis AX A biconvex sixth lens L6 having power, and a meniscus seventh lens L7 having negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2, L3. That is, the second diaphragm member FS2 is arranged as the aperture diaphragm AS on the object side of the third lens L3. A light-shielding stop FS is disposed between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. Specifically, the first diaphragm member FS1 is disposed on the object side of the first lens L1, and the second diaphragm member FS2 is disposed on the image side of the third lens L3. For example, a parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図6(A)〜6(C)は、実施例1の撮像レンズ11の諸収差図(球面収差、非点収差、歪曲収差)を示し、図6(D)及び6(E)は、実施例1の撮像レンズ11の横収差を示している。   6A to 6C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 11 of Example 1, and FIGS. 6D and 6E show the examples. The lateral aberration of the imaging lens 11 of Example 1 is shown.

〔実施例2〕
実施例2のレンズ面のデータを以下の表4に示す。
〔表4〕
面番号 r d nd vd eff. dia.
STO INFINITY 0.0000 2.625
2* 3.5362 0.2115 1.54470 56 2.625
3* 15.1944 0.0500 2.561
4* 4.6491 0.8808 1.54470 56 2.619
5* -23.2597 0.0500 2.395
6* 1.7953 0.1500 1.64250 22.5 2.240
7* 1.1983 0.3212 2.199
8 FS INFINITY 0.1000 2.260
9* 7.4020 0.4667 1.54470 56 2.355
10* -9.2239 0.1785 2.550
11* -11.6396 0.2000 1.64250 22.5 2.734
12* -36.1025 0.4275 3.000
13* 4.4886 0.4778 1.54470 56 3.496
14* -3.0787 0.3581 3.891
15* 3.0407 0.3179 1.54470 56 4.774
16* 0.9606 0.4000 5.113
17 INFINITY 0.1100 1.51633 64.1 6.000
18 INFINITY 0.4000
[Example 2]
The lens surface data of Example 2 is shown in Table 4 below.
[Table 4]
Surface number rd nd vd eff.dia.
STO INFINITY 0.0000 2.625
2 * 3.5362 0.2115 1.54470 56 2.625
3 * 15.1944 0.0500 2.561
4 * 4.6491 0.8808 1.54470 56 2.619
5 * -23.2597 0.0500 2.395
6 * 1.7953 0.1500 1.64250 22.5 2.240
7 * 1.1983 0.3212 2.199
8 FS INFINITY 0.1000 2.260
9 * 7.4020 0.4667 1.54470 56 2.355
10 * -9.2239 0.1785 2.550
11 * -11.6396 0.2000 1.64250 22.5 2.734
12 * -36.1025 0.4275 3.000
13 * 4.4886 0.4778 1.54470 56 3.496
14 * -3.0787 0.3581 3.891
15 * 3.0407 0.3179 1.54470 56 4.774
16 * 0.9606 0.4000 5.113
17 INFINITY 0.1100 1.51633 64.1 6.000
18 INFINITY 0.4000

実施例2のレンズ面の非球面係数を以下の表5に示す。
〔表5〕
第2面
K=3.74178e+000, A4=-7.39695e-002, A6=2.06813e-002,
A8=1.32843e-002, A10=-9.71298e-003, A12=3.41304e-003,
A14=-7.03530e-004
第3面
K=0.00000e+000, A4=3.35801e-002, A6=-1.57042e-002,
A8=2.04172e-002, A10=-2.72188e-003
第4面
K=0.00000e+000, A4=1.22389e-001, A6=-5.56821e-002,
A8=1.54569e-002, A10=4.02555e-003, A12=-3.62642e-003,
A14=9.01883e-004
第5面
K=-8.00000e+001, A4=9.33428e-002, A6=-1.53900e-001,
A8=1.21016e-001, A10=-6.70573e-002, A12=2.57626e-002,
A14=-4.86280e-003
第6面
K=-1.35634e+001, A4=-3.03279e-002, A6=-9.22912e-002,
A8=5.91280e-002, A10=-1.42962e-002, A12=6.11980e-003,
A14=-3.54185e-003
第7面
K=-5.91619e+000, A3=-1.94072e-003, A4=-3.55606e-002,
A5=-8.27216e-003, A6=5.15963e-002, A8=-1.29101e-001,
A10=1.71563e-001, A12=-1.07214e-001, A14=2.59775e-002
第9面
K=3.51444e+001, A3=-2.17463e-002, A4=6.78250e-002,
A5=-2.59891e-001, A6=2.54801e-001, A8=-1.74084e-001,
A10=1.23799e-001, A12=-7.32542e-002, A14=1.65879e-002
第10面
K=1.47378e+001, A3=3.96923e-002, A4=-1.83664e-001,
A5=1.00258e-001, A6=-5.89501e-002, A8=3.12131e-002,
A10=-1.46491e-002, A12=6.80230e-004
第11面
K=7.05463e+001, A3=9.58904e-002, A4=-4.94945e-001,
A5=3.95499e-001, A6=-2.04246e-001, A8=1.12924e-001,
A10=-2.31689e-002, A12=-1.98811e-003
第12面
K=-8.00000e+001, A3=5.00614e-002, A4=-3.57488e-001,
A5=1.74376e-001, A6=-1.12669e-002, A8=1.33714e-002,
A10=3.71003e-003, A12=-2.82517e-003, A14=-1.60630e-004
第13面
K=1.87188e+000, A3=-3.06359e-002, A4=5.38193e-002,
A5=-1.26625e-001, A6=7.55144e-002, A8=-3.48636e-002,
A10=1.45460e-002, A12=-3.83816e-003, A14=4.62248e-004
第14面
K=-3.82868e+001, A3=-1.24893e-001, A4=1.08434e-001,
A5=-2.15384e-003, A6=-3.39530e-002, A8=-6.23491e-003,
A10=7.20618e-003, A12=-1.45829e-003, A14=8.42125e-005
第15面
K=-4.58205e+001, A3=-1.91512e-001, A4=-1.36185e-001,
A5=7.22729e-002, A6=2.96169e-002, A8=-4.85569e-003,
A10=-4.68694e-004, A12=1.31270e-004, A14=-7.14568e-006
第16面
K=-5.03018e+000, A3=-1.06502e-001, A4=-8.51981e-002,
A5=1.10011e-001, A6=-3.45846e-002, A8=1.52874e-003,
A10=-1.59674e-004, A12=5.06936e-006, A14=1.17178e-006
The aspherical coefficient of the lens surface of Example 2 is shown in Table 5 below.
[Table 5]
Second side
K = 3.74178e + 000, A4 = -7.39695e-002, A6 = 2.06813e-002,
A8 = 1.32843e-002, A10 = -9.71298e-003, A12 = 3.41304e-003,
A14 = -7.03530e-004
Third side
K = 0.00000e + 000, A4 = 3.35801e-002, A6 = -1.57042e-002,
A8 = 2.04172e-002, A10 = -2.72188e-003
4th page
K = 0.00000e + 000, A4 = 1.22389e-001, A6 = -5.56821e-002,
A8 = 1.54569e-002, A10 = 4.02555e-003, A12 = -3.62642e-003,
A14 = 9.01883e-004
5th page
K = -8.00000e + 001, A4 = 9.33428e-002, A6 = -1.53900e-001,
A8 = 1.21016e-001, A10 = -6.70573e-002, A12 = 2.57626e-002,
A14 = -4.86280e-003
6th page
K = -1.35634e + 001, A4 = -3.03279e-002, A6 = -9.22912e-002,
A8 = 5.91280e-002, A10 = -1.42962e-002, A12 = 6.11980e-003,
A14 = -3.54185e-003
7th page
K = -5.91619e + 000, A3 = -1.94072e-003, A4 = -3.55606e-002,
A5 = -8.27216e-003, A6 = 5.15963e-002, A8 = -1.29101e-001,
A10 = 1.71563e-001, A12 = -1.07214e-001, A14 = 2.59775e-002
9th page
K = 3.51444e + 001, A3 = -2.17463e-002, A4 = 6.78250e-002,
A5 = -2.59891e-001, A6 = 2.54801e-001, A8 = -1.74084e-001,
A10 = 1.23799e-001, A12 = -7.32542e-002, A14 = 1.65879e-002
10th page
K = 1.47378e + 001, A3 = 3.96923e-002, A4 = -1.83664e-001,
A5 = 1.00258e-001, A6 = -5.89501e-002, A8 = 3.12131e-002,
A10 = -1.46491e-002, A12 = 6.80230e-004
11th page
K = 7.05463e + 001, A3 = 9.58904e-002, A4 = -4.94945e-001,
A5 = 3.95499e-001, A6 = -2.04246e-001, A8 = 1.12924e-001,
A10 = -2.31689e-002, A12 = -1.98811e-003
12th page
K = -8.00000e + 001, A3 = 5.00614e-002, A4 = -3.57488e-001,
A5 = 1.74376e-001, A6 = -1.12669e-002, A8 = 1.33714e-002,
A10 = 3.71003e-003, A12 = -2.82517e-003, A14 = -1.60630e-004
Side 13
K = 1.87188e + 000, A3 = -3.06359e-002, A4 = 5.38193e-002,
A5 = -1.26625e-001, A6 = 7.55144e-002, A8 = -3.48636e-002,
A10 = 1.45460e-002, A12 = -3.83816e-003, A14 = 4.62248e-004
14th page
K = -3.82868e + 001, A3 = -1.24893e-001, A4 = 1.08434e-001,
A5 = -2.15384e-003, A6 = -3.39530e-002, A8 = -6.23491e-003,
A10 = 7.20618e-003, A12 = -1.45829e-003, A14 = 8.42125e-005
15th page
K = -4.58205e + 001, A3 = -1.91512e-001, A4 = -1.36185e-001,
A5 = 7.22729e-002, A6 = 2.96169e-002, A8 = -4.85569e-003,
A10 = -4.68694e-004, A12 = 1.31270e-004, A14 = -7.14568e-006
16th page
K = -5.03018e + 000, A3 = -1.06502e-001, A4 = -8.51981e-002,
A5 = 1.10011e-001, A6 = -3.45846e-002, A8 = 1.52874e-003,
A10 = -1.59674e-004, A12 = 5.06936e-006, A14 = 1.17178e-006

実施例2の撮像レンズ10の特性を以下に列挙する。
FL 3.774
Fno 1.44
w 75.40
Ymax 2.921
BF 0.910
TL 5.100
BFa 0.873
TLa 5.063
The characteristics of the imaging lens 10 of Example 2 are listed below.
FL 3.774
Fno 1.44
w 75.40
Ymax 2.921
BF 0.910
TL 5.100
BFa 0.873
TLa 5.063

実施例2の単レンズデータを以下の表6に示す。
〔表6〕
Elem Surfs Focal Length Diameter
1 2- 3 8.4074 2.625
2 4- 5 7.1935 2.619
3 6- 7 -6.2199 2.240
4 9-10 7.6145 2.550
5 11-12 -26.8215 3.000
6 13-14 3.4289 3.891
7 15-16 -2.7249 5.113
The single lens data of Example 2 is shown in Table 6 below.
[Table 6]
Elem Surfs Focal Length Diameter
1 2- 3 8.4074 2.625
2 4- 5 7.1935 2.619
3 6-7 -6.2199 2.240
4 9-10 7.6145 2.550
5 11-12 -26.8215 3.000
6 13-14 3.4289 3.891
7 15-16 -2.7249 5.113

図7は、実施例2の撮像レンズ12等の断面図である。撮像レンズ12は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凹面を向けた略凹平の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1レンズL1の外縁の物体側には、開口絞り(STO)ASが配置されている。第3及び第4レンズL3,L4の間には、遮光絞りFSが配置されている。つまり、第1レンズL1の物体側には、開口絞りASとして第1絞り部材FS1が配置され、第3レンズL3の像側には、第2絞り部材FS2が配置されている。   FIG. 7 is a cross-sectional view of the imaging lens 12 and the like of the second embodiment. The imaging lens 12 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a concave surface facing the image side, and a positive lens around the optical axis AX. A biconvex fourth lens L4 having refractive power, a substantially concave fifth lens L5 having a weak negative refractive power around the optical axis AX and having a concave surface facing the object side, and positive around the optical axis AX A biconvex sixth lens L6 having a refractive power and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed on the object side of the outer edge of the first lens L1. A light shielding stop FS is disposed between the third and fourth lenses L3 and L4. That is, the first diaphragm member FS1 is disposed as the aperture diaphragm AS on the object side of the first lens L1, and the second diaphragm member FS2 is disposed on the image side of the third lens L3.

図8(A)〜8(C)は、実施例2の撮像レンズ12の諸収差図(球面収差、非点収差、歪曲収差)を示し、図8(D)及び8(E)は、実施例2の撮像レンズ12の横収差を示している。   8A to 8C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 12 of Example 2, and FIGS. 4 shows lateral aberration of the imaging lens 12 of Example 2.

〔実施例3〕
実施例3のレンズ面のデータを以下の表7に示す。
〔表7〕
面番号 r d nd vd eff. dia.
STO INFINITY 0.0000 2.625
2* 3.9844 0.2500 1.54470 56.2 2.625
3* -30.0690 0.0500 2.546
4* 6.0010 0.8255 1.54470 56.2 2.595
5* -59.5129 0.0500 2.362
6* 1.7173 0.1500 1.63469 23.9 2.222
7* 1.1598 0.3360 2.239
8 FS INFINITY 0.0700 2.240
9* 7.3807 0.4852 1.54470 56.2 2.345
10* -8.1001 0.1857 2.535
11* -11.5969 0.2009 1.63469 23.9 2.719
12* 76.2965 0.4224 2.980
13* 4.1635 0.4970 1.54470 56.2 3.487
14* -2.9703 0.3533 3.916
15* 2.7197 0.3145 1.54470 56.2 4.669
16* 0.9380 0.7000 5.118
17 INFINITY 0.1100 1.51633 64.1 5.749
18 INFINITY 0.1000
Example 3
The lens surface data of Example 3 is shown in Table 7 below.
[Table 7]
Surface number rd nd vd eff.dia.
STO INFINITY 0.0000 2.625
2 * 3.9844 0.2500 1.54470 56.2 2.625
3 * -30.0690 0.0500 2.546
4 * 6.0010 0.8255 1.54470 56.2 2.595
5 * -59.5129 0.0500 2.362
6 * 1.7173 0.1500 1.63469 23.9 2.222
7 * 1.1598 0.3360 2.239
8 FS INFINITY 0.0700 2.240
9 * 7.3807 0.4852 1.54470 56.2 2.345
10 * -8.1001 0.1857 2.535
11 * -11.5969 0.2009 1.63469 23.9 2.719
12 * 76.2965 0.4224 2.980
13 * 4.1635 0.4970 1.54470 56.2 3.487
14 * -2.9703 0.3533 3.916
15 * 2.7197 0.3145 1.54470 56.2 4.669
16 * 0.9380 0.7000 5.118
17 INFINITY 0.1100 1.51633 64.1 5.749
18 INFINITY 0.1000

実施例3のレンズ面の非球面係数を以下の表8に示す。
〔表8〕
第2面
K=4.75904e+000, A4=-7.08543e-002, A6=2.55215e-002,
A8=1.38998e-002, A10=-9.41272e-003, A12=3.29702e-003,
A14=-6.31931e-004
第3面
K=0.00000e+000, A4=4.35606e-002, A6=-9.54602e-003,
A8=1.85383e-002, A10=-1.40441e-003
第4面
K=0.00000e+000, A4=1.30180e-001, A6=-5.58269e-002,
A8=1.60864e-002, A10=4.04500e-003, A12=-3.62188e-003,
A14=9.01883e-004
第5面
K=8.00000e+001, A4=9.01890e-002, A6=-1.49124e-001,
A8=1.23306e-001, A10=-6.63402e-002, A12=2.44064e-002,
A14=-4.86280e-003
第6面
K=-1.21402e+001, A4=-2.39782e-002, A6=-8.57697e-002,
A8=6.26993e-002, A10=-2.05358e-002, A12=6.11980e-003,
A14=-3.54185e-003
第7面
K=-5.47502e+000, A3=-2.60490e-003, A4=-3.00630e-002,
A5=-5.35854e-003, A6=5.34571e-002, A8=-1.28165e-001,
A10=1.69419e-001, A12=-1.10209e-001, A14=2.73640e-002
第9面
K=3.57434e+001, A3=-1.96169e-002, A4=6.63363e-002,
A5=-2.56825e-001, A6=2.55907e-001, A8=-1.76594e-001,
A10=1.25144e-001, A12=-7.10711e-002, A14=1.46368e-002
第10面
K=-4.02829e+001, A3=3.52067e-002, A4=-1.76533e-001,
A5=9.55274e-002, A6=-6.44083e-002, A8=3.07867e-002,
A10=-1.38879e-002, A12=4.93146e-004
第11面
K=7.08494e+001, A3=8.14154e-002, A4=-4.95365e-001,
A5=3.98250e-001, A6=-2.00913e-001, A8=1.13885e-001,
A10=-2.31332e-002, A12=-2.02245e-003
第12面
K=-8.00000e+001, A3=3.31536e-002, A4=-3.67414e-001,
A5=1.78404e-001, A6=-5.72966e-003, A8=1.56134e-002,
A10=3.66127e-003, A12=-3.11167e-003, A14=-1.43138e-004
第13面
K=1.41456e+000, A3=-1.51148e-002, A4=3.96559e-002,
A5=-1.33805e-001, A6=8.70433e-002, A8=-3.59301e-002,
A10=1.38929e-002, A12=-3.62507e-003, A14=4.30313e-004
第14面
K=-3.53240e+001, A3=-1.08710e-001, A4=9.12049e-002,
A5=5.94547e-003, A6=-3.25071e-002, A8=-7.49311e-003,
A10=7.15214e-003, A12=-1.40165e-003, A14=8.23359e-005
第15面
K=-3.82502e+001, A3=-2.04424e-001, A4=-1.33618e-001,
A5=7.21841e-002, A6=2.96147e-002, A8=-4.86011e-003,
A10=-4.75408e-004, A12=1.30382e-004, A14=-6.98084e-006
第16面
K=-4.35152e+000, A3=-1.43655e-001, A4=-7.65365e-002,
A5=1.13460e-001, A6=-3.54246e-002, A8=1.30899e-003,
A10=-1.53250e-004, A12=7.21323e-006, A14=8.72515e-007
The aspherical coefficients of the lens surfaces of Example 3 are shown in Table 8 below.
[Table 8]
Second side
K = 4.75904e + 000, A4 = -7.08543e-002, A6 = 2.55215e-002,
A8 = 1.38998e-002, A10 = -9.41272e-003, A12 = 3.29702e-003,
A14 = -6.31931e-004
Third side
K = 0.00000e + 000, A4 = 4.35606e-002, A6 = -9.54602e-003,
A8 = 1.85383e-002, A10 = -1.40441e-003
4th page
K = 0.00000e + 000, A4 = 1.30180e-001, A6 = -5.58269e-002,
A8 = 1.60864e-002, A10 = 4.04500e-003, A12 = -3.62188e-003,
A14 = 9.01883e-004
5th page
K = 8.00000e + 001, A4 = 9.01890e-002, A6 = -1.49124e-001,
A8 = 1.23306e-001, A10 = -6.63402e-002, A12 = 2.44064e-002,
A14 = -4.86280e-003
6th page
K = -1.21402e + 001, A4 = -2.39782e-002, A6 = -8.57697e-002,
A8 = 6.26993e-002, A10 = -2.05358e-002, A12 = 6.11980e-003,
A14 = -3.54185e-003
7th page
K = -5.47502e + 000, A3 = -2.60490e-003, A4 = -3.00630e-002,
A5 = -5.35854e-003, A6 = 5.34571e-002, A8 = -1.28165e-001,
A10 = 1.69419e-001, A12 = -1.10209e-001, A14 = 2.73640e-002
9th page
K = 3.57434e + 001, A3 = -1.96169e-002, A4 = 6.63363e-002,
A5 = -2.56825e-001, A6 = 2.55907e-001, A8 = -1.76594e-001,
A10 = 1.25144e-001, A12 = -7.10711e-002, A14 = 1.46368e-002
10th page
K = -4.02829e + 001, A3 = 3.52067e-002, A4 = -1.76533e-001,
A5 = 9.55274e-002, A6 = -6.44083e-002, A8 = 3.07867e-002,
A10 = -1.38879e-002, A12 = 4.93146e-004
11th page
K = 7.08494e + 001, A3 = 8.14154e-002, A4 = -4.95365e-001,
A5 = 3.98250e-001, A6 = -2.00913e-001, A8 = 1.13885e-001,
A10 = -2.31332e-002, A12 = -2.02245e-003
12th page
K = -8.00000e + 001, A3 = 3.31536e-002, A4 = -3.67414e-001,
A5 = 1.78404e-001, A6 = -5.72966e-003, A8 = 1.56134e-002,
A10 = 3.66127e-003, A12 = -3.11167e-003, A14 = -1.43138e-004
Side 13
K = 1.41456e + 000, A3 = -1.51148e-002, A4 = 3.96559e-002,
A5 = -1.33805e-001, A6 = 8.70433e-002, A8 = -3.59301e-002,
A10 = 1.38929e-002, A12 = -3.62507e-003, A14 = 4.30313e-004
14th page
K = -3.53240e + 001, A3 = -1.08710e-001, A4 = 9.12049e-002,
A5 = 5.94547e-003, A6 = -3.25071e-002, A8 = -7.49311e-003,
A10 = 7.15214e-003, A12 = -1.40165e-003, A14 = 8.23359e-005
15th page
K = -3.82502e + 001, A3 = -2.04424e-001, A4 = -1.33618e-001,
A5 = 7.21841e-002, A6 = 2.96147e-002, A8 = -4.86011e-003,
A10 = -4.75408e-004, A12 = 1.30382e-004, A14 = -6.98084e-006
16th page
K = -4.35152e + 000, A3 = -1.43655e-001, A4 = -7.65365e-002,
A5 = 1.13460e-001, A6 = -3.54246e-002, A8 = 1.30899e-003,
A10 = -1.53250e-004, A12 = 7.21323e-006, A14 = 8.72515e-007

実施例3の撮像レンズ10の特性を以下に列挙する。
FL 3.774
Fno 1.44
w 75.40
Ymax 2.921
BF 0.910
TL 5.100
BFa 0.873
TLa 5.063
The characteristics of the imaging lens 10 of Example 3 are listed below.
FL 3.774
Fno 1.44
w 75.40
Ymax 2.921
BF 0.910
TL 5.100
BFa 0.873
TLa 5.063

実施例3の単レンズデータを以下の表9に示す。
〔表9〕
Elem Surfs Focal Length Diameter
1 2- 3 6.4758 2.625
2 4- 5 10.0526 2.595
3 6- 7 -6.2855 2.239
4 9-10 7.1691 2.535
5 11-12 -15.8469 2.980
6 13-14 3.2628 3.916
7 15-16 -2.8032 5.118
The single lens data of Example 3 is shown in Table 9 below.
[Table 9]
Elem Surfs Focal Length Diameter
1 2- 3 6.4758 2.625
2 4- 5 10.0526 2.595
3 6- 7 -6.2855 2.239
4 9-10 7.1691 2.535
5 11-12 -15.8469 2.980
6 13-14 3.2628 3.916
7 15-16 -2.8032 5.118

図9は、実施例3の撮像レンズ13等の断面図である。撮像レンズ13は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凹面を向けた略凹平の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1レンズL1の外縁の物体側には、開口絞り(STO)ASが配置されている。第3及び第4レンズL3,L4の間には、遮光絞りFSが配置されている。つまり、第1レンズL1の物体側には、開口絞りASとして第1絞り部材FS1が配置され、第3レンズL3の像側には、第2絞り部材FS2が配置されている。   FIG. 9 is a cross-sectional view of the imaging lens 13 and the like of the third embodiment. The imaging lens 13 has, in order from the object side, a substantially convex first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the object side, a third meniscus lens L3 having a negative refractive power around the optical axis AX and a concave surface facing the image side, and a periphery of the optical axis AX. A biconvex fourth lens L4 having positive refractive power, a substantially concave fifth lens L5 having negative refractive power around the optical axis AX and having a concave surface facing the object side, and positive around the optical axis AX A biconvex sixth lens L6 having a refractive power of 5 and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed on the object side of the outer edge of the first lens L1. A light shielding stop FS is disposed between the third and fourth lenses L3 and L4. That is, the first diaphragm member FS1 is disposed as the aperture diaphragm AS on the object side of the first lens L1, and the second diaphragm member FS2 is disposed on the image side of the third lens L3.

図10(A)〜10(C)は、実施例3の撮像レンズ13の諸収差図(球面収差、非点収差、歪曲収差)を示し、図10(D)及び10(E)は、実施例3の撮像レンズ13の横収差を示している。   FIGS. 10A to 10C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 13 of Example 3, and FIGS. 10D and 10E show the examples. The lateral aberration of the imaging lens 13 of Example 3 is shown.

〔実施例4〕
実施例4のレンズ面のデータを以下の表10に示す。
〔表10〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 3.0000 0.3006 1.54470 56 2.625
3* -29.8652 0.0500 2.517
4* 52.0943 0.7384 1.54470 56 2.537
5* -7.7991 0.1000 2.357
STO INFINITY -0.0500 2.258
7* 1.7513 0.1500 1.63469 23.9 2.203
8* 1.1130 0.3881 2.204
9 FS INFINITY 0.0700 2.220
10* 8.5883 0.5707 1.54470 56 2.478
11* -5.9776 0.1525 2.652
12* -10.6927 0.3030 1.63469 23.9 2.807
13* 17.6055 0.3879 3.158
14* 3.2081 0.5334 1.54470 56 3.536
15* -3.1457 0.5565 3.879
16* -88.2601 0.3275 1.54470 56 4.705
17* 1.4022 0.3000 5.313
18 INFINITY 0.1100 1.51633 64.1 5.646
19 INFINITY 0.3114
Example 4
The lens surface data of Example 4 is shown in Table 10 below.
[Table 10]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 3.0000 0.3006 1.54470 56 2.625
3 * -29.8652 0.0500 2.517
4 * 52.0943 0.7384 1.54470 56 2.537
5 * -7.7991 0.1000 2.357
STO INFINITY -0.0500 2.258
7 * 1.7513 0.1500 1.63469 23.9 2.203
8 * 1.1130 0.3881 2.204
9 FS INFINITY 0.0700 2.220
10 * 8.5883 0.5707 1.54470 56 2.478
11 * -5.9776 0.1525 2.652
12 * -10.6927 0.3030 1.63469 23.9 2.807
13 * 17.6055 0.3879 3.158
14 * 3.2081 0.5334 1.54470 56 3.536
15 * -3.1457 0.5565 3.879
16 * -88.2601 0.3275 1.54470 56 4.705
17 * 1.4022 0.3000 5.313
18 INFINITY 0.1100 1.51633 64.1 5.646
19 INFINITY 0.3114

実施例4のレンズ面の非球面係数を以下の表11に示す。
〔表11〕
第2面
K=2.11148e+000, A4=-2.95136e-002, A6=3.41717e-004,
A8=1.75787e-002, A10=-5.43560e-003, A12=2.86848e-003,
A14=-1.08971e-003
第3面
K=0.00000e+000, A4=5.74093e-002, A6=1.42162e-002,
A8=6.36900e-003, A10=3.22404e-003
第4面
K=0.00000e+000, A4=1.03021e-001, A6=-1.42099e-002,
A8=7.97392e-003, A10=-2.03644e-003, A12=-1.30793e-003,
A14=1.07559e-003
第5面
K=5.54924e+000, A4=1.36177e-001, A6=-1.73239e-001,
A8=1.46216e-001, A10=-8.23902e-002, A12=2.76774e-002,
A14=-4.86281e-003
第7面
K=-1.59241e+001, A4=-9.35509e-003, A6=-5.26647e-002,
A8=3.17607e-002, A10=-1.46649e-002, A12=6.11984e-003,
A14=-3.54185e-003
第8面
K=-6.33742e+000, A3=-1.03631e-004, A4=-2.05910e-002,
A5=2.44461e-003, A6=5.53165e-002, A8=-1.41665e-001,
A10=1.68385e-001, A12=-1.04094e-001, A14=2.61596e-002
第10面
K=3.16638e+001, A3=-2.05322e-002, A4=7.70636e-002,
A5=-2.31548e-001, A6=2.25677e-001, A8=-1.68054e-001,
A10=1.33867e-001, A12=-8.05820e-002, A14=2.16353e-002
第11面
K=-7.04758e+000, A3=2.11213e-002, A4=-1.65440e-001,
A5=9.70462e-002, A6=-5.78489e-002, A8=2.33043e-002,
A10=-9.33734e-003, A12=7.06252e-004
第12面
K=5.61667e+001, A3=7.53586e-002, A4=-4.84332e-001,
A5=4.17171e-001, A6=-1.98178e-001, A8=1.00749e-001,
A10=-2.87920e-002, A12=1.60783e-003
第13面
K=-5.95526e+001, A3=5.00362e-002, A4=-3.74655e-001,
A5=1.89754e-001, A6=-1.88143e-003, A8=4.26196e-003,
A10=9.01876e-004, A12=-1.34422e-003, A14=2.14891e-005
第14面
K=-3.79129e+000, A3=1.28434e-003, A4=1.60638e-002,
A5=-1.04100e-001, A6=6.97150e-002, A8=-3.46793e-002,
A10=1.38857e-002, A12=-2.90033e-003, A14=2.33414e-004
第15面
K=-1.78695e+000, A3=-6.95183e-003, A4=1.02116e-001,
A5=-3.11562e-002, A6=-3.29689e-002, A8=-6.06059e-003,
A10=7.19149e-003, A12=-1.27079e-003, A14=5.41600e-005
第16面
K=8.00000e+001, A3=-5.30569e-002, A4=-2.41895e-001,
A5=8.00129e-002, A6=3.81682e-002, A8=-5.01910e-003,
A10=-6.00123e-004, A12=1.46593e-004, A14=-7.72897e-006
第17面
K=-3.27599e+000, A3=-7.07506e-002, A4=-1.74522e-001,
A5=1.43329e-001, A6=-3.06257e-002, A8=1.78898e-005,
A10=-9.87526e-005, A12=2.07509e-005, A14=-7.30726e-007
The aspherical coefficients of the lens surfaces of Example 4 are shown in Table 11 below.
[Table 11]
Second side
K = 2.11148e + 000, A4 = -2.95136e-002, A6 = 3.41717e-004,
A8 = 1.75787e-002, A10 = -5.43560e-003, A12 = 2.86848e-003,
A14 = -1.08971e-003
Third side
K = 0.00000e + 000, A4 = 5.74093e-002, A6 = 1.42162e-002,
A8 = 6.36900e-003, A10 = 3.22404e-003
4th page
K = 0.00000e + 000, A4 = 1.03021e-001, A6 = -1.42099e-002,
A8 = 7.97392e-003, A10 = -2.03644e-003, A12 = -1.30793e-003,
A14 = 1.07559e-003
5th page
K = 5.54924e + 000, A4 = 1.36177e-001, A6 = -1.73239e-001,
A8 = 1.46216e-001, A10 = -8.23902e-002, A12 = 2.76774e-002,
A14 = -4.86281e-003
7th page
K = -1.59241e + 001, A4 = -9.35509e-003, A6 = -5.26647e-002,
A8 = 3.17607e-002, A10 = -1.46649e-002, A12 = 6.11984e-003,
A14 = -3.54185e-003
8th page
K = -6.33742e + 000, A3 = -1.03631e-004, A4 = -2.05910e-002,
A5 = 2.44461e-003, A6 = 5.53165e-002, A8 = -1.41665e-001,
A10 = 1.68385e-001, A12 = -1.04094e-001, A14 = 2.61596e-002
10th page
K = 3.16638e + 001, A3 = -2.05322e-002, A4 = 7.70636e-002,
A5 = -2.31548e-001, A6 = 2.25677e-001, A8 = -1.68054e-001,
A10 = 1.33867e-001, A12 = -8.05820e-002, A14 = 2.16353e-002
11th page
K = -7.04758e + 000, A3 = 2.11213e-002, A4 = -1.65440e-001,
A5 = 9.70462e-002, A6 = -5.78489e-002, A8 = 2.33043e-002,
A10 = -9.33734e-003, A12 = 7.06252e-004
12th page
K = 5.61667e + 001, A3 = 7.53586e-002, A4 = -4.84332e-001,
A5 = 4.17171e-001, A6 = -1.98178e-001, A8 = 1.00749e-001,
A10 = -2.87920e-002, A12 = 1.60783e-003
Side 13
K = -5.95526e + 001, A3 = 5.00362e-002, A4 = -3.74655e-001,
A5 = 1.89754e-001, A6 = -1.88143e-003, A8 = 4.26196e-003,
A10 = 9.01876e-004, A12 = -1.34422e-003, A14 = 2.14891e-005
14th page
K = -3.79129e + 000, A3 = 1.28434e-003, A4 = 1.60638e-002,
A5 = -1.04100e-001, A6 = 6.97150e-002, A8 = -3.46793e-002,
A10 = 1.38857e-002, A12 = -2.90033e-003, A14 = 2.33414e-004
15th page
K = -1.78695e + 000, A3 = -6.95183e-003, A4 = 1.02116e-001,
A5 = -3.11562e-002, A6 = -3.29689e-002, A8 = -6.06059e-003,
A10 = 7.19149e-003, A12 = -1.27079e-003, A14 = 5.41600e-005
16th page
K = 8.00000e + 001, A3 = -5.30569e-002, A4 = -2.41895e-001,
A5 = 8.00129e-002, A6 = 3.81682e-002, A8 = -5.01910e-003,
A10 = -6.00123e-004, A12 = 1.46593e-004, A14 = -7.72897e-006
17th page
K = -3.27599e + 000, A3 = -7.07506e-002, A4 = -1.74522e-001,
A5 = 1.43329e-001, A6 = -3.06257e-002, A8 = 1.78898e-005,
A10 = -9.87526e-005, A12 = 2.07509e-005, A14 = -7.30726e-007

実施例4の撮像レンズ10の特性を以下に列挙する。
FL 3.746
Fno 1.43
w 75.42
Ymax 2.921
BF 0.721
TL 5.300
BFa 0.684
TLa 5.263
The characteristics of the imaging lens 10 of Example 4 are listed below.
FL 3.746
Fno 1.43
w 75.42
Ymax 2.921
BF 0.721
TL 5.300
BFa 0.684
TLa 5.263

実施例4の単レンズデータを以下の表12に示す。
〔表12〕
Elem Surfs Focal Length Diameter
1 2- 3 5.0211 2.625
2 4- 5 12.5080 2.537
3 7- 8 -5.2952 2.204
4 10-11 6.5611 2.652
5 12-13 -10.4379 3.158
6 14-15 3.0049 3.879
7 16-17 -2.5307 5.313
The single lens data of Example 4 is shown in Table 12 below.
[Table 12]
Elem Surfs Focal Length Diameter
1 2- 3 5.0211 2.625
2 4--5 12.5080 2.537
3 7-8 -5.2952 2.204
4 10-11 6.5611 2.652
5 12-13 -10.4379 3.158
6 14-15 3.0049 3.879
7 16-17 -2.5307 5.313

図11は、実施例4の撮像レンズ14等の断面図である。撮像レンズ14は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側にゆるい凸面を向けた略平凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けた略平凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置されている。つまり、第3レンズL3の物体側には、開口絞りASとして第2絞り部材FS2が配置されている。第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。具体的には、第1レンズL1の物体側には、第1絞り部材FS1が配置され、第3レンズL3の像側には、第2絞り部材FS2が配置されている。   FIG. 11 is a cross-sectional view of the imaging lens 14 and the like of the fourth embodiment. The imaging lens 14 has, in order from the object side, a substantially convex first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX. An approximately plano-convex second lens L2 having a loose convex surface facing the object side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a concave surface facing the image side, and the periphery of the optical axis AX And a biconvex fourth lens L4 having a positive refractive power, a biconcave fifth lens L5 having a negative refractive power around the optical axis AX, and a biconvex having a positive refractive power around the optical axis AX. A sixth lens L6 and a substantially plano-concave seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2, L3. That is, the second diaphragm member FS2 is arranged as the aperture diaphragm AS on the object side of the third lens L3. A light-shielding stop FS is disposed between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. Specifically, the first diaphragm member FS1 is disposed on the object side of the first lens L1, and the second diaphragm member FS2 is disposed on the image side of the third lens L3.

図12(A)〜12(C)は、実施例4の撮像レンズ14の諸収差図(球面収差、非点収差、歪曲収差)を示し、図12(D)及び12(E)は、実施例4の撮像レンズ14の横収差を示している。   12A to 12C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 14 of Example 4, and FIGS. 12D and 12E show the results. 10 shows lateral aberration of the imaging lens 14 of Example 4. FIG.

〔実施例5〕
実施例5のレンズ面のデータを以下の表13に示す。
〔表13〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.750
2* 2.8425 0.2876 1.54470 56 2.625
3* 10.5346 0.0500 2.535
4* 4.1054 0.5861 1.54470 56 2.552
5* -20.5818 0.0500 2.441
STO INFINITY 0.0000 2.407
7* 1.6442 0.1588 1.64250 22.5 2.260
8* 1.0955 0.3814 2.070
9 FS INFINITY 0.1500 2.100
10* 10.4374 0.4135 1.54470 56 2.228
11* -10.8612 0.2050 2.437
12* -11.5154 0.3240 1.64250 22.5 2.709
13* -70.1387 0.2749 3.121
14* 6.5446 0.6436 1.54470 56 3.323
15* -2.0481 0.2494 3.827
16* 3.2631 0.3159 1.54470 56 4.669
17* 0.9055 0.7000 5.123
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.1034
Example 5
The lens surface data of Example 5 is shown in Table 13 below.
[Table 13]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.750
2 * 2.8425 0.2876 1.54470 56 2.625
3 * 10.5346 0.0500 2.535
4 * 4.1054 0.5861 1.54470 56 2.552
5 * -20.5818 0.0500 2.441
STO INFINITY 0.0000 2.407
7 * 1.6442 0.1588 1.64250 22.5 2.260
8 * 1.0955 0.3814 2.070
9 FS INFINITY 0.1500 2.100
10 * 10.4374 0.4135 1.54470 56 2.228
11 * -10.8612 0.2050 2.437
12 * -11.5154 0.3240 1.64250 22.5 2.709
13 * -70.1387 0.2749 3.121
14 * 6.5446 0.6436 1.54470 56 3.323
15 * -2.0481 0.2494 3.827
16 * 3.2631 0.3159 1.54470 56 4.669
17 * 0.9055 0.7000 5.123
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.1034

実施例5のレンズ面の非球面係数を以下の表14に示す。
〔表14〕
第2面
K=2.45933e+000, A4=-5.64840e-002, A6=1.23880e-003,
A8=1.40164e-002, A10=-8.15057e-003, A12=4.49083e-003,
A14=-1.20273e-003
第3面
K=0.00000e+000, A4=2.84945e-002, A6=-1.54521e-002,
A8=1.61739e-002, A10=7.11214e-004
第4面
K=0.00000e+000, A4=1.18964e-001, A6=-4.85843e-002,
A8=1.67136e-002, A10=2.23414e-003, A12=-3.21920e-003,
A14=9.58706e-004
第5面
K=8.00000e+001, A4=1.21081e-001, A6=-1.57295e-001,
A8=1.19491e-001, A10=-6.71167e-002, A12=2.64905e-002,
A14=-4.86280e-003
第7面
K=-1.19198e+001, A4=-2.43944e-002, A6=-6.54265e-002,
A8=5.52093e-002, A10=-2.07627e-002, A12=1.00626e-002,
A14=-3.54185e-003
第8面
K=-5.36212e+000, A3=2.52605e-003, A4=-3.36521e-002,
A5=3.46266e-003, A6=6.34426e-002, A8=-1.32146e-001,
A10=1.68730e-001, A12=-1.03133e-001, A14=2.59965e-002
第10面
K=7.30826e+001, A3=-2.75937e-002, A4=7.23297e-002,
A5=-2.57373e-001, A6=2.38197e-001, A8=-1.73011e-001,
A10=1.25314e-001, A12=-8.02041e-002, A14=2.07391e-002
第11面
K=5.75496e+001, A3=3.22475e-002, A4=-1.90882e-001,
A5=1.10433e-001, A6=-6.08357e-002, A8=2.03234e-002,
A10=-1.29615e-002, A12=1.67482e-003
第12面
K=7.03938e+001, A3=1.12370e-001, A4=-4.69857e-001,
A5=4.03250e-001, A6=-2.22030e-001, A8=1.06297e-001,
A10=-1.93140e-002, A12=-2.51197e-003
第13面
K=-8.00000e+001, A3=9.49994e-002, A4=-3.41451e-001,
A5=1.44129e-001, A6=-1.14642e-002, A8=1.64381e-002,
A10=1.97668e-003, A12=-2.48220e-003, A14=-3.75961e-005
第14面
K=1.38482e+001, A3=1.96397e-002, A4=-2.70337e-003,
A5=-1.09896e-001, A6=5.58340e-002, A8=-3.04191e-002,
A10=1.60292e-002, A12=-4.53716e-003, A14=4.97797e-004
第15面
K=-1.21948e+001, A3=-1.10948e-001, A4=1.38121e-001,
A5=-4.02449e-002, A6=-3.54958e-002, A8=-1.49037e-003,
A10=7.19664e-003, A12=-1.65384e-003, A14=1.08405e-004
第16面
K=-8.00000e+001, A3=-1.94711e-001, A4=-1.30937e-001,
A5=7.42678e-002, A6=2.86079e-002, A8=-5.14203e-003,
A10=-4.66063e-004, A12=1.40143e-004, A14=-7.90282e-006
第17面
K=-5.17425e+000, A3=-1.19250e-001, A4=-8.11730e-002,
A5=1.10963e-001, A6=-3.49510e-002, A8=1.10574e-003,
A10=-1.27659e-004, A12=1.59180e-005, A14=-2.25568e-007
The aspheric coefficients of the lens surfaces of Example 5 are shown in Table 14 below.
[Table 14]
Second side
K = 2.45933e + 000, A4 = -5.64840e-002, A6 = 1.23880e-003,
A8 = 1.40164e-002, A10 = -8.15057e-003, A12 = 4.49083e-003,
A14 = -1.20273e-003
Third side
K = 0.00000e + 000, A4 = 2.84945e-002, A6 = -1.54521e-002,
A8 = 1.61739e-002, A10 = 7.11214e-004
4th page
K = 0.00000e + 000, A4 = 1.18964e-001, A6 = -4.85843e-002,
A8 = 1.67136e-002, A10 = 2.23414e-003, A12 = -3.21920e-003,
A14 = 9.58706e-004
5th page
K = 8.00000e + 001, A4 = 1.21081e-001, A6 = -1.57295e-001,
A8 = 1.19491e-001, A10 = -6.71167e-002, A12 = 2.64905e-002,
A14 = -4.86280e-003
7th page
K = -1.19198e + 001, A4 = -2.43944e-002, A6 = -6.54265e-002,
A8 = 5.52093e-002, A10 = -2.07627e-002, A12 = 1.00626e-002,
A14 = -3.54185e-003
8th page
K = -5.36212e + 000, A3 = 2.52605e-003, A4 = -3.36521e-002,
A5 = 3.46266e-003, A6 = 6.34426e-002, A8 = -1.32146e-001,
A10 = 1.68730e-001, A12 = -1.03133e-001, A14 = 2.59965e-002
10th page
K = 7.30826e + 001, A3 = -2.75937e-002, A4 = 7.23297e-002,
A5 = -2.57373e-001, A6 = 2.38197e-001, A8 = -1.73011e-001,
A10 = 1.25314e-001, A12 = -8.02041e-002, A14 = 2.07391e-002
11th page
K = 5.75496e + 001, A3 = 3.22475e-002, A4 = -1.90882e-001,
A5 = 1.10433e-001, A6 = -6.08357e-002, A8 = 2.03234e-002,
A10 = -1.29615e-002, A12 = 1.67482e-003
12th page
K = 7.03938e + 001, A3 = 1.12370e-001, A4 = -4.69857e-001,
A5 = 4.03250e-001, A6 = -2.22030e-001, A8 = 1.06297e-001,
A10 = -1.93140e-002, A12 = -2.51197e-003
Side 13
K = -8.00000e + 001, A3 = 9.49994e-002, A4 = -3.41451e-001,
A5 = 1.44129e-001, A6 = -1.14642e-002, A8 = 1.64381e-002,
A10 = 1.97668e-003, A12 = -2.48220e-003, A14 = -3.75961e-005
14th page
K = 1.38482e + 001, A3 = 1.96397e-002, A4 = -2.70337e-003,
A5 = -1.09896e-001, A6 = 5.58340e-002, A8 = -3.04191e-002,
A10 = 1.60292e-002, A12 = -4.53716e-003, A14 = 4.97797e-004
15th page
K = -1.21948e + 001, A3 = -1.10948e-001, A4 = 1.38121e-001,
A5 = -4.02449e-002, A6 = -3.54958e-002, A8 = -1.49037e-003,
A10 = 7.19664e-003, A12 = -1.65384e-003, A14 = 1.08405e-004
16th page
K = -8.00000e + 001, A3 = -1.94711e-001, A4 = -1.30937e-001,
A5 = 7.42678e-002, A6 = 2.86079e-002, A8 = -5.14203e-003,
A10 = -4.66063e-004, A12 = 1.40143e-004, A14 = -7.90282e-006
17th page
K = -5.17425e + 000, A3 = -1.19250e-001, A4 = -8.11730e-002,
A5 = 1.10963e-001, A6 = -3.49510e-002, A8 = 1.10574e-003,
A10 = -1.27659e-004, A12 = 1.59180e-005, A14 = -2.25568e-007

実施例5の撮像レンズ10の特性を以下に列挙する。
FL 3.785
Fno 1.44
w 74.14
Ymax 2.921
BF 0.913
TL 5.003
BFa 0.876
TLa 4.966
The characteristics of the imaging lens 10 of Example 5 are listed below.
FL 3.785
Fno 1.44
w 74.14
Ymax 2.921
BF 0.913
TL 5.003
BFa 0.876
TLa 4.966

実施例5の単レンズデータを以下の表15に示す。
〔表15〕
Elem Surfs Focal Length Diameter
1 2- 3 7.0538 2.625
2 4- 5 6.3366 2.552
3 7- 8 -5.7618 2.260
4 10-11 9.8388 2.437
5 12-13 -21.4899 3.121
6 14-15 2.9415 3.827
7 16-17 -2.4151 5.123
The single lens data of Example 5 is shown in Table 15 below.
[Table 15]
Elem Surfs Focal Length Diameter
1 2- 3 7.0538 2.625
2 4--5 6.3366 2.552
3 7-8 -5.7618 2.260
4 10-11 9.8388 2.437
5 12-13 -21.4899 3.121
6 14-15 2.9415 3.827
7 16-17 -2.4151 5.123

図13は、実施例5の撮像レンズ15等の断面図である。撮像レンズ15は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凹面を向けた略凹平の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置されている。つまり、第3レンズL3の物体側には、開口絞りASとして第2絞り部材FS2が配置されている。第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。具体的には、第1レンズL1の物体側には、第1絞り部材FS1が配置され、第3レンズL3の像側には、第2絞り部材FS2が配置されている。   FIG. 13 is a cross-sectional view of the imaging lens 15 and the like according to the fifth embodiment. The imaging lens 15 includes, in order from the object side, a meniscus first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a concave surface facing the image side, and a positive lens around the optical axis AX. A biconvex fourth lens L4 having refractive power, a substantially concave fifth lens L5 having a weak negative refractive power around the optical axis AX and having a concave surface facing the object side, and positive around the optical axis AX A biconvex sixth lens L6 having a refractive power and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2, L3. That is, the second diaphragm member FS2 is arranged as the aperture diaphragm AS on the object side of the third lens L3. A light-shielding stop FS is disposed between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. Specifically, the first diaphragm member FS1 is disposed on the object side of the first lens L1, and the second diaphragm member FS2 is disposed on the image side of the third lens L3.

図14(A)〜14(C)は、実施例5の撮像レンズ15の諸収差図(球面収差、非点収差、歪曲収差)を示し、図14(D)及び14(E)は、実施例5の撮像レンズ15の横収差を示している。   14A to 14C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 15 of Example 5, and FIGS. 14D and 14E show the results. 10 shows lateral aberrations of the imaging lens 15 of Example 5. FIG.

〔実施例6〕
実施例6のレンズ面のデータを以下の表16に示す。
〔表16〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 2.6382 0.3151 1.54470 56 2.625
3* 13.0451 0.0500 2.560
4* 4.1532 0.6042 1.54470 56 2.565
5* -24.1768 0.1000 2.447
STO INFINITY -0.0500 2.343
7* 1.7267 0.1554 1.64250 22.5 2.235
8* 1.1061 0.4257 2.003
9 FS INFINITY 0.1500 2.080
10* 10.8150 0.4020 1.54470 56 2.299
11* -17.4966 0.1725 2.560
12* -13.0397 0.2500 1.64250 22.5 2.833
13* -24.3648 0.3079 3.096
14* 7.5523 0.4919 1.54470 56 3.395
15* -2.1375 0.2544 3.795
16* 3.0841 0.3093 1.54470 56 4.618
17* 0.9108 0.7000 5.004
18 INFINITY 0.1100 1.51633 64.1 5.757
19 INFINITY 0.1009
Example 6
The lens surface data of Example 6 is shown in Table 16 below.
[Table 16]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 2.6382 0.3151 1.54470 56 2.625
3 * 13.0451 0.0500 2.560
4 * 4.1532 0.6042 1.54470 56 2.565
5 * -24.1768 0.1000 2.447
STO INFINITY -0.0500 2.343
7 * 1.7267 0.1554 1.64250 22.5 2.235
8 * 1.1061 0.4257 2.003
9 FS INFINITY 0.1500 2.080
10 * 10.8150 0.4020 1.54470 56 2.299
11 * -17.4966 0.1725 2.560
12 * -13.0397 0.2500 1.64250 22.5 2.833
13 * -24.3648 0.3079 3.096
14 * 7.5523 0.4919 1.54470 56 3.395
15 * -2.1375 0.2544 3.795
16 * 3.0841 0.3093 1.54470 56 4.618
17 * 0.9108 0.7000 5.004
18 INFINITY 0.1100 1.51633 64.1 5.757
19 INFINITY 0.1009

実施例6のレンズ面の非球面係数を以下の表17に示す。
〔表17〕
第2面
K=2.03116e+000, A4=-6.56064e-002, A6=-9.47667e-003,
A8=1.29845e-002, A10=-7.34348e-003, A12=5.03976e-003,
A14=-1.49643e-003
第3面
K=0.00000e+000, A4=1.62399e-002, A6=-2.17529e-002,
A8=1.59065e-002, A10=2.76162e-004
第4面
K=0.00000e+000, A4=1.16481e-001, A6=-4.19262e-002,
A8=1.62885e-002, A10=3.62132e-004, A12=-3.16641e-003,
A14=1.15655e-003
第5面
K=8.00000e+001, A4=1.15928e-001, A6=-1.58272e-001,
A8=1.18731e-001, A10=-6.70291e-002, A12=2.67578e-002,
A14=-4.86297e-003
第7面
K=-1.36106e+001, A4=-3.54561e-002, A6=-4.45993e-002,
A8=5.44551e-002, A10=-2.50577e-002, A12=1.13259e-002,
A14=-3.54209e-003
第8面
K=-5.67795e+000, A3=6.93725e-003, A4=-2.87158e-002,
A5=9.76236e-003, A6=7.14634e-002, A8=-1.22123e-001,
A10=1.67693e-001, A12=-1.06336e-001, A14=2.79996e-002
第10面
K=2.01392e+001, A3=-2.21876e-002, A4=6.94020e-002,
A5=-2.49838e-001, A6=2.42710e-001, A8=-1.73201e-001,
A10=1.32080e-001, A12=-7.56022e-002, A14=1.88769e-002
第11面
K=-8.00000e+001, A3=3.74533e-002, A4=-1.82862e-001,
A5=1.09505e-001, A6=-6.57678e-002, A8=2.57443e-002,
A10=-1.46604e-002, A12=2.96350e-003
第12面
K=7.84932e+001, A3=1.18753e-001, A4=-4.75527e-001,
A5=4.01828e-001, A6=-2.26950e-001, A8=1.02720e-001,
A10=-1.77362e-002, A12=-2.10829e-003
第13面
K=-7.85381e+001, A3=9.13893e-002, A4=-3.34887e-001,
A5=1.27675e-001, A6=-1.43744e-002, A8=2.16811e-002,
A10=2.17996e-003, A12=-2.93847e-003, A14=1.39523e-005
第14面
K=1.75964e+001, A3=1.86480e-002, A4=2.60090e-002,
A5=-1.07705e-001, A6=4.43507e-002, A8=-2.90545e-002,
A10=1.63260e-002, A12=-4.67132e-003, A14=5.24325e-004
第15面
K=-8.96742e+000, A3=-1.02219e-001, A4=1.95108e-001,
A5=-7.87731e-002, A6=-3.64803e-002, A8=1.32953e-003,
A10=6.95241e-003, A12=-1.74240e-003, A14=1.25095e-004
第16面
K=-7.99995e+001, A3=-2.00086e-001, A4=-1.29172e-001,
A5=7.80963e-002, A6=2.75812e-002, A8=-5.40552e-003,
A10=-4.50625e-004, A12=1.45536e-004, A14=-8.37510e-006
第17面
K=-5.18659e+000, A3=-1.42142e-001, A4=-5.81749e-002,
A5=1.01091e-001, A6=-3.31283e-002, A8=7.74213e-004,
A10=-9.90054e-005, A12=1.39436e-005, A14=2.40490e-007
Table 17 below shows the aspheric coefficients of the lens surfaces of Example 6.
[Table 17]
Second side
K = 2.03116e + 000, A4 = -6.56064e-002, A6 = -9.47667e-003,
A8 = 1.29845e-002, A10 = -7.34348e-003, A12 = 5.03976e-003,
A14 = -1.49643e-003
Third side
K = 0.00000e + 000, A4 = 1.62399e-002, A6 = -2.17529e-002,
A8 = 1.59065e-002, A10 = 2.76162e-004
4th page
K = 0.00000e + 000, A4 = 1.16481e-001, A6 = -4.19262e-002,
A8 = 1.62885e-002, A10 = 3.62132e-004, A12 = -3.16641e-003,
A14 = 1.15655e-003
5th page
K = 8.00000e + 001, A4 = 1.15928e-001, A6 = -1.58272e-001,
A8 = 1.18731e-001, A10 = -6.70291e-002, A12 = 2.67578e-002,
A14 = -4.86297e-003
7th page
K = -1.36106e + 001, A4 = -3.54561e-002, A6 = -4.45993e-002,
A8 = 5.44551e-002, A10 = -2.50577e-002, A12 = 1.13259e-002,
A14 = -3.54209e-003
8th page
K = -5.67795e + 000, A3 = 6.93725e-003, A4 = -2.87158e-002,
A5 = 9.76236e-003, A6 = 7.14634e-002, A8 = -1.22123e-001,
A10 = 1.67693e-001, A12 = -1.06336e-001, A14 = 2.79996e-002
10th page
K = 2.01392e + 001, A3 = -2.21876e-002, A4 = 6.94020e-002,
A5 = -2.49838e-001, A6 = 2.42710e-001, A8 = -1.73201e-001,
A10 = 1.32080e-001, A12 = -7.56022e-002, A14 = 1.88769e-002
11th page
K = -8.00000e + 001, A3 = 3.74533e-002, A4 = -1.82862e-001,
A5 = 1.09505e-001, A6 = -6.57678e-002, A8 = 2.57443e-002,
A10 = -1.46604e-002, A12 = 2.96350e-003
12th page
K = 7.84932e + 001, A3 = 1.18753e-001, A4 = -4.75527e-001,
A5 = 4.01828e-001, A6 = -2.26950e-001, A8 = 1.02720e-001,
A10 = -1.77362e-002, A12 = -2.10829e-003
Side 13
K = -7.85381e + 001, A3 = 9.13893e-002, A4 = -3.34887e-001,
A5 = 1.27675e-001, A6 = -1.43744e-002, A8 = 2.16811e-002,
A10 = 2.17996e-003, A12 = -2.93847e-003, A14 = 1.39523e-005
14th page
K = 1.75964e + 001, A3 = 1.86480e-002, A4 = 2.60090e-002,
A5 = -1.07705e-001, A6 = 4.43507e-002, A8 = -2.90545e-002,
A10 = 1.63260e-002, A12 = -4.67132e-003, A14 = 5.24325e-004
15th page
K = -8.96742e + 000, A3 = -1.02219e-001, A4 = 1.95108e-001,
A5 = -7.87731e-002, A6 = -3.64803e-002, A8 = 1.32953e-003,
A10 = 6.95241e-003, A12 = -1.74240e-003, A14 = 1.25095e-004
16th page
K = -7.99995e + 001, A3 = -2.00086e-001, A4 = -1.29172e-001,
A5 = 7.80963e-002, A6 = 2.75812e-002, A8 = -5.40552e-003,
A10 = -4.50625e-004, A12 = 1.45536e-004, A14 = -8.37510e-006
17th page
K = -5.18659e + 000, A3 = -1.42142e-001, A4 = -5.81749e-002,
A5 = 1.01091e-001, A6 = -3.31283e-002, A8 = 7.74213e-004,
A10 = -9.90054e-005, A12 = 1.39436e-005, A14 = 2.40490e-007

実施例6の撮像レンズ10の特性を以下に列挙する。
FL 3.786
Fno 1.44
w 74.37
Ymax 2.921
BF 0.911
TL 4.849
BFa 0.873
TLa 4.812
The characteristics of the imaging lens 10 of Example 6 are listed below.
FL 3.786
Fno 1.44
w 74.37
Ymax 2.921
BF 0.911
TL 4.849
BFa 0.873
TLa 4.812

実施例6の単レンズデータを以下の表18に示す。
〔表18〕
Elem Surfs Focal Length Diameter
1 2- 3 6.0072 2.625
2 4- 5 6.5563 2.565
3 7- 8 -5.3095 2.235
4 10-11 12.3321 2.560
5 12-13 -44.0432 3.096
6 14-15 3.1143 3.795
7 16-17 -2.4981 5.004
The single lens data of Example 6 is shown in Table 18 below.
[Table 18]
Elem Surfs Focal Length Diameter
1 2- 3 6.0072 2.625
2 4- 5 6.5563 2.565
3 7-8 -5.3095 2.235
4 10-11 12.3321 2.560
5 12-13 -44.0432 3.096
6 14-15 3.1143 3.795
7 16-17 -2.4981 5.004

図15は、実施例6の撮像レンズ16等の断面図である。撮像レンズ16は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凹面を向けた略凹平の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置されている。つまり、第3レンズL3の物体側には、開口絞りASとして第2絞り部材FS2が配置されている。第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。具体的には、第1レンズL1の物体側には、第1絞り部材FS1が配置され、第3レンズL3の像側には、第2絞り部材FS2が配置されている。   FIG. 15 is a cross-sectional view of the imaging lens 16 and the like according to the sixth embodiment. The imaging lens 16 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a concave surface facing the image side, and a positive lens around the optical axis AX. A biconvex fourth lens L4 having refractive power, a substantially concave fifth lens L5 having a weak negative refractive power around the optical axis AX and having a concave surface facing the object side, and positive around the optical axis AX A biconvex sixth lens L6 having a refractive power and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2, L3. That is, the second diaphragm member FS2 is arranged as the aperture diaphragm AS on the object side of the third lens L3. A light-shielding stop FS is disposed between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. Specifically, the first diaphragm member FS1 is disposed on the object side of the first lens L1, and the second diaphragm member FS2 is disposed on the image side of the third lens L3.

図16(A)〜16(C)は、実施例6の撮像レンズ16の諸収差図(球面収差、非点収差、歪曲収差)を示し、図16(D)及び16(E)は、実施例6の撮像レンズ16の横収差を示している。   16A to 16C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 16 of Example 6, and FIGS. 16D and 16E show the examples. The lateral aberration of the imaging lens 16 of Example 6 is shown.

〔実施例7〕
実施例7のレンズ面のデータを以下の表19に示す。
〔表19〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.800
2* 3.3015 0.2057 1.54470 56 2.485
3* 11.1318 0.2981 2.325
STO INFINITY -0.2481 2.333
5* 4.2322 0.9081 1.54470 56 2.344
6* -31.4680 0.0500 2.103
7* 1.8190 0.1500 1.64250 22.5 2.020
8* 1.2154 0.3467 2.148
9 FS INFINITY 0.0500 2.280
10* 7.4298 0.4301 1.54470 56 2.340
11* -10.1882 0.1490 2.516
12* -11.5232 0.2000 1.64250 22.5 2.663
13* -25.8224 0.4341 2.899
14* 4.9352 0.4434 1.54470 56 3.451
15* -3.0928 0.3600 3.842
16* 3.1634 0.3129 1.54470 56 4.697
17* 0.9811 0.4000 5.044
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.4000
Example 7
The lens surface data of Example 7 is shown in Table 19 below.
[Table 19]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.800
2 * 3.3015 0.2057 1.54470 56 2.485
3 * 11.1318 0.2981 2.325
STO INFINITY -0.2481 2.333
5 * 4.2322 0.9081 1.54470 56 2.344
6 * -31.4680 0.0500 2.103
7 * 1.8190 0.1500 1.64250 22.5 2.020
8 * 1.2154 0.3467 2.148
9 FS INFINITY 0.0500 2.280
10 * 7.4298 0.4301 1.54470 56 2.340
11 * -10.1882 0.1490 2.516
12 * -11.5232 0.2000 1.64250 22.5 2.663
13 * -25.8224 0.4341 2.899
14 * 4.9352 0.4434 1.54470 56 3.451
15 * -3.0928 0.3600 3.842
16 * 3.1634 0.3129 1.54470 56 4.697
17 * 0.9811 0.4000 5.044
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.4000

実施例7のレンズ面の非球面係数を以下の表20に示す。
〔表20〕
第2面
K=3.36105e+000, A4=-7.94870e-002, A6=2.07951e-002,
A8=1.39213e-002, A10=-9.27126e-003, A12=3.54083e-003,
A14=-8.51627e-004
第3面
K=0.00000e+000, A4=3.05799e-002, A6=-1.56270e-002,
A8=2.20118e-002, A10=-1.97733e-003
第5面
K=0.00000e+000, A4=1.23196e-001, A6=-5.51921e-002,
A8=1.56997e-002, A10=4.24602e-003, A12=-3.69900e-003,
A14=9.01883e-004
第6面 K=-1.06179e+001, A4=9.30475e-002, A6=-1.54311e-001,
A8=1.20759e-001, A10=-6.73988e-002, A12=2.60256e-002,
A14=-4.86280e-003
第7面
K=-1.35160e+001, A4=-2.80945e-002, A6=-9.17061e-002,
A8=5.92051e-002, A10=-1.44739e-002, A12=6.11980e-003,
A14=-3.54185e-003
第8面
K=-5.86017e+000, A3=-3.27589e-003, A4=-3.49476e-002,
A5=-6.35227e-003, A6=5.37366e-002, A8=-1.28642e-001,
A10=1.71627e-001, A12=-1.06865e-001, A14=2.58046e-002
第10面
K=3.42888e+001, A3=-1.82373e-002, A4=6.47450e-002,
A5=-2.59149e-001, A6=2.56719e-001, A8=-1.73502e-001,
A10=1.24035e-001, A12=-7.23615e-002, A14=1.77241e-002
第11面
K=2.26036e+001, A3=4.81347e-002, A4=-1.87755e-001,
A5=9.87501e-002, A6=-5.65569e-002, A8=3.33831e-002,
A10=-1.47994e-002, A12=1.32210e-003
第12面
K=7.28701e+001, A3=1.00275e-001, A4=-4.90404e-001,
A5=3.98660e-001, A6=-2.02854e-001, A8=1.13571e-001,
A10=-2.30865e-002, A12=-2.84567e-003
第13面
K=-8.00000e+001, A3=5.15310e-002, A4=-3.51709e-001,
A5=1.76313e-001, A6=-1.08328e-002, A8=1.33332e-002,
A10=3.67075e-003, A12=-2.83428e-003, A14=-2.60794e-004
第14面
K=4.57265e+000, A3=-2.41068e-002, A4=5.40067e-002,
A5=-1.29959e-001, A6=7.31899e-002, A8=-3.36364e-002,
A10=1.41972e-002, A12=-4.00626e-003, A14=5.31717e-004
第15面
K=-4.25601e+001, A3=-1.19694e-001, A4=1.11706e-001,
A5=-4.60858e-003, A6=-3.48103e-002, A8=-6.06970e-003,
A10=7.22230e-003, A12=-1.47390e-003, A14=8.72814e-005
第16面
K=-4.85199e+001, A3=-1.90054e-001, A4=-1.36306e-001,
A5=7.22141e-002, A6=2.95063e-002, A8=-4.86806e-003,
A10=-4.66772e-004, A12=1.31777e-004, A14=-7.17900e-006
第17面
K=-5.31135e+000, A3=-1.06034e-001, A4=-8.68173e-002,
A5=1.09683e-001, A6=-3.44811e-002, A8=1.51053e-003,
A10=-1.69982e-004, A12=4.55135e-006, A14=1.54660e-006
Table 20 below shows the aspheric coefficients of the lens surfaces of Example 7.
[Table 20]
Second side
K = 3.36105e + 000, A4 = -7.94870e-002, A6 = 2.07951e-002,
A8 = 1.39213e-002, A10 = -9.27126e-003, A12 = 3.54083e-003,
A14 = -8.51627e-004
Third side
K = 0.00000e + 000, A4 = 3.05799e-002, A6 = -1.56270e-002,
A8 = 2.20118e-002, A10 = -1.97733e-003
5th page
K = 0.00000e + 000, A4 = 1.23196e-001, A6 = -5.51921e-002,
A8 = 1.56997e-002, A10 = 4.24602e-003, A12 = -3.69900e-003,
A14 = 9.01883e-004
6th surface K = -1.06179e + 001, A4 = 9.30475e-002, A6 = -1.54311e-001,
A8 = 1.20759e-001, A10 = -6.73988e-002, A12 = 2.60256e-002,
A14 = -4.86280e-003
7th page
K = -1.35160e + 001, A4 = -2.80945e-002, A6 = -9.17061e-002,
A8 = 5.92051e-002, A10 = -1.44739e-002, A12 = 6.11980e-003,
A14 = -3.54185e-003
8th page
K = -5.86017e + 000, A3 = -3.27589e-003, A4 = -3.49476e-002,
A5 = -6.35227e-003, A6 = 5.37366e-002, A8 = -1.28642e-001,
A10 = 1.71627e-001, A12 = -1.06865e-001, A14 = 2.58046e-002
10th page
K = 3.42888e + 001, A3 = -1.82373e-002, A4 = 6.47450e-002,
A5 = -2.59149e-001, A6 = 2.56719e-001, A8 = -1.73502e-001,
A10 = 1.24035e-001, A12 = -7.23615e-002, A14 = 1.77241e-002
11th page
K = 2.26036e + 001, A3 = 4.81347e-002, A4 = -1.87755e-001,
A5 = 9.87501e-002, A6 = -5.65569e-002, A8 = 3.33831e-002,
A10 = -1.47994e-002, A12 = 1.32210e-003
12th page
K = 7.28701e + 001, A3 = 1.00275e-001, A4 = -4.90404e-001,
A5 = 3.98660e-001, A6 = -2.02854e-001, A8 = 1.13571e-001,
A10 = -2.30865e-002, A12 = -2.84567e-003
Side 13
K = -8.00000e + 001, A3 = 5.15310e-002, A4 = -3.51709e-001,
A5 = 1.76313e-001, A6 = -1.08328e-002, A8 = 1.33332e-002,
A10 = 3.67075e-003, A12 = -2.83428e-003, A14 = -2.60794e-004
14th page
K = 4.57265e + 000, A3 = -2.41068e-002, A4 = 5.40067e-002,
A5 = -1.29959e-001, A6 = 7.31899e-002, A8 = -3.36364e-002,
A10 = 1.41972e-002, A12 = -4.00626e-003, A14 = 5.31717e-004
15th page
K = -4.25601e + 001, A3 = -1.19694e-001, A4 = 1.11706e-001,
A5 = -4.60858e-003, A6 = -3.48103e-002, A8 = -6.06970e-003,
A10 = 7.22230e-003, A12 = -1.47390e-003, A14 = 8.72814e-005
16th page
K = -4.85199e + 001, A3 = -1.90054e-001, A4 = -1.36306e-001,
A5 = 7.22141e-002, A6 = 2.95063e-002, A8 = -4.86806e-003,
A10 = -4.66772e-004, A12 = 1.31777e-004, A14 = -7.17900e-006
17th page
K = -5.31135e + 000, A3 = -1.06034e-001, A4 = -8.68173e-002,
A5 = 1.09683e-001, A6 = -3.44811e-002, A8 = 1.51053e-003,
A10 = -1.69982e-004, A12 = 4.55135e-006, A14 = 1.54660e-006

実施例7の撮像レンズ10の特性を以下に列挙する。
FL 3.778
Fno 1.60
w 75.42
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.873
TLa 4.963
The characteristics of the imaging lens 10 of Example 7 are listed below.
FL 3.778
Fno 1.60
w 75.42
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.873
TLa 4.963

実施例7の単レンズデータを以下の表21に示す。
〔表21〕
Elem Surfs Focal Length Diameter
1 2- 3 8.5376 2.485
2 5- 6 6.9107 2.344
3 7- 8 -6.3141 2.148
4 10-11 7.9564 2.516
5 12-13 -32.5660 2.899
6 14-15 3.5599 3.842
7 16-17 -2.7498 5.044
The single lens data of Example 7 is shown in Table 21 below.
[Table 21]
Elem Surfs Focal Length Diameter
1 2- 3 8.5376 2.485
2 5- 6 6.9107 2.344
3 7-8 -6.3141 2.148
4 10-11 7.9564 2.516
5 12-13 -32.5660 2.899
6 14-15 3.5599 3.842
7 16-17 -2.7498 5.044

図17は、実施例7の撮像レンズ17等の断面図である。撮像レンズ17は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凹面を向けた略凹平の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置されている。第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。具体的には、第1レンズL1の物体側には、第1絞り部材FS1が配置され、第3レンズL3の像側には、第2絞り部材FS2が配置されている。   FIG. 17 is a cross-sectional view of the imaging lens 17 and the like of the seventh embodiment. The imaging lens 17 includes, in order from the object side, a meniscus first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a concave surface facing the image side, and a positive lens around the optical axis AX. A biconvex fourth lens L4 having refractive power, a substantially concave fifth lens L5 having a weak negative refractive power around the optical axis AX and having a concave surface facing the object side, and positive around the optical axis AX A biconvex sixth lens L6 having a refractive power and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2. A light-shielding stop FS is disposed between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. Specifically, the first diaphragm member FS1 is disposed on the object side of the first lens L1, and the second diaphragm member FS2 is disposed on the image side of the third lens L3.

図18(A)〜18(C)は、実施例7の撮像レンズ17の諸収差図(球面収差、非点収差、歪曲収差)を示し、図18(D)及び18(E)は、実施例7の撮像レンズ17の横収差を示している。   18A to 18C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 17 of Example 7, and FIGS. 18D and 18E show the examples. 10 shows lateral aberration of the imaging lens 17 of Example 7. FIG.

〔実施例8〕
実施例8のレンズ面のデータを以下の表22に示す。
〔表22〕
面番号 r d nd vd eff. dia.
STO INFINITY 0.0000 2.625
2* 12.7631 0.2435 1.54470 56 2.625
3* -5.4843 0.0500 2.574
4* 9.0345 0.5529 1.54470 56 2.650
5* -12.5803 0.0500 2.597
6* 1.3123 0.1512 1.63469 23.9 2.362
7* 0.9809 0.4167 2.281
8 FS INFINITY 0.0500 2.340
9* 7.7483 0.5607 1.54470 56 2.403
10* -6.9181 0.1807 2.621
11* -12.6546 0.2029 1.63469 23.9 2.826
12* 7.7098 0.2989 3.080
13* 3.2773 0.7704 1.54470 56 3.394
14* -2.7895 0.3447 3.860
15* 1.6964 0.3174 1.54470 56 4.780
16* 0.8038 0.7000 5.268
17 INFINITY 0.1100 1.51633 64.1 5.753
18 INFINITY 0.1000
Example 8
The lens surface data of Example 8 is shown in Table 22 below.
[Table 22]
Surface number rd nd vd eff.dia.
STO INFINITY 0.0000 2.625
2 * 12.7631 0.2435 1.54470 56 2.625
3 * -5.4843 0.0500 2.574
4 * 9.0345 0.5529 1.54470 56 2.650
5 * -12.5803 0.0500 2.597
6 * 1.3123 0.1512 1.63469 23.9 2.362
7 * 0.9809 0.4167 2.281
8 FS INFINITY 0.0500 2.340
9 * 7.7483 0.5607 1.54470 56 2.403
10 * -6.9181 0.1807 2.621
11 * -12.6546 0.2029 1.63469 23.9 2.826
12 * 7.7098 0.2989 3.080
13 * 3.2773 0.7704 1.54470 56 3.394
14 * -2.7895 0.3447 3.860
15 * 1.6964 0.3174 1.54470 56 4.780
16 * 0.8038 0.7000 5.268
17 INFINITY 0.1100 1.51633 64.1 5.753
18 INFINITY 0.1000

実施例8のレンズ面の非球面係数を以下の表23に示す。
〔表23〕
第2面
K=-8.00000e+001, A4=-7.48850e-002, A6=6.33439e-002,
A8=6.15877e-003, A10=-1.76732e-002, A12=7.02102e-003,
A14=-1.09000e-003
第3面
K=0.00000e+000, A4=4.85267e-002, A6=8.42381e-003,
A8=1.31801e-002, A10=-4.45043e-003
第4面
K=0.00000e+000, A4=1.55158e-001, A6=-8.42838e-002,
A8=2.37956e-002, A10=4.07474e-003, A12=-4.23186e-003,
A14=7.28622e-004
第5面
K=3.67867e+001, A4=9.08050e-002, A6=-1.45772e-001,
A8=1.28885e-001, A10=-7.77015e-002, A12=2.89308e-002,
A14=-4.86280e-003
第6面
K=-6.97649e+000, A4=1.05634e-002, A6=-1.00130e-001,
A8=5.43288e-002, A10=-1.85670e-002, A12=9.55016e-003,
A14=-3.54185e-003
第7面
K=-3.94862e+000, A3=-2.59698e-003, A4=-2.62087e-002,
A5=6.06741e-003, A6=5.23030e-002, A8=-1.57099e-001,
A10=1.72952e-001, A12=-9.17431e-002, A14=1.92141e-002
第9面
K=3.66418e+001, A3=-1.45238e-002, A4=7.28277e-002,
A5=-2.43294e-001, A6=2.47363e-001, A8=-1.77780e-001,
A10=1.33870e-001, A12=-7.54842e-002, A14=1.58978e-002
第10面
K=-6.20010e+001, A3=5.12275e-002, A4=-1.72624e-001,
A5=9.19663e-002, A6=-6.96915e-002, A8=2.91927e-002,
A10=-1.07735e-002, A12=2.59681e-004
第11面
K=7.72015e+001, A3=1.13745e-001, A4=-4.78981e-001,
A5=3.97688e-001, A6=-2.10616e-001, A8=1.05312e-001,
A10=-2.45212e-002, A12=3.26595e-004
第12面
K=2.18339e+001, A3=5.27999e-002, A4=-3.67919e-001,
A5=1.73977e-001, A6=-9.16990e-003, A8=1.33268e-002,
A10=2.47047e-003, A12=-2.98596e-003, A14=1.55616e-004
第13面
K=2.33931e+000, A3=-2.71900e-002, A4=2.93736e-002,
A5=-1.34640e-001, A6=8.36348e-002, A8=-3.59132e-002,
A10=1.47597e-002, A12=-3.49934e-003, A14=3.03570e-004
第14面
K=-1.34903e+001, A3=-9.56336e-002, A4=8.04709e-002,
A5=3.58988e-003, A6=-3.11515e-002, A8=-6.77177e-003,
A10=7.14834e-003, A12=-1.42848e-003, A14=8.21393e-005
第15面
K=-1.35283e+001, A3=-2.18794e-001, A4=-1.36817e-001,
A5=7.20456e-002, A6=3.00213e-002, A8=-4.72429e-003,
A10=-4.67307e-004, A12=1.25999e-004, A14=-6.74112e-006
第16面
K=-4.17944e+000, A3=-1.21792e-001, A4=-8.51573e-002,
A5=1.12526e-001, A6=-3.48332e-002, A8=1.48839e-003,
A10=-1.36324e-004, A12=7.15732e-006, A14=3.36690e-007
Table 23 below shows the aspheric coefficients of the lens surfaces of Example 8.
[Table 23]
Second side
K = -8.00000e + 001, A4 = -7.48850e-002, A6 = 6.33439e-002,
A8 = 6.15877e-003, A10 = -1.76732e-002, A12 = 7.02102e-003,
A14 = -1.09000e-003
Third side
K = 0.00000e + 000, A4 = 4.85267e-002, A6 = 8.42381e-003,
A8 = 1.31801e-002, A10 = -4.45043e-003
4th page
K = 0.00000e + 000, A4 = 1.55158e-001, A6 = -8.42838e-002,
A8 = 2.37956e-002, A10 = 4.07474e-003, A12 = -4.23186e-003,
A14 = 7.28622e-004
5th page
K = 3.67867e + 001, A4 = 9.08050e-002, A6 = -1.45772e-001,
A8 = 1.28885e-001, A10 = -7.77015e-002, A12 = 2.89308e-002,
A14 = -4.86280e-003
6th page
K = -6.97649e + 000, A4 = 1.05634e-002, A6 = -1.00130e-001,
A8 = 5.43288e-002, A10 = -1.85670e-002, A12 = 9.55016e-003,
A14 = -3.54185e-003
7th page
K = -3.94862e + 000, A3 = -2.59698e-003, A4 = -2.62087e-002,
A5 = 6.06741e-003, A6 = 5.23030e-002, A8 = -1.57099e-001,
A10 = 1.72952e-001, A12 = -9.17431e-002, A14 = 1.92141e-002
9th page
K = 3.66418e + 001, A3 = -1.45238e-002, A4 = 7.28277e-002,
A5 = -2.43294e-001, A6 = 2.47363e-001, A8 = -1.77780e-001,
A10 = 1.33870e-001, A12 = -7.54842e-002, A14 = 1.58978e-002
10th page
K = -6.20010e + 001, A3 = 5.12275e-002, A4 = -1.72624e-001,
A5 = 9.19663e-002, A6 = -6.96915e-002, A8 = 2.91927e-002,
A10 = -1.07735e-002, A12 = 2.59681e-004
11th page
K = 7.72015e + 001, A3 = 1.13745e-001, A4 = -4.78981e-001,
A5 = 3.97688e-001, A6 = -2.10616e-001, A8 = 1.05312e-001,
A10 = -2.45212e-002, A12 = 3.26595e-004
12th page
K = 2.18339e + 001, A3 = 5.27999e-002, A4 = -3.67919e-001,
A5 = 1.73977e-001, A6 = -9.16990e-003, A8 = 1.33268e-002,
A10 = 2.47047e-003, A12 = -2.98596e-003, A14 = 1.55616e-004
Side 13
K = 2.33931e + 000, A3 = -2.71900e-002, A4 = 2.93736e-002,
A5 = -1.34640e-001, A6 = 8.36348e-002, A8 = -3.59132e-002,
A10 = 1.47597e-002, A12 = -3.49934e-003, A14 = 3.03570e-004
14th page
K = -1.34903e + 001, A3 = -9.56336e-002, A4 = 8.04709e-002,
A5 = 3.58988e-003, A6 = -3.11515e-002, A8 = -6.77177e-003,
A10 = 7.14834e-003, A12 = -1.42848e-003, A14 = 8.21393e-005
15th page
K = -1.35283e + 001, A3 = -2.18794e-001, A4 = -1.36817e-001,
A5 = 7.20456e-002, A6 = 3.00213e-002, A8 = -4.72429e-003,
A10 = -4.67307e-004, A12 = 1.25999e-004, A14 = -6.74112e-006
16th page
K = -4.17944e + 000, A3 = -1.21792e-001, A4 = -8.51573e-002,
A5 = 1.12526e-001, A6 = -3.48332e-002, A8 = 1.48839e-003,
A10 = -1.36324e-004, A12 = 7.15732e-006, A14 = 3.36690e-007

実施例8の撮像レンズ10の特性を以下に列挙する。
FL 3.474
Fno 1.32
w 79.98
Ymax 2.921
B F 0.910
TL 5.100
BFa 0.873
TLa 5.063
The characteristics of the imaging lens 10 of Example 8 are listed below.
FL 3.474
Fno 1.32
w 79.98
Ymax 2.921
BF 0.910
TL 5.100
BFa 0.873
TLa 5.063

実施例8の単レンズデータを以下の表24に示す。
〔表24〕
Elem Surfs Focal Length Diameter
1 2- 3 7.0756 2.625
2 4- 5 9.7414 2.650
3 6- 7 -7.4386 2.362
4 9-10 6.8015 2.621
5 11-12 -7.5194 3.080
6 13-14 2.8962 3.860
7 15-16 -3.2066 5.268
The single lens data of Example 8 is shown in Table 24 below.
[Table 24]
Elem Surfs Focal Length Diameter
1 2- 3 7.0756 2.625
2 4- 5 9.7414 2.650
3 6- 7 -7.4386 2.362
4 9-10 6.8015 2.621
5 11-12 -7.5194 3.080
6 13-14 2.8962 3.860
7 15-16 -3.2066 5.268

図19は、実施例8の撮像レンズ18等の断面図である。撮像レンズ18は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1レンズL1の外縁の物体側には、開口絞り(STO)ASが配置されている。第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。つまり、第1レンズL1の物体側には、開口絞りASとして第1絞り部材FS1が配置され、第3レンズL3の像側には、第2絞り部材FS2が配置されている。   FIG. 19 is a cross-sectional view of the imaging lens 18 and the like of the eighth embodiment. The imaging lens 18 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a biconvex second lens L2 having a positive refractive power around the optical axis AX. A meniscus third lens L3 having a negative refractive power around the optical axis AX and having a concave surface facing the image side, a biconvex fourth lens L4 having a positive refractive power around the optical axis AX, and the optical axis AX Bi-concave fifth lens L5 having negative refractive power around the periphery, biconvex sixth lens L6 having positive refractive power around the optical axis AX, and an image having negative refractive power around the optical axis AX And a meniscus seventh lens L7 having a concave surface on the side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed on the object side of the outer edge of the first lens L1. A light-shielding stop FS is disposed between the third and fourth lenses L3 and L4. That is, the first diaphragm member FS1 is disposed as the aperture diaphragm AS on the object side of the first lens L1, and the second diaphragm member FS2 is disposed on the image side of the third lens L3.

図20(A)〜20(C)は、実施例8の撮像レンズ18の諸収差図(球面収差、非点収差、歪曲収差)を示し、図20(D)及び20(E)は、実施例8の撮像レンズ18の横収差を示している。   20A to 20C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 18 of Example 8, and FIGS. 20D and 20E show the results. 10 shows lateral aberration of the imaging lens 18 of Example 8. FIG.

以下の表25は、参考のため、各条件式(1)〜(6)に対応する各実施例1〜8の値をまとめたものである。
〔表25〕

Figure 2015072402
Table 25 below summarizes the values of Examples 1 to 8 corresponding to the conditional expressions (1) to (6) for reference.
[Table 25]
Figure 2015072402

以上では、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。例えば、開口絞りASは、鏡筒部分54aに直接的に支持させることができるが、これに隣接する1つのレンズの外側に延びるフランジ部に固定することができ、あるいは隣接する一対のレンズの外側に延びるフランジ部に挟んで固定することができる。遮光絞りFSも、鏡筒部分54aに直接的に支持させることができるが、これに隣接する1つのレンズの外側に延びるフランジ部に固定することができ、あるいは隣接する一対のレンズの外側に延びるフランジ部に挟んで固定することができる。   In the above, the present invention has been described based on the embodiments and examples, but the present invention is not limited to the above-described embodiments and the like. For example, the aperture stop AS can be directly supported by the lens barrel portion 54a, but can be fixed to a flange portion extending to the outside of one adjacent lens, or the outside of a pair of adjacent lenses. And can be fixed by being sandwiched between flange portions extending in the direction. Although the light-shielding stop FS can also be directly supported by the lens barrel portion 54a, it can be fixed to a flange portion that extends to the outside of one adjacent lens, or extends to the outside of a pair of adjacent lenses. It can be fixed by being sandwiched between flange portions.

開口絞りASや遮光絞りFSは、金属板に限らず、樹脂又はセラミックスの板状部材とすることができ、レンズのフランジ部を遮光性の材料で塗装することによっても組み込むことができる。さらに、開口絞りASや遮光絞りFSは、完全な遮光体に限らず、口径外で減光を行うものであってもよい。遮光絞りFSを遮光板等とする場合、一対のレンズ間に複数の遮光板等を配置することもできる。   The aperture stop AS and the light-shielding stop FS are not limited to metal plates, but can be plate members made of resin or ceramics, and can also be incorporated by painting the flange portion of the lens with a light-shielding material. Further, the aperture stop AS and the light-shielding stop FS are not limited to a complete light-shielding body, and may be one that performs light reduction outside the aperture. When the light-shielding stop FS is a light-shielding plate or the like, a plurality of light-shielding plates or the like can be arranged between a pair of lenses.

10,11〜18…撮像レンズ、 50…カメラモジュール、 51…撮像素子、 100…撮像装置、 300…携帯端末、 AX…光軸、 L1−L7…レンズ、 AS…開口絞り、 FS…遮光絞り、 FS1,FS2…絞り部材   DESCRIPTION OF SYMBOLS 10, 11-18 ... Imaging lens, 50 ... Camera module, 51 ... Imaging device, 100 ... Imaging device, 300 ... Portable terminal, AX ... Optical axis, L1-L7 ... Lens, AS ... Aperture stop, FS ... Shading stop, FS1, FS2 ... diaphragm member

Claims (13)

物体側より順に、正の第1レンズと、正の第2レンズと、第3レンズと、第4レンズと、第5レンズと、第6レンズと、第7レンズと、からなり、
前記第7レンズの像側面は非球面形状であり、中心以外の有効径内に極値を有し、
以下の条件式を満たす撮像レンズ。
15.0<θSp<50.0 … (1)
ただし、
θSp:前記第2レンズの物体側面の有効径内における最大面角度
In order from the object side, a positive first lens, a positive second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens,
The image side surface of the seventh lens is aspheric, and has an extreme value within an effective diameter other than the center,
An imaging lens that satisfies the following conditional expression.
15.0 <θSp <50.0 (1)
However,
θSp: Maximum surface angle within the effective diameter of the object side surface of the second lens
前記第7レンズは像側面が光軸近傍において凹面であり、かつ負レンズである、請求項1に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the seventh lens has a concave image side surface in the vicinity of the optical axis and is a negative lens. 前記第4レンズよりも物体側に開口絞りを有する、請求項1及び2のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, further comprising an aperture stop closer to the object side than the fourth lens. 前記第3レンズは像側に凹面を向けた負レンズである、請求項1から3までのいずれか一項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 3, wherein the third lens is a negative lens having a concave surface facing the image side. 前記第1レンズと前記第2レンズとは、物体側に凸面を向けている、請求項1から4までのいずれか一項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 4, wherein the first lens and the second lens have a convex surface directed toward the object side. 前記第1レンズは物体側に所定の開口を持つ第1絞り部材を有し、
前記第3レンズは物体側及び像側の少なくとも一方に所定の開口を持つ第2絞り部材を有し、
以下の条件式を満たす、請求項1から5までのいずれか一項に記載の撮像レンズ。
0.70<Φs3/Φs1<1.00 … (2)
ただし、
Φs1:前記第1絞り部材の開口径
Φs3:前記第2絞り部材の開口径
The first lens has a first diaphragm member having a predetermined opening on the object side,
The third lens has a second aperture member having a predetermined aperture on at least one of the object side and the image side;
The imaging lens according to claim 1, wherein the imaging lens satisfies the following conditional expression.
0.70 <Φs3 / Φs1 <1.00 (2)
However,
Φs1: Opening diameter of the first diaphragm member Φs3: Opening diameter of the second diaphragm member
以下の条件式を満たす、請求項1から6までのいずれか一項に記載の撮像レンズ。
1.0<ΦL1/ΦL3<1.4 … (3)
ただし、
ΦL1:前記第1レンズの物体側面と像側面のうち、大きい方の有効径
ΦL3:前記第3レンズの物体側面と像側面のうち、大きい方の有効径
The imaging lens according to any one of claims 1 to 6, which satisfies the following conditional expression.
1.0 <ΦL1 / ΦL3 <1.4 (3)
However,
ΦL1: The larger effective diameter of the object side surface and the image side surface of the first lens ΦL3: The larger effective diameter of the object side surface and the image side surface of the third lens
以下の条件式を満たす、請求項1から7までのいずれか一項に記載の撮像レンズ。
0.2<f1/f2<1.4 … (4)
ただし、
f1:前記第1レンズの焦点距離
f2:前記第2レンズの焦点距離
The imaging lens according to any one of claims 1 to 7, which satisfies the following conditional expression.
0.2 <f1 / f2 <1.4 (4)
However,
f1: Focal length of the first lens f2: Focal length of the second lens
以下の条件式を満たす、請求項1から8までのいずれか一項に記載の撮像レンズ。
−1.0<f12/f3<−0.4 … (5)
ただし、
f12:前記第1レンズと前記第2レンズの合成焦点距離
f3:前記第3レンズの焦点距離
The imaging lens according to claim 1, wherein the imaging lens satisfies the following conditional expression.
−1.0 <f12 / f3 <−0.4 (5)
However,
f12: Composite focal length of the first lens and the second lens f3: Focal length of the third lens
前記第4レンズは正レンズであり、以下の条件式を満たす、請求項1から9までのいずれか一項に記載の撮像レンズ。
1.5<f4/f<5.0 … (6)
ただし、
f4:前記第4レンズの焦点距離
f:撮像レンズ全系の焦点距離
The imaging lens according to any one of claims 1 to 9, wherein the fourth lens is a positive lens and satisfies the following conditional expression.
1.5 <f4 / f <5.0 (6)
However,
f4: focal length of the fourth lens f: focal length of the entire imaging lens system
実質的にパワーを持たない光学素子をさらに有する、請求項1から10までのいずれか一項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 10, further comprising an optical element having substantially no power. 請求項1から11までのいずれか一項に記載の撮像レンズと、前記撮像素子とを備える撮像装置。   An imaging device comprising: the imaging lens according to claim 1; and the imaging element. 請求項12に記載の撮像装置を備える携帯端末。   A portable terminal comprising the imaging device according to claim 12.
JP2013208751A 2013-10-04 2013-10-04 Image capturing lens, image capturing device, and mobile terminal Pending JP2015072402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208751A JP2015072402A (en) 2013-10-04 2013-10-04 Image capturing lens, image capturing device, and mobile terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208751A JP2015072402A (en) 2013-10-04 2013-10-04 Image capturing lens, image capturing device, and mobile terminal

Publications (1)

Publication Number Publication Date
JP2015072402A true JP2015072402A (en) 2015-04-16

Family

ID=53014804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208751A Pending JP2015072402A (en) 2013-10-04 2013-10-04 Image capturing lens, image capturing device, and mobile terminal

Country Status (1)

Country Link
JP (1) JP2015072402A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483625A (en) * 2015-08-31 2017-03-08 株式会社光学逻辑 Pick-up lenss
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US9671591B2 (en) 2015-04-16 2017-06-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
CN106896474A (en) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 Optical mirror slip group
WO2017199633A1 (en) * 2016-05-19 2017-11-23 ソニー株式会社 Imaging lens and imaging device
US9835823B2 (en) 2012-08-13 2017-12-05 Largan Precision Co., Ltd. Image lens assembly system
CN107436481A (en) * 2017-09-20 2017-12-05 浙江舜宇光学有限公司 Imaging lens system group
CN107462977A (en) * 2017-09-21 2017-12-12 浙江舜宇光学有限公司 Optical imaging lens
CN109358416A (en) * 2018-12-25 2019-02-19 浙江舜宇光学有限公司 Pick-up lens
CN109375351A (en) * 2018-12-26 2019-02-22 广东旭业光电科技股份有限公司 A kind of imaging lens system group and electronic equipment
CN109407280A (en) * 2018-12-14 2019-03-01 浙江舜宇光学有限公司 Imaging lens
WO2019056775A1 (en) * 2017-09-20 2019-03-28 浙江舜宇光学有限公司 Imaging lens group
CN109828351A (en) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 Camera optical camera lens
US10310227B2 (en) 2017-02-18 2019-06-04 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
CN109856769A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN109975956A (en) * 2019-05-08 2019-07-05 浙江舜宇光学有限公司 Optical imaging lens group
US10365460B2 (en) 2017-06-16 2019-07-30 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device
CN110346904A (en) * 2019-06-29 2019-10-18 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN110361845A (en) * 2019-06-30 2019-10-22 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN110398815A (en) * 2019-06-29 2019-11-01 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN110471161A (en) * 2018-05-10 2019-11-19 大立光电股份有限公司 Photographing optical microscope group, image-taking device and electronic device
CN110542984A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
CN110542999A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
CN110542986A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
KR20190135892A (en) * 2018-05-29 2019-12-09 삼성전기주식회사 Optical imaging system
KR20190135897A (en) * 2018-05-29 2019-12-09 삼성전기주식회사 Optical Imaging System
KR20190135894A (en) * 2018-05-29 2019-12-09 삼성전기주식회사 Optical imaging system
KR20190135896A (en) * 2018-05-29 2019-12-09 삼성전기주식회사 Optical Imaging System
CN110579864A (en) * 2019-10-29 2019-12-17 浙江舜宇光学有限公司 Optical imaging lens
KR20200010544A (en) * 2018-05-29 2020-01-30 삼성전기주식회사 Optical Imaging System
WO2020024635A1 (en) * 2018-08-02 2020-02-06 浙江舜宇光学有限公司 Optical imaging lens
KR20200020772A (en) * 2018-05-29 2020-02-26 삼성전기주식회사 Optical Imaging System
KR20200021063A (en) * 2018-05-29 2020-02-27 삼성전기주식회사 Optical Imaging System
KR20200021499A (en) * 2018-05-29 2020-02-28 삼성전기주식회사 Optical imaging system
US10627600B2 (en) 2017-12-22 2020-04-21 Largan Precision Co., Ltd. Imaging optical lens system, image capturing unit and electronic device
US10690888B2 (en) 2014-01-10 2020-06-23 Kantatsu Co., Ltd. Imaging lens
WO2020134140A1 (en) * 2018-12-26 2020-07-02 浙江舜宇光学有限公司 Optical imaging system
CN111665612A (en) * 2019-03-07 2020-09-15 康达智株式会社 Camera lens
JP2021009326A (en) * 2019-06-29 2021-01-28 エーエーシー テクノロジーズ ピーティーイー リミテッド Image capturing optical lens
US10921561B2 (en) 2017-09-21 2021-02-16 Zhejiang Sunny Optical Co., Ltd Optical imaging lens assembly
US11009678B2 (en) 2018-05-29 2021-05-18 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11016271B2 (en) 2018-05-29 2021-05-25 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
WO2021127829A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
CN113253427A (en) * 2021-05-27 2021-08-13 天津欧菲光电有限公司 Optical system, camera module and electronic equipment
CN113534408A (en) * 2021-06-30 2021-10-22 江西晶超光学有限公司 Optical system, camera module and electronic equipment
WO2022056934A1 (en) * 2020-09-21 2022-03-24 欧菲光集团股份有限公司 Optical imaging system, image capturing module, and electronic device
US11644647B2 (en) 2018-05-29 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system having seven lenses of various refractive powers
WO2023085870A1 (en) * 2021-11-11 2023-05-19 엘지이노텍 주식회사 Optical system and camera module comprising same
US11971611B2 (en) 2018-05-29 2024-04-30 Samsung Electro-Mechanics Co., Ltd. Optical imaging system

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609409B2 (en) 2012-08-13 2023-03-21 Largan Precision Co., Ltd. Image lens assembly system
US10101564B2 (en) 2012-08-13 2018-10-16 Largan Precision Co., Ltd. Image lens assembly system
US10401595B2 (en) 2012-08-13 2019-09-03 Largan Precision Co., Ltd. Image lens assembly system
US11009683B2 (en) 2012-08-13 2021-05-18 Largan Precision Co., Ltd. Image lens assembly system
US9835823B2 (en) 2012-08-13 2017-12-05 Largan Precision Co., Ltd. Image lens assembly system
US10690888B2 (en) 2014-01-10 2020-06-23 Kantatsu Co., Ltd. Imaging lens
US10788650B2 (en) 2015-04-16 2020-09-29 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US10133033B2 (en) 2015-04-16 2018-11-20 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US10481368B2 (en) 2015-04-16 2019-11-19 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US11391927B2 (en) 2015-04-16 2022-07-19 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US9671591B2 (en) 2015-04-16 2017-06-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
CN106483625A (en) * 2015-08-31 2017-03-08 株式会社光学逻辑 Pick-up lenss
US20190049700A1 (en) * 2016-05-19 2019-02-14 Sony Corporation Imaging lens and imaging apparatus
WO2017199633A1 (en) * 2016-05-19 2017-11-23 ソニー株式会社 Imaging lens and imaging device
CN110824670A (en) * 2016-12-30 2020-02-21 玉晶光电(厦门)有限公司 Optical lens group
CN106896474A (en) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 Optical mirror slip group
US11573408B2 (en) 2017-02-18 2023-02-07 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US11971528B2 (en) 2017-02-18 2024-04-30 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US11256069B2 (en) 2017-02-18 2022-02-22 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US10310227B2 (en) 2017-02-18 2019-06-04 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US10564403B2 (en) 2017-02-18 2020-02-18 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US10365460B2 (en) 2017-06-16 2019-07-30 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device
US11921264B2 (en) 2017-06-16 2024-03-05 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device
CN107436481B (en) * 2017-09-20 2020-04-07 浙江舜宇光学有限公司 Image pickup lens group
US10983311B2 (en) 2017-09-20 2021-04-20 Zhejiang Sunny Optical Co., Ltd. Camera lens group
CN107436481A (en) * 2017-09-20 2017-12-05 浙江舜宇光学有限公司 Imaging lens system group
WO2019056775A1 (en) * 2017-09-20 2019-03-28 浙江舜宇光学有限公司 Imaging lens group
US10921561B2 (en) 2017-09-21 2021-02-16 Zhejiang Sunny Optical Co., Ltd Optical imaging lens assembly
CN107462977A (en) * 2017-09-21 2017-12-12 浙江舜宇光学有限公司 Optical imaging lens
CN107462977B (en) * 2017-09-21 2022-09-06 浙江舜宇光学有限公司 Optical imaging lens
US10627600B2 (en) 2017-12-22 2020-04-21 Largan Precision Co., Ltd. Imaging optical lens system, image capturing unit and electronic device
US11016270B2 (en) 2018-05-10 2021-05-25 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
CN110471161A (en) * 2018-05-10 2019-11-19 大立光电股份有限公司 Photographing optical microscope group, image-taking device and electronic device
CN110471161B (en) * 2018-05-10 2021-09-21 大立光电股份有限公司 Photographing optical lens assembly, image capturing device and electronic device
US11789236B2 (en) 2018-05-10 2023-10-17 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
KR102193716B1 (en) 2018-05-29 2020-12-23 삼성전기주식회사 Optical imaging system
KR102479780B1 (en) 2018-05-29 2022-12-22 삼성전기주식회사 Optical Imaging System
US11971611B2 (en) 2018-05-29 2024-04-30 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
KR102071924B1 (en) * 2018-05-29 2020-02-03 삼성전기주식회사 Optical Imaging System
KR20200010544A (en) * 2018-05-29 2020-01-30 삼성전기주식회사 Optical Imaging System
KR102081312B1 (en) * 2018-05-29 2020-02-25 삼성전기주식회사 Optical imaging system
KR20200020763A (en) * 2018-05-29 2020-02-26 삼성전기주식회사 Optical imaging system
KR20200020772A (en) * 2018-05-29 2020-02-26 삼성전기주식회사 Optical Imaging System
KR20200021063A (en) * 2018-05-29 2020-02-27 삼성전기주식회사 Optical Imaging System
KR20200021499A (en) * 2018-05-29 2020-02-28 삼성전기주식회사 Optical imaging system
KR102087983B1 (en) * 2018-05-29 2020-03-11 삼성전기주식회사 Optical imaging system
KR20200010545A (en) * 2018-05-29 2020-01-30 삼성전기주식회사 Optical Imaging System
US11960145B2 (en) 2018-05-29 2024-04-16 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
KR102122242B1 (en) * 2018-05-29 2020-06-15 삼성전기주식회사 Optical Imaging System
KR20190135896A (en) * 2018-05-29 2019-12-09 삼성전기주식회사 Optical Imaging System
KR102620536B1 (en) * 2018-05-29 2024-01-04 삼성전기주식회사 Optical Imaging System
US11789239B2 (en) 2018-05-29 2023-10-17 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
KR20190135894A (en) * 2018-05-29 2019-12-09 삼성전기주식회사 Optical imaging system
KR102178527B1 (en) 2018-05-29 2020-11-13 삼성전기주식회사 Optical imaging system
KR20200143326A (en) * 2018-05-29 2020-12-23 삼성전기주식회사 Optical imaging system
KR20190135897A (en) * 2018-05-29 2019-12-09 삼성전기주식회사 Optical Imaging System
KR20200143325A (en) * 2018-05-29 2020-12-23 삼성전기주식회사 Optical imaging system
CN112130283A (en) * 2018-05-29 2020-12-25 三星电机株式会社 Optical imaging system
KR102205457B1 (en) 2018-05-29 2021-01-20 삼성전기주식회사 Optical Imaging System
KR20210008136A (en) * 2018-05-29 2021-01-20 삼성전기주식회사 Optical Imaging System
KR20210008130A (en) * 2018-05-29 2021-01-20 삼성전기주식회사 Optical Imaging System
KR20210008551A (en) * 2018-05-29 2021-01-22 삼성전기주식회사 Optical Imaging System
KR102586950B1 (en) 2018-05-29 2023-10-06 삼성전기주식회사 Optical imaging system
KR20190135892A (en) * 2018-05-29 2019-12-09 삼성전기주식회사 Optical imaging system
CN112526720A (en) * 2018-05-29 2021-03-19 三星电机株式会社 Optical imaging system
CN112526717A (en) * 2018-05-29 2021-03-19 三星电机株式会社 Optical imaging system
CN110542986A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
US11714263B2 (en) 2018-05-29 2023-08-01 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11002943B2 (en) 2018-05-29 2021-05-11 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11009678B2 (en) 2018-05-29 2021-05-18 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN110542999A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
US11016271B2 (en) 2018-05-29 2021-05-25 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN110542984A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
CN112987250A (en) * 2018-05-29 2021-06-18 三星电机株式会社 Optical imaging system
US11675163B2 (en) 2018-05-29 2023-06-13 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11644647B2 (en) 2018-05-29 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system having seven lenses of various refractive powers
US11644643B2 (en) 2018-05-29 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11644641B2 (en) 2018-05-29 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
KR102071923B1 (en) * 2018-05-29 2020-02-03 삼성전기주식회사 Optical Imaging System
US11181719B2 (en) 2018-05-29 2021-11-23 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN110542984B (en) * 2018-05-29 2022-10-18 三星电机株式会社 Optical imaging system
KR102427929B1 (en) 2018-05-29 2022-08-03 삼성전기주식회사 Optical Imaging System
KR102385181B1 (en) 2018-05-29 2022-04-12 삼성전기주식회사 Optical imaging system
KR102392165B1 (en) 2018-05-29 2022-04-29 삼성전기주식회사 Optical imaging system
CN114460722A (en) * 2018-05-29 2022-05-10 三星电机株式会社 Optical imaging system
KR20220060511A (en) * 2018-05-29 2022-05-11 삼성전기주식회사 Optical imaging system
US11353686B2 (en) 2018-05-29 2022-06-07 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11366288B2 (en) 2018-05-29 2022-06-21 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
KR102411392B1 (en) 2018-05-29 2022-06-22 삼성전기주식회사 Optical Imaging System
KR102415704B1 (en) 2018-05-29 2022-07-05 삼성전기주식회사 Optical Imaging System
WO2020024635A1 (en) * 2018-08-02 2020-02-06 浙江舜宇光学有限公司 Optical imaging lens
CN109407280A (en) * 2018-12-14 2019-03-01 浙江舜宇光学有限公司 Imaging lens
CN109358416A (en) * 2018-12-25 2019-02-19 浙江舜宇光学有限公司 Pick-up lens
CN109358416B (en) * 2018-12-25 2024-04-19 浙江舜宇光学有限公司 Image pickup lens
CN109375351A (en) * 2018-12-26 2019-02-22 广东旭业光电科技股份有限公司 A kind of imaging lens system group and electronic equipment
WO2020134140A1 (en) * 2018-12-26 2020-07-02 浙江舜宇光学有限公司 Optical imaging system
CN109828351A (en) * 2018-12-27 2019-05-31 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN109856769A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN111665612A (en) * 2019-03-07 2020-09-15 康达智株式会社 Camera lens
CN109975956B (en) * 2019-05-08 2024-04-02 浙江舜宇光学有限公司 Optical imaging lens group
CN109975956A (en) * 2019-05-08 2019-07-05 浙江舜宇光学有限公司 Optical imaging lens group
CN110398815A (en) * 2019-06-29 2019-11-01 瑞声科技(新加坡)有限公司 Camera optical camera lens
JP2021009326A (en) * 2019-06-29 2021-01-28 エーエーシー テクノロジーズ ピーティーイー リミテッド Image capturing optical lens
CN110346904A (en) * 2019-06-29 2019-10-18 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN110346904B (en) * 2019-06-29 2021-08-17 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN110361845A (en) * 2019-06-30 2019-10-22 瑞声科技(新加坡)有限公司 Camera optical camera lens
WO2021082700A1 (en) * 2019-10-29 2021-05-06 浙江舜宇光学有限公司 Optical imaging lens assembly
CN110579864A (en) * 2019-10-29 2019-12-17 浙江舜宇光学有限公司 Optical imaging lens
WO2021127829A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2022056934A1 (en) * 2020-09-21 2022-03-24 欧菲光集团股份有限公司 Optical imaging system, image capturing module, and electronic device
CN113253427A (en) * 2021-05-27 2021-08-13 天津欧菲光电有限公司 Optical system, camera module and electronic equipment
CN113534408B (en) * 2021-06-30 2023-09-05 江西晶超光学有限公司 Optical system, camera module and electronic equipment
CN113534408A (en) * 2021-06-30 2021-10-22 江西晶超光学有限公司 Optical system, camera module and electronic equipment
WO2023085870A1 (en) * 2021-11-11 2023-05-19 엘지이노텍 주식회사 Optical system and camera module comprising same

Similar Documents

Publication Publication Date Title
JP6191820B2 (en) Imaging lens, imaging device, and portable terminal
JP6160423B2 (en) Imaging lens, imaging device, and portable terminal
JP2015072402A (en) Image capturing lens, image capturing device, and mobile terminal
JP2015072404A (en) Image capturing lens, image capturing device, and mobile terminal
JP5854227B2 (en) Imaging lens and imaging apparatus
JP4518836B2 (en) Imaging lens system
JP5304117B2 (en) Imaging lens, imaging device, and portable terminal
JP6347156B2 (en) Imaging lens, imaging device, and portable terminal
US8681436B2 (en) Imaging lens, imaging device and information device
JP5742737B2 (en) Imaging lens, imaging device, and portable terminal
JP6394598B2 (en) Imaging lens, imaging device, and portable terminal
JP5084335B2 (en) Imaging lens
CN113238360A (en) Camera lens
WO2014013676A1 (en) Image pickup lens and image pickup apparatus provided with image pickup lens
JP2014153577A (en) Imaging lens, and imaging device and portable terminal
US9405095B2 (en) Imaging lens and imaging apparatus
JP2014115431A (en) Imaging lens, imaging apparatus, and portable terminal
JP2015114505A (en) Imaging lens and imaging device
JP2014153576A (en) Imaging lens, and imaging device and portable terminal
JP2013182090A (en) Imaging lens, imaging apparatus, and portable terminal
JP2014153575A (en) Imaging lens, and imaging device and portable terminal
JP2012203234A (en) Imaging optical system, imaging apparatus and digital instrument
JP2013156389A (en) Imaging lens, imaging device and portable terminal
JP6001430B2 (en) Imaging lens
WO2014050476A1 (en) Image pickup lens, image pickup device, and mobile terminal