WO2020024635A1 - Optical imaging lens - Google Patents

Optical imaging lens Download PDF

Info

Publication number
WO2020024635A1
WO2020024635A1 PCT/CN2019/084948 CN2019084948W WO2020024635A1 WO 2020024635 A1 WO2020024635 A1 WO 2020024635A1 CN 2019084948 W CN2019084948 W CN 2019084948W WO 2020024635 A1 WO2020024635 A1 WO 2020024635A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
object side
image side
Prior art date
Application number
PCT/CN2019/084948
Other languages
French (fr)
Chinese (zh)
Inventor
丁玲
吕赛锋
李明
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020024635A1 publication Critical patent/WO2020024635A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present application relates to an optical imaging lens, and more particularly, the present application relates to an optical imaging lens including seven lenses.
  • the present application provides such an optical imaging lens, which includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, Sixth lens and seventh lens.
  • the first lens may have negative power, the object side may be convex, and the image side may be concave; the second lens may have power; the third lens may have positive power; the fourth lens may have positive power; The five lenses have power; the sixth lens has power; and the seventh lens may have negative power, and both the object side and the image side may be concave.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging lens may satisfy -3.5 ⁇ f1 / f ⁇ -2.
  • the effective focal length f4 of the fourth lens and the effective focal length f3 of the third lens may satisfy 0 ⁇ f4 / f3 ⁇ 0.5.
  • the curvature radius R3 of the object side of the second lens and the curvature radius R4 of the image side of the second lens may satisfy 0.5 ⁇ R3 / R4 ⁇ 1.5.
  • the curvature radius R7 of the object side of the fourth lens and the total effective focal length f of the optical imaging lens may satisfy 1 ⁇ R7 / f ⁇ 1.8.
  • the curvature radius R14 of the image side of the seventh lens and the curvature radius R13 of the object side of the seventh lens may satisfy -2.1 ⁇ R14 / R13 ⁇ 0.
  • the separation distance T12 on the optical axis between the first lens and the second lens and a half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, ImgH can satisfy 0.7 ⁇ T12 / ImgH ⁇ 1.2.
  • the center thickness CT6 of the sixth lens on the optical axis and the distance TTL on the optical axis from the object side of the first lens to the imaging surface of the optical imaging lens may satisfy 0.7 ⁇ CT6 / TTL * 10 ⁇ 1.7.
  • the center thickness CT7 of the seventh lens on the optical axis and the effective focal length f7 of the seventh lens satisfy ⁇ 0.8 ⁇ CT7 / f7 ⁇ 0.
  • the maximum effective half-aperture DT11 of the object side of the first lens and the maximum effective half-aperture DT12 of the image side of the first lens may satisfy 1.8 ⁇ DT11 / DT12 ⁇ 2.3.
  • the maximum effective half-aperture DT72 of the image side of the seventh lens and the maximum effective half-aperture DT71 of the object side of the seventh lens may satisfy 1.5 ⁇ DT72 / DT71 ⁇ 2.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f / EPD ⁇ 2.0.
  • This application uses seven lenses. By reasonably distributing the power, surface shape, center thickness of each lens, and the axial distance between each lens, the optical imaging lens has a wide angle, large aperture, and miniaturization. , At least one beneficial effect, such as high imaging quality.
  • FIG. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application
  • FIGS. 2A to 2D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 1; curve;
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application
  • FIGS. 4A to 4D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 2; curve;
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application
  • FIGS. 6A to 6D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 3, respectively. curve;
  • FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application
  • FIGS. 10A to 10D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 5; curve;
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application
  • FIGS. 12A to 12D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 6; curve;
  • FIG. 15 shows a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application
  • FIGS. 16A to 16D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 8 respectively. curve;
  • FIG. 17 shows a schematic structural diagram of an optical imaging lens according to Embodiment 9 of the present application
  • FIGS. 18A to 18D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 9; curve;
  • FIG. 19 shows a schematic structural diagram of an optical imaging lens according to Example 10 of the present application
  • FIGS. 20A to 20D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Example 10, respectively. curve.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, a first lens discussed below may also be referred to as a second lens or a third lens.
  • the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area Concave.
  • the surface of each lens closest to the object side is called the object side of the lens, and the surface of each lens closest to the image side is called the image side of the lens.
  • An optical imaging lens may include, for example, seven lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a first lens. Seven lenses. The seven lenses are sequentially arranged along the optical axis from the object side to the image side, and each adjacent lens can have an air gap.
  • the first lens may have negative power
  • the object side may be convex
  • the image side may be concave
  • the second lens may have positive or negative power
  • the third lens may have positive power
  • the fourth lens may have a positive or negative power
  • the sixth lens may have a positive or negative power
  • the seventh lens may have a negative power
  • the side surface may be concave, and the image side may be concave.
  • the optical imaging lens of the present application may satisfy a conditional expression -3.5 ⁇ f1 / f ⁇ -2, where f is a total effective focal length of the optical imaging lens and f1 is an effective focal length of the first lens. More specifically, f and f1 can further satisfy -3.27 ⁇ f1 / f ⁇ -2.01. If the conditional expression -3.5 ⁇ f1 / f ⁇ -2 is satisfied, the angle of view can be increased, the incident angle of the light at the second lens can be slowed, and the aperture of the subsequent lens can be reduced to maintain the lens miniaturization.
  • the optical imaging lens of the present application can satisfy the conditional expression
  • Focal length, f5 is the effective focal length of the fifth lens. More specifically, f, f2, and f5 can further satisfy 0 ⁇
  • Reasonably controlling the power of the second lens and the fifth lens can effectively balance the high-level coma and vertical axis chromatic aberrations produced by the second lens and the fifth lens, and at the same time reduce the aperture of the third lens and the fourth lens.
  • the optical imaging lens of the present application may satisfy a conditional expression of 0 ⁇ f4 / f3 ⁇ 0.5, where f4 is an effective focal length of the fourth lens, and f3 is an effective focal length of the third lens. More specifically, f4 and f3 can further satisfy 0.01 ⁇ f4 / f3 ⁇ 0.25.
  • Reasonable distribution of the power of the third lens and the fourth lens can effectively reduce the advanced spherical aberration and astigmatism generated by the third lens and the fourth lens, and at the same time, can reduce the deviation of light in the third lens and the fourth lens. Bend the angle to reduce the sensitivity of these two lenses.
  • the optical imaging lens of the present application can satisfy the conditional expression -0.8 ⁇ CT7 / f7 ⁇ 0, where CT7 is the center thickness of the seventh lens on the optical axis and f7 is the effective focal length of the seventh lens. More specifically, CT7 and f7 can further satisfy -0.67 ⁇ CT7 / f7 ⁇ -0.20.
  • Reasonably controlling the power and center thickness of the seventh lens can effectively balance the distortion and chromatic aberrations of the front lens that are not completely eliminated while reducing the system size, and further improve the imaging quality of the lens.
  • the optical imaging lens of the present application can satisfy the conditional expression 0.5 ⁇ R3 / R4 ⁇ 1.5, where R3 is the radius of curvature of the object side of the second lens and R4 is the radius of curvature of the image side of the second lens . More specifically, R3 and R4 can further satisfy 0.57 ⁇ R3 / R4 ⁇ 1.41.
  • Reasonably controlling the curvature radius of the object side and the image side of the second lens can alleviate the deflection angle of the light in the second lens, and can effectively balance the chromatic aberration and distortion generated by the first lens.
  • the optical imaging lens of the present application can satisfy the conditional expression 1 ⁇ R7 / f ⁇ 1.8, where R7 is the curvature radius of the object side of the fourth lens, and f is the total effective focal length of the optical imaging lens. More specifically, R7 and f can further satisfy 1.14 ⁇ R7 / f ⁇ 1.66.
  • Reasonably controlling the curvature radius of the object side of the fourth lens and the total effective focal length of the optical imaging lens can slow down the incident angle of the light in the fourth lens and can effectively balance the residual high-level aberration and astigmatism of the front lens.
  • the optical imaging lens of the present application can satisfy the conditional expression -2.1 ⁇ R14 / R13 ⁇ 0, where R14 is the curvature radius of the image side of the seventh lens, and R13 is the curvature of the object side of the seventh lens. radius. More specifically, R14 and R13 can further satisfy -2.09 ⁇ R14 / R13 ⁇ -0.01.
  • Reasonably controlling the curvature radius of the object side and the image side of the seventh lens can reduce the incident angle of light on the image plane, enhance the illuminance of the edge field of view, and facilitate the matching of the lens and the chip's principal light angle (CRA).
  • CRA principal light angle
  • the optical imaging lens of the present application can satisfy a conditional expression of 72 ° ⁇ HFOV ⁇ 92 °, where HFOV is a maximum half field angle of the optical imaging lens. More specifically, HFOV can further satisfy 72.5 ° ⁇ HFOV ⁇ 91.0 °. Under the premise of ensuring the miniaturization of the lens, by controlling the field of view, the aberration of the edge field of view can be avoided and the illuminance is too low, which is conducive to ensuring that the lens has excellent imaging quality in a wide field of view.
  • the optical imaging lens of the present application can satisfy the conditional expression 0.7 ⁇ T12 / ImgH ⁇ 1.2, where T12 is the distance between the first lens and the second lens on the optical axis, and ImgH is the Half of the diagonal of the effective pixel area on the imaging surface. More specifically, T12 and ImgH can further satisfy 0.97 ⁇ T12 / ImgH ⁇ 1.14.
  • Reasonably controlling the air distance between the first lens and the second lens on the optical axis is not only conducive to the assembly of the lens, but also shortens the size of the lens. At the same time, it can slow the incident angle of light into the second lens and reduce the sensitivity of the lens.
  • the optical imaging lens of the present application can satisfy the conditional expression 1.8 ⁇ DT11 / DT12 ⁇ 2.3, where DT11 is a maximum effective half-diameter of the object side of the first lens, and DT12 is an image side of the first lens. Maximum effective half-caliber. More specifically, DT11 and DT12 can further satisfy 1.92 ⁇ DT11 / DT12 ⁇ 2.21.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.5 ⁇ DT72 / DT71 ⁇ 2, where DT72 is the maximum effective half-diameter of the image side of the seventh lens, and DT71 is the maximum effective half-diameter of the image side of the seventh lens. Maximum effective half-caliber. More specifically, DT72 and DT71 can further satisfy 1.63 ⁇ DT72 / DT71 ⁇ 1.84.
  • the maximum effective half-aperture of the object side and the image side of the seventh lens the size of the rear end of the lens can be reduced while ensuring the illuminance of the edge field of view.
  • the optical imaging lens of the present application can satisfy the conditional expression 0.7 ⁇ CT6 / TTL * 10 ⁇ 1.7, where CT6 is the center thickness of the sixth lens on the optical axis, and TTL is the object side of the first lens Distance to the imaging axis of the optical imaging lens on the optical axis. More specifically, CT6 and TTL can further satisfy 0.96 ⁇ CT6 / TTL * 10 ⁇ 1.58.
  • Reasonably controlling the central thickness of the sixth lens on the optical axis and the axial distance from the object side of the first lens to the imaging surface can ensure the miniaturization of the lens and avoid problems such as processing difficulties caused by the thin lens.
  • satisfying the conditional expression 0.7 ⁇ CT6 / TTL * 10 ⁇ 1.7 is also beneficial to alleviate the deflection angle of the light in the sixth lens and further balance the advanced coma and astigmatism that are not completely eliminated by the front lens.
  • the above-mentioned optical imaging lens may further include a diaphragm to improve the imaging quality of the lens.
  • the diaphragm may be disposed between the third lens and the fourth lens.
  • the above-mentioned optical imaging lens may further include a filter for correcting color deviation and / or a protective glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the above embodiment of the present application may employ multiple lenses, such as the seven lenses described above.
  • the size of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the optical imaging lens configured as above can also have beneficial effects such as wide angle, large aperture, and excellent imaging quality.
  • At least one of the mirror surfaces of each lens is an aspherical mirror surface.
  • Aspheric lenses are characterized by a curvature that varies continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses, which have a constant curvature from the lens center to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatic aberrations. The use of aspheric lenses can eliminate as much aberrations as possible during imaging, thereby improving imaging quality.
  • the number of lenses constituting the optical imaging lens may be changed to obtain various results and advantages described in this specification.
  • the optical imaging lens is not limited to including seven lenses. If necessary, the optical imaging lens may further include other numbers of lenses. Specific examples of the optical imaging lens applicable to the above embodiments will be further described below with reference to the drawings.
  • FIG. 1 is a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
  • the first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • an aperture may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 1, where the units of the radius of curvature and thickness are millimeters (mm).
  • each aspheric lens can be defined using, but not limited to, the following aspheric formula:
  • x is the distance vector from the vertex of the aspheric surface when the aspheric surface is at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the aspherical i-th order.
  • Table 2 below shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18, and A 20 that can be used for each aspherical mirror surface S1-S14 in Example 1. .
  • FIG. 3 is a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
  • the first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • an aperture may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 2, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 5 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 shows the effective focal lengths f1 to f7 of the lenses in Example 2, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half-view Field angle HFOV.
  • FIG. 5 is a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • an aperture may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
  • FIG. 9 is a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • an aperture may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 6, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 17 shows the higher-order coefficients that can be used for each aspherical mirror surface in Embodiment 6, where each aspherical surface type can be defined by the formula (1) given in the above-mentioned Embodiment 1.
  • Table 18 shows the effective focal lengths f1 to f7 of the lenses in Example 6, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view. Angular HFOV.
  • FIG. 14A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 7, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 14B shows an astigmatism curve of the optical imaging lens of Example 7, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 14C shows a distortion curve of the optical imaging lens of Example 7, which represents the value of the distortion magnitude in the case of different fields of view.
  • FIG. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Example 7, which represents the deviation of light at different image heights on the imaging surface after passing through the lens.
  • the optical imaging lens provided in Embodiment 7 can achieve good imaging quality.
  • the first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • FIG. 17 is a schematic structural diagram of an optical imaging lens according to Embodiment 9 of the present application.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • an aperture may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 9, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 26 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 9, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 27 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view Angular HFOV.
  • FIG. 18A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 9, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 18B shows an astigmatism curve of the optical imaging lens of Example 9, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 18C shows a distortion curve of the optical imaging lens of Example 9, which represents the value of the distortion magnitude under different field of view conditions.
  • FIG. 18D shows the magnification chromatic aberration curve of the optical imaging lens of Example 9, which represents the deviation of light at different image heights on the imaging surface after passing through the lens. According to FIG. 18A to FIG. 18D, it can be known that the optical imaging lens provided in Embodiment 9 can achieve good imaging quality.
  • Table 28 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging lens of Example 10.
  • the units of the radius of curvature and the thickness are both millimeters (mm).
  • Table 29 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 10, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 30 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1 and the maximum half field of view Angular HFOV.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An optical imaging lens, comprising sequentially from an object side to an image side along an optical axis: a first lens (E1), a second lens (E2), a third lens (E3), a fourth lens (E4), a fifth lens (E5), a sixth lens (E6) and a seventh lens (E7). The first lens (E1) has negative focal power, an object side surface (S1) thereof being a convex surface, and an image side surface (S2) thereof being a concave surface. The second lens (E2), the fifth lens (E5) and the sixth lens (E6) each have a focal power. The third lens (E3) and the fourth lens (E4) each have a positive focal power. The seventh lens (E7) has a negative focal power, both the object side surface (S13) and the image side surface (S14) thereof being concave surfaces. The effective focal length f1 of the first lens (E1) and the total effective focal length f of the optical imaging lens meet -3.5<f1/f<-2.

Description

光学成像镜头Optical imaging lens
相关申请的交叉引用Cross-reference to related applications
本申请要求于2018年08月02日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810872496.X的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。This application claims the priority and rights of the Chinese patent application filed with the Chinese National Intellectual Property Office (CNIPA) with a patent application number of 201810872496.X on August 02, 2018, which is incorporated herein by reference in its entirety.
技术领域Technical field
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括七片透镜的光学成像镜头。The present application relates to an optical imaging lens, and more particularly, the present application relates to an optical imaging lens including seven lenses.
背景技术Background technique
近年来,随着例如智能手机、平板电脑等便携式电子产品的高速更新换代,市场对产品端摄像镜头的要求越来越高。在要求摄像镜头具备高分辨率、大孔径、大像面等特性的同时,还要求其具有较广的视场角和优良的成像品质。然而,在便携式电子产品的轻薄化趋势下,如何满足市场的上述要求成为镜头设计领域的一大挑战。In recent years, with the rapid replacement of portable electronic products such as smart phones and tablet computers, the market has increasingly demanded product-side camera lenses. While the camera lens is required to have characteristics such as high resolution, large aperture, and large image plane, it also requires a wide field of view and excellent imaging quality. However, under the trend of thin and light portable electronic products, how to meet the above requirements of the market has become a major challenge in the field of lens design.
发明内容Summary of the invention
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。The present application provides an optical imaging lens that is applicable to portable electronic products and can at least solve or partially solve at least one of the above disadvantages in the prior art.
一方面,本申请提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜具有光焦度;第三透镜可具有正光焦度;第四透镜可具有正光焦度;第五透镜具有光焦度;第六透镜具有光焦度;以及第七透镜可具有负光焦度,其物侧面和像侧面均可为凹面。In one aspect, the present application provides such an optical imaging lens, which includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, Sixth lens and seventh lens. The first lens may have negative power, the object side may be convex, and the image side may be concave; the second lens may have power; the third lens may have positive power; the fourth lens may have positive power; The five lenses have power; the sixth lens has power; and the seventh lens may have negative power, and both the object side and the image side may be concave.
在一个实施方式中,第一透镜的有效焦距f1与光学成像镜头的总有效焦距f可满足-3.5<f1/f<-2。In one embodiment, the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging lens may satisfy -3.5 <f1 / f <-2.
在一个实施方式中,光学成像镜头的总有效焦距f、第二透镜的有效焦距f2与第五透镜的有效焦距f5可满足|f/f2|+|f/f5|<0.6。In one embodiment, the total effective focal length f of the optical imaging lens, the effective focal length f2 of the second lens, and the effective focal length f5 of the fifth lens may satisfy | f / f2 | + | f / f5 | <0.6.
在一个实施方式中,第四透镜的有效焦距f4与第三透镜的有效焦距f3可满足0<f4/f3<0.5。In one embodiment, the effective focal length f4 of the fourth lens and the effective focal length f3 of the third lens may satisfy 0 <f4 / f3 <0.5.
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足2<R1/R2<3。In one embodiment, the curvature radius R1 of the object side of the first lens and the curvature radius R2 of the image side of the first lens may satisfy 2 <R1 / R2 <3.
在一个实施方式中,第二透镜的物侧面的曲率半径R3与第二透镜的像侧面的曲率半径R4可满足0.5<R3/R4<1.5。In one embodiment, the curvature radius R3 of the object side of the second lens and the curvature radius R4 of the image side of the second lens may satisfy 0.5 <R3 / R4 <1.5.
在一个实施方式中,第四透镜的物侧面的曲率半径R7与光学成像镜头的总有效焦距f可满足1<R7/f<1.8。In one embodiment, the curvature radius R7 of the object side of the fourth lens and the total effective focal length f of the optical imaging lens may satisfy 1 <R7 / f <1.8.
在一个实施方式中,第七透镜的像侧面的曲率半径R14与第七透镜的物侧面的曲率半径R13可满足-2.1<R14/R13<0。In one embodiment, the curvature radius R14 of the image side of the seventh lens and the curvature radius R13 of the object side of the seventh lens may satisfy -2.1 <R14 / R13 <0.
在一个实施方式中,第一透镜和第二透镜在光轴上的间隔距离T12与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足0.7<T12/ImgH<1.2。In one embodiment, the separation distance T12 on the optical axis between the first lens and the second lens and a half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, ImgH, can satisfy 0.7 <T12 / ImgH <1.2.
在一个实施方式中,第六透镜于光轴上的中心厚度CT6与第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL可满足0.7<CT6/TTL*10<1.7。In one embodiment, the center thickness CT6 of the sixth lens on the optical axis and the distance TTL on the optical axis from the object side of the first lens to the imaging surface of the optical imaging lens may satisfy 0.7 <CT6 / TTL * 10 <1.7.
在一个实施方式中,第七透镜于光轴上的中心厚度CT7与第七透镜的有效焦距f7满足-0.8<CT7/f7<0。In one embodiment, the center thickness CT7 of the seventh lens on the optical axis and the effective focal length f7 of the seventh lens satisfy −0.8 <CT7 / f7 <0.
在一个实施方式中,第一透镜的物侧面的最大有效半口径DT11与第一透镜的像侧面的最大有效半口径DT12可满足1.8<DT11/DT12<2.3。In one embodiment, the maximum effective half-aperture DT11 of the object side of the first lens and the maximum effective half-aperture DT12 of the image side of the first lens may satisfy 1.8 <DT11 / DT12 <2.3.
在一个实施方式中,第七透镜的像侧面的最大有效半口径DT72与第七透镜的物侧面的最大有效半口径DT71可满足1.5<DT72/DT71<2。In one embodiment, the maximum effective half-aperture DT72 of the image side of the seventh lens and the maximum effective half-aperture DT71 of the object side of the seventh lens may satisfy 1.5 <DT72 / DT71 <2.
在一个实施方式中,光学成像镜头的最大半视场角HFOV可满足72°<HFOV<92°。In one embodiment, the maximum half field angle HFOV of the optical imaging lens can satisfy 72 ° <HFOV <92 °.
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD<2.0。In one embodiment, the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f / EPD <2.0.
本申请采用了七片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有广角、大孔径、小型化、高成像质量等至少一个有益效果。This application uses seven lenses. By reasonably distributing the power, surface shape, center thickness of each lens, and the axial distance between each lens, the optical imaging lens has a wide angle, large aperture, and miniaturization. , At least one beneficial effect, such as high imaging quality.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:With reference to the drawings, other features, objects, and advantages of the present application will become more apparent through the following detailed description of the non-limiting embodiments. In the drawings:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;FIG. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application; FIGS. 2A to 2D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 1; curve;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application; FIGS. 4A to 4D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 2; curve;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application; FIGS. 6A to 6D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 3, respectively. curve;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;FIG. 7 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application; FIGS. 8A to 8D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 4 curve;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application; FIGS. 10A to 10D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 5; curve;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application; FIGS. 12A to 12D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 6; curve;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;FIG. 13 shows a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application; FIGS. 14A to 14D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 7; curve;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;FIG. 15 shows a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application; FIGS. 16A to 16D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 8 respectively. curve;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;FIG. 17 shows a schematic structural diagram of an optical imaging lens according to Embodiment 9 of the present application; FIGS. 18A to 18D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 9; curve;
图19示出了根据本申请实施例10的光学成像镜头的结构示意图;图20A至图20D分别示出了实施例10的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。FIG. 19 shows a schematic structural diagram of an optical imaging lens according to Example 10 of the present application; FIGS. 20A to 20D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Example 10, respectively. curve.
具体实施方式detailed description
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。In order to better understand the present application, various aspects of the present application will be described in more detail with reference to the accompanying drawings. It should be understood that these detailed descriptions are merely descriptions of exemplary embodiments of the present application, and do not limit the scope of the present application in any way. Throughout the description, the same reference numerals refer to the same elements. The expression "and / or" includes any and all combinations of one or more of the associated listed items.
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。It should be noted that, in this specification, the expressions of the first, second, third, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, a first lens discussed below may also be referred to as a second lens or a third lens.
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。In the drawings, for convenience of explanation, the thickness, size, and shape of the lens have been slightly exaggerated. Specifically, the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings. The drawings are only examples and are not drawn to scale.
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近物侧的表面称为该透镜的物侧面,每个透镜最靠近像侧的表面称为该透镜的像侧面。Herein, the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area Concave. The surface of each lens closest to the object side is called the object side of the lens, and the surface of each lens closest to the image side is called the image side of the lens.
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。It should also be understood that the terms “including,” “including,” “having,” “including,” and / or “including” when used in this specification indicate the presence of stated features, elements, and / or components. But does not exclude the presence or addition of one or more other features, elements, components and / or combinations thereof. Furthermore, when an expression such as "at least one of" appears after the list of listed features, the entire listed feature is modified, rather than the individual elements in the list. In addition, when describing an embodiment of the present application, “may” is used to mean “one or more embodiments of the present application”. Also, the term "exemplary" is intended to refer to an example or illustration.
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. It should also be understood that terms (e.g. terms defined in commonly used dictionaries) should be interpreted to have a meaning consistent with their meaning in the context of the relevant technology and will not be interpreted in an idealized or overly formal sense, unless This is clearly defined in this article.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other. The application will be described in detail below with reference to the drawings and embodiments. The features, principles, and other aspects of this application are described in detail below.
根据本申请示例性实施方式的光学成像镜头可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列,且各相邻透镜之间均可具有空气间隔。An optical imaging lens according to an exemplary embodiment of the present application may include, for example, seven lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a first lens. Seven lenses. The seven lenses are sequentially arranged along the optical axis from the object side to the image side, and each adjacent lens can have an air gap.
在示例性实施方式中,第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第 二透镜具有正光焦度或负光焦度;第三透镜可具有正光焦度;第四透镜可具有正光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有正光焦度或负光焦度;以及第七透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凹面。合理分配系统的光焦度、避免光焦度的过于集中,可降低单个镜片的敏感性,为实际加工和组装工艺提供更宽松的公差条件。In an exemplary embodiment, the first lens may have negative power, the object side may be convex, and the image side may be concave; the second lens may have positive or negative power; and the third lens may have positive power The fourth lens may have a positive or negative power; the sixth lens may have a positive or negative power; and the seventh lens may have a negative power; The side surface may be concave, and the image side may be concave. Reasonably distributing the system's power and avoiding too much focus, it can reduce the sensitivity of a single lens and provide looser tolerance conditions for actual processing and assembly processes.
在示例性实施方式中,本申请的光学成像镜头可满足条件式-3.5<f1/f<-2,其中,f为光学成像镜头的总有效焦距,f1为第一透镜的有效焦距。更具体地,f和f1进一步可满足-3.27≤f1/f≤-2.01。满足条件式-3.5<f1/f<-2,可增大视场角,减缓光线在第二透镜处的入射角度,同时可减小后续镜片的口径,维持镜头小型化。In an exemplary embodiment, the optical imaging lens of the present application may satisfy a conditional expression -3.5 <f1 / f <-2, where f is a total effective focal length of the optical imaging lens and f1 is an effective focal length of the first lens. More specifically, f and f1 can further satisfy -3.27≤f1 / f≤-2.01. If the conditional expression -3.5 <f1 / f <-2 is satisfied, the angle of view can be increased, the incident angle of the light at the second lens can be slowed, and the aperture of the subsequent lens can be reduced to maintain the lens miniaturization.
在示例性实施方式中,本申请的光学成像镜头可满足条件式|f/f2|+|f/f5|<0.6,其中,f为光学成像镜头的总有效焦距,f2为第二透镜的有效焦距,f5为第五透镜的有效焦距。更具体地,f、f2和f5进一步可满足0<|f/f2|+|f/f5|<0.6,例如,0.05≤|f/f2|+|f/f5|≤0.54。合理控制第二透镜和第五透镜的光焦度,可有效地平衡第二透镜和第五透镜产生的高级彗差和垂轴色差,同时可减小第三透镜和第四透镜的口径。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression | f / f2 | + | f / f5 | <0.6, where f is the total effective focal length of the optical imaging lens, and f2 is the effective length of the second lens. Focal length, f5 is the effective focal length of the fifth lens. More specifically, f, f2, and f5 can further satisfy 0 <| f / f2 | + | f / f5 | <0.6, for example, 0.05 ≦ | f / f2 | + | f / f5 | ≦ 0.54. Reasonably controlling the power of the second lens and the fifth lens can effectively balance the high-level coma and vertical axis chromatic aberrations produced by the second lens and the fifth lens, and at the same time reduce the aperture of the third lens and the fourth lens.
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<f4/f3<0.5,其中,f4为第四透镜的有效焦距,f3为第三透镜的有效焦距。更具体地,f4和f3进一步可满足0.01≤f4/f3≤0.25。合理分配第三透镜和第四透镜的光焦度,可有效地减小第三透镜和第四透镜产生的高级球差和像散,同时可以缓和光线在第三透镜和第四透镜中的偏折角度,降低这两个镜片的敏感性。In an exemplary embodiment, the optical imaging lens of the present application may satisfy a conditional expression of 0 <f4 / f3 <0.5, where f4 is an effective focal length of the fourth lens, and f3 is an effective focal length of the third lens. More specifically, f4 and f3 can further satisfy 0.01 ≦ f4 / f3 ≦ 0.25. Reasonable distribution of the power of the third lens and the fourth lens can effectively reduce the advanced spherical aberration and astigmatism generated by the third lens and the fourth lens, and at the same time, can reduce the deviation of light in the third lens and the fourth lens. Bend the angle to reduce the sensitivity of these two lenses.
在示例性实施方式中,本申请的光学成像镜头可满足条件式-0.8<CT7/f7<0,其中,CT7为第七透镜于光轴上的中心厚度,f7为第七透镜的有效焦距。更具体地,CT7和f7进一步可满足-0.67≤CT7/f7≤-0.20。合理控制第七透镜的光焦度和中心厚度,可在减小系统尺寸的同时,有效地平衡前端镜片未完全消除的畸变和色差,进一步提升镜头的成像品质。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression -0.8 <CT7 / f7 <0, where CT7 is the center thickness of the seventh lens on the optical axis and f7 is the effective focal length of the seventh lens. More specifically, CT7 and f7 can further satisfy -0.67≤CT7 / f7≤-0.20. Reasonably controlling the power and center thickness of the seventh lens can effectively balance the distortion and chromatic aberrations of the front lens that are not completely eliminated while reducing the system size, and further improve the imaging quality of the lens.
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<R1/R2<3,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足2.18≤R1/R2≤2.68。合理分配第一透镜物侧面和像侧面的曲率半径,避免光线在第一透镜的入射角和出射角过大,降低透镜敏感性,同时增大镜头可接受的视场角范围。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression 2 <R1 / R2 <3, where R1 is the curvature radius of the object side of the first lens, and R2 is the curvature radius of the image side of the first lens. . More specifically, R1 and R2 can further satisfy 2.18 ≦ R1 / R2 ≦ 2.68. Reasonably distribute the curvature radii of the object side and the image side of the first lens, avoid the incident angle and the exit angle of the light at the first lens from being too large, reduce the sensitivity of the lens, and increase the acceptable field of view angle of the lens.
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<R3/R4<1.5,其中,R3为第二透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径。更具体地,R3和R4进一步可满足0.57≤R3/R4≤1.41。合理控制第二透镜物侧面和像侧面的曲率半径,可缓和光线在第二透镜中的偏折角度,同时可有效地平衡第一透镜产生的色差和畸变。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression 0.5 <R3 / R4 <1.5, where R3 is the radius of curvature of the object side of the second lens and R4 is the radius of curvature of the image side of the second lens . More specifically, R3 and R4 can further satisfy 0.57 ≦ R3 / R4 ≦ 1.41. Reasonably controlling the curvature radius of the object side and the image side of the second lens can alleviate the deflection angle of the light in the second lens, and can effectively balance the chromatic aberration and distortion generated by the first lens.
在示例性实施方式中,本申请的光学成像镜头可满足条件式1<R7/f<1.8,其中,R7为第四透镜的物侧面的曲率半径,f为光学成像镜头的总有效焦距。更具体地,R7和f进一步可满足1.14≤R7/f≤1.66。合理控制第四透镜物侧面的曲率半径和光学成像镜头的总有效焦距,可减缓光线在第四透镜的入射角,同时可有效地平衡前端镜片残余的高级球差和像散。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression 1 <R7 / f <1.8, where R7 is the curvature radius of the object side of the fourth lens, and f is the total effective focal length of the optical imaging lens. More specifically, R7 and f can further satisfy 1.14 ≦ R7 / f ≦ 1.66. Reasonably controlling the curvature radius of the object side of the fourth lens and the total effective focal length of the optical imaging lens can slow down the incident angle of the light in the fourth lens and can effectively balance the residual high-level aberration and astigmatism of the front lens.
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2.1<R14/R13<0,其中,R14为第七透镜的像侧面的曲率半径,R13为第七透镜的物侧面的曲率半径。更具体地,R14和R13 进一步可满足-2.09≤R14/R13≤-0.01。合理控制第七透镜物侧面和像侧面的曲率半径,可减小光线在像面的入射角度,增强边缘视场的照度,同时有利于镜头与芯片的主光线角(CRA)匹配。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression -2.1 <R14 / R13 <0, where R14 is the curvature radius of the image side of the seventh lens, and R13 is the curvature of the object side of the seventh lens. radius. More specifically, R14 and R13 can further satisfy -2.09≤R14 / R13≤-0.01. Reasonably controlling the curvature radius of the object side and the image side of the seventh lens can reduce the incident angle of light on the image plane, enhance the illuminance of the edge field of view, and facilitate the matching of the lens and the chip's principal light angle (CRA).
在示例性实施方式中,本申请的光学成像镜头可满足条件式72°<HFOV<92°,其中,HFOV为光学成像镜头的最大半视场角。更具体地,HFOV进一步可满足72.5°≤HFOV≤91.0°。在确保镜头小型化的前提下,通过控制视场角,可避免边缘视场的像差过大及照度偏低,有利于保证镜头在较广的视场角内具有优良的成像品质。In an exemplary embodiment, the optical imaging lens of the present application can satisfy a conditional expression of 72 ° <HFOV <92 °, where HFOV is a maximum half field angle of the optical imaging lens. More specifically, HFOV can further satisfy 72.5 ° ≦ HFOV ≦ 91.0 °. Under the premise of ensuring the miniaturization of the lens, by controlling the field of view, the aberration of the edge field of view can be avoided and the illuminance is too low, which is conducive to ensuring that the lens has excellent imaging quality in a wide field of view.
在示例性实施方式中,本申请的光学成像镜头可满足条件式f/EPD<2.0,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径。更具体地,f和EPD进一步可满足1.78≤f/EPD≤1.86。通过控制f/EPD<2.0,可有效地增大镜头单位时间内的通光量,提升边缘视场的照度,保证镜头在光线较暗的环境下也具有良好的拍摄效果。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression f / EPD <2.0, where f is the total effective focal length of the optical imaging lens and EPD is the entrance pupil diameter of the optical imaging lens. More specifically, f and EPD can further satisfy 1.78 ≦ f / EPD ≦ 1.86. By controlling f / EPD <2.0, you can effectively increase the amount of light per unit time of the lens, increase the illumination of the edge field of view, and ensure that the lens has a good shooting effect in low-light environments.
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.7<T12/ImgH<1.2,其中,T12为第一透镜和第二透镜在光轴上的间隔距离,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,T12和ImgH进一步可满足0.97≤T12/ImgH≤1.14。合理控制第一透镜和第二透镜在光轴上的空气间隔,不仅有利于镜头的组装,还可以缩短镜头的尺寸,同时可以减缓光线进入第二透镜的入射角,降低透镜的敏感性。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression 0.7 <T12 / ImgH <1.2, where T12 is the distance between the first lens and the second lens on the optical axis, and ImgH is the Half of the diagonal of the effective pixel area on the imaging surface. More specifically, T12 and ImgH can further satisfy 0.97 ≦ T12 / ImgH ≦ 1.14. Reasonably controlling the air distance between the first lens and the second lens on the optical axis is not only conducive to the assembly of the lens, but also shortens the size of the lens. At the same time, it can slow the incident angle of light into the second lens and reduce the sensitivity of the lens.
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.8<DT11/DT12<2.3,其中,DT11为第一透镜的物侧面的最大有效半口径,DT12为第一透镜的像侧面的最大有效半口径。更具体地,DT11和DT12进一步可满足1.92≤DT11/DT12≤2.21。通过将第一透镜物侧面和像侧面的最大有效半口径控制在合理范围内,既有利于减小镜头前端尺寸,还有利于增大边缘视场单位时间的通光量,提升边缘视场的照度。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression 1.8 <DT11 / DT12 <2.3, where DT11 is a maximum effective half-diameter of the object side of the first lens, and DT12 is an image side of the first lens. Maximum effective half-caliber. More specifically, DT11 and DT12 can further satisfy 1.92 ≦ DT11 / DT12 ≦ 2.21. By controlling the maximum effective half-aperture of the object side and the image side of the first lens within a reasonable range, it is not only conducive to reducing the size of the front end of the lens, but also to increase the amount of light per unit time of the edge field of view and increase the illumination of the edge field of view. .
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5<DT72/DT71<2,其中,DT72为第七透镜的像侧面的最大有效半口径,DT71为第七透镜的物侧面的最大有效半口径。更具体地,DT72和DT71进一步可满足1.63≤DT72/DT71≤1.84。通过控制第七透镜物侧面和像侧面的最大有效半口径,可以减小镜头后端尺寸,同时保证边缘视场的照度。此外,还有利于阻挡边缘视场成像质量不佳的光线,保证镜头优良的成像品质。In an exemplary embodiment, the optical imaging lens of the present application may satisfy the conditional expression 1.5 <DT72 / DT71 <2, where DT72 is the maximum effective half-diameter of the image side of the seventh lens, and DT71 is the maximum effective half-diameter of the image side of the seventh lens. Maximum effective half-caliber. More specifically, DT72 and DT71 can further satisfy 1.63 ≦ DT72 / DT71 ≦ 1.84. By controlling the maximum effective half-aperture of the object side and the image side of the seventh lens, the size of the rear end of the lens can be reduced while ensuring the illuminance of the edge field of view. In addition, it is also beneficial to block the light with poor imaging quality in the edge field of view, ensuring the excellent imaging quality of the lens.
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.7<CT6/TTL*10<1.7,其中,CT6为第六透镜于光轴上的中心厚度,TTL为第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离。更具体地,CT6和TTL进一步可满足0.96≤CT6/TTL*10≤1.58。合理控制第六透镜在光轴上的中心厚度和第一透镜物侧面至成像面的轴上距离,可在保证镜头小型化的同时,避免镜片过薄而造成的例如加工困难等问题。此外,满足条件式0.7<CT6/TTL*10<1.7,还有利于缓和光线在第六透镜中的偏折角度,进一步平衡前端透镜未完全消除的高级彗差和像散。In an exemplary embodiment, the optical imaging lens of the present application can satisfy the conditional expression 0.7 <CT6 / TTL * 10 <1.7, where CT6 is the center thickness of the sixth lens on the optical axis, and TTL is the object side of the first lens Distance to the imaging axis of the optical imaging lens on the optical axis. More specifically, CT6 and TTL can further satisfy 0.96 ≦ CT6 / TTL * 10 ≦ 1.58. Reasonably controlling the central thickness of the sixth lens on the optical axis and the axial distance from the object side of the first lens to the imaging surface can ensure the miniaturization of the lens and avoid problems such as processing difficulties caused by the thin lens. In addition, satisfying the conditional expression 0.7 <CT6 / TTL * 10 <1.7 is also beneficial to alleviate the deflection angle of the light in the sixth lens and further balance the advanced coma and astigmatism that are not completely eliminated by the front lens.
在示例性实施方式中,上述光学成像镜头还可包括光阑,以提升镜头的成像质量。可选地,光阑可设置在第三透镜与第四透镜之间。可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。In an exemplary embodiment, the above-mentioned optical imaging lens may further include a diaphragm to improve the imaging quality of the lens. Alternatively, the diaphragm may be disposed between the third lens and the fourth lens. Optionally, the above-mentioned optical imaging lens may further include a filter for correcting color deviation and / or a protective glass for protecting the photosensitive element on the imaging surface.
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的七片。通过合 理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学成像镜头还可具有广角、大孔径、兼备优良成像品质等有益效果。The optical imaging lens according to the above embodiment of the present application may employ multiple lenses, such as the seven lenses described above. By rationally distributing the power, surface shape, center thickness of each lens, and the axial distance between each lens, the size of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved. This makes the optical imaging lens more conducive to production and processing and is suitable for portable electronic products. The optical imaging lens configured as above can also have beneficial effects such as wide angle, large aperture, and excellent imaging quality.
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。In the embodiment of the present application, at least one of the mirror surfaces of each lens is an aspherical mirror surface. Aspheric lenses are characterized by a curvature that varies continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses, which have a constant curvature from the lens center to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatic aberrations. The use of aspheric lenses can eliminate as much aberrations as possible during imaging, thereby improving imaging quality.
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像镜头不限于包括七个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。However, those skilled in the art should understand that, without departing from the technical solution claimed in this application, the number of lenses constituting the optical imaging lens may be changed to obtain various results and advantages described in this specification. For example, although seven lenses are described as an example in the embodiment, the optical imaging lens is not limited to including seven lenses. If necessary, the optical imaging lens may further include other numbers of lenses. Specific examples of the optical imaging lens applicable to the above embodiments will be further described below with reference to the drawings.
实施例1Example 1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 1 of the present application will be described below with reference to FIGS. 1 to 2D. FIG. 1 is a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application.
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。As shown in FIG. 1, the optical imaging lens according to the exemplary embodiment of the present application includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface. The fifth lens E5 has a negative power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. The sixth lens E6 has a positive power, and the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 1, where the units of the radius of curvature and thickness are millimeters (mm).
Figure PCTCN2019084948-appb-000001
Figure PCTCN2019084948-appb-000001
Figure PCTCN2019084948-appb-000002
Figure PCTCN2019084948-appb-000002
表1Table 1
由表1可知,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:As can be seen from Table 1, the object side and the image side of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces. In this embodiment, the surface type x of each aspheric lens can be defined using, but not limited to, the following aspheric formula:
Figure PCTCN2019084948-appb-000003
Figure PCTCN2019084948-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20Where x is the distance vector from the vertex of the aspheric surface when the aspheric surface is at the height h along the optical axis; c is the paraxial curvature of the aspheric surface, c = 1 / R The inverse of the radius of curvature R in 1); k is the conic coefficient (given in Table 1); Ai is the correction coefficient of the aspherical i-th order. Table 2 below shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18, and A 20 that can be used for each aspherical mirror surface S1-S14 in Example 1. .
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 1.5210E-031.5210E-03 -3.8000E-04-3.8000E-04 9.4300E-059.4300E-05 -2.2000E-05-2.2000E-05 3.2100E-063.2100E-06 -2.8000E-07-2.8000E-07 1.5100E-081.5100E-08 -4.3000E-10-4.3000E-10 4.9200E-124.9200E-12
S2S2 5.6050E-035.6050E-03 -4.1760E-02-4.1760E-02 1.1020E-011.1020E-01 -1.5605E-01-1.5605E-01 1.3941E-011.3941E-01 -7.8330E-02-7.8330E-02 2.7064E-022.7064E-02 -5.2600E-03-5.2600E-03 4.4400E-044.4400E-04
S3S3 -2.6300E-03-2.6300E-03 -3.1700E-02-3.1700E-02 9.7536E-029.7536E-02 -2.9315E-01-2.9315E-01 5.2235E-015.2235E-01 -5.8974E-01-5.8974E-01 4.0308E-014.0308E-01 -1.5251E-01-1.5251E-01 2.4569E-022.4569E-02
S4S4 1.5569E-021.5569E-02 -1.0074E-01-1.0074E-01 3.0540E-013.0540E-01 -9.4765E-01-9.4765E-01 1.7507E+001.7507E + 00 -2.0505E+00-2.0505E + 00 1.5051E+001.5051E + 00 -6.2760E-01-6.2760E-01 1.1321E-011.1321E-01
S5S5 -6.3940E-02-6.3940E-02 2.7900E-042.7900E-04 -2.7197E-01-2.7197E-01 1.0139E+001.0139E + 00 -2.1509E+00-2.1509E + 00 3.0204E+003.0204E + 00 -2.6341E+00-2.6341E + 00 1.2637E+001.2637E + 00 -2.5387E-01-2.5387E-01
S6S6 -8.4600E-03-8.4600E-03 -2.9500E-02-2.9500E-02 -1.6720E-02-1.6720E-02 5.3413E-015.3413E-01 -1.8709E+00-1.8709E + 00 3.5992E+003.5992E + 00 -3.9235E+00-3.9235E + 00 2.2171E+002.2171E + 00 -5.0357E-01-5.0357E-01
S7S7 9.6840E-039.6840E-03 -4.5800E-02-4.5800E-02 2.7208E-012.7208E-01 -9.6827E-01-9.6827E-01 2.1969E+002.1969E + 00 -3.1502E+00-3.1502E + 00 2.7733E+002.7733E + 00 -1.3720E+00-1.3720E + 00 2.9449E-012.9449E-01
S8S8 -9.0830E-02-9.0830E-02 7.5815E-027.5815E-02 -2.5627E-01-2.5627E-01 1.8383E+001.8383E + 00 -7.3440E+00-7.3440E + 00 1.7014E+011.7014E + 01 -2.2726E+01-2.2726E + 01 1.6272E+011.6272E + 01 -4.8404E+00-4.8404E + 00
S9S9 -3.9100E-01-3.9100E-01 5.0559E-015.0559E-01 -1.8943E+00-1.8943E + 00 6.4922E+006.4922E + 00 -1.4699E+01-1.4699E + 01 2.2015E+012.2015E + 01 -2.0728E+01-2.0728E + 01 1.0760E+011.0760E + 01 -2.2793E+00-2.2793E + 00
S10S10 -1.2171E-01-1.2171E-01 -4.1811E-01-4.1811E-01 2.1518E+002.1518E + 00 -5.5034E+00-5.5034E + 00 9.7928E+009.7928E + 00 -1.1733E+01-1.1733E + 01 8.9162E+008.9162E + 00 -3.8817E+00-3.8817E + 00 7.3836E-017.3836E-01
S11S11 2.7709E-022.7709E-02 -9.9310E-02-9.9310E-02 4.2224E-014.2224E-01 -8.5033E-01-8.5033E-01 1.0106E+001.0106E + 00 -7.5866E-01-7.5866E-01 3.5590E-013.5590E-01 -9.5700E-02-9.5700E-02 1.1308E-021.1308E-02
S12S12 -1.6518E-01-1.6518E-01 1.1709E-011.1709E-01 -2.8910E-02-2.8910E-02 -8.9500E-02-8.9500E-02 9.6302E-029.6302E-02 -3.1550E-02-3.1550E-02 -9.8300E-03-9.8300E-03 1.0568E-021.0568E-02 -2.2900E-03-2.2900E-03
S13S13 -3.8304E-01-3.8304E-01 1.5580E-011.5580E-01 -1.0646E-01-1.0646E-01 3.9396E-013.9396E-01 -8.4420E-01-8.4420E-01 9.5411E-019.5411E-01 -6.0319E-01-6.0319E-01 2.0408E-012.0408E-01 -2.8970E-02-2.8970E-02
S14S14 -6.2840E-02-6.2840E-02 1.2590E-021.2590E-02 5.7450E-035.7450E-03 -6.7800E-03-6.7800E-03 2.8160E-032.8160E-03 -6.5000E-04-6.5000E-04 8.7000E-058.7000E-05 -5.6000E-06-5.6000E-06 9.6200E-089.6200E-08
表2Table 2
表3给出了实施例1中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 3 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1 and the maximum half-view Field angle HFOV.
f1(mm)f1 (mm) -3.55-3.55 f6(mm)f6 (mm) 2.142.14
f2(mm)f2 (mm) 7.757.75 f7(mm)f7 (mm) -1.87-1.87
f3(mm)f3 (mm) 56.0056.00 f(mm)f (mm) 1.651.65
f4(mm)f4 (mm) 2.942.94 TTL(mm)TTL (mm) 7.707.70
f5(mm)f5 (mm) -5.10-5.10 HFOV(°)HFOV (°) 91.091.0
表3table 3
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。FIG. 2A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 2B shows an astigmatism curve of the optical imaging lens of Example 1, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 2C illustrates a distortion curve of the optical imaging lens of Example 1, which represents the value of the distortion magnitude under different fields of view. FIG. 2D shows the magnification chromatic aberration curve of the optical imaging lens of Example 1, which represents the deviation of light at different image heights on the imaging plane after passing through the lens. It can be known from FIG. 2A to FIG. 2D that the optical imaging lens provided in Embodiment 1 can achieve good imaging quality.
实施例2Example 2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 2 of the present application will be described below with reference to FIGS. 3 to 4D. In this embodiment and the following embodiments, for the sake of brevity, a description similar to that in Embodiment 1 will be omitted. FIG. 3 is a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。As shown in FIG. 3, the optical imaging lens according to the exemplary embodiment of the present application includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface. The fifth lens E5 has a negative power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. The sixth lens E6 has a positive power, and the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出了实施例2中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 2, where the units of the radius of curvature and thickness are millimeters (mm). Table 5 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1. Table 6 shows the effective focal lengths f1 to f7 of the lenses in Example 2, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half-view Field angle HFOV.
Figure PCTCN2019084948-appb-000004
Figure PCTCN2019084948-appb-000004
Figure PCTCN2019084948-appb-000005
Figure PCTCN2019084948-appb-000005
表4Table 4
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 2.7790E-032.7790E-03 -1.8000E-04-1.8000E-04 -2.5000E-05-2.5000E-05 7.9500E-067.9500E-06 -2.1000E-06-2.1000E-06 3.4500E-073.4500E-07 -3.0000E-08-3.0000E-08 1.3500E-091.3500E-09 -2.6000E-11-2.6000E-11
S2S2 -1.4670E-02-1.4670E-02 -1.6910E-02-1.6910E-02 7.2330E-027.2330E-02 -1.2664E-01-1.2664E-01 1.3806E-011.3806E-01 -9.3990E-02-9.3990E-02 3.9270E-023.9270E-02 -9.2200E-03-9.2200E-03 9.4200E-049.4200E-04
S3S3 2.1637E-022.1637E-02 -7.2840E-02-7.2840E-02 5.5389E-025.5389E-02 -1.5449E-01-1.5449E-01 2.2512E-012.2512E-01 -1.9194E-01-1.9194E-01 1.0309E-011.0309E-01 -2.9410E-02-2.9410E-02 2.8850E-032.8850E-03
S4S4 4.9291E-024.9291E-02 -1.6569E-01-1.6569E-01 3.0903E-013.0903E-01 -1.3293E+00-1.3293E + 00 3.3180E+003.3180E + 00 -5.0876E+00-5.0876E + 00 4.9582E+004.9582E + 00 -2.7674E+00-2.7674E + 00 6.6996E-016.6996E-01
S5S5 -3.3300E-03-3.3300E-03 -9.0580E-02-9.0580E-02 5.4912E-025.4912E-02 -2.0358E-01-2.0358E-01 3.5136E-013.5136E-01 -3.1312E-01-3.1312E-01 5.4000E-015.4000E-01 -6.5968E-01-6.5968E-01 2.7339E-012.7339E-01
S6S6 3.1220E-033.1220E-03 2.5278E-022.5278E-02 -3.7902E-01-3.7902E-01 1.9758E+001.9758E + 00 -6.0571E+00-6.0571E + 00 1.0985E+011.0985E + 01 -1.1394E+01-1.1394E + 01 6.1882E+006.1882E + 00 -1.3582E+00-1.3582E + 00
S7S7 6.4420E-036.4420E-03 1.5714E-021.5714E-02 -2.1610E-02-2.1610E-02 6.4886E-016.4886E-01 -3.8550E+00-3.8550E + 00 1.0689E+011.0689E + 01 -1.5901E+01-1.5901E + 01 1.2323E+011.2323E + 01 -3.9268E+00-3.9268E + 00
S8S8 -6.9810E-02-6.9810E-02 1.4968E-011.4968E-01 -4.8586E-01-4.8586E-01 2.4619E+002.4619E + 00 -8.3050E+00-8.3050E + 00 1.7556E+011.7556E + 01 -2.2412E+01-2.2412E + 01 1.5834E+011.5834E + 01 -4.7684E+00-4.7684E + 00
S9S9 -2.0842E-01-2.0842E-01 -2.7342E-01-2.7342E-01 1.6615E+001.6615E + 00 -6.4976E+00-6.4976E + 00 1.8568E+011.8568E + 01 -3.5791E+01-3.5791E + 01 4.3273E+014.3273E + 01 -2.9600E+01-2.9600E + 01 8.7083E+008.7083E + 00
S10S10 -3.8700E-02-3.8700E-02 -4.6346E-01-4.6346E-01 1.8985E+001.8985E + 00 -4.6377E+00-4.6377E + 00 8.0793E+008.0793E + 00 -9.7169E+00-9.7169E + 00 7.5920E+007.5920E + 00 -3.4471E+00-3.4471E + 00 6.8752E-016.8752E-01
S11S11 -2.2740E-02-2.2740E-02 5.8464E-025.8464E-02 3.0093E-023.0093E-02 -2.0547E-01-2.0547E-01 3.0025E-013.0025E-01 -2.4029E-01-2.4029E-01 1.1556E-011.1556E-01 -3.1790E-02-3.1790E-02 3.8850E-033.8850E-03
S12S12 -1.3740E-01-1.3740E-01 5.3255E-025.3255E-02 1.0461E-011.0461E-01 -3.4350E-01-3.4350E-01 4.7373E-014.7373E-01 -3.9110E-01-3.9110E-01 1.8904E-011.8904E-01 -4.7240E-02-4.7240E-02 4.4730E-034.4730E-03
S13S13 -2.8947E-01-2.8947E-01 3.6742E-023.6742E-02 1.7088E-011.7088E-01 -3.2244E-01-3.2244E-01 3.1077E-013.1077E-01 -1.6724E-01-1.6724E-01 4.0954E-024.0954E-02 3.4300E-033.4300E-03 -2.6800E-03-2.6800E-03
S14S14 -5.0760E-02-5.0760E-02 -1.0210E-02-1.0210E-02 3.0616E-023.0616E-02 -2.5430E-02-2.5430E-02 1.2202E-021.2202E-02 -3.7700E-03-3.7700E-03 7.3000E-047.3000E-04 -8.0000E-05-8.0000E-05 3.7800E-063.7800E-06
表5table 5
f1(mm)f1 (mm) -3.40-3.40 f6(mm)f6 (mm) 2.182.18
f2(mm)f2 (mm) -66.12-66.12 f7(mm)f7 (mm) -1.98-1.98
f3(mm)f3 (mm) 13.8413.84 f(mm)f (mm) 1.601.60
f4(mm)f4 (mm) 2.452.45 TTL(mm)TTL (mm) 7.607.60
f5(mm)f5 (mm) -5.76-5.76 HFOV(°)HFOV (°) 89.889.8
表6Table 6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。FIG. 4A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 2, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 4B shows an astigmatism curve of the optical imaging lens of Example 2, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 4C shows a distortion curve of the optical imaging lens of Example 2, which represents the value of the distortion magnitude in the case of different fields of view. FIG. 4D shows the magnification chromatic aberration curve of the optical imaging lens of Example 2, which represents the deviation of light at different image heights on the imaging surface after passing through the lens. According to FIG. 4A to FIG. 4D, it can be known that the optical imaging lens provided in Embodiment 2 can achieve good imaging quality.
实施例3Example 3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 3 of the present application is described below with reference to FIGS. 5 to 6D. FIG. 5 is a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。As shown in FIG. 5, the optical imaging lens according to the exemplary embodiment of the present application includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光 焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a positive power, and the object side surface S3 is a convex surface and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface. The fifth lens E5 has a negative power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. The sixth lens E6 has a positive power, and the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出了实施例3中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 3. The units of the radius of curvature and thickness are millimeters (mm). Table 8 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 3, where each aspherical surface type can be defined by the formula (1) given in Embodiment 1 above. Table 9 shows the effective focal lengths f1 to f7 of the lenses in Example 3, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half-view Field angle HFOV.
Figure PCTCN2019084948-appb-000006
Figure PCTCN2019084948-appb-000006
表7Table 7
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 2.8539E-032.8539E-03 -9.4000E-05-9.4000E-05 -9.7000E-06-9.7000E-06 6.8000E-066.8000E-06 -3.4000E-06-3.4000E-06 6.6700E-076.6700E-07 -6.7000E-08-6.7000E-08 3.4800E-093.4800E-09 -7.4000E-11-7.4000E-11
S2S2 -2.1664E-02-2.1664E-02 -4.7800E-03-4.7800E-03 5.2630E-025.2630E-02 -1.0219E-01-1.0219E-01 1.1833E-011.1833E-01 -8.3920E-02-8.3920E-02 3.6162E-023.6162E-02 -8.6800E-03-8.6800E-03 9.0100E-049.0100E-04
S3S3 2.4125E-022.4125E-02 -7.3920E-02-7.3920E-02 9.1239E-029.1239E-02 -2.7553E-01-2.7553E-01 4.6303E-014.6303E-01 -4.8227E-01-4.8227E-01 3.1946E-013.1946E-01 -1.1987E-01-1.1987E-01 1.9111E-021.9111E-02
S4S4 5.0274E-025.0274E-02 -1.4589E-01-1.4589E-01 1.5900E-011.5900E-01 -6.1213E-01-6.1213E-01 1.2736E+001.2736E + 00 -1.4805E+00-1.4805E + 00 1.1243E+001.1243E + 00 -5.3129E-01-5.3129E-01 1.1901E-011.1901E-01
S5S5 2.0969E-032.0969E-03 -1.0793E-01-1.0793E-01 2.4959E-022.4959E-02 5.8553E-025.8553E-02 -4.7636E-01-4.7636E-01 1.5924E+001.5924E + 00 -2.1716E+00-2.1716E + 00 1.3571E+001.3571E + 00 -3.3377E-01-3.3377E-01
S6S6 1.0144E-021.0144E-02 -5.6480E-02-5.6480E-02 1.9381E-011.9381E-01 -8.5156E-01-8.5156E-01 2.6815E+002.6815E + 00 -5.3927E+00-5.3927E + 00 6.8637E+006.8637E + 00 -5.0143E+00-5.0143E + 00 1.5567E+001.5567E + 00
S7S7 3.9524E-033.9524E-03 2.3282E-022.3282E-02 -1.2112E-01-1.2112E-01 1.2965E+001.2965E + 00 -6.3177E+00-6.3177E + 00 1.6440E+011.6440E + 01 -2.3885E+01-2.3885E + 01 1.8345E+011.8345E + 01 -5.8251E+00-5.8251E + 00
S8S8 -6.7988E-02-6.7988E-02 1.7035E-011.7035E-01 -7.8597E-01-7.8597E-01 4.4151E+004.4151E + 00 -1.5616E+01-1.5616E + 01 3.3906E+013.3906E + 01 -4.3982E+01-4.3982E + 01 3.1334E+013.1334E + 01 -9.4506E+00-9.4506E + 00
S9S9 -2.1117E-01-2.1117E-01 -2.0576E-01-2.0576E-01 1.3607E+001.3607E + 00 -5.5333E+00-5.5333E + 00 1.5918E+011.5918E + 01 -3.0505E+01-3.0505E + 01 3.6494E+013.6494E + 01 -2.4708E+01-2.4708E + 01 7.2194E+007.2194E + 00
S10S10 -4.8796E-02-4.8796E-02 -3.1984E-01-3.1984E-01 1.3524E+001.3524E + 00 -3.1755E+00-3.1755E + 00 5.0511E+005.0511E + 00 -5.3372E+00-5.3372E + 00 3.5735E+003.5735E + 00 -1.3736E+00-1.3736E + 00 2.3201E-012.3201E-01
S11S11 -4.5439E-02-4.5439E-02 1.8857E-011.8857E-01 -3.0526E-01-3.0526E-01 2.9331E-012.9331E-01 -1.7128E-01-1.7128E-01 5.0260E-025.0260E-02 1.2180E-031.2180E-03 -5.4500E-03-5.4500E-03 1.1720E-031.1720E-03
S12S12 -1.2803E-01-1.2803E-01 3.8163E-023.8163E-02 1.2101E-011.2101E-01 -4.0277E-01-4.0277E-01 6.2347E-016.2347E-01 -5.8675E-01-5.8675E-01 3.3029E-013.3029E-01 -1.0083E-01-1.0083E-01 1.2751E-021.2751E-02
S13S13 -2.7476E-01-2.7476E-01 3.8243E-023.8243E-02 1.3583E-011.3583E-01 -2.8002E-01-2.8002E-01 3.1555E-013.1555E-01 -2.2410E-01-2.2410E-01 9.7209E-029.7209E-02 -2.0650E-02-2.0650E-02 1.2580E-031.2580E-03
S14S14 -4.9140E-02-4.9140E-02 -7.8100E-03-7.8100E-03 2.4714E-022.4714E-02 -2.0140E-02-2.0140E-02 9.4830E-039.4830E-03 -2.9000E-03-2.9000E-03 5.5400E-045.5400E-04 -6.0000E-05-6.0000E-05 2.7600E-062.7600E-06
表8Table 8
f1(mm)f1 (mm) -3.32-3.32 f6(mm)f6 (mm) 2.142.14
f2(mm)f2 (mm) 61.0561.05 f7(mm)f7 (mm) -1.97-1.97
f3(mm)f3 (mm) 21.8921.89 f(mm)f (mm) 1.601.60
f4(mm)f4 (mm) 2.452.45 TTL(mm)TTL (mm) 7.607.60
f5(mm)f5 (mm) -5.24-5.24 HFOV(°)HFOV (°) 73.873.8
表9Table 9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。FIG. 6A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 3, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 6B shows an astigmatism curve of the optical imaging lens of Example 3, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 6C shows a distortion curve of the optical imaging lens of Example 3, which represents the value of the distortion magnitude in the case of different fields of view. FIG. 6D shows the magnification chromatic aberration curve of the optical imaging lens of Example 3, which represents the deviation of light at different image heights on the imaging surface after passing through the lens. According to FIG. 6A to FIG. 6D, it can be known that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.
实施例4Example 4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 4 of the present application is described below with reference to FIGS. 7 to 8D. FIG. 7 is a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。As shown in FIG. 7, the optical imaging lens according to the exemplary embodiment of the present application includes: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface. The fifth lens E5 has a positive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. The sixth lens E6 has a positive power, and the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出了实施例4中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 4, where the units of the radius of curvature and thickness are millimeters (mm). Table 11 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 4, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1. Table 12 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1 and the maximum half-view Field angle HFOV.
Figure PCTCN2019084948-appb-000007
Figure PCTCN2019084948-appb-000007
Figure PCTCN2019084948-appb-000008
Figure PCTCN2019084948-appb-000008
表10Table 10
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 1.9526E-031.9526E-03 -4.6000E-04-4.6000E-04 -3.0000E-06-3.0000E-06 1.2700E-051.2700E-05 -1.9000E-06-1.9000E-06 1.4800E-071.4800E-07 -8.8000E-09-8.8000E-09 4.3000E-104.3000E-10 -1.0000E-11-1.0000E-11
S2S2 -2.7546E-02-2.7546E-02 -5.5000E-03-5.5000E-03 6.1282E-026.1282E-02 -1.2133E-01-1.2133E-01 1.3874E-011.3874E-01 -9.6760E-02-9.6760E-02 4.0790E-024.0790E-02 -9.5700E-03-9.5700E-03 9.6700E-049.6700E-04
S3S3 2.3017E-022.3017E-02 -7.4540E-02-7.4540E-02 1.3126E-011.3126E-01 -4.6252E-01-4.6252E-01 8.9579E-018.9579E-01 -1.0381E+00-1.0381E + 00 7.2798E-017.2798E-01 -2.8343E-01-2.8343E-01 4.7029E-024.7029E-02
S4S4 4.6887E-024.6887E-02 -1.2925E-01-1.2925E-01 3.1133E-023.1133E-02 -3.0601E-01-3.0601E-01 1.0336E+001.0336E + 00 -1.5885E+00-1.5885E + 00 1.4208E+001.4208E + 00 -7.1636E-01-7.1636E-01 1.5712E-011.5712E-01
S5S5 8.8619E-038.8619E-03 -1.2739E-01-1.2739E-01 -7.3300E-02-7.3300E-02 4.0423E-014.0423E-01 -6.5290E-01-6.5290E-01 9.8500E-019.8500E-01 -1.1528E+00-1.1528E + 00 6.9028E-016.9028E-01 -1.5030E-01-1.5030E-01
S6S6 2.6900E-022.6900E-02 -2.4700E-02-2.4700E-02 -3.8058E-01-3.8058E-01 2.2691E+002.2691E + 00 -6.7837E+00-6.7837E + 00 1.2402E+011.2402E + 01 -1.3675E+01-1.3675E + 01 8.0620E+008.0620E + 00 -1.9160E+00-1.9160E + 00
S7S7 1.0794E-021.0794E-02 -1.6400E-02-1.6400E-02 2.2530E-012.2530E-01 -1.2916E+00-1.2916E + 00 4.3554E+004.3554E + 00 -9.1934E+00-9.1934E + 00 1.1910E+011.1910E + 01 -8.6922E+00-8.6922E + 00 2.7678E+002.7678E + 00
S8S8 -9.6430E-02-9.6430E-02 1.0861E-011.0861E-01 3.0031E-023.0031E-02 2.2112E-022.2112E-02 -1.2554E+00-1.2554E + 00 5.1920E+005.1920E + 00 -9.6114E+00-9.6114E + 00 8.6875E+008.6875E + 00 -3.0794E+00-3.0794E + 00
S9S9 2.9150E-032.9150E-03 -1.6322E+00-1.6322E + 00 6.2486E+006.2486E + 00 -1.8374E+01-1.8374E + 01 4.2088E+014.2088E + 01 -6.7975E+01-6.7975E + 01 7.1113E+017.1113E + 01 -4.3604E+01-4.3604E + 01 1.2018E+011.2018E + 01
S10S10 2.6093E-022.6093E-02 -1.0366E+00-1.0366E + 00 3.2216E+003.2216E + 00 -6.8263E+00-6.8263E + 00 1.3662E+011.3662E + 01 -2.1916E+01-2.1916E + 01 2.2767E+012.2767E + 01 -1.3142E+01-1.3142E + 01 3.2003E+003.2003E + 00
S11S11 1.4952E-011.4952E-01 -4.5168E-01-4.5168E-01 5.9041E-015.9041E-01 8.3714E-018.3714E-01 -3.8664E+00-3.8664E + 00 5.5603E+005.5603E + 00 -4.1080E+00-4.1080E + 00 1.5744E+001.5744E + 00 -2.4843E-01-2.4843E-01
S12S12 -1.2956E-01-1.2956E-01 9.5687E-029.5687E-02 -5.2560E-02-5.2560E-02 -3.8150E-02-3.8150E-02 1.7872E-021.7872E-02 8.5145E-028.5145E-02 -1.2581E-01-1.2581E-01 6.8959E-026.8959E-02 -1.3500E-02-1.3500E-02
S13S13 -3.2198E-01-3.2198E-01 1.8804E-011.8804E-01 -4.2323E-01-4.2323E-01 1.2056E+001.2056E + 00 -2.3631E+00-2.3631E + 00 2.8923E+002.8923E + 00 -2.0996E+00-2.0996E + 00 8.3162E-018.3162E-01 -1.3799E-01-1.3799E-01
S14S14 -7.0883E-02-7.0883E-02 2.5429E-022.5429E-02 -4.2900E-03-4.2900E-03 -2.7100E-03-2.7100E-03 2.0690E-032.0690E-03 -6.9000E-04-6.9000E-04 1.3100E-041.3100E-04 -1.4000E-05-1.4000E-05 6.5500E-076.5500E-07
表11Table 11
f1(mm)f1 (mm) -3.34-3.34 f6(mm)f6 (mm) 2.522.52
f2(mm)f2 (mm) 45.4445.44 f7(mm)f7 (mm) -1.74-1.74
f3(mm)f3 (mm) 272.93272.93 f(mm)f (mm) 1.561.56
f4(mm)f4 (mm) 2.352.35 TTL(mm)TTL (mm) 7.467.46
f5(mm)f5 (mm) 129.82129.82 HFOV(°)HFOV (°) 72.572.5
表12Table 12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。FIG. 8A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 4, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 8B shows an astigmatism curve of the optical imaging lens of Example 4, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 8C shows a distortion curve of the optical imaging lens of Example 4, which represents the value of the distortion magnitude in the case of different fields of view. FIG. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Example 4, which represents the deviation of light at different image heights on the imaging surface after passing through the lens. According to FIG. 8A to FIG. 8D, it can be known that the optical imaging lens provided in Embodiment 4 can achieve good imaging quality.
实施例5Example 5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 5 of the present application is described below with reference to FIGS. 9 to 10D. FIG. 9 is a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。As shown in FIG. 9, the optical imaging lens according to the exemplary embodiment of the present application includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface. The fifth lens E5 has a negative power, and the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface. The sixth lens E6 has a positive power, and the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出了实施例5中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 5, where the units of the radius of curvature and thickness are millimeters (mm). Table 14 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1. Table 15 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1 and the maximum half-view Field angle HFOV.
Figure PCTCN2019084948-appb-000009
Figure PCTCN2019084948-appb-000009
表13Table 13
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 1.8036E-031.8036E-03 -5.7300E-04-5.7300E-04 3.4000E-053.4000E-05 1.1200E-051.1200E-05 -2.6000E-06-2.6000E-06 2.6700E-072.6700E-07 -1.5000E-08-1.5000E-08 4.7500E-104.7500E-10 -6.4000E-12-6.4000E-12
S2S2 -2.4582E-02-2.4582E-02 -2.2918E-02-2.2918E-02 1.0535E-011.0535E-01 -1.9410E-01-1.9410E-01 2.0883E-012.0883E-01 -1.3757E-01-1.3757E-01 5.4942E-025.4942E-02 -1.2260E-02-1.2260E-02 1.1830E-031.1830E-03
S3S3 6.0986E-026.0986E-02 -4.9779E-01-4.9779E-01 2.1328E+002.1328E + 00 -5.9828E+00-5.9828E + 00 1.0422E+011.0422E + 01 -1.1454E+01-1.1454E + 01 7.7344E+007.7344E + 00 -2.9269E+00-2.9269E + 00 4.7508E-014.7508E-01
S4S4 3.2160E-023.2160E-02 -6.4926E-02-6.4926E-02 -2.6978E-01-2.6978E-01 9.5226E-019.5226E-01 -2.5075E+00-2.5075E + 00 4.2570E+004.2570E + 00 -4.1017E+00-4.1017E + 00 2.0651E+002.0651E + 00 -4.2097E-01-4.2097E-01
S5S5 1.2551E-021.2551E-02 8.7477E-028.7477E-02 -1.7392E+00-1.7392E + 00 8.2555E+008.2555E + 00 -2.3577E+01-2.3577E + 01 4.1551E+014.1551E + 01 -4.3868E+01-4.3868E + 01 2.5316E+012.5316E + 01 -6.1371E+00-6.1371E + 00
S6S6 -1.3508E-02-1.3508E-02 1.1294E-011.1294E-01 -4.0568E-01-4.0568E-01 8.9192E-018.9192E-01 8.8039E-018.8039E-01 -1.0832E+01-1.0832E + 01 2.6863E+012.6863E + 01 -2.9698E+01-2.9698E + 01 1.2621E+011.2621E + 01
S7S7 9.0710E-039.0710E-03 9.4223E-029.4223E-02 -4.5027E-01-4.5027E-01 1.3592E+001.3592E + 00 -2.5098E+00-2.5098E + 00 2.2432E+002.2432E + 00 -2.2223E-01-2.2223E-01 -1.0831E+00-1.0831E + 00 6.0138E-016.0138E-01
S8S8 -4.1282E-02-4.1282E-02 -2.5895E-01-2.5895E-01 3.0436E+003.0436E + 00 -1.7147E+01-1.7147E + 01 5.9371E+015.9371E + 01 -1.2710E+02-1.2710E + 02 1.6337E+021.6337E + 02 -1.1495E+02-1.1495E + 02 3.3855E+013.3855E + 01
S9S9 -3.1274E-01-3.1274E-01 -4.9257E-01-4.9257E-01 3.1661E+003.1661E + 00 -1.2403E+01-1.2403E + 01 3.8472E+013.8472E + 01 -7.9531E+01-7.9531E + 01 9.8985E+019.8985E + 01 -6.7369E+01-6.7369E + 01 1.9420E+011.9420E + 01
S10S10 1.4741E-011.4741E-01 -2.5341E+00-2.5341E + 00 1.0875E+011.0875E + 01 -2.8527E+01-2.8527E + 01 5.1748E+015.1748E + 01 -6.3729E+01-6.3729E + 01 5.0356E+015.0356E + 01 -2.2903E+01-2.2903E + 01 4.5366E+004.5366E + 00
S11S11 3.9288E-013.9288E-01 -2.2978E+00-2.2978E + 00 8.1901E+008.1901E + 00 -1.8772E+01-1.8772E + 01 2.8422E+012.8422E + 01 -2.8351E+01-2.8351E + 01 1.7930E+011.7930E + 01 -6.5165E+00-6.5165E + 00 1.0364E+001.0364E + 00
S12S12 -1.3044E-01-1.3044E-01 2.0703E-012.0703E-01 -6.4464E-01-6.4464E-01 1.4913E+001.4913E + 00 -2.3176E+00-2.3176E + 00 2.2611E+002.2611E + 00 -1.3037E+00-1.3037E + 00 4.0297E-014.0297E-01 -5.1340E-02-5.1340E-02
S13S13 -3.0974E-01-3.0974E-01 2.3228E-012.3228E-01 -8.0791E-01-8.0791E-01 2.2816E+002.2816E + 00 -4.0940E+00-4.0940E + 00 4.6792E+004.6792E + 00 -3.2748E+00-3.2748E + 00 1.2781E+001.2781E + 00 -2.1229E-01-2.1229E-01
S14S14 -4.7662E-02-4.7662E-02 2.0901E-032.0901E-03 1.3822E-021.3822E-02 -1.2750E-02-1.2750E-02 6.1280E-036.1280E-03 -1.7700E-03-1.7700E-03 3.0600E-043.0600E-04 -2.9000E-05-2.9000E-05 1.1100E-061.1100E-06
表14Table 14
f1(mm)f1 (mm) -3.00-3.00 f6(mm)f6 (mm) 2.322.32
f2(mm)f2 (mm) -16.66-16.66 f7(mm)f7 (mm) -1.87-1.87
f3(mm)f3 (mm) 9.409.40 f(mm)f (mm) 1.341.34
f4(mm)f4 (mm) 2.322.32 TTL(mm)TTL (mm) 7.447.44
f5(mm)f5 (mm) -26.83-26.83 HFOV(°)HFOV (°) 75.075.0
表15Table 15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。FIG. 10A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 5, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 10B shows an astigmatism curve of the optical imaging lens of Example 5, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 10C shows a distortion curve of the optical imaging lens of Example 5, which represents the value of the distortion magnitude in the case of different fields of view. FIG. 10D shows the magnification chromatic aberration curve of the optical imaging lens of Example 5, which represents the deviation of light at different image heights on the imaging surface after passing through the lens. It can be seen from FIGS. 10A to 10D that the optical imaging lens provided in Embodiment 5 can achieve good imaging quality.
实施例6Example 6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 6 of the present application is described below with reference to FIGS. 11 to 12D. FIG. 11 is a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。As shown in FIG. 11, the optical imaging lens according to the exemplary embodiment of the present application includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface. The fifth lens E5 has a positive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. The sixth lens E6 has a positive power, and the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面 的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出实施例6中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 6, where the units of the radius of curvature and thickness are millimeters (mm). Table 17 shows the higher-order coefficients that can be used for each aspherical mirror surface in Embodiment 6, where each aspherical surface type can be defined by the formula (1) given in the above-mentioned Embodiment 1. Table 18 shows the effective focal lengths f1 to f7 of the lenses in Example 6, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view. Angular HFOV.
Figure PCTCN2019084948-appb-000010
Figure PCTCN2019084948-appb-000010
表16Table 16
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 2.7850E-032.7850E-03 -8.8000E-04-8.8000E-04 6.6400E-056.6400E-05 2.0800E-052.0800E-05 -6.6000E-06-6.6000E-06 8.7300E-078.7300E-07 -6.3000E-08-6.3000E-08 2.4300E-092.4300E-09 -4.0000E-11-4.0000E-11
S2S2 -1.9280E-02-1.9280E-02 -1.9370E-02-1.9370E-02 1.1551E-011.1551E-01 -2.4966E-01-2.4966E-01 2.9501E-012.9501E-01 -2.0452E-01-2.0452E-01 8.3329E-028.3329E-02 -1.8530E-02-1.8530E-02 1.7500E-031.7500E-03
S3S3 2.2800E-022.2800E-02 -7.5990E-02-7.5990E-02 1.0792E-011.0792E-01 -3.1177E-01-3.1177E-01 5.1276E-015.1276E-01 -5.3722E-01-5.3722E-01 3.6923E-013.6923E-01 -1.4748E-01-1.4748E-01 2.5302E-022.5302E-02
S4S4 5.1628E-025.1628E-02 -2.2943E-01-2.2943E-01 5.5504E-015.5504E-01 -1.9774E+00-1.9774E + 00 4.3400E+004.3400E + 00 -5.6424E+00-5.6424E + 00 4.4403E+004.4403E + 00 -1.9720E+00-1.9720E + 00 3.7947E-013.7947E-01
S5S5 -2.6330E-02-2.6330E-02 -9.4580E-02-9.4580E-02 2.4488E-012.4488E-01 -5.9725E-01-5.9725E-01 2.6555E-012.6555E-01 2.0971E+002.0971E + 00 -4.4759E+00-4.4759E + 00 3.5044E+003.5044E + 00 -9.8615E-01-9.8615E-01
S6S6 -2.3900E-03-2.3900E-03 -8.2820E-02-8.2820E-02 1.0275E+001.0275E + 00 -5.1996E+00-5.1996E + 00 1.5655E+011.5655E + 01 -3.0243E+01-3.0243E + 01 3.6946E+013.6946E + 01 -2.6307E+01-2.6307E + 01 8.3139E+008.3139E + 00
S7S7 -1.0830E-02-1.0830E-02 3.4720E-023.4720E-02 -2.6017E-01-2.6017E-01 2.9131E+002.9131E + 00 -1.5573E+01-1.5573E + 01 4.4057E+014.4057E + 01 -6.9414E+01-6.9414E + 01 5.7506E+015.7506E + 01 -1.9395E+01-1.9395E + 01
S8S8 -1.9994E-01-1.9994E-01 3.2719E-013.2719E-01 -1.2785E+00-1.2785E + 00 8.2214E+008.2214E + 00 -3.2459E+01-3.2459E + 01 7.7214E+017.7214E + 01 -1.0528E+02-1.0528E + 02 7.3150E+017.3150E + 01 -1.8126E+01-1.8126E + 01
S9S9 1.2528E-011.2528E-01 -2.3624E+00-2.3624E + 00 4.3364E+004.3364E + 00 1.0812E+011.0812E + 01 -9.8590E+01-9.8590E + 01 3.0958E+023.0958E + 02 -5.2008E+02-5.2008E + 02 4.5704E+024.5704E + 02 -1.6376E+02-1.6376E + 02
S10S10 1.8756E-011.8756E-01 -2.4988E+00-2.4988E + 00 9.8351E+009.8351E + 00 -2.4602E+01-2.4602E + 01 4.2637E+014.2637E + 01 -4.8038E+01-4.8038E + 01 3.0216E+013.0216E + 01 -6.6921E+00-6.6921E + 00 -1.1049E+00-1.1049E + 00
S11S11 3.4548E-013.4548E-01 -1.9687E+00-1.9687E + 00 7.5957E+007.5957E + 00 -1.7993E+01-1.7993E + 01 2.6612E+012.6612E + 01 -2.4738E+01-2.4738E + 01 1.3930E+011.3930E + 01 -4.2708E+00-4.2708E + 00 5.2875E-015.2875E-01
S12S12 -2.0865E-01-2.0865E-01 3.9843E-013.9843E-01 -1.1518E+00-1.1518E + 00 2.6859E+002.6859E + 00 -4.2841E+00-4.2841E + 00 4.2777E+004.2777E + 00 -2.5070E+00-2.5070E + 00 7.8331E-017.8331E-01 -1.0049E-01-1.0049E-01
S13S13 -3.4200E-01-3.4200E-01 2.4983E-012.4983E-01 -4.1933E-01-4.1933E-01 4.0597E-014.0597E-01 4.3858E-024.3858E-02 -6.8032E-01-6.8032E-01 8.3588E-018.3588E-01 -4.1505E-01-4.1505E-01 7.2618E-027.2618E-02
S14S14 -8.3900E-02-8.3900E-02 3.9773E-023.9773E-02 -1.8270E-02-1.8270E-02 4.7480E-034.7480E-03 2.6200E-042.6200E-04 -7.5000E-04-7.5000E-04 2.7400E-042.7400E-04 -4.6000E-05-4.6000E-05 3.0700E-063.0700E-06
表17Table 17
f1(mm)f1 (mm) -2.73-2.73 f6(mm)f6 (mm) 2.232.23
f2(mm)f2 (mm) 24.5824.58 f7(mm)f7 (mm) -2.02-2.02
f3(mm)f3 (mm) 71.9371.93 f(mm)f (mm) 1.341.34
f4(mm)f4 (mm) 2.922.92 TTL(mm)TTL (mm) 7.457.45
f5(mm)f5 (mm) 12.3312.33 HFOV(°)HFOV (°) 78.078.0
表18Table 18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后 的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。FIG. 12A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 6, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 12C shows a distortion curve of the optical imaging lens of Example 6, which represents the value of the distortion magnitude in the case of different fields of view. FIG. 12D shows the magnification chromatic aberration curve of the optical imaging lens of Example 6, which represents the deviation of light at different image heights on the imaging surface after passing through the lens. According to FIG. 12A to FIG. 12D, it can be known that the optical imaging lens provided in Embodiment 6 can achieve good imaging quality.
实施例7Example 7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 7 of the present application is described below with reference to FIGS. 13 to 14D. FIG. 13 is a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application.
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。As shown in FIG. 13, the optical imaging lens according to the exemplary embodiment of the present application includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface. The fifth lens E5 has a positive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. The sixth lens E6 has a negative power, and the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出实施例7中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 7, where the units of the radius of curvature and thickness are millimeters (mm). Table 20 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 7, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 21 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view Angular HFOV.
Figure PCTCN2019084948-appb-000011
Figure PCTCN2019084948-appb-000011
Figure PCTCN2019084948-appb-000012
Figure PCTCN2019084948-appb-000012
表19Table 19
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 1.5930E-031.5930E-03 8.0600E-048.0600E-04 -9.8000E-04-9.8000E-04 3.9900E-043.9900E-04 -9.2000E-05-9.2000E-05 1.2900E-051.2900E-05 -1.1000E-06-1.1000E-06 5.0400E-085.0400E-08 -9.9000E-10-9.9000E-10
S2S2 -3.6020E-02-3.6020E-02 1.4045E-011.4045E-01 -4.2308E-01-4.2308E-01 6.6806E-016.6806E-01 -6.0998E-01-6.0998E-01 3.3502E-013.3502E-01 -1.0835E-01-1.0835E-01 1.8798E-021.8798E-02 -1.3200E-03-1.3200E-03
S3S3 1.8914E-021.8914E-02 -5.7220E-02-5.7220E-02 -1.3870E-02-1.3870E-02 1.6054E-011.6054E-01 -4.8807E-01-4.8807E-01 6.8062E-016.8062E-01 -4.8800E-01-4.8800E-01 1.7691E-011.7691E-01 -2.5590E-02-2.5590E-02
S4S4 6.4019E-026.4019E-02 -3.9891E-01-3.9891E-01 1.6247E+001.6247E + 00 -5.2887E+00-5.2887E + 00 1.0355E+011.0355E + 01 -1.2338E+01-1.2338E + 01 8.9143E+008.9143E + 00 -3.6135E+00-3.6135E + 00 6.3306E-016.3306E-01
S5S5 -4.1100E-02-4.1100E-02 1.6391E-011.6391E-01 -1.5345E+00-1.5345E + 00 6.3808E+006.3808E + 00 -1.6818E+01-1.6818E + 01 2.8547E+012.8547E + 01 -2.9669E+01-2.9669E + 01 1.6939E+011.6939E + 01 -4.0637E+00-4.0637E + 00
S6S6 3.3037E-023.3037E-02 2.5576E-022.5576E-02 -6.5256E-01-6.5256E-01 4.0401E+004.0401E + 00 -1.4195E+01-1.4195E + 01 3.0295E+013.0295E + 01 -3.8130E+01-3.8130E + 01 2.5563E+012.5563E + 01 -7.0352E+00-7.0352E + 00
S7S7 4.7150E-034.7150E-03 3.4578E-013.4578E-01 -3.0120E+00-3.0120E + 00 1.3911E+011.3911E + 01 -3.9436E+01-3.9436E + 01 6.9889E+016.9889E + 01 -7.5404E+01-7.5404E + 01 4.5275E+014.5275E + 01 -1.1593E+01-1.1593E + 01
S8S8 -7.6460E-02-7.6460E-02 -4.5760E-02-4.5760E-02 7.6292E-017.6292E-01 -1.8627E-01-1.8627E-01 -1.1990E+01-1.1990E + 01 4.9999E+014.9999E + 01 -9.3087E+01-9.3087E + 01 8.5082E+018.5082E + 01 -3.0962E+01-3.0962E + 01
S9S9 -1.8247E-01-1.8247E-01 2.5446E-012.5446E-01 -7.6532E+00-7.6532E + 00 4.3903E+014.3903E + 01 -1.2976E+02-1.2976E + 02 2.3260E+022.3260E + 02 -2.5276E+02-2.5276E + 02 1.5261E+021.5261E + 02 -3.9173E+01-3.9173E + 01
S10S10 3.6778E-013.6778E-01 -9.7315E-01-9.7315E-01 -8.7115E+00-8.7115E + 00 5.3348E+015.3348E + 01 -1.3853E+02-1.3853E + 02 2.0633E+022.0633E + 02 -1.8234E+02-1.8234E + 02 8.8895E+018.8895E + 01 -1.8407E+01-1.8407E + 01
S11S11 7.1608E-017.1608E-01 -4.6239E-01-4.6239E-01 -1.3333E+01-1.3333E + 01 7.1155E+017.1155E + 01 -1.8642E+02-1.8642E + 02 2.9401E+022.9401E + 02 -2.8619E+02-2.8619E + 02 1.5994E+021.5994E + 02 -3.9597E+01-3.9597E + 01
S12S12 -8.7316E-01-8.7316E-01 9.6999E-019.6999E-01 1.7659E-011.7659E-01 -2.8648E+00-2.8648E + 00 5.4198E+005.4198E + 00 -5.5748E+00-5.5748E + 00 3.3814E+003.3814E + 00 -1.1278E+00-1.1278E + 00 1.5831E-011.5831E-01
S13S13 -8.4591E-01-8.4591E-01 6.0800E-016.0800E-01 3.5496E-013.5496E-01 -1.9758E+00-1.9758E + 00 3.4174E+003.4174E + 00 -3.4846E+00-3.4846E + 00 2.1687E+002.1687E + 00 -7.5518E-01-7.5518E-01 1.1221E-011.1221E-01
S14S14 3.4990E-033.4990E-03 -1.7550E-02-1.7550E-02 2.9110E-032.9110E-03 2.0900E-032.0900E-03 -6.0000E-04-6.0000E-04 -3.0000E-04-3.0000E-04 1.7400E-041.7400E-04 -3.2000E-05-3.2000E-05 2.1300E-062.1300E-06
表20Table 20
f1(mm)f1 (mm) -3.15-3.15 f6(mm)f6 (mm) -24.07-24.07
f2(mm)f2 (mm) 37.5537.55 f7(mm)f7 (mm) -5.66-5.66
f3(mm)f3 (mm) 139.17139.17 f(mm)f (mm) 1.531.53
f4(mm)f4 (mm) 2.182.18 TTL(mm)TTL (mm) 7.927.92
f5(mm)f5 (mm) 8.378.37 HFOV(°)HFOV (°) 82.582.5
表21Table 21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。FIG. 14A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 7, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 14B shows an astigmatism curve of the optical imaging lens of Example 7, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 14C shows a distortion curve of the optical imaging lens of Example 7, which represents the value of the distortion magnitude in the case of different fields of view. FIG. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Example 7, which represents the deviation of light at different image heights on the imaging surface after passing through the lens. As can be seen from FIGS. 14A to 14D, the optical imaging lens provided in Embodiment 7 can achieve good imaging quality.
实施例8Example 8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 8 of the present application is described below with reference to FIGS. 15 to 16D. FIG. 15 is a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application.
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。As shown in FIG. 15, the optical imaging lens according to the exemplary embodiment of the present application includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其 物侧面S11为凹面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface. The fifth lens E5 has a positive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. The sixth lens E6 has a negative power, and the object side surface S11 is a concave surface and the image side surface S12 is a concave surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出实施例8中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 8, where the units of the radius of curvature and thickness are millimeters (mm). Table 23 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 8, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1. Table 24 shows the effective focal lengths f1 to f7 of the lenses in Example 8, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view. Angular HFOV.
Figure PCTCN2019084948-appb-000013
Figure PCTCN2019084948-appb-000013
表22Table 22
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 1.7083E-031.7083E-03 7.5100E-047.5100E-04 -9.0000E-04-9.0000E-04 3.1300E-043.1300E-04 -6.0000E-05-6.0000E-05 7.0600E-067.0600E-06 -5.1000E-07-5.1000E-07 2.0300E-082.0300E-08 -3.5000E-10-3.5000E-10
S2S2 2.9549E-022.9549E-02 -2.1529E-01-2.1529E-01 5.5348E-015.5348E-01 -8.2521E-01-8.2521E-01 7.6953E-017.6953E-01 -4.5266E-01-4.5266E-01 1.6309E-011.6309E-01 -3.2840E-02-3.2840E-02 2.8340E-032.8340E-03
S3S3 1.9497E-021.9497E-02 -5.7620E-02-5.7620E-02 -2.2020E-02-2.2020E-02 1.8263E-011.8263E-01 -5.2655E-01-5.2655E-01 7.4044E-017.4044E-01 -5.5889E-01-5.5889E-01 2.2345E-012.2345E-01 -3.7500E-02-3.7500E-02
S4S4 6.0513E-026.0513E-02 -3.2968E-01-3.2968E-01 1.1149E+001.1149E + 00 -3.4592E+00-3.4592E + 00 6.6269E+006.6269E + 00 -7.7646E+00-7.7646E + 00 5.5338E+005.5338E + 00 -2.2087E+00-2.2087E + 00 3.7776E-013.7776E-01
S5S5 -3.3314E-02-3.3314E-02 7.4802E-027.4802E-02 -1.0062E+00-1.0062E + 00 4.3992E+004.3992E + 00 -1.1920E+01-1.1920E + 01 2.0774E+012.0774E + 01 -2.2381E+01-2.2381E + 01 1.3482E+011.3482E + 01 -3.5109E+00-3.5109E + 00
S6S6 3.6705E-023.6705E-02 -6.9220E-02-6.9220E-02 3.6284E-013.6284E-01 -1.8814E+00-1.8814E + 00 6.3218E+006.3218E + 00 -1.2956E+01-1.2956E + 01 1.6047E+011.6047E + 01 -1.1359E+01-1.1359E + 01 3.4778E+003.4778E + 00
S7S7 9.8757E-039.8757E-03 2.2867E-012.2867E-01 -2.0977E+00-2.0977E + 00 9.7045E+009.7045E + 00 -2.7409E+01-2.7409E + 01 4.8319E+014.8319E + 01 -5.1810E+01-5.1810E + 01 3.0922E+013.0922E + 01 -7.8805E+00-7.8805E + 00
S8S8 -5.7626E-02-5.7626E-02 -4.6265E-01-4.6265E-01 4.7647E+004.7647E + 00 -2.2972E+01-2.2972E + 01 6.8116E+016.8116E + 01 -1.2496E+02-1.2496E + 02 1.3780E+021.3780E + 02 -8.3284E+01-8.3284E + 01 2.1078E+012.1078E + 01
S9S9 -1.1453E-01-1.1453E-01 -4.1878E-01-4.1878E-01 -3.8684E+00-3.8684E + 00 3.0202E+013.0202E + 01 -9.9828E+01-9.9828E + 01 1.9720E+021.9720E + 02 -2.3661E+02-2.3661E + 02 1.5775E+021.5775E + 02 -4.4597E+01-4.4597E + 01
S10S10 4.3778E-014.3778E-01 -1.7885E+00-1.7885E + 00 -3.0019E+00-3.0019E + 00 2.9196E+012.9196E + 01 -7.6800E+01-7.6800E + 01 1.1030E+021.1030E + 02 -9.3328E+01-9.3328E + 01 4.3667E+014.3667E + 01 -8.7064E+00-8.7064E + 00
S11S11 7.0628E-017.0628E-01 -5.3290E-01-5.3290E-01 -1.1851E+01-1.1851E + 01 6.2579E+016.2579E + 01 -1.6084E+02-1.6084E + 02 2.4889E+022.4889E + 02 -2.3823E+02-2.3823E + 02 1.3136E+021.3136E + 02 -3.2248E+01-3.2248E + 01
S12S12 -9.4990E-01-9.4990E-01 1.4064E+001.4064E + 00 -1.6935E+00-1.6935E + 00 1.5283E+001.5283E + 00 -8.7766E-01-8.7766E-01 1.2351E-011.2351E-01 1.9240E-011.9240E-01 -1.1668E-01-1.1668E-01 1.8812E-021.8812E-02
S13S13 -8.7664E-01-8.7664E-01 6.4856E-016.4856E-01 3.8527E-013.8527E-01 -2.1645E+00-2.1645E + 00 3.7958E+003.7958E + 00 -3.9225E+00-3.9225E + 00 2.4704E+002.4704E + 00 -8.6799E-01-8.6799E-01 1.2963E-011.2963E-01
S14S14 -7.0714E-03-7.0714E-03 -6.0620E-02-6.0620E-02 8.7286E-028.7286E-02 -6.7700E-02-6.7700E-02 3.2428E-023.2428E-02 -9.8900E-03-9.8900E-03 1.8700E-031.8700E-03 -2.0000E-04-2.0000E-04 9.3300E-069.3300E-06
表23Table 23
f1(mm)f1 (mm) -3.00-3.00 f6(mm)f6 (mm) -20.25-20.25
f2(mm)f2 (mm) 33.6833.68 f7(mm)f7 (mm) -6.18-6.18
f3(mm)f3 (mm) 143.95143.95 f(mm)f (mm) 1.491.49
f4(mm)f4 (mm) 2.192.19 TTL(mm)TTL (mm) 7.957.95
f5(mm)f5 (mm) 8.958.95 HFOV(°)HFOV (°) 77.577.5
表24Table 24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。FIG. 16A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 8, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 16B shows an astigmatism curve of the optical imaging lens of Example 8, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 16C shows a distortion curve of the optical imaging lens of Example 8, which represents the value of the distortion magnitude in the case of different fields of view. FIG. 16D shows the magnification chromatic aberration curve of the optical imaging lens of Example 8, which represents the deviation of light at different image heights on the imaging surface after passing through the lens. According to FIG. 16A to FIG. 16D, it can be known that the optical imaging lens provided in Embodiment 8 can achieve good imaging quality.
实施例9Example 9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 9 of the present application is described below with reference to FIGS. 17 to 18D. FIG. 17 is a schematic structural diagram of an optical imaging lens according to Embodiment 9 of the present application.
如图17所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。As shown in FIG. 17, the optical imaging lens according to the exemplary embodiment of the present application includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface. The fifth lens E5 has a negative power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. The sixth lens E6 has a positive power, and the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27给出实施例9中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 25 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 9, where the units of the radius of curvature and thickness are millimeters (mm). Table 26 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 9, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 27 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view Angular HFOV.
Figure PCTCN2019084948-appb-000014
Figure PCTCN2019084948-appb-000014
Figure PCTCN2019084948-appb-000015
Figure PCTCN2019084948-appb-000015
表25Table 25
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 3.7129E-033.7129E-03 -2.2400E-03-2.2400E-03 7.5800E-047.5800E-04 -1.7000E-04-1.7000E-04 2.7700E-052.7700E-05 -2.9000E-06-2.9000E-06 1.8200E-071.8200E-07 -6.5000E-09-6.5000E-09 9.7900E-119.7900E-11
S2S2 5.3639E-025.3639E-02 -2.5949E-01-2.5949E-01 6.2965E-016.2965E-01 -9.1136E-01-9.1136E-01 8.2728E-018.2728E-01 -4.7336E-01-4.7336E-01 1.6633E-011.6633E-01 -3.2850E-02-3.2850E-02 2.8040E-032.8040E-03
S3S3 2.5635E-022.5635E-02 -6.4250E-02-6.4250E-02 5.8672E-025.8672E-02 -1.7449E-01-1.7449E-01 2.5176E-012.5176E-01 -2.0821E-01-2.0821E-01 1.0631E-011.0631E-01 -3.0310E-02-3.0310E-02 3.5880E-033.5880E-03
S4S4 5.3707E-025.3707E-02 -2.5816E-01-2.5816E-01 7.1843E-017.1843E-01 -2.5197E+00-2.5197E + 00 5.1991E+005.1991E + 00 -6.2776E+00-6.2776E + 00 4.5132E+004.5132E + 00 -1.7997E+00-1.7997E + 00 3.0673E-013.0673E-01
S5S5 -2.6949E-02-2.6949E-02 3.0459E-013.0459E-01 -3.7314E+00-3.7314E + 00 1.8968E+011.8968E + 01 -5.7347E+01-5.7347E + 01 1.0708E+021.0708E + 02 -1.2060E+02-1.2060E + 02 7.4768E+017.4768E + 01 -1.9524E+01-1.9524E + 01
S6S6 6.7291E-026.7291E-02 -1.1418E+00-1.1418E + 00 1.0621E+011.0621E + 01 -5.8035E+01-5.8035E + 01 2.0037E+022.0037E + 02 -4.3903E+02-4.3903E + 02 5.9064E+025.9064E + 02 -4.4564E+02-4.4564E + 02 1.4450E+021.4450E + 02
S7S7 -1.7931E-02-1.7931E-02 4.7736E-014.7736E-01 -4.4685E+00-4.4685E + 00 2.5331E+012.5331E + 01 -8.8380E+01-8.8380E + 01 1.9045E+021.9045E + 02 -2.4666E+02-2.4666E + 02 1.7548E+021.7548E + 02 -5.2552E+01-5.2552E + 01
S8S8 -6.3702E-02-6.3702E-02 -5.8986E-01-5.8986E-01 7.7603E+007.7603E + 00 -4.6967E+01-4.6967E + 01 1.7225E+021.7225E + 02 -3.9042E+02-3.9042E + 02 5.3299E+025.3299E + 02 -4.0083E+02-4.0083E + 02 1.2723E+021.2723E + 02
S9S9 8.7236E-028.7236E-02 -2.2782E+00-2.2782E + 00 7.4007E+007.4007E + 00 -1.2531E+01-1.2531E + 01 2.0552E-012.0552E-01 4.9094E+014.9094E + 01 -1.0375E+02-1.0375E + 02 9.3084E+019.3084E + 01 -3.1737E+01-3.1737E + 01
S10S10 1.0895E-011.0895E-01 -1.5934E+00-1.5934E + 00 5.6762E+005.6762E + 00 -1.4309E+01-1.4309E + 01 2.9123E+012.9123E + 01 -4.3494E+01-4.3494E + 01 4.2330E+014.2330E + 01 -2.3445E+01-2.3445E + 01 5.5672E+005.5672E + 00
S11S11 2.2747E-012.2747E-01 -8.9852E-01-8.9852E-01 1.9413E+001.9413E + 00 -1.6285E+00-1.6285E + 00 -1.4021E+00-1.4021E + 00 4.6061E+004.6061E + 00 -4.5159E+00-4.5159E + 00 2.0869E+002.0869E + 00 -3.8514E-01-3.8514E-01
S12S12 -5.2546E-02-5.2546E-02 -1.5721E-01-1.5721E-01 6.5082E-016.5082E-01 -1.4134E+00-1.4134E + 00 2.0044E+002.0044E + 00 -1.9627E+00-1.9627E + 00 1.2054E+001.2054E + 00 -4.0253E-01-4.0253E-01 5.5092E-025.5092E-02
S13S13 -3.1975E-01-3.1975E-01 3.4890E-013.4890E-01 -2.5106E+00-2.5106E + 00 8.8878E+008.8878E + 00 -1.7421E+01-1.7421E + 01 2.0415E+012.0415E + 01 -1.4378E+01-1.4378E + 01 5.6564E+005.6564E + 00 -9.5630E-01-9.5630E-01
S14S14 2.9333E-022.9333E-02 -2.1008E-01-2.1008E-01 2.5502E-012.5502E-01 -1.8088E-01-1.8088E-01 8.2984E-028.2984E-02 -2.4940E-02-2.4940E-02 4.7320E-034.7320E-03 -5.1000E-04-5.1000E-04 2.4400E-052.4400E-05
表26Table 26
f1(mm)f1 (mm) -3.92-3.92 f6(mm)f6 (mm) 2.112.11
f2(mm)f2 (mm) -29.79-29.79 f7(mm)f7 (mm) -1.77-1.77
f3(mm)f3 (mm) 17.8617.86 f(mm)f (mm) 1.301.30
f4(mm)f4 (mm) 2.172.17 TTL(mm)TTL (mm) 7.067.06
f5(mm)f5 (mm) -24.26-24.26 HFOV(°)HFOV (°) 83.983.9
表27Table 27
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。FIG. 18A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 9, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 18B shows an astigmatism curve of the optical imaging lens of Example 9, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 18C shows a distortion curve of the optical imaging lens of Example 9, which represents the value of the distortion magnitude under different field of view conditions. FIG. 18D shows the magnification chromatic aberration curve of the optical imaging lens of Example 9, which represents the deviation of light at different image heights on the imaging surface after passing through the lens. According to FIG. 18A to FIG. 18D, it can be known that the optical imaging lens provided in Embodiment 9 can achieve good imaging quality.
实施例10Example 10
以下参照图19至图20D描述了根据本申请实施例10的光学成像镜头。图19示出了根据本申请实施例10的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 10 of the present application is described below with reference to FIGS. FIG. 19 is a schematic structural diagram of an optical imaging lens according to Embodiment 10 of the present application.
如图19所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7 和成像面S15。As shown in FIG. 19, the optical imaging lens according to the exemplary embodiment of the present application includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the sixth lens E6, the seventh lens E7, and the imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。可选地,可在第三透镜E3与第四透镜E4之间设置光阑(未示出),用以提升镜头的成像质量。The first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface. The second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. The third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface. The fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface. The fifth lens E5 has a positive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. The sixth lens E6 has a positive power, and the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface. The seventh lens E7 has a negative power, and the object side surface S13 is a concave surface, and the image side surface S14 is a concave surface. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15. Optionally, an aperture (not shown) may be provided between the third lens E3 and the fourth lens E4 to improve the imaging quality of the lens.
表28示出了实施例10的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表29示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表30给出实施例10中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。Table 28 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging lens of Example 10. The units of the radius of curvature and the thickness are both millimeters (mm). Table 29 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 10, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1. Table 30 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1 and the maximum half field of view Angular HFOV.
Figure PCTCN2019084948-appb-000016
Figure PCTCN2019084948-appb-000016
表28Table 28
面号Face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 A18A18 A20A20
S1S1 4.8663E-034.8663E-03 -2.5990E-03-2.5990E-03 8.0600E-048.0600E-04 -1.8000E-04-1.8000E-04 2.6300E-052.6300E-05 -2.2000E-06-2.2000E-06 9.0600E-089.0600E-08 -1.8000E-10-1.8000E-10 -7.1000E-11-7.1000E-11
S2S2 2.4408E-022.4408E-02 -6.9751E-02-6.9751E-02 1.7461E-011.7461E-01 -2.6331E-01-2.6331E-01 2.5175E-012.5175E-01 -1.5245E-01-1.5245E-01 5.7015E-025.7015E-02 -1.2040E-02-1.2040E-02 1.1050E-031.1050E-03
S3S3 2.5256E-022.5256E-02 -6.1275E-02-6.1275E-02 5.4969E-025.4969E-02 -1.5734E-01-1.5734E-01 2.2143E-012.2143E-01 -1.7631E-01-1.7631E-01 8.4648E-028.4648E-02 -2.1690E-02-2.1690E-02 2.0910E-032.0910E-03
S4S4 4.9674E-024.9674E-02 -1.5790E-01-1.5790E-01 7.3408E-027.3408E-02 -5.1474E-01-5.1474E-01 1.3194E+001.3194E + 00 -1.5131E+00-1.5131E + 00 9.4801E-019.4801E-01 -3.2172E-01-3.2172E-01 4.6521E-024.6521E-02
S5S5 2.2560E-022.2560E-02 -2.3629E-01-2.3629E-01 -1.4799E-01-1.4799E-01 3.0055E+003.0055E + 00 -1.2486E+01-1.2486E + 01 2.8217E+012.8217E + 01 -3.6263E+01-3.6263E + 01 2.4618E+012.4618E + 01 -6.8378E+00-6.8378E + 00
S6S6 -1.5587E-02-1.5587E-02 1.4790E-011.4790E-01 -7.9501E-01-7.9501E-01 5.9589E+005.9589E + 00 -2.7352E+01-2.7352E + 01 7.6057E+017.6057E + 01 -1.2384E+02-1.2384E + 02 1.0475E+021.0475E + 02 -3.4715E+01-3.4715E + 01
S7S7 -2.3179E-02-2.3179E-02 4.5746E-014.5746E-01 -5.0150E+00-5.0150E + 00 3.3935E+013.3935E + 01 -1.3789E+02-1.3789E + 02 3.3440E+023.3440E + 02 -4.6739E+02-4.6739E + 02 3.4502E+023.4502E + 02 -1.0385E+02-1.0385E + 02
S8S8 -1.9847E-01-1.9847E-01 5.8818E-025.8818E-02 4.4557E+004.4557E + 00 -4.0839E+01-4.0839E + 01 2.1099E+022.1099E + 02 -6.5622E+02-6.5622E + 02 1.2069E+031.2069E + 03 -1.1967E+03-1.1967E + 03 4.8935E+024.8935E + 02
S9S9 3.5081E-013.5081E-01 -5.6067E+00-5.6067E + 00 2.9944E+012.9944E + 01 -1.1489E+02-1.1489E + 02 3.1435E+023.1435E + 02 -5.8600E+02-5.8600E + 02 6.9387E+026.9387E + 02 -4.6423E+02-4.6423E + 02 1.3263E+021.3263E + 02
S10S10 2.1966E-012.1966E-01 -2.3862E+00-2.3862E + 00 7.5991E+007.5991E + 00 -1.1645E+01-1.1645E + 01 5.6029E+005.6029E + 00 8.4822E+008.4822E + 00 -1.4413E+01-1.4413E + 01 8.0494E+008.0494E + 00 -1.5482E+00-1.5482E + 00
S11S11 3.9401E-013.9401E-01 -1.5029E+00-1.5029E + 00 2.0171E+002.0171E + 00 7.8219E+007.8219E + 00 -4.1934E+01-4.1934E + 01 8.7046E+018.7046E + 01 -9.6661E+01-9.6661E + 01 5.6631E+015.6631E + 01 -1.3777E+01-1.3777E + 01
S12S12 -3.7375E-02-3.7375E-02 -1.2478E-01-1.2478E-01 5.0672E-015.0672E-01 -1.3077E+00-1.3077E + 00 1.9151E+001.9151E + 00 -1.7288E+00-1.7288E + 00 9.4938E-019.4938E-01 -2.8703E-01-2.8703E-01 3.6284E-023.6284E-02
S13S13 -4.4029E-01-4.4029E-01 2.1477E-012.1477E-01 -8.5826E-01-8.5826E-01 3.2973E+003.2973E + 00 -7.2554E+00-7.2554E + 00 9.3602E+009.3602E + 00 -6.9490E+00-6.9490E + 00 2.7914E+002.7914E + 00 -4.7772E-01-4.7772E-01
S14S14 -1.4668E-01-1.4668E-01 9.1214E-029.1214E-02 -4.0780E-02-4.0780E-02 4.2390E-034.2390E-03 7.5700E-037.5700E-03 -5.7800E-03-5.7800E-03 2.0010E-032.0010E-03 -3.5000E-04-3.5000E-04 2.4600E-052.4600E-05
表29Table 29
f1(mm)f1 (mm) -3.92-3.92 f6(mm)f6 (mm) 1.881.88
f2(mm)f2 (mm) -19.25-19.25 f7(mm)f7 (mm) -1.36-1.36
f3(mm)f3 (mm) 15.0015.00 f(mm)f (mm) 1.201.20
f4(mm)f4 (mm) 2.182.18 TTL(mm)TTL (mm) 6.686.68
f5(mm)f5 (mm) 362.90362.90 HFOV(°)HFOV (°) 77.577.5
表30Table 30
图20A示出了实施例10的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图20B示出了实施例10的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像镜头的畸变曲线,其表示不同视场情况下的畸变大小值。图20D示出了实施例10的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同像高处的偏差。根据图20A至图20D可知,实施例10所给出的光学成像镜头能够实现良好的成像品质。FIG. 20A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 10, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens. FIG. 20B shows an astigmatism curve of the optical imaging lens of Example 10, which represents a meridional image plane curvature and a sagittal image plane curvature. FIG. 20C illustrates a distortion curve of the optical imaging lens of Example 10, which represents the value of the distortion magnitude in the case of different fields of view. FIG. 20D shows a magnification chromatic aberration curve of the optical imaging lens of Example 10, which represents the deviation of light at different image heights on the imaging plane after passing through the lens. It can be seen from FIGS. 20A to 20D that the optical imaging lens provided in Embodiment 10 can achieve good imaging quality.
综上,实施例1至实施例10分别满足表31中所示的关系。In summary, Examples 1 to 10 satisfy the relationships shown in Table 31, respectively.
条件式/实施例Conditional expression / example 11 22 33 44 55 66 77 88 99 1010
f1/ff1 / f -2.15-2.15 -2.13-2.13 -2.08-2.08 -2.14-2.14 -2.24-2.24 -2.04-2.04 -2.06-2.06 -2.01-2.01 -3.02-3.02 -3.27-3.27
|f/f2|+|f/f5|| f / f2 | + | f / f5 | 0.540.54 0.300.30 0.330.33 0.050.05 0.130.13 0.160.16 0.220.22 0.210.21 0.100.10 0.070.07
f4/f3f4 / f3 0.050.05 0.180.18 0.110.11 0.010.01 0.250.25 0.040.04 0.020.02 0.020.02 0.120.12 0.150.15
CT7/f7CT7 / f7 -0.57-0.57 -0.62-0.62 -0.61-0.61 -0.67-0.67 -0.62-0.62 -0.57-0.57 -0.22-0.22 -0.20-0.20 -0.54-0.54 -0.57-0.57
R1/R2R1 / R2 2.652.65 2.392.39 2.572.57 2.382.38 2.532.53 2.682.68 2.462.46 2.542.54 2.182.18 2.182.18
R3/R4R3 / R4 0.570.57 1.131.13 0.960.96 0.910.91 1.411.41 0.880.88 0.940.94 0.930.93 1.241.24 1.401.40
R7/fR7 / f 1.301.30 1.391.39 1.381.38 1.261.26 1.661.66 1.141.14 1.291.29 1.311.31 1.501.50 1.591.59
R14/R13R14 / R13 -1.21-1.21 -1.89-1.89 -1.89-1.89 -1.85-1.85 -1.67-1.67 -2.09-2.09 -0.08-0.08 -0.01-0.01 -1.94-1.94 -1.39-1.39
HFOV(°)HFOV (°) 91.091.0 89.889.8 73.873.8 72.572.5 75.075.0 78.078.0 82.582.5 77.577.5 83.983.9 77.577.5
f/EPDf / EPD 1.781.78 1.851.85 1.851.85 1.851.85 1.841.84 1.831.83 1.861.86 1.861.86 1.851.85 1.851.85
T12/ImgHT12 / ImgH 1.061.06 0.970.97 1.041.04 1.071.07 1.101.10 1.041.04 1.031.03 1.041.04 1.031.03 1.141.14
DT11/DT12DT11 / DT12 2.032.03 2.092.09 2.072.07 2.082.08 2.212.21 2.192.19 2.012.01 2.022.02 2.152.15 1.921.92
DT72/DT71DT72 / DT71 1.701.70 1.701.70 1.691.69 1.631.63 1.651.65 1.691.69 1.661.66 1.631.63 1.841.84 1.821.82
CT6/TTL*10CT6 / TTL * 10 1.251.25 1.211.21 1.211.21 1.081.08 0.960.96 1.101.10 1.581.58 1.571.57 1.091.09 0.980.98
表31Table 31
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。The present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS). The imaging device may be an independent imaging device such as a digital camera or an imaging module integrated on a mobile electronic device such as a mobile phone. The imaging device is equipped with the optical imaging lens described above.
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an explanation of the applied technical principles. Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution of the specific combination of the above technical features, but should also cover the above technical features without departing from the inventive concept. Or other technical solutions formed by any combination of equivalent features. For example, a technical solution formed by replacing the above features with technical features disclosed in the present application (but not limited to) with similar functions.

Claims (28)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,The optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens,
    其特征在于,It is characterized by,
    所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;The first lens has a negative power, and the object side is convex and the image side is concave;
    所述第二透镜具有光焦度;The second lens has an optical power;
    所述第三透镜具有正光焦度;The third lens has a positive power;
    所述第四透镜具有正光焦度;The fourth lens has a positive power;
    所述第五透镜具有光焦度;The fifth lens has a power;
    所述第六透镜具有光焦度;The sixth lens has optical power;
    所述第七透镜具有负光焦度,其物侧面和像侧面均为凹面;以及The seventh lens has a negative power, and the object side and the image side are both concave; and
    所述第一透镜的有效焦距f1与所述光学成像镜头的总有效焦距f满足-3.5<f1/f<-2。The effective focal length f1 of the first lens and the total effective focal length f of the optical imaging lens satisfy -3.5 <f1 / f <-2.
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第二透镜的有效焦距f2与所述第五透镜的有效焦距f5满足|f/f2|+|f/f5|<0.6。The optical imaging lens according to claim 1, wherein a total effective focal length f of the optical imaging lens, an effective focal length f2 of the second lens, and an effective focal length f5 of the fifth lens satisfy f / f2 | + | f / f5 | <0.6.
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第三透镜的有效焦距f3满足0<f4/f3<0.5。The optical imaging lens according to claim 1, wherein an effective focal length f4 of the fourth lens and an effective focal length f3 of the third lens satisfy 0 <f4 / f3 <0.5.
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足2<R1/R2<3。The optical imaging lens according to claim 1, wherein the curvature radius R1 of the object side of the first lens and the curvature radius R2 of the image side of the first lens satisfy 2 <R1 / R2 <3.
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足0.5<R3/R4<1.5。The optical imaging lens according to claim 1, wherein the curvature radius R3 of the object side of the second lens and the curvature radius R4 of the image side of the second lens satisfy 0.5 <R3 / R4 <1.5.
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述光学成像镜头的总有效焦距f满足1<R7/f<1.8。The optical imaging lens according to claim 1, wherein a curvature radius R7 of the object side of the fourth lens and a total effective focal length f of the optical imaging lens satisfy 1 <R7 / f <1.8.
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第七透镜的像侧面的曲率半径R14与所述第七透镜的物侧面的曲率半径R13满足-2.1<R14/R13<0。The optical imaging lens according to claim 1, wherein a curvature radius R14 of an image side of the seventh lens and a curvature radius R13 of an object side of the seventh lens satisfy -2.1 <R14 / R13 <0.
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足0.7<T12/ImgH<1.2。The optical imaging lens according to claim 1, wherein a separation distance T12 between the first lens and the second lens on the optical axis and an effective pixel area on an imaging surface of the optical imaging lens ImgH, which is a half of the angular length, satisfies 0.7 <T12 / ImgH <1.2.
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜于所述光轴上的中心厚度CT6与所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL满足0.7<CT6/TTL*10<1.7。The optical imaging lens according to claim 1, wherein the center thickness CT6 of the sixth lens on the optical axis and the object-side surface of the first lens to the imaging surface of the optical imaging lens are at The distance TTL on the optical axis satisfies 0.7 <CT6 / TTL * 10 <1.7.
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述第七透镜于所述光轴上的中心厚度CT7与所述第七透镜的有效焦距f7满足-0.8<CT7/f7<0。The optical imaging lens according to claim 1, wherein a center thickness CT7 of the seventh lens on the optical axis and an effective focal length f7 of the seventh lens satisfy -0.8 <CT7 / f7 <0.
  11. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的最大有效半口径DT11与所述第一透镜的像侧面的最大有效半口径DT12满足1.8<DT11/DT12<2.3。The optical imaging lens according to claim 1, wherein the maximum effective half-diameter DT11 of the object side of the first lens and the maximum effective half-diameter DT12 of the image side of the first lens satisfy 1.8 <DT11 / DT12 <2.3.
  12. 根据权利要求1所述的光学成像镜头,其特征在于,所述第七透镜的像侧面的最大有效 半口径DT72与所述第七透镜的物侧面的最大有效半口径DT71满足1.5<DT72/DT71<2。The optical imaging lens according to claim 1, wherein the maximum effective half-diameter DT72 of the image side of the seventh lens and the maximum effective half-diameter DT71 of the object side of the seventh lens satisfy 1.5 <DT72 / DT71 <2.
  13. 根据权利要求1至12中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的最大半视场角HFOV满足72°<HFOV<92°。The optical imaging lens according to any one of claims 1 to 12, wherein a maximum half field angle HFOV of the optical imaging lens satisfies 72 ° <HFOV <92 °.
  14. 根据权利要求1至12中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD<2.0。The optical imaging lens according to any one of claims 1 to 12, wherein a total effective focal length f of the optical imaging lens and an entrance pupil diameter EPD of the optical imaging lens satisfy f / EPD <2.0.
  15. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,The optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens,
    其特征在于,It is characterized by,
    所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;The first lens has a negative power, and the object side is convex and the image side is concave;
    所述第二透镜具有光焦度;The second lens has an optical power;
    所述第三透镜具有正光焦度;The third lens has a positive power;
    所述第四透镜具有正光焦度;The fourth lens has a positive power;
    所述第五透镜具有光焦度;The fifth lens has a power;
    所述第六透镜具有光焦度;The sixth lens has optical power;
    所述第七透镜具有负光焦度,其物侧面和像侧面均为凹面;以及The seventh lens has a negative power, and the object side and the image side are both concave; and
    所述第七透镜的像侧面的最大有效半口径DT72与所述第七透镜的物侧面的最大有效半口径DT71满足1.5<DT72/DT71<2。The maximum effective half-aperture DT72 of the image side of the seventh lens and the maximum effective half-aperture DT71 of the object side of the seventh lens satisfy 1.5 <DT72 / DT71 <2.
  16. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足2<R1/R2<3。The optical imaging lens according to claim 15, wherein the curvature radius R1 of the object side of the first lens and the curvature radius R2 of the image side of the first lens satisfy 2 <R1 / R2 <3.
  17. 根据权利要求15所述的光学成像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足0.5<R3/R4<1.5。The optical imaging lens according to claim 15, wherein the curvature radius R3 of the object side of the second lens and the curvature radius R4 of the image side of the second lens satisfy 0.5 <R3 / R4 <1.5.
  18. 根据权利要求17所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第二透镜的有效焦距f2与所述第五透镜的有效焦距f5满足|f/f2|+|f/f5|<0.6。The optical imaging lens according to claim 17, wherein a total effective focal length f of the optical imaging lens, an effective focal length f2 of the second lens, and an effective focal length f5 of the fifth lens satisfy | f / f2 | + | f / f5 | <0.6.
  19. 根据权利要求15所述的光学成像镜头,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述光学成像镜头的总有效焦距f满足1<R7/f<1.8。The optical imaging lens according to claim 15, wherein a curvature radius R7 of the object side of the fourth lens and a total effective focal length f of the optical imaging lens satisfy 1 <R7 / f <1.8.
  20. 根据权利要求19所述的光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第三透镜的有效焦距f3满足0<f4/f3<0.5。The optical imaging lens according to claim 19, wherein an effective focal length f4 of the fourth lens and an effective focal length f3 of the third lens satisfy 0 <f4 / f3 <0.5.
  21. 根据权利要求15所述的光学成像镜头,其特征在于,所述第七透镜的像侧面的曲率半径R14与所述第七透镜的物侧面的曲率半径R13满足-2.1<R14/R13<0。The optical imaging lens according to claim 15, wherein the curvature radius R14 of the image side of the seventh lens and the curvature radius R13 of the object side of the seventh lens satisfy -2.1 <R14 / R13 <0.
  22. 根据权利要求21所述的光学成像镜头,其特征在于,所述第七透镜于所述光轴上的中心厚度CT7与所述第七透镜的有效焦距f7满足-0.8<CT7/f7<0。The optical imaging lens according to claim 21, wherein a center thickness CT7 of the seventh lens on the optical axis and an effective focal length f7 of the seventh lens satisfy -0.8 <CT7 / f7 <0.
  23. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的最大有效半口径DT11与所述第一透镜的像侧面的最大有效半口径DT12满足1.8<DT11/DT12<2.3。The optical imaging lens according to claim 15, wherein the maximum effective half-diameter DT11 of the object side of the first lens and the maximum effective half-diameter DT12 of the image side of the first lens satisfy 1.8 <DT11 / DT12 <2.3.
  24. 根据权利要求23所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述光学成像镜头的总有效焦距f满足-3.5<f1/f<-2。The optical imaging lens according to claim 23, wherein an effective focal length f1 of the first lens and a total effective focal length f of the optical imaging lens satisfy -3.5 <f1 / f <-2.
  25. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足0.7<T12/ImgH<1.2。The optical imaging lens according to claim 15, wherein a separation distance T12 on the optical axis of the first lens and the second lens is aligned with an effective pixel area on an imaging surface of the optical imaging lens. ImgH, which is a half of the angular length, satisfies 0.7 <T12 / ImgH <1.2.
  26. 根据权利要求15所述的光学成像镜头,其特征在于,所述第六透镜于所述光轴上的中心厚度CT6与所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL满足0.7<CT6/TTL*10<1.7。The optical imaging lens according to claim 15, wherein the center thickness CT6 of the sixth lens on the optical axis and the object-side surface of the first lens to the imaging surface of the optical imaging lens are at The distance TTL on the optical axis satisfies 0.7 <CT6 / TTL * 10 <1.7.
  27. 根据权利要求15至26中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的最大半视场角HFOV满足72°<HFOV<92°。The optical imaging lens according to any one of claims 15 to 26, wherein a maximum half field angle HFOV of the optical imaging lens satisfies 72 ° <HFOV <92 °.
  28. 根据权利要求15至26中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD<2.0。The optical imaging lens according to any one of claims 15 to 26, wherein a total effective focal length f of the optical imaging lens and an entrance pupil diameter EPD of the optical imaging lens satisfy f / EPD <2.0.
PCT/CN2019/084948 2018-08-02 2019-04-29 Optical imaging lens WO2020024635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810872496.X 2018-08-02
CN201810872496.XA CN108919463B (en) 2018-08-02 2018-08-02 Optical imaging lens

Publications (1)

Publication Number Publication Date
WO2020024635A1 true WO2020024635A1 (en) 2020-02-06

Family

ID=64394528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084948 WO2020024635A1 (en) 2018-08-02 2019-04-29 Optical imaging lens

Country Status (2)

Country Link
CN (2) CN117289430A (en)
WO (1) WO2020024635A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11487088B2 (en) 2020-06-10 2022-11-01 Largan Precision Co., Ltd. Imaging lens assembly including seven lenses of ++−+−+− or ++−−−+− refractive powers, image capturing unit and electronic device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117289430A (en) * 2018-08-02 2023-12-26 浙江舜宇光学有限公司 Optical imaging lens
CN109239895B (en) * 2018-12-03 2024-04-02 浙江舜宇光学有限公司 Optical imaging lens
CN113960765B (en) * 2018-12-11 2024-03-29 浙江舜宇光学有限公司 Image pickup lens
CN112154363B (en) * 2019-07-10 2022-03-18 深圳市大疆创新科技有限公司 Optical imaging system and electronic device
TWI712830B (en) 2019-12-25 2020-12-11 大立光電股份有限公司 Photographing optical lens assembly, image capturing unit and electronic device
CN112083554B (en) * 2020-09-17 2021-12-17 长光卫星技术有限公司 Super wide angle low distortion long focus fish eye optical system
CN112764197B (en) * 2021-01-13 2022-05-06 浙江舜宇光学有限公司 Camera lens
CN113204099B (en) * 2021-05-08 2023-01-20 浙江舜宇光学有限公司 Optical imaging lens
CN114647067B (en) * 2022-05-20 2022-10-11 江西联创电子有限公司 Wide-angle lens
CN117031697B (en) * 2023-10-08 2024-02-20 江西联益光学有限公司 Optical lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072404A (en) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 Image capturing lens, image capturing device, and mobile terminal
JP2015072402A (en) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 Image capturing lens, image capturing device, and mobile terminal
CN106291882A (en) * 2016-09-06 2017-01-04 浙江舜宇光学有限公司 Pick-up lens
CN106896477A (en) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 Optical mirror slip group
CN108919463A (en) * 2018-08-02 2018-11-30 浙江舜宇光学有限公司 Optical imaging lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324797B (en) * 2015-06-29 2018-12-28 佳能企业股份有限公司 Optical lens
CN106772951B (en) * 2017-03-02 2022-12-13 舜宇光学(中山)有限公司 Wide-angle low-distortion lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072404A (en) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 Image capturing lens, image capturing device, and mobile terminal
JP2015072402A (en) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 Image capturing lens, image capturing device, and mobile terminal
CN106291882A (en) * 2016-09-06 2017-01-04 浙江舜宇光学有限公司 Pick-up lens
CN106896477A (en) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 Optical mirror slip group
CN108919463A (en) * 2018-08-02 2018-11-30 浙江舜宇光学有限公司 Optical imaging lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11487088B2 (en) 2020-06-10 2022-11-01 Largan Precision Co., Ltd. Imaging lens assembly including seven lenses of ++−+−+− or ++−−−+− refractive powers, image capturing unit and electronic device

Also Published As

Publication number Publication date
CN117289430A (en) 2023-12-26
CN108919463A (en) 2018-11-30
CN108919463B (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2020019794A1 (en) Optical imaging lens
WO2020007080A1 (en) Camera lens
WO2020024634A1 (en) Optical imaging lens group
WO2020024633A1 (en) Optical imaging lens assembly
WO2020093725A1 (en) Image pickup optical system
WO2019233160A1 (en) Optical imaging lens group
WO2020029620A1 (en) Optical imaging lens set
WO2020024635A1 (en) Optical imaging lens
WO2020088022A1 (en) Optical imaging lens set
WO2020038134A1 (en) Optical imaging system
WO2019223263A1 (en) Camera lens
WO2020010878A1 (en) Optical imaging system
WO2020010879A1 (en) Optical imaging system
WO2020107935A1 (en) Optical imaging lens
WO2020007069A1 (en) Optical imaging lens set
WO2020073702A1 (en) Optical imaging lens set
WO2020191951A1 (en) Optical imaging lens
WO2020168717A1 (en) Optical imaging lens
WO2020001119A1 (en) Camera lens
WO2020119146A1 (en) Optical imaging lens
WO2020134026A1 (en) Optical imaging system
WO2020007081A1 (en) Optical imaging lens
WO2020134129A1 (en) Optical imaging system
WO2020186759A1 (en) Optical imaging lens
WO2020119145A1 (en) Camera lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845038

Country of ref document: EP

Kind code of ref document: A1