JP2015072404A - Image capturing lens, image capturing device, and mobile terminal - Google Patents

Image capturing lens, image capturing device, and mobile terminal Download PDF

Info

Publication number
JP2015072404A
JP2015072404A JP2013208753A JP2013208753A JP2015072404A JP 2015072404 A JP2015072404 A JP 2015072404A JP 2013208753 A JP2013208753 A JP 2013208753A JP 2013208753 A JP2013208753 A JP 2013208753A JP 2015072404 A JP2015072404 A JP 2015072404A
Authority
JP
Japan
Prior art keywords
lens
imaging
image
imaging lens
page
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013208753A
Other languages
Japanese (ja)
Inventor
貴志 川崎
Takashi Kawasaki
貴志 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013208753A priority Critical patent/JP2015072404A/en
Publication of JP2015072404A publication Critical patent/JP2015072404A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms For Cameras (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image capturing lens which is as compact as conventional lenses and yet offers a larger aperture, good correction for various aberrations, and a seven-lens configuration.SOLUTION: An image capturing lens 10 comprises, in order from the object side, a first lens L1, a positive second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a seventh lens L7, where the seventh lens L7 has an aspherically shaped image-side surface S72 having an extremum at a position other than the center within an effective diameter thereof. The image capturing lens 10 satisfies the following conditional expression: 15<θS6<45, where θS6 represents a maximum surface angle, with the image side being positive, of an image-side surface S32 of the third lens L3 within an effective diameter thereof. Here, the effective diameter is defined as an aperture diameter when an aperture is provided either on the object side or the image side of the third lens L3, as a diameter of a larger aperture when an aperture is provided on each side thereof, and as a height of a marginal ray of light rays forming an image at a maximum image height when an aperture is provided on neither side.

Description

本発明は、小型の撮像レンズ、並びにこれを組み込んだ撮像装置及び携帯端末に関し、特に7枚のレンズを有する低背に好適な撮像レンズ、撮像装置、及び携帯端末に関する。   The present invention relates to a small imaging lens, an imaging apparatus and a portable terminal incorporating the same, and more particularly to an imaging lens suitable for a low profile having seven lenses, an imaging apparatus, and a portable terminal.

近年、CCD(Charge Coupled Device)型イメージセンサーあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子を用いた撮像素子の高性能化及び小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及しつつある。さらに最近では、上記のような携帯情報端末等に搭載される表示素子の大型化・高精細化を受け、撮像素子も高画素化が求められており、これらの携帯情報端末等に搭載される撮像レンズに対しては、さらなる高性能化への要求が高まっている。このような用途の撮像レンズとして、5枚や6枚構成の撮像レンズが提案されている。最近では、さらなる高性能化を目指し5枚や6枚構成のレンズに比べ収差補正能力の優れた7枚構成のレンズも提案されている(例えば特許文献1、2等参照)。   In recent years, with the improvement in performance and miniaturization of imaging devices using solid-state imaging devices such as CCD (Charge Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, Portable information terminals are becoming popular. More recently, with the increase in size and definition of display elements mounted on the above-described portable information terminals and the like, the imaging elements are also required to have higher pixels, and are mounted on these portable information terminals and the like. There is a growing demand for higher performance for imaging lenses. As imaging lenses for such applications, imaging lenses having five or six lenses have been proposed. Recently, a seven-lens lens having an excellent aberration correction capability compared to a five- or six-lens lens has been proposed for higher performance (see, for example, Patent Documents 1 and 2).

撮像素子に対する高画素化の要求の一方で、撮像装置の小型化の要求も強く、撮像素子については、高画素化と小型化とを両立するために、画素サイズの小型化が進んでいる。撮像素子の画素サイズが小さくなると、その分1画素当たりで受光できる光量が減少するため、S/N比が小さくなることによるノイズや、露光時間が長くなるため発生する手振れによる画像劣化が問題となる。この1画素当たりで受光できる光量の減少に起因する問題の対策のため、より明るいレンズが求められており、最近ではF1.9以下の大口径のレンズが求められている。一方で、大口径化は、受光光量の増加には寄与するが、球面収差やコマ収差などの単色収差の発生に繋がり、光学性能を劣化させてしまう。上記特許文献1には、第1レンズが正で、第2レンズが負で、7枚構成の撮像レンズが記載されているが、いずれもF2.0以上の暗い撮像レンズであり、十分な大口径化ができていない。また、また、第1レンズの正のパワーが強過ぎるため、F1.9以下に大口径化した際に球面収差やコマ収差の補正が不足し、性能の維持が難しい。また、上記特許文献2には、第1レンズが負レンズで、第2レンズが正レンズで、7枚構成の撮像レンズが記載されているが、この文献も同じくF2.0以上の暗い撮像レンズしか記載されておらず、十分な大口径化ができていない。また、第3レンズの負のパワーが弱いため、大口径化した際に球面収差やコマ収差の補正が不足するため、高性能化が困難になる。   On the other hand, there is a strong demand for downsizing of the image pickup apparatus on the other hand, while the demand for downsizing of the image pickup device is strong. In order to achieve both high downsizing and downsizing of the image pickup device, downsizing of the pixel size is progressing. As the pixel size of the image sensor becomes smaller, the amount of light that can be received per pixel decreases accordingly, and noise due to a decrease in the S / N ratio and image degradation due to camera shake that occurs due to a longer exposure time are problematic. Become. In order to solve the problem caused by the decrease in the amount of light that can be received per pixel, a brighter lens is demanded, and recently, a lens having a large aperture of F1.9 or less is demanded. On the other hand, increasing the diameter contributes to an increase in the amount of received light, but leads to the occurrence of monochromatic aberrations such as spherical aberration and coma aberration, and degrades optical performance. Patent Document 1 describes a seven-element imaging lens in which the first lens is positive, the second lens is negative, and both are dark imaging lenses of F2.0 or higher, and are sufficiently large. The aperture has not been made. In addition, since the positive power of the first lens is too strong, correction of spherical aberration and coma aberration is insufficient when the aperture is increased to F1.9 or less, and it is difficult to maintain performance. Further, Patent Document 2 describes a seven-lens imaging lens in which the first lens is a negative lens, the second lens is a positive lens, and this document is also a dark imaging lens of F2.0 or more. However, only a large diameter has not been described. In addition, since the negative power of the third lens is weak, correction of spherical aberration and coma aberration is insufficient when the aperture is increased, making it difficult to achieve high performance.

中国実用新案公告第202886720号明細書China Utility Model Publication No. 2028886720 Specification 中国実用新案公告第202886713号明細書China Utility Model Notification No. 202886713

本発明は、このような問題点に鑑みてなされたものであり、従来タイプと同程度の小型の撮像レンズとしつつも、大口径化された上で、諸収差が良好に補正された、7枚構成の撮像レンズを提供することを目的とする。ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。
L/2Y<1.00 … (11)
ただし、
L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:撮像素子の撮像面対角線長(撮像素子の矩形実効画素領域の対角線長)
ここで、像側焦点とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記Lの値を計算するものとする。
The present invention has been made in view of such a problem, and while making the imaging lens as small as that of the conventional type, the various apertures were corrected well with an increased diameter. An object of the present invention is to provide an imaging lens having a sheet configuration. Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
L / 2Y <1.00 (11)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: Diagonal length of the imaging surface of the imaging device (diagonal length of the rectangular effective pixel area of the imaging device)
Here, the image side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens. When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of the image pickup device package is disposed between the most image side surface of the image pickup lens and the image side focal position, the parallel plate is used. The part is assumed to be the air conversion distance and the value of L is calculated.

値L/2Yについては、より望ましくは、下式の範囲がよい。
L/2Y<0.95 … (11)'
The value L / 2Y is more preferably in the range of the following formula.
L / 2Y <0.95 (11) ′

上記目的を達成するため、本発明に係る撮像レンズは、物体側より順に、第1レンズ、正の第2レンズ、第3レンズ、第4レンズ、第5レンズ、第6レンズ、及び第7レンズからなり、第7レンズの像側面は、非球面形状を有し、中心以外の有効径内に極値を有し、下記の条件式を満たす。
15<θS6<45 … (1)
θS6:第3レンズの像側面の有効径内で像側に傾いた場合を正として最も大きな面角度
ただし、有効径は、最大像高へ到達する光線束のうち、最も光軸から離れた位置を通過する光線の通過高さのことを示す。具体的には、有効径は、第3レンズの物体側及び像側のうち、いずれか一方に絞りがあるときは当該一方の絞りの径とし、双方に絞りがあるときは大きい方の径とし、双方に絞りがないときは最大像高に結像する光線束の周縁光線の高さとする。また、面角度は、光軸垂線に平行な場合を0度とし、像側に傾いている場合を正の角度とし、物体側に傾いている場合を負の角度とする。極値とは、有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面又は接線が光軸と垂直な平面又は線分となるような非球面上の点のことである。
In order to achieve the above object, an imaging lens according to the present invention includes, in order from the object side, a first lens, a positive second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens. The image side surface of the seventh lens has an aspheric shape, has an extreme value within an effective diameter other than the center, and satisfies the following conditional expression.
15 <θS6 <45 (1)
θS6: The largest surface angle when the image lens is tilted toward the image side within the effective diameter of the image side surface of the third lens. However, the effective diameter is the position farthest from the optical axis in the light flux reaching the maximum image height It shows the passing height of the light beam passing through. Specifically, the effective diameter is the diameter of one aperture when there is a diaphragm on either the object side or the image side of the third lens, and the larger diameter when both have a diaphragm. When there is no stop on both sides, the height of the peripheral ray of the light bundle formed at the maximum image height is set. The surface angle is 0 degree when parallel to the optical axis perpendicular, a positive angle when tilted to the image side, and a negative angle when tilted to the object side. An extreme value is a point on the aspheric surface where the tangent plane or tangent of the apex of the aspheric surface is a plane or line segment perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.

本発明に係る撮像レンズでは、物体側に近い第2レンズを正レンズとすることで、全系の主点位置が物体側に寄るため、光学全長の短縮に有利になる。また、第7レンズの像側面を有効径内に極値又は変曲点を持った非球面とすることで、周辺像高の光線が像面へ入射する際の入射角を小さく抑えることが可能になるため、撮像素子の受光効率を向上させることができる。条件式(1)は第3レンズの像側面の有効径内の面角度の最大値を規定している。条件式(1)の下限を上回ることで第3レンズは有効径内の一部もしくは全体に強い負のパワーを持つことが可能になるため、第1レンズ又は第2レンズで発生した球面収差やコマ収差を良好に補正でき、高性能化が可能になる。また、上限を下回ることで、第3レンズの面角度をある程度小さく抑えることができるため、過剰な負のパワーを持つことや、面角度が大き過ぎることによる成形難易度の上昇を防ぐことができる。   In the imaging lens according to the present invention, by using the second lens close to the object side as a positive lens, the principal point position of the entire system is close to the object side, which is advantageous for shortening the optical total length. In addition, by making the image side surface of the seventh lens an aspherical surface having an extreme value or an inflection point within the effective diameter, it is possible to suppress the incident angle when a light beam having a peripheral image height is incident on the image surface. Therefore, the light receiving efficiency of the image sensor can be improved. Conditional expression (1) defines the maximum value of the surface angle within the effective diameter of the image side surface of the third lens. If the lower limit of conditional expression (1) is exceeded, the third lens can have a strong negative power partly or entirely within the effective diameter. Therefore, spherical aberration generated in the first lens or the second lens can be reduced. Coma can be corrected well, and high performance can be achieved. Moreover, since the surface angle of the third lens can be suppressed to a certain degree by being below the upper limit, it is possible to prevent an increase in the molding difficulty due to excessive negative power and an excessively large surface angle. .

本発明の具体的な側面によれば、上記撮像レンズにおいて、第7レンズは、光軸近傍において像側に凹面を向けた負レンズである。
例えばオートフォーカスの撮像装置においては、レンズとセンサーとの距離を変動させる機構が付与されるため、レンズとセンサーとの距離はある程度大きいことが求められる。最終レンズの第7レンズを負レンズとし、なおかつ像側面を凹面とすることで、結像位置を遠ざけることになるため、バックフォーカスを確保することができる。
According to a specific aspect of the present invention, in the imaging lens, the seventh lens is a negative lens having a concave surface facing the image side in the vicinity of the optical axis.
For example, in an autofocus imaging apparatus, a mechanism for changing the distance between the lens and the sensor is provided, and therefore the distance between the lens and the sensor is required to be large to some extent. Since the seventh lens of the final lens is a negative lens and the image side surface is a concave surface, the imaging position is moved away, so that back focus can be ensured.

本発明の別の側面によれば、上記撮像レンズは、第4レンズよりも物体側に開口絞り有する。この場合、射出瞳を像面から遠ざけることができるため、センサー入射角を小さく抑えることができる。   According to another aspect of the present invention, the imaging lens has an aperture stop closer to the object side than the fourth lens. In this case, since the exit pupil can be moved away from the image plane, the sensor incident angle can be kept small.

本発明のさらに別の側面によれば、第2レンズは、物体側に凸面を向けた正レンズである。この場合、物体側に主点位置を寄せることになるため、光学全長の短縮に有利になる。   According to still another aspect of the present invention, the second lens is a positive lens having a convex surface directed toward the object side. In this case, the principal point position is brought closer to the object side, which is advantageous for shortening the optical total length.

本発明のさらに別の側面によれば、第3レンズが像側に凹面を向けた負レンズであり、下記の条件式を満足する。
17<ν3<35 … (2)
ν3:第3レンズのアッベ数
According to still another aspect of the present invention, the third lens is a negative lens having a concave surface facing the image side, and satisfies the following conditional expression.
17 <ν3 <35 (2)
ν3: Abbe number of the third lens

第3レンズを負レンズとすることで、軸上光束径の太い位置に負レンズを配置することになるため、正の第1レンズで発生した軸上色収差の補正が有利になり、高性能化が容易になる。また軸上光線束は正の第2レンズによる屈折で第3レンズに集束光として入射するが、像側に凹面を向けることで、像側面への光線入射角が垂直に近くなり、球面収差の発生を小さく抑えることができる。また条件式(2)の上限を下回る材料を使うことで、第3レンズによる色収差の補正の効果を高めることができ、より高性能化が可能になる。また下限を上回ることで、色収差の補正が過剰にならず適切な補正ができる。   By making the third lens a negative lens, the negative lens is arranged at a position where the axial light beam diameter is thick, so it is advantageous to correct the axial chromatic aberration generated by the positive first lens and improve the performance. Becomes easier. The axial ray bundle is refracted by the positive second lens and enters the third lens as convergent light. However, by directing the concave surface to the image side, the ray incident angle to the image side surface becomes nearly vertical, and spherical aberration is reduced. Occurrence can be reduced. Further, by using a material that is less than the upper limit of conditional expression (2), the effect of correcting chromatic aberration by the third lens can be enhanced, and higher performance can be achieved. Moreover, by exceeding the lower limit, the correction of chromatic aberration is not excessive, and appropriate correction can be performed.

本発明のさらに別の側面によれば、第4レンズから第6レンズまでの各レンズは、少なくとも片側に非球面を有する。この場合、小さいサグ量でもパワーを持たせることができるため、光学全長の短縮に有利になる。また面の形状自由度が増えるため、光学性能の向上にも有利になる。   According to still another aspect of the present invention, each lens from the fourth lens to the sixth lens has an aspheric surface on at least one side. In this case, power can be provided even with a small sag amount, which is advantageous for shortening the optical total length. Further, since the degree of freedom of shape of the surface increases, it is advantageous for improving optical performance.

本発明のさらに別の側面によれば、下記の条件式を満たす。
0.5<f456/f<1.0 … (3)
f456:第4レンズから第6レンズまでの合成焦点距離
f:全系の焦点距離(以下省略)
According to still another aspect of the present invention, the following conditional expression is satisfied.
0.5 <f456 / f <1.0 (3)
f456: Composite focal length from the fourth lens to the sixth lens f: Focal length of the entire system (hereinafter omitted)

条件式(3)は第4レンズから第6レンズの合成焦点距離と全系の焦点距離との比を規定している。条件式(3)の上限を下回ることで、第4レンズから第6レンズで構成されるレンズ群が強い正のパワーを持つことになるため、正の第2レンズとの間で正のパワーを分担することができ、収差の発生を抑えることができる。また、下限を上回ることで第4レンズから第6レンズで構成されるレンズ群の正のパワーが強くなり過ぎないため、収差の発生を小さく抑えることができる。   Conditional expression (3) defines the ratio of the combined focal length of the fourth lens to the sixth lens and the focal length of the entire system. By falling below the upper limit of the conditional expression (3), the lens group composed of the fourth lens to the sixth lens has a strong positive power. Therefore, a positive power is obtained between the second lens and the positive lens. Therefore, the occurrence of aberration can be suppressed. Moreover, since the positive power of the lens group composed of the fourth lens to the sixth lens does not become too strong by exceeding the lower limit, the occurrence of aberration can be suppressed small.

本発明のさらに別の側面によれば、下記の条件式を満たす。
−1.0<f7/f<−0.3 … (4)
f7:第7レンズの焦点距離
According to still another aspect of the present invention, the following conditional expression is satisfied.
−1.0 <f7 / f <−0.3 (4)
f7: Focal length of the seventh lens

条件式(4)は第7レンズの焦点距離と全系の焦点距離との比を規定している。条件式(4)の下限を上回ることで、第7レンズが負の強いパワーを持つため、充分バックフォーカスを確保することができる。また、条件式の上限を下回ることで、第7レンズの負のパワーが強くなり過ぎないため、バックフォーカスが長くなり過ぎて光学全長の短縮の妨げになるのを防ぐことができる。   Conditional expression (4) defines the ratio between the focal length of the seventh lens and the focal length of the entire system. By exceeding the lower limit of the conditional expression (4), the seventh lens has a strong negative power, so that a sufficient back focus can be secured. Further, by falling below the upper limit of the conditional expression, the negative power of the seventh lens does not become too strong, so that it is possible to prevent the back focus from becoming too long and hindering the shortening of the optical total length.

本発明のさらに別の側面によれば、下記の条件式を満たす。
−0.2<f/f1<0.2 … (5)
f1:第1レンズの焦点距離
According to still another aspect of the present invention, the following conditional expression is satisfied.
-0.2 <f / f1 <0.2 (5)
f1: Focal length of the first lens

条件式(5)は全系の焦点距離と第1レンズの焦点距離との比を規定している。条件式(5)の範囲を満たすことで、第1レンズが全系のパワーに対して比較的弱いパワーを持つことになり、全系の焦点距離に影響なく、収差補正のみ行なうことができるため、高性能化が可能になる。   Conditional expression (5) defines the ratio between the focal length of the entire system and the focal length of the first lens. By satisfying the range of conditional expression (5), the first lens has a relatively weak power relative to the power of the entire system, and only aberration correction can be performed without affecting the focal length of the entire system. High performance is possible.

本発明のさらに別の側面によれば、下記の条件式を満たす。
0.5<f2/f<2.0 … (6)
f2:第2レンズの焦点距離
According to still another aspect of the present invention, the following conditional expression is satisfied.
0.5 <f2 / f <2.0 (6)
f2: focal length of the second lens

条件式(6)は第2レンズの焦点距離と全系の焦点距離との比を規定している。条件式(6)の上限を下回ることで、第2レンズは強い正のパワーを持つことになり、主点位置を物体側に寄せることになるため、光学全長を短くすることができる。また下限を上回ることで、第2レンズの正のパワーが強くなり過ぎないため、球面収差やコマ収差の発生を抑えることができる。   Conditional expression (6) defines the ratio between the focal length of the second lens and the focal length of the entire system. By falling below the upper limit of conditional expression (6), the second lens has a strong positive power, and the principal point position is brought closer to the object side, so that the optical total length can be shortened. Moreover, since the positive power of the second lens does not become too strong by exceeding the lower limit, the occurrence of spherical aberration and coma aberration can be suppressed.

本発明のさらに別の側面によれば、下記の条件式を満たす。
−3.0<f3/f<−1.0 … (7)
f3:第3レンズの焦点距離
According to still another aspect of the present invention, the following conditional expression is satisfied.
−3.0 <f3 / f <−1.0 (7)
f3: focal length of the third lens

条件式(7)は第3レンズの焦点距離と全系の焦点距離との比を規定している。条件式(7)の下限を上回ることで、第3レンズが強い負のパワーを持つことになり、正の第2レンズで発生した軸上色収差や倍率色収差を良好に補正することができる。また、上限を下回ることで、第3レンズの負のパワーが強くなり過ぎないため、色収差の過剰補正や球面収差及びコマ収差の発生を抑えることができる。   Conditional expression (7) defines the ratio between the focal length of the third lens and the focal length of the entire system. By exceeding the lower limit of conditional expression (7), the third lens has a strong negative power, and axial chromatic aberration and lateral chromatic aberration generated in the positive second lens can be corrected well. Moreover, since the negative power of the third lens does not become too strong by being below the upper limit, excessive correction of chromatic aberration and generation of spherical aberration and coma aberration can be suppressed.

本発明のさらに別の側面によれば、下記の条件式を満たす。
1.0<f23/f<4.0 … (8)
f23:第2レンズ及び3レンズの合成焦点距離
According to still another aspect of the present invention, the following conditional expression is satisfied.
1.0 <f23 / f <4.0 (8)
f23: Composite focal length of the second lens and the third lens

条件式(8)は、第2レンズ及び第3レンズの合成焦点距離と、全系の焦点距離との比を規定している。条件式(8)の範囲を満たすことで、全系の主点位置を物体側に寄せて光学全長の短縮に有利にしつつ、正の第2レンズと負の第3レンズとのパワーのバランスを色収差の補正が良好になるように保つことができる。   Conditional expression (8) defines the ratio between the combined focal length of the second lens and the third lens and the focal length of the entire system. By satisfying the range of conditional expression (8), the principal point position of the entire system is moved toward the object side, which is advantageous for shortening the total optical length, and the power balance between the positive second lens and the negative third lens is balanced. The correction of chromatic aberration can be kept good.

本発明のさらに別の側面によれば、第1レンズの物体側面は、中心以外の有効径内に極値を有する。この場合、中心付近と周辺部とで異なるパワーを持つことになる。第1レンズ通過時は光線束が太いため、球面収差やコマ収差を良好に補正することができる。   According to still another aspect of the present invention, the object side surface of the first lens has an extreme value within an effective diameter other than the center. In this case, the power near the center is different from that at the periphery. Since the light beam is thick when passing through the first lens, spherical aberration and coma can be corrected well.

本発明のさらに別の側面によれば、第4レンズよりも物体側に、開口絞りと、当該開口絞りとは別の少なくとも1つの遮光絞りとを有し、下記の条件式を満たす。
0.5<Φ1/Φ2<1.2 … (9)
Φ1:開口絞りと遮光絞りとのうち、最も物体側にある方の開口径
Φ2:開口絞りと遮光絞りとのうち、最も像側にある方の開口径
According to still another aspect of the present invention, an aperture stop and at least one light-shielding stop different from the aperture stop are provided on the object side of the fourth lens, and the following conditional expression is satisfied.
0.5 <Φ1 / Φ2 <1.2 (9)
Φ1: Aperture diameter of the aperture stop and the light-shielding stop closest to the object side Φ2: Aperture diameter of the aperture stop and the light-shielding stop closest to the image side

条件式(9)は第4レンズよりも物体側にある絞り部材のうち、最も物体側にある絞りと最も像側にある絞りとについて開口径の比を規定している。大口径レンズにおいては、コマ収差の発生が顕著になり、補正することが難しい。コマ収差を改善させるためには、開口絞り以外に遮光絞りを配置し、周辺像高に結像する光線束のうちコマ収差に寄与する光線を遮断することが考えられる。条件式(9)の範囲を満たすことで、2つの絞り部材の開口径を適切にし、周辺像高の光を十分遮断しコマ収差を改善することができる。   Conditional expression (9) defines the ratio of the aperture diameters of the diaphragm on the object side and the diaphragm on the most image side among the diaphragm members on the object side of the fourth lens. In a large-aperture lens, coma aberration is prominent and difficult to correct. In order to improve the coma aberration, it is conceivable to dispose a light-shielding stop in addition to the aperture stop to block light rays contributing to coma aberration among the light bundles formed at the peripheral image height. By satisfying the range of conditional expression (9), the aperture diameters of the two diaphragm members can be made appropriate, light at the peripheral image height can be sufficiently blocked, and coma aberration can be improved.

本発明のさらに別の側面によれば、下記の条件式を満たす。
2.0<CT2/ET2<5.0 … (10)
CT2:第2レンズの中心厚
ET2:第2レンズの縁厚
ただし、前記第2レンズの縁厚は、第2レンズの物体側面の有効径と像側面の有効径とのうち小さい方の径の位置の光軸方向の厚みとする。
According to still another aspect of the present invention, the following conditional expression is satisfied.
2.0 <CT2 / ET2 <5.0 (10)
CT2: Center thickness of the second lens ET2: Edge thickness of the second lens However, the edge thickness of the second lens is the smaller of the effective diameter of the object side surface and the effective diameter of the image side surface of the second lens. The thickness of the position in the optical axis direction.

条件式(10)は第2レンズの中心厚と縁厚の比を規定している。条件式(10)の下限を上回ることで、第2レンズの縁厚に比べ中心厚が充分厚くなり、大口径化し有効径が拡大した場合でも強い正のパワーを持つことが可能になる。また、上限を下回ることで、縁厚に対し中心厚が厚くなることによって過剰な正のパワーを持ち、球面収差やコマ収差などの収差が劣化することを防ぐことができる。また中心厚に対し縁厚が薄くなり過ぎることによって、レンズの成形難易度が上がるのを防ぐことができる。   Conditional expression (10) defines the ratio between the center thickness and the edge thickness of the second lens. By exceeding the lower limit of the conditional expression (10), the center thickness becomes sufficiently thicker than the edge thickness of the second lens, and it becomes possible to have a strong positive power even when the diameter is increased and the effective diameter is enlarged. Further, by being less than the upper limit, it is possible to prevent the aberration such as spherical aberration and coma from deteriorating due to the excessive thickness of the center thickness with respect to the edge thickness. In addition, when the edge thickness is too thin with respect to the center thickness, it is possible to prevent the lens from becoming more difficult to mold.

本発明のさらに別の側面では、実質的にパワーを持たない光学素子をさらに有する。   In still another aspect of the present invention, the optical device further includes an optical element having substantially no power.

本発明に係る撮像装置は、上述の撮像レンズと、撮像素子とを備える。本発明の撮像レンズを用いることで、小型で明るく高性能の撮像装置を得ることができる。   An imaging apparatus according to the present invention includes the imaging lens described above and an imaging element. By using the imaging lens of the present invention, a small, bright and high-performance imaging device can be obtained.

本発明に係る携帯端末は、上述の撮像装置を備える。本発明の撮像装置を用いることで、小型で高性能の携帯端末を得ることができる。   The portable terminal which concerns on this invention is provided with the above-mentioned imaging device. By using the imaging device of the present invention, a small and high performance portable terminal can be obtained.

本発明の一実施形態の撮像レンズを備える撮像装置を説明する図である。It is a figure explaining an imaging device provided with the imaging lens of one embodiment of the present invention. レンズや遮光絞りの状態を説明する部分拡大断面図である。It is a partial expanded sectional view explaining the state of a lens or a light-shielding stop. 図1の撮像装置を備える携帯端末を説明するブロック図である。It is a block diagram explaining a portable terminal provided with the imaging device of FIG. (A)及び(B)は、それぞれ携帯端末の表面側及び裏面側の斜視図である。(A) And (B) is a perspective view of the surface side and back surface side of a portable terminal, respectively. 実施例1の撮像レンズの断面図である。2 is a cross-sectional view of an imaging lens of Example 1. FIG. (A)〜(E)は、実施例1の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 1. FIG. 実施例2の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 2. FIG. (A)〜(E)は、実施例2の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 3. FIG. (A)〜(E)は、実施例3の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 3. FIGS. 実施例4の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 4. FIG. (A)〜(E)は、実施例4の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 4. FIGS. 実施例5の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 5. FIG. (A)〜(E)は、実施例5の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 5. FIGS. 実施例6の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 6. FIG. (A)〜(E)は、実施例6の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 6. FIG. 実施例7の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 7. FIG. (A)〜(E)は、実施例7の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 7. FIGS. 実施例8の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 8. FIG. (A)〜(E)は、実施例8の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 8. FIGS. 実施例9の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 9. FIG. (A)〜(E)は、実施例9の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 9. FIGS. 実施例10の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 10. FIG. (A)〜(E)は、実施例10の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 10. FIGS.

以下、図1等を参照して、本発明の一実施形態である撮像レンズ等について説明する。なお、図1で例示した撮像レンズ10は、後述する実施例1の撮像レンズ11と同一の構成となっている。   Hereinafter, with reference to FIG. 1 etc., the imaging lens etc. which are one Embodiment of this invention are demonstrated. The imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.

図1は、本発明の一実施形態である撮像レンズを備えるカメラモジュールを説明する断面図である。   FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.

カメラモジュール50は、被写体像を形成する撮像レンズ10と、撮像レンズ10によって形成された被写体像を検出する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、撮像レンズ10等を保持するとともに物体側からの光線束を入射させる開口部OPを有する鏡筒部54とを備える。撮像レンズ10は、被写体像を撮像素子51の像面又は撮像面(被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述する撮像装置に組み込まれて使用されるが、単独でも撮像装置と呼ぶものとする。   The camera module 50 includes an imaging lens 10 that forms a subject image, an imaging device 51 that detects a subject image formed by the imaging lens 10, and a wiring board 52 that holds the imaging device 51 from behind and has wiring and the like. And a lens barrel portion 54 having an opening OP for holding the imaging lens 10 and the like and allowing the light flux from the object side to enter. The imaging lens 10 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element 51. The camera module 50 is used by being incorporated in an imaging device to be described later.

撮像レンズ10は、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6と、第7レンズL7とを備える。これらの第1〜第7レンズL1〜L7の間、第1レンズL1の物体側等の適所には、開口絞りASや遮光絞りFSが絞り部材として配置されている。   The imaging lens 10 includes, in order from the object side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a seventh lens L7. With. Between these first to seventh lenses L1 to L7, an aperture stop AS and a light-shielding stop FS are disposed as stop members at appropriate positions such as the object side of the first lens L1.

撮像レンズ10は、小型であり、その尺度として、以下の式(11)を満たすレベルの小型化を目指している。
L/2Y<1.00 … (11)
ここで、Lは、撮像レンズ10全系の最も物体側のレンズ面S11から像側焦点までの光軸AX上の距離であり、2Yは、撮像素子51の撮像面対角線長(撮像素子51の矩形実効画素領域の対角線長)であり、像側焦点とは、撮像レンズ10に光軸AXと平行な平行光線が入射した場合の像点をいう。この範囲を満たすことで、カメラモジュール50全体の小型化が可能となる。
The imaging lens 10 is small in size, and as a scale, it aims to be downsized to a level that satisfies the following expression (11).
L / 2Y <1.00 (11)
Here, L is the distance on the optical axis AX from the most object-side lens surface S11 of the entire imaging lens 10 system to the image-side focal point, and 2Y is the diagonal length of the imaging surface of the imaging device 51 (of the imaging device 51). Diagonal length of the rectangular effective pixel region), and the image-side focal point refers to an image point when a parallel ray parallel to the optical axis AX is incident on the imaging lens 10. By satisfying this range, the entire camera module 50 can be reduced in size.

なお、撮像レンズ10の最も像側の面(像側面S72)と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板Fが配置される場合には、平行平板F部分は空気換算距離としたうえで上記Lの値を計算するものとする。また、より望ましくは下式の範囲とする。
L/2Y<0.95 … (11)'
A parallel flat plate F such as an optical low-pass filter, an infrared cut filter, or a seal glass of an image pickup device package is disposed between the most image side surface (image side surface S72) of the image pickup lens 10 and the image side focal position. In this case, the value of L is calculated for the parallel flat plate F portion as an air conversion distance. More preferably, it is in the range of the following formula.
L / 2Y <0.95 (11) ′

撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部51aの表面は、像面又は撮像面(被投影面)Iとなっている。   The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof. The surface of the photoelectric conversion unit 51a as the light receiving unit is an image plane or an imaging plane (projected plane) I.

配線基板52は、撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や駆動機構55aを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。   The wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54). The wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.

撮像素子51の撮像レンズ10側には、不図示のホルダー部材によって、平行平板Fが撮像素子51等を覆うように配置・固定されている。   On the imaging lens 10 side of the imaging element 51, a parallel plate F is disposed and fixed by a holder member (not shown) so as to cover the imaging element 51 and the like.

鏡筒部54は、撮像レンズ10を収納し保持している。鏡筒部54は、撮像レンズ10を構成するレンズL1〜L7のうちいずれか1つ以上のレンズを光軸AXに沿って移動させることにより、撮像レンズ10の合焦の動作を可能にするため、例えば駆動機構55aを有している。駆動機構55aは、例えばボイスコイルモーターとガイドとを備え、特定の又は全部のレンズを光軸AXに沿って往復移動させる。   The lens barrel 54 houses and holds the imaging lens 10. The lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L7 constituting the imaging lens 10 along the optical axis AX. For example, it has a drive mechanism 55a. The drive mechanism 55a includes, for example, a voice coil motor and a guide, and reciprocates a specific lens or all of the lenses along the optical axis AX.

図2等を参照して、鏡筒部54内に保持される撮像レンズ10の状態を説明する。撮像レンズ10を構成する第1〜第7レンズL1〜L7は、支持用のフランジ部39をそれぞれ有しており、フランジ部39を介して隣接するレンズと積層され、鏡筒部分54a内に保持されている。これらのレンズL1〜L7の間には、フランジ部39に挟まれて1つの開口絞りASと5つの遮光絞りFSとが配置され、迷光の発生を防止している。鏡筒部分54aの物体側には、第1レンズL1の有効径の周囲を覆うような開口絞りFSが形成されている。第7レンズL7のフランジ部39の像側にも開口絞りFSが配置されている。以上の開口絞りASや遮光絞りFSは、いずれも結像に寄与し得る光線を選択的に通過させる絞り部材である。   With reference to FIG. 2 etc., the state of the imaging lens 10 hold | maintained in the lens-barrel part 54 is demonstrated. The first to seventh lenses L1 to L7 constituting the imaging lens 10 each have a supporting flange portion 39, and are stacked with adjacent lenses via the flange portion 39, and are held in the lens barrel portion 54a. Has been. Between these lenses L1 to L7, one aperture stop AS and five light-shielding stops FS are disposed between the flange portions 39 to prevent the generation of stray light. An aperture stop FS that covers the periphery of the effective diameter of the first lens L1 is formed on the object side of the lens barrel portion 54a. An aperture stop FS is also disposed on the image side of the flange portion 39 of the seventh lens L7. The aperture stop AS and the light-shielding stop FS described above are both stop members that selectively pass light rays that can contribute to image formation.

次に、図3、図4A及び4Bを参照して、図1に例示されるカメラモジュール50を搭載した携帯電話機その他の携帯端末300の一例について説明する。   Next, an example of a cellular phone or other portable terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 3, 4A and 4B.

携帯端末300は、スマートフォン型の携帯通信端末であり、カメラモジュール50を有する撮像装置100と、各部を統括的に制御するとともに各処理に応じたプログラムを実行する制御部(CPU)310と、通信に関連するデータ、撮像した映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである表示操作部320と、電源スイッチ等を含む操作部330と、アンテナ341を介して外部サーバー等との間の各種情報通信を実現するための無線通信部340と、携帯端末300のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)360と、制御部310によって実行される各種処理プログラムやデータ、処理データ、若しくは撮像装置100による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)370とを備えている。   The mobile terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging device 100 having a camera module 50, a control unit (CPU) 310 that performs overall control of each unit and executes a program corresponding to each process, and communication. Various operations between a display operation unit 320 that is a touch panel that displays data related to the image, captured video, and the like and receives a user operation, an operation unit 330 including a power switch, and an external server via the antenna 341 Executed by a wireless communication unit 340 for realizing information communication, a storage unit (ROM) 360 storing necessary data such as a system program, various processing programs, and a terminal ID of the mobile terminal 300, and the control unit 310 Various processing programs and data, processing data, or imaging data by the imaging device 100 Temporary storage unit used as a work area for temporarily storing data or the like and a (RAM) 370.

撮像装置100は、既に説明したカメラモジュール50のほかに、制御部103、光学系駆動部105、撮像素子駆動部107、画像メモリー108等を備える。   In addition to the camera module 50 described above, the imaging apparatus 100 includes a control unit 103, an optical system driving unit 105, an imaging element driving unit 107, an image memory 108, and the like.

制御部103は、撮像装置100の各部を制御する。制御部103は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、ROMから読み出されてRAMに展開された各種プログラムとCPUとの協働によって各種処理を実行する。なお、制御部103は、撮像装置100外の制御部310と通信可能に接続されており、制御信号や画像データの授受が可能になっている。   The control unit 103 controls each unit of the imaging device 100. The control unit 103 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs are read out from the ROM and expanded in the RAM, in cooperation with the CPU. Execute the process. The control unit 103 is communicably connected to the control unit 310 outside the imaging apparatus 100, and can exchange control signals and image data.

光学系駆動部105は、制御部103の制御により合焦、露出等を行う際に、撮像レンズ10の駆動機構55aを動作させて撮像レンズ10の状態を制御する。光学系駆動部105は、駆動機構55aを動作させて撮像レンズ10中の特定レンズ又は全レンズを光軸AXに沿って適宜移動させることにより、撮像レンズ10に合焦動作等を行わせる。   The optical system driving unit 105 controls the state of the imaging lens 10 by operating the driving mechanism 55 a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the control unit 103. The optical system driving unit 105 operates the driving mechanism 55a to appropriately move the specific lens or all the lenses in the imaging lens 10 along the optical axis AX, thereby causing the imaging lens 10 to perform a focusing operation or the like.

撮像素子駆動部107は、制御部103の制御により露出等を行う際に、撮像素子51の動作を制御する。具体的には、撮像素子駆動部107は、タイミング信号に基づいて撮像素子51を走査駆動し、これから画像信号を取り出す。また、撮像素子駆動部107は、撮像素子51によって検出されデジタル化された画像信号に対して、歪み補正、色補正、圧縮等の各種画像処理を施すことができる。   The image sensor drive unit 107 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control unit 103. Specifically, the image sensor driving unit 107 scans and drives the image sensor 51 based on the timing signal, and extracts an image signal therefrom. The image sensor driving unit 107 can perform various image processing such as distortion correction, color correction, and compression on the image signal detected and digitized by the image sensor 51.

画像メモリー108は、デジタル化された画像信号を撮像素子駆動部107から受け取って、読み出し及び書き込み可能な画像データとして記憶する。   The image memory 108 receives the digitized image signal from the image sensor driving unit 107 and stores it as readable and writable image data.

ここで、上記撮像装置100を含む携帯端末300の撮影動作を説明する。携帯端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、撮像レンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1参照)に結像される。撮像素子51は、撮像素子駆動部107によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分検出する。   Here, the photographing operation of the mobile terminal 300 including the imaging device 100 will be described. When the camera mode in which the mobile terminal 300 is operated as a camera is set, subject monitoring (through image display) and image shooting execution are performed. In monitoring, an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51. The image sensor 51 is scanned and driven by the image sensor driving unit 107 and detects an analog signal corresponding to one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.

このアナログ信号は、撮像素子51に付属する回路においてRGBの各原色成分毎に適宜ゲイン調整された後に、デジタルデータに変換される。そのデジタルデータに対しては、撮像素子駆動部107にて画素補間処理及びY補正処理を含むカラープロセス処理が行われて、デジタル値の輝度信号Y及び色差信号Cb,Cr(画像データ)が生成されて画像メモリー108に格納される。格納されたデジタルデータは、画像メモリー108から定期的に読み出されてビデオ信号の生成に利用され、制御部103及び制御部310を介して、表示操作部320に出力される。   This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51. The digital data is subjected to color process processing including pixel interpolation processing and Y correction processing in the image sensor driving unit 107 to generate a digital luminance signal Y and color difference signals Cb, Cr (image data). And stored in the image memory 108. The stored digital data is periodically read out from the image memory 108 and used to generate a video signal, and is output to the display operation unit 320 via the control unit 103 and the control unit 310.

この表示操作部320は、モニタリングにおいてはファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部320を介して行う操作入力に基づいて、光学系駆動部105の駆動により撮像レンズ10の合焦、露出等が設定される。   The display operation unit 320 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 105 based on an operation input performed by the user via the display operation unit 320 at any time.

このようなモニタリング状態において、ユーザーが表示操作部320を適宜操作することにより、静止画像データが撮影される。表示操作部320の操作内容に応じて、画像メモリー108に格納された1コマの画像データが読み出されて、撮像素子駆動部107により圧縮等の処理が施される。その処理された画像データは、制御部103及び制御部310を介して、例えば一時記憶部370等に記録される。   In such a monitoring state, when the user appropriately operates the display operation unit 320, still image data is captured. One frame of image data stored in the image memory 108 is read in accordance with the operation content of the display operation unit 320, and processing such as compression is performed by the image sensor driving unit 107. The processed image data is recorded in the temporary storage unit 370, for example, via the control unit 103 and the control unit 310.

なお、上述の撮像装置100は、本発明に好適な撮像装置の一例であり、本発明は、これに限定されるものではない。   The above-described imaging apparatus 100 is an example of an imaging apparatus suitable for the present invention, and the present invention is not limited to this.

すなわち、カメラモジュール50又は撮像レンズ10を搭載した撮像装置は、スマートフォン型の携帯端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるであってもよい。   That is, the imaging device equipped with the camera module 50 or the imaging lens 10 is not limited to being built in the smartphone-type mobile terminal 300, but may be built into a mobile phone, a PHS (Personal Handyphone System), or the like. Of course, it may be incorporated in a PDA (Personal Digital Assistant), a tablet personal computer, a mobile personal computer, a digital still camera, a video camera, or the like.

以下、図1等に戻って、本発明の一実施形態である撮像レンズ10について詳細に説明する。図1に示す撮像レンズ10は、撮像素子51の撮像面(被投影面)Iに被写体像を結像させるものであって、物体側から順に、第1レンズL1と、物体側に凸面を向けた正の第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6と、光軸AX近傍で像側に凹面を向けた負の第7レンズL7と、を備える。上記撮像レンズ10において、第1レンズL1の物体側面S11は、非球面形状を有し、中心以外の有効径内の位置Pに極値を持つ。第2レンズL2は、光軸AX近傍で物体側に凸面を向けた正レンズである。第3レンズは、光軸AX近傍で像側に凹面を向けた負レンズである。第4〜第6レンズL4〜L6は、対向する光学面S41,S42,S51,S52,S61,S62のうち、少なくとも片側に非球面を有する。第7レンズの像側面S72は、光軸AX近傍で像側に凹面を向けた負レンズであり、非球面形状を有し、中心以外の有効径内の位置Pに極値を持つ。この撮像レンズ10において、第1レンズL1の物体側に開口絞りASが配置され、第1及び第2レンズL1,L2の間と、第3及び第4レンズL3,L4の間とに遮光絞りFSが配置されている。   Hereinafter, returning to FIG. 1 and the like, the imaging lens 10 according to an embodiment of the present invention will be described in detail. An imaging lens 10 shown in FIG. 1 forms a subject image on an imaging surface (projected surface) I of an image sensor 51, and in order from the object side, a first lens L1 and a convex surface facing the object side. A positive second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a negative seventh lens having a concave surface facing the image side in the vicinity of the optical axis AX. L7. In the imaging lens 10, the object side surface S11 of the first lens L1 has an aspherical shape, and has an extreme value at a position P within the effective diameter other than the center. The second lens L2 is a positive lens having a convex surface facing the object side in the vicinity of the optical axis AX. The third lens is a negative lens having a concave surface facing the image side in the vicinity of the optical axis AX. The fourth to sixth lenses L4 to L6 have an aspheric surface on at least one side among the optical surfaces S41, S42, S51, S52, S61, and S62 facing each other. The image side surface S72 of the seventh lens is a negative lens having a concave surface facing the image side in the vicinity of the optical axis AX, has an aspheric shape, and has an extreme value at a position P within the effective diameter other than the center. In the imaging lens 10, an aperture stop AS is disposed on the object side of the first lens L1, and a light-shielding stop FS is provided between the first and second lenses L1 and L2 and between the third and fourth lenses L3 and L4. Is arranged.

上記撮像レンズ10によれば、物体側に近い第2レンズL2を正レンズとすることで、撮像レンズ10全系の主点位置が物体側に寄るため、光学全長の短縮に有利になる。また、第7レンズL7の像側面を有効径内の位置Pに極値を持った非球面とすることで、周辺像高の光線が像面Iへ入射する際の入射角を小さく抑えることが可能になるため、固体撮像素子を用いた撮像素子51の受光効率を向上させることができる。   According to the imaging lens 10, by using the second lens L2 close to the object side as a positive lens, the principal point position of the entire imaging lens 10 system is closer to the object side, which is advantageous for shortening the optical total length. Further, by making the image side surface of the seventh lens L7 an aspherical surface having an extreme value at the position P within the effective diameter, the incident angle when the light beam having the peripheral image height is incident on the image surface I can be kept small. Therefore, the light receiving efficiency of the image sensor 51 using a solid-state image sensor can be improved.

上記撮像レンズ10においては、値θS6を第3レンズの像側面の有効径内で像側を正とする最も大きな面角度として、以下の条件式(1)
15<θS6<45 … (1)
を満足するものとなっている。ただし、有効径は、第3レンズL3の物体側及び像側のうち、いずれか一方に絞りがあるときは当該一方の絞りの径とし、双方に絞りがあるときは大きい方の径とし、双方に絞りがないときは最大像高に結像する光線束の周縁光線の高さとする(実施形態の場合、双方に絞りがあるので大きい方の像側面S32の径となる)。
In the imaging lens 10, the following conditional expression (1) is set, with the value θS6 being the largest surface angle with the image side being positive within the effective diameter of the image side surface of the third lens.
15 <θS6 <45 (1)
Is satisfied. However, the effective diameter is the diameter of one of the apertures on the object side and the image side of the third lens L3, and the larger diameter when both have a stop. When there is no stop, the height of the peripheral ray of the light beam focused at the maximum image height is set (in the case of the embodiment, since both have the stop, the diameter of the larger image side surface S32).

条件式(1)は、第3レンズL3の像側面S32の有効径内の面角度θS6の最大値を規定している。条件式(1)の下限を上回ることで第3レンズL3は有効径内の一部もしくは全体に強い負のパワーを持つことが可能になるため、第1レンズL1や第2レンズL2で発生した球面収差やコマ収差を良好に補正でき、高性能化が可能になる。また、上限を下回ることで、第3レンズL3の面角度θS6をある程度小さく抑えることができるため、過剰な負のパワーを持つことや、面角度θS6が大き過ぎることによる成形難易度の上昇を防ぐことができる。   Conditional expression (1) defines the maximum value of the surface angle θS6 within the effective diameter of the image side surface S32 of the third lens L3. By exceeding the lower limit of the conditional expression (1), the third lens L3 can have a strong negative power partly or entirely within the effective diameter, and thus occurs in the first lens L1 and the second lens L2. Spherical aberration and coma can be corrected well, and high performance can be achieved. Moreover, since the surface angle θS6 of the third lens L3 can be suppressed to a certain degree by being below the upper limit, an excessive negative power or an increase in molding difficulty due to the surface angle θS6 being too large is prevented. be able to.

本実施形態の撮像レンズ10は、上記条件式(1)に加えて、既に説明した条件式(2)
17<ν3<35 … (2)
を満足する。ただし、値ν3は、第3レンズL3のアッベ数である。
In addition to the conditional expression (1), the imaging lens 10 of the present embodiment has the conditional expression (2) already described.
17 <ν3 <35 (2)
Satisfied. However, the value ν3 is the Abbe number of the third lens L3.

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(3)
0.5<f456/f<1.0 … (3)
を満足する。ただし、値f456は、第4レンズL4から第6レンズL6までの合成焦点距離であり、値fは、撮像レンズ10全系の焦点距離である。
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (3) already described.
0.5 <f456 / f <1.0 (3)
Satisfied. However, the value f456 is the combined focal length from the fourth lens L4 to the sixth lens L6, and the value f is the focal length of the entire imaging lens 10 system.

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(4)
−1.0<f7/f<−0.3 … (4)
を満足する。ただし、値f7は、第7レンズL7の焦点距離である。
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (4) already described.
−1.0 <f7 / f <−0.3 (4)
Satisfied. However, the value f7 is the focal length of the seventh lens L7.

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(5)
−0.2<f/f1<0.2 … (5)
を満足する。ただし、値f1は、第1レンズL1の焦点距離である。
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (5) already described.
-0.2 <f / f1 <0.2 (5)
Satisfied. However, the value f1 is the focal length of the first lens L1.

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(6)
0.5<f2/f<2.0 … (6)
を満足する。ただし、値f2は、第2レンズL2の焦点距離である。
In the imaging lens 10 of the present embodiment, in addition to the conditional expression (1), the conditional expression (6) already described.
0.5 <f2 / f <2.0 (6)
Satisfied. However, the value f2 is the focal length of the second lens L2.

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(7)
−3.0<f3/f<−1.0 … (7)
を満足する。ただし、値f3は、第3レンズL3の焦点距離である。
The imaging lens 10 of the present embodiment has the conditional expression (7) already described in addition to the conditional expression (1).
−3.0 <f3 / f <−1.0 (7)
Satisfied. However, the value f3 is the focal length of the third lens L3.

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(8)
1.0<f23/f<4.0 … (8)
を満足する。ただし、値f23は、第2レンズL2及び3レンズL3の合成焦点距離である。
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (8) already described.
1.0 <f23 / f <4.0 (8)
Satisfied. However, the value f23 is the combined focal length of the second lens L2 and the third lens L3.

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(9)
0.5<Φ1/Φ2<1.2 … (9)
を満足する。ただし、値Φ1は、開口絞りASと遮光絞りFSとのうち、最も物体側にある方の開口径であり、値Φ2は、開口絞りASと遮光絞りFSとのうち、最も像側にある方の開口径である。
The imaging lens 10 of the present embodiment has the conditional expression (9) already described in addition to the conditional expression (1).
0.5 <Φ1 / Φ2 <1.2 (9)
Satisfied. However, the value Φ1 is the aperture diameter of the aperture stop AS and the light-shielding stop FS that is closest to the object side, and the value Φ2 is the one of the aperture stop AS and the light-shielding stop FS that is closest to the image side. Is the opening diameter.

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(10)
2.0<CT2/ET2<5.0 … (10)
を満足する。ただし、値CT2は、第2レンズL2の中心厚であり、値ET2は、第2レンズL2の縁厚である。
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (10) already described.
2.0 <CT2 / ET2 <5.0 (10)
Satisfied. However, the value CT2 is the center thickness of the second lens L2, and the value ET2 is the edge thickness of the second lens L2.

本実施形態の撮像レンズ10では、特に図示していないが、実質的にパワーを持たないレンズその他の光学素子をさらに備えるものとできる。   Although not particularly illustrated, the imaging lens 10 of the present embodiment may further include a lens or other optical element that does not substantially have power.

〔実施例〕
以下、本発明に係る撮像レンズの具体的な実施例について説明する。各実施例において、rは曲率半径を意味し、dは軸上面間隔を意味し、ndはレンズ材料のd線に対する屈折率を意味し、vdはレンズ材料のアッベ数を意味し、「eff.dia.」は有効径を意味する。また、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸AX方向にX軸をとり、光軸AXと垂直方向の高さをhとして以下の「数1」で表す。

Figure 2015072404
ただし、
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
さらに、各実施例において、「STO」は開口絞りASを意味し、「FS」は遮光絞りFSを意味する。
なお、各実施例の撮像レンズが前提とする使用基本波長は587.56nmであり、曲率半径等の面形状の単位はmmである。 〔Example〕
Hereinafter, specific examples of the imaging lens according to the present invention will be described. In each embodiment, r represents the radius of curvature, d represents the axial top surface spacing, nd represents the refractive index of the lens material with respect to the d-line, vd represents the Abbe number of the lens material, “eff. “dia.” means an effective diameter. In addition, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin, the X axis in the optical axis AX direction, The height in the direction perpendicular to the axis AX is represented by “Equation 1” below.
Figure 2015072404
However,
Ai: i-order aspherical coefficient R: radius of curvature K: conical constant Further, in each embodiment, “STO” means the aperture stop AS, and “FS” means the light blocking stop FS.
In addition, the use fundamental wavelength which the imaging lens of each Example presupposes is 587.56 nm, and the unit of surface shape, such as a curvature radius, is mm.

〔実施例1〕
実施例1のレンズ面のデータを以下の表1に示す。
〔表1〕
面番号 r d nd vd eff. dia.
STO INFINITY 0.1400 2.558
2* -2.6109 0.2257 1.54470 56.2 2.558
3* -2.4018 0.3824 2.545
4 FS INFINITY -0.3324 2.626
5* 2.1987 0.6698 1.54470 56.2 2.656
6* 40.2204 0.0500 2.535
7* 2.5229 0.1500 1.63469 23.9 2.453
8* 1.5103 0.3682 2.426
9 FS INFINITY 0.0500 2.460
10* 7.9885 0.5091 1.54470 56.2 2.518
11* -13.4031 0.2004 2.612
12* 3.3797 0.2540 1.63469 23.9 2.613
13* 2.7268 0.4126 2.864
14* 10.0527 0.8628 1.54470 56.2 3.163
15* -1.6159 0.3772 3.650
16* -4.3338 0.3342 1.54470 56.2 3.962
17* 1.6544 0.4000 4.953
18 INFINITY 0.1100 1.51633 64.1 5.518
19 INFINITY 0.3010
[Example 1]
The lens surface data of Example 1 is shown in Table 1 below.
[Table 1]
Surface number rd nd vd eff.dia.
STO INFINITY 0.1400 2.558
2 * -2.6 109 0.2257 1.54470 56.2 2.558
3 * -2.4018 0.3824 2.545
4 FS INFINITY -0.3324 2.626
5 * 2.1987 0.6698 1.54470 56.2 2.656
6 * 40.2204 0.0500 2.535
7 * 2.5229 0.1500 1.63469 23.9 2.453
8 * 1.5103 0.3682 2.426
9 FS INFINITY 0.0500 2.460
10 * 7.9885 0.5091 1.54470 56.2 2.518
11 * -13.4031 0.2004 2.612
12 * 3.3797 0.2540 1.63469 23.9 2.613
13 * 2.7268 0.4126 2.864
14 * 10.0527 0.8628 1.54470 56.2 3.163
15 * -1.6159 0.3772 3.650
16 * -4.3338 0.3342 1.54470 56.2 3.962
17 * 1.6544 0.4000 4.953
18 INFINITY 0.1100 1.51633 64.1 5.518
19 INFINITY 0.3010

実施例1のレンズ面の非球面係数を以下の表2に示す。
〔表2〕
第2面
K=0.00000e+000, A4=7.07114e-002, A6=1.31231e-002,
A8=-4.25510e-003, A10=-2.19075e-003, A12=1.31911e-003,
A14=-2.12951e-004
第3面
K=0.00000e+000, A4=1.04175e-001, A6=-8.52777e-004,
A8=9.18825e-003, A10=-9.13708e-003, A12=3.58838e-003,
A14=-6.07385e-004
第5面
K=1.07752e+000, A4=-8.28714e-003, A6=3.04911e-004,
A8=-3.60665e-003, A10=3.63931e-003, A12=-2.13827e-003,
A14=5.33539e-004
第6面
K=-7.99941e+001, A4=-2.69973e-002, A6=2.63195e-002,
A8=-6.06492e-003, A10=-3.27356e-003, A12=3.47617e-003,
A14=-5.09076e-004
第7面
K=-1.91711e-001, A4=-1.24089e-001, A6=5.47217e-002,
A8=-1.42825e-003, A10=-2.97191e-002, A12=1.99625e-002,
A14=-4.71198e-003
第8面
K=-4.61741e+000, A3=-2.88686e-003, A4=5.71344e-003,
A5=-5.94700e-002, A6=5.96670e-002, A8=-1.91266e-002,
A10=3.82352e-003, A12=-3.18290e-003, A14=1.95147e-003
第10面
K=1.60823e+001, A3=-1.55773e-002, A4=4.90878e-002,
A5=-1.58573e-001, A6=1.49912e-001, A8=-1.02069e-001,
A10=7.08672e-002, A12=-3.39219e-002, A14=7.40780e-003
第11面
K=4.41840e+001, A3=-2.33523e-002, A4=-1.01875e-001,
A5=1.54510e-002, A6=4.48125e-002, A8=-5.28597e-002,
A10=2.43052e-002, A12=-4.87509e-003
第12面
K=-2.18670e+001, A3=-1.85972e-002, A4=-2.61976e-001,
A5=1.20517e-001, A6=-1.96207e-002, A8=5.30252e-003,
A10=-2.15044e-002, A12=9.46921e-003
第13面
K=2.28592e+000, A3=-8.80913e-003, A4=-3.02971e-001,
A5=1.09256e-001, A6=3.28836e-002, A8=-3.72725e-002,
A10=9.45448e-003, A12=-2.26980e-003, A14=6.37551e-004
第14面
K=-8.00000e+001, A3=-2.46318e-003, A4=-3.98287e-002,
A5=2.37044e-002, A6=-2.05296e-002, A8=-2.89572e-004,
A10=5.04855e-003, A12=-3.69924e-003, A14=7.24890e-004
第15面
K=-3.95242e+000, A3=-1.88578e-002, A4=1.72465e-002,
A5=-2.82597e-002, A6=1.64124e-003, A8=3.46377e-003,
A10=6.59171e-004, A12=-1.22160e-004, A14=-2.67831e-005
第16面
K=-2.38662e+001, A3=-1.35913e-001, A4=-4.54642e-002,
A5=2.49055e-002, A6=9.91679e-003, A8=-1.19230e-003,
A10=2.12927e-004, A12=1.68153e-005, A14=-1.06781e-005
第17面
K=-1.62839e+001, A3=3.02758e-002, A4=-1.31032e-001,
A5=8.49308e-002, A6=-2.18783e-002, A8=7.20303e-004,
A10=-5.72938e-005, A12=4.58122e-006, A14=-9.62112e-009
なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10−002)を、e(たとえば2.5e−002)を用いて表すものとする。
The aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below.
[Table 2]
Second side
K = 0.00000e + 000, A4 = 7.07114e-002, A6 = 1.31231e-002,
A8 = -4.25510e-003, A10 = -2.19075e-003, A12 = 1.31911e-003,
A14 = -2.12951e-004
Third side
K = 0.00000e + 000, A4 = 1.04175e-001, A6 = -8.52777e-004,
A8 = 9.18825e-003, A10 = -9.13708e-003, A12 = 3.58838e-003,
A14 = -6.07385e-004
5th page
K = 1.07752e + 000, A4 = -8.28714e-003, A6 = 3.04911e-004,
A8 = -3.60665e-003, A10 = 3.63931e-003, A12 = -2.13827e-003,
A14 = 5.33539e-004
6th page
K = -7.99941e + 001, A4 = -2.69973e-002, A6 = 2.63195e-002,
A8 = -6.06492e-003, A10 = -3.27356e-003, A12 = 3.47617e-003,
A14 = -5.09076e-004
7th page
K = -1.91711e-001, A4 = -1.24089e-001, A6 = 5.47217e-002,
A8 = -1.42825e-003, A10 = -2.97191e-002, A12 = 1.99625e-002,
A14 = -4.71198e-003
8th page
K = -4.61741e + 000, A3 = -2.88686e-003, A4 = 5.71344e-003,
A5 = -5.94700e-002, A6 = 5.96670e-002, A8 = -1.91266e-002,
A10 = 3.82352e-003, A12 = -3.18290e-003, A14 = 1.95147e-003
10th page
K = 1.60823e + 001, A3 = -1.55773e-002, A4 = 4.90878e-002,
A5 = -1.58573e-001, A6 = 1.49912e-001, A8 = -1.02069e-001,
A10 = 7.08672e-002, A12 = -3.39219e-002, A14 = 7.40780e-003
11th page
K = 4.41840e + 001, A3 = -2.33523e-002, A4 = -1.01875e-001,
A5 = 1.54510e-002, A6 = 4.48125e-002, A8 = -5.28597e-002,
A10 = 2.43052e-002, A12 = -4.87509e-003
12th page
K = -2.18670e + 001, A3 = -1.85972e-002, A4 = -2.61976e-001,
A5 = 1.20517e-001, A6 = -1.96207e-002, A8 = 5.30252e-003,
A10 = -2.15044e-002, A12 = 9.46921e-003
Side 13
K = 2.28592e + 000, A3 = -8.80913e-003, A4 = -3.02971e-001,
A5 = 1.09256e-001, A6 = 3.28836e-002, A8 = -3.72725e-002,
A10 = 9.45448e-003, A12 = -2.26980e-003, A14 = 6.37551e-004
14th page
K = -8.00000e + 001, A3 = -2.46318e-003, A4 = -3.98287e-002,
A5 = 2.37044e-002, A6 = -2.05296e-002, A8 = -2.89572e-004,
A10 = 5.04855e-003, A12 = -3.69924e-003, A14 = 7.24890e-004
15th page
K = -3.95242e + 000, A3 = -1.88578e-002, A4 = 1.72465e-002,
A5 = -2.82597e-002, A6 = 1.64124e-003, A8 = 3.46377e-003,
A10 = 6.59171e-004, A12 = -1.22160e-004, A14 = -2.67831e-005
16th page
K = -2.38662e + 001, A3 = -1.35913e-001, A4 = -4.54642e-002,
A5 = 2.49055e-002, A6 = 9.91679e-003, A8 = -1.19230e-003,
A10 = 2.12927e-004, A12 = 1.68153e-005, A14 = -1.06781e-005
17th page
K = -1.62839e + 001, A3 = 3.02758e-002, A4 = -1.31032e-001,
A5 = 8.49308e-002, A6 = -2.18783e-002, A8 = 7.20303e-004,
A10 = -5.72938e-005, A12 = 4.58122e-006, A14 = -9.62112e-009
In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −002 ) is expressed using e (for example, 2.5e−002).

実施例1の撮像レンズの特性を以下に列挙する。
FL 3.709
Fno 1.45
w 75.41
Ymax 2.921
BF 0.811
TL 5.465
BFa 0.774
TLa 5.428
ここで、FLは撮像レンズ全系の焦点距離を意味し、FnoはFナンバーを意味し、wは対角線画角を意味し、Ymaxは最大像高、すなわち撮像素子の撮像面対角線長の半値を意味し、BFはバックフォーカス(最終レンズ〜像面)を意味し、TLは系全長を意味する。また、BFaは、バックフォーカス(最終レンズ〜像面I ※平行平板は空気換算長としたとき)、TLaは、光学全長(最終レンズ〜像面I ※平行平板は空気換算長としたとき)を意味する。なお、以上の符号は、これ以降の実施例でも同様の意味を有するものとする。
The characteristics of the imaging lens of Example 1 are listed below.
FL 3.709
Fno 1.45
w 75.41
Ymax 2.921
BF 0.811
TL 5.465
BFa 0.774
TLa 5.428
Here, FL means the focal length of the entire imaging lens system, Fno means the F number, w means the diagonal field angle, Ymax means the maximum image height, that is, the half value of the diagonal length of the imaging surface of the imaging device. BF means back focus (final lens to image plane), and TL means the entire length of the system. BFa is the back focus (final lens to image plane I * when the parallel plate is the air conversion length), and TLa is the optical total length (final lens to image plane I * the parallel plate is the air conversion length). means. In addition, the above code | symbol shall have the same meaning also in the subsequent Examples.

実施例1の単レンズデータを以下の表3に示す。
〔表3〕
レンズ番号 面番号 焦点距離 有効径
Elem Surfs Focal Length Diameter
1 2- 3 39.8833 2.558
2 5- 6 4.2436 2.656
3 7- 8 -6.2911 2.453
4 10-11 9.2668 2.612
5 12-13 -26.1947 2.864
6 14-15 2.6241 3.650
7 16-17 -2.1557 4.953
The single lens data of Example 1 is shown in Table 3 below.
[Table 3]
Lens number Surface number Focal length Effective diameter
Elem Surfs Focal Length Diameter
1 2- 3 39.8833 2.558
2 5- 6 4.2436 2.656
3 7- 8 -6.2911 2.453
4 10-11 9.2668 2.612
5 12-13 -26.1947 2.864
6 14-15 2.6241 3.650
7 16-17 -2.1557 4.953

図5は、実施例1の撮像レンズ11等の断面図である。撮像レンズ11は、物体側より順に、光軸AX周辺で弱い正の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1レンズL1の外縁の物体側には、開口絞り(STO)ASが配置され、第1及び第2レンズL1,L2の間と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 5 is a cross-sectional view of the imaging lens 11 and the like of the first embodiment. The imaging lens 11 has, in order from the object side, a meniscus first lens L1 having a weak positive refractive power around the optical axis AX and a convex surface facing the image side, and a positive refractive power around the optical axis AX. A substantially convex second lens L2 having a convex surface facing the object side, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and positive around the optical axis AX A biconvex fourth lens L4 having a refractive power of 5 mm, a meniscus fifth lens L5 having a weak negative refractive power around the optical axis AX and a convex surface facing the object side, and positive refraction around the optical axis AX. A biconvex sixth lens L6 having power and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed on the object side of the outer edge of the first lens L1, and between the first and second lenses L1 and L2 and between the third and fourth lenses L3 and L4, A light-shielding stop FS is disposed.

図6(A)〜6(C)は、実施例1の撮像レンズ11の諸収差図(球面収差、非点収差、歪曲収差)を示し、図6(D)及び6(E)は、実施例1の撮像レンズ11の横収差を示している。   6A to 6C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 11 of Example 1, and FIGS. 6D and 6E show the examples. The lateral aberration of the imaging lens 11 of Example 1 is shown.

〔実施例2〕
実施例2のレンズ面のデータを以下の表4に示す。
〔表4〕
面データ
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.2000 2.700
2* -2.0889 0.2000 1.54000 45 2.687
3* -2.3705 0.0500 2.559
4* 2.1019 0.8219 1.54470 56 2.738
5* -9.8545 0.1135 2.620
STO INFINITY 0.0000 2.451
7* 3.4446 0.1500 1.63469 23.9 2.414
8* 1.7619 0.3002 2.366
9 FS INFINITY 0.0600 2.400
10* 8.1526 0.5602 1.54470 56 2.504
11* -8.1776 0.2165 2.608
12* 4.5185 0.2227 1.63469 23.9 2.613
13* 2.9326 0.3031 2.811
14* 6.6293 0.5568 1.54000 45 2.963
15* -2.1898 0.4995 3.416
16* -2.1967 0.3375 1.54470 56 3.634
17* 2.9968 0.4000 4.749
18 INFINITY 0.1100 1.51633 64.1 5.549
19 INFINITY 0.2190
[Example 2]
The lens surface data of Example 2 is shown in Table 4 below.
[Table 4]
Surface data surface number rd nd vd eff.dia.
1 FS INFINITY 0.2000 2.700
2 * -2.0889 0.2000 1.54000 45 2.687
3 * -2.3705 0.0500 2.559
4 * 2.1019 0.8219 1.54470 56 2.738
5 * -9.8545 0.1135 2.620
STO INFINITY 0.0000 2.451
7 * 3.4446 0.1500 1.63469 23.9 2.414
8 * 1.7619 0.3002 2.366
9 FS INFINITY 0.0600 2.400
10 * 8.1526 0.5602 1.54470 56 2.504
11 * -8.1776 0.2165 2.608
12 * 4.5185 0.2227 1.63469 23.9 2.613
13 * 2.9326 0.3031 2.811
14 * 6.6293 0.5568 1.54000 45 2.963
15 * -2.1898 0.4995 3.416
16 * -2.1967 0.3375 1.54470 56 3.634
17 * 2.9968 0.4000 4.749
18 INFINITY 0.1100 1.51633 64.1 5.549
19 INFINITY 0.2190

実施例2のレンズ面の非球面係数を以下の表5に示す。
〔表5〕
第2面
K=0.00000e+000, A4=1.08204e-001, A6=1.53978e-003,
A8=-5.54747e-003, A10=-1.38032e-003, A12=1.40192e-003,
A14=-2.58567e-004
第3面
K=0.00000e+000, A4=1.19656e-001, A6=-1.43168e-003,
A8=5.27745e-003, A10=-1.04529e-002, A12=4.89255e-003,
A14=-8.88685e-004
第4面
K=5.20441e-001, A4=-5.21736e-003, A6=3.15703e-003,
A8=-3.87144e-003, A10=3.81777e-003, A12=-2.00081e-003,
A14=5.29976e-004
第5面
K=-5.23209e+001, A4=-2.53845e-002, A6=2.18393e-002,
A8=-5.82485e-003, A10=-1.05535e-003, A12=2.37441e-003,
A14=-5.73082e-004
第7面
K=-2.43451e+000, A4=-1.29226e-001, A6=6.22107e-002,
A8=-3.85874e-003, A10=-2.94839e-002, A12=2.09031e-002,
A14=-5.06646e-003
第8面
K=-5.78973e+000, A3=-2.43400e-003, A4=-6.17923e-003,
A5=-6.35972e-002, A6=7.12797e-002, A8=-1.94436e-002,
A10=1.56763e-003, A12=-9.26132e-004, A14=1.87076e-003
第10面
K=1.81668e+001, A3=-1.54944e-002, A4=6.26988e-002,
A5=-1.67542e-001, A6=1.48364e-001, A8=-9.76793e-002,
A10=6.94077e-002, A12=-3.56959e-002, A14=8.56531e-003
第11面
K=-8.00000e+001, A3=-7.37532e-003, A4=-1.20632e-001,
A5=5.69881e-003, A6=4.55614e-002, A8=-4.80622e-002,
A10=2.35559e-002, A12=-5.20555e-003
第12面
K=-4.93030e+001, A3=-8.92831e-003, A4=-2.90242e-001,
A5=1.18840e-001, A6=-2.03222e-003, A8=-5.37660e-003,
A10=-1.39227e-002, A12=7.82024e-003
第13面
K=2.95534e+000, A3=-1.83957e-002, A4=-3.44415e-001,
A5=1.29030e-001, A6=3.67448e-002, A8=-4.05159e-002,
A10=8.23677e-003, A12=-1.40783e-003, A14=5.95958e-004
第14面
K=-7.16002e+001, A3=-1.42797e-002, A4=-2.87050e-002,
A5=1.64613e-002, A6=-3.37146e-002, A8=-2.75401e-003,
A10=1.40095e-002, A12=-1.03709e-002, A14=2.16802e-003
第15面
K=-3.34228e+000, A3=-1.76392e-002, A4=2.81902e-002,
A5=-2.74159e-003, A6=-2.48857e-002, A8=5.64171e-003,
A10=2.35754e-003, A12=-3.21260e-004, A14=-7.28734e-005
第16面
K=-3.26893e+000, A3=-8.10578e-002, A4=-4.84912e-002,
A5=1.35498e-002, A6=5.30193e-003, A8=9.34881e-004,
A10=1.14921e-003, A12=-7.90249e-005, A14=-4.11113e-005
第17面
K=-7.81757e+001, A3=9.67677e-002, A4=-1.95207e-001,
A5=1.10902e-001, A6=-2.49769e-002, A8=4.84382e-004,
A10=-6.04934e-007, A12=-3.33133e-006, A14=3.09410e-007
The aspherical coefficient of the lens surface of Example 2 is shown in Table 5 below.
[Table 5]
Second side
K = 0.00000e + 000, A4 = 1.08204e-001, A6 = 1.53978e-003,
A8 = -5.54747e-003, A10 = -1.38032e-003, A12 = 1.40192e-003,
A14 = -2.58567e-004
Third side
K = 0.00000e + 000, A4 = 1.19656e-001, A6 = -1.43168e-003,
A8 = 5.27745e-003, A10 = -1.04529e-002, A12 = 4.89255e-003,
A14 = -8.88685e-004
4th page
K = 5.20441e-001, A4 = -5.21736e-003, A6 = 3.15703e-003,
A8 = -3.87144e-003, A10 = 3.81777e-003, A12 = -2.00081e-003,
A14 = 5.29976e-004
5th page
K = -5.23209e + 001, A4 = -2.53845e-002, A6 = 2.18393e-002,
A8 = -5.82485e-003, A10 = -1.05535e-003, A12 = 2.37441e-003,
A14 = -5.73082e-004
7th page
K = -2.43451e + 000, A4 = -1.29226e-001, A6 = 6.22107e-002,
A8 = -3.85874e-003, A10 = -2.94839e-002, A12 = 2.09031e-002,
A14 = -5.06646e-003
8th page
K = -5.78973e + 000, A3 = -2.43400e-003, A4 = -6.17923e-003,
A5 = -6.35972e-002, A6 = 7.12797e-002, A8 = -1.94436e-002,
A10 = 1.56763e-003, A12 = -9.26132e-004, A14 = 1.87076e-003
10th page
K = 1.81668e + 001, A3 = -1.54944e-002, A4 = 6.26988e-002,
A5 = -1.67542e-001, A6 = 1.48364e-001, A8 = -9.76793e-002,
A10 = 6.94077e-002, A12 = -3.56959e-002, A14 = 8.56531e-003
11th page
K = -8.00000e + 001, A3 = -7.37532e-003, A4 = -1.20632e-001,
A5 = 5.69881e-003, A6 = 4.55614e-002, A8 = -4.80622e-002,
A10 = 2.35559e-002, A12 = -5.20555e-003
12th page
K = -4.93030e + 001, A3 = -8.92831e-003, A4 = -2.90242e-001,
A5 = 1.18840e-001, A6 = -2.03222e-003, A8 = -5.37660e-003,
A10 = -1.39227e-002, A12 = 7.82024e-003
Side 13
K = 2.95534e + 000, A3 = -1.83957e-002, A4 = -3.44415e-001,
A5 = 1.29030e-001, A6 = 3.67448e-002, A8 = -4.05159e-002,
A10 = 8.23677e-003, A12 = -1.40783e-003, A14 = 5.95958e-004
14th page
K = -7.16002e + 001, A3 = -1.42797e-002, A4 = -2.87050e-002,
A5 = 1.64613e-002, A6 = -3.37146e-002, A8 = -2.75401e-003,
A10 = 1.40095e-002, A12 = -1.03709e-002, A14 = 2.16802e-003
15th page
K = -3.34228e + 000, A3 = -1.76392e-002, A4 = 2.81902e-002,
A5 = -2.74159e-003, A6 = -2.48857e-002, A8 = 5.64171e-003,
A10 = 2.35754e-003, A12 = -3.21260e-004, A14 = -7.28734e-005
16th page
K = -3.26893e + 000, A3 = -8.10578e-002, A4 = -4.84912e-002,
A5 = 1.35498e-002, A6 = 5.30193e-003, A8 = 9.34881e-004,
A10 = 1.14921e-003, A12 = -7.90249e-005, A14 = -4.11113e-005
17th page
K = -7.81757e + 001, A3 = 9.67677e-002, A4 = -1.95207e-001,
A5 = 1.10902e-001, A6 = -2.49769e-002, A8 = 4.84382e-004,
A10 = -6.04934e-007, A12 = -3.33133e-006, A14 = 3.09410e-007

実施例2の撮像レンズの特性を以下に列挙する。
FL 3.696
Fno 1.45
w 75.43
Ymax 2.921
BF 0.729
TL 5.321
BFa 0.692
TLa 5.283
The characteristics of the imaging lens of Example 2 are listed below.
FL 3.696
Fno 1.45
w 75.43
Ymax 2.921
BF 0.729
TL 5.321
BFa 0.692
TLa 5.283

実施例2の単レンズデータを以下の表6に示す。
〔表6〕
Elem Surfs Focal Length Diameter
1 2- 3 -43.3748 2.687
2 4- 5 3.2594 2.738
3 7- 8 -5.8866 2.414
4 10-11 7.5868 2.608
5 12-13 -13.9241 2.811
6 14-15 3.1173 3.416
7 16-17 -2.2749 4.749
The single lens data of Example 2 is shown in Table 6 below.
[Table 6]
Elem Surfs Focal Length Diameter
1 2- 3 -43.3748 2.687
2 4- 5 3.2594 2.738
3 7-8 -5.8866 2.414
4 10-11 7.5868 2.608
5 12-13 -13.9241 2.811
6 14-15 3.1173 3.416
7 16-17 -2.2749 4.749

図7は、実施例2の撮像レンズ12等の断面図である。撮像レンズ12は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 7 is a cross-sectional view of the imaging lens 12 and the like of the second embodiment. The imaging lens 12 includes, in order from the object side, a meniscus first lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and both having a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a biconvex second lens having a positive refractive power around the optical axis AX. Four lenses L4, a fifth meniscus lens L5 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a biconvex sixth lens L6 having a positive refractive power around the optical axis AX And a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. A light-shielding stop FS is disposed.

図8(A)〜8(C)は、実施例2の撮像レンズ12の諸収差図(球面収差、非点収差、歪曲収差)を示し、図8(D)及び8(E)は、実施例2の撮像レンズ12の横収差を示している。   8A to 8C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 12 of Example 2, and FIGS. 4 shows lateral aberration of the imaging lens 12 of Example 2.

〔実施例3〕
実施例3のレンズ面のデータを以下の表7に示す。
〔表7〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.1300 2.715
2* -2.4349 0.2203 1.54470 56 2.700
3* -2.2212 0.0500 2.536
4* 2.2866 0.5559 1.54470 56 2.638
5* 7.8820 0.1159 2.519
6* 2.3616 0.1500 1.63469 23.9 2.448
7* 1.5018 0.3708 2.368
STO INFINITY 0.0000 2.370
9* 4.8153 0.6632 1.54470 56 2.484
10* -8.1003 0.1984 2.641
11* 3.9753 0.2863 1.63469 23.9 2.727
12* 3.1107 0.5319 2.945
13* 9.6807 0.5948 1.54470 56 3.167
14* -1.9136 0.4451 3.458
15* -3.3624 0.3427 1.54470 56 3.674
16* 2.0250 0.4000 4.870
17 INFINITY 0.1100 1.51633 64.1 5.505
18 INFINITY 0.2872
Example 3
The lens surface data of Example 3 is shown in Table 7 below.
[Table 7]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.1300 2.715
2 * -2.4349 0.2203 1.54470 56 2.700
3 * -2.2212 0.0500 2.536
4 * 2.2866 0.5559 1.54470 56 2.638
5 * 7.8820 0.1159 2.519
6 * 2.3616 0.1500 1.63469 23.9 2.448
7 * 1.5018 0.3708 2.368
STO INFINITY 0.0000 2.370
9 * 4.8153 0.6632 1.54470 56 2.484
10 * -8.1003 0.1984 2.641
11 * 3.9753 0.2863 1.63469 23.9 2.727
12 * 3.1107 0.5319 2.945
13 * 9.6807 0.5948 1.54470 56 3.167
14 * -1.9136 0.4451 3.458
15 * -3.3624 0.3427 1.54470 56 3.674
16 * 2.0250 0.4000 4.870
17 INFINITY 0.1100 1.51633 64.1 5.505
18 INFINITY 0.2872

実施例3のレンズ面の非球面係数を以下の表8に示す。
〔表8〕
第2面
K=0.00000e+000, A4=8.84451e-002, A6=2.95727e-003,
A8=-5.72419e-004, A10=-1.95404e-003, A12=8.52222e-004,
A14=-1.37018e-004
第3面
K=0.00000e+000, A4=1.23262e-001, A6=-1.23168e-002,
A8=1.37087e-002, A10=-8.65602e-003, A12=2.97155e-003,
A14=-5.38316e-004
第4面
K=1.26537e+000, A4=-1.64577e-002, A6=1.50602e-003,
A8=-2.87637e-003, A10=3.47653e-003, A12=-2.27129e-003,
A14=7.78201e-004
第5面
K=3.02209e+001, A4=-4.82283e-002, A6=2.70640e-002,
A8=-5.53284e-003, A10=-2.64052e-003, A12=2.28737e-003,
A14=2.53236e-004
第6面
K=-4.96016e-001, A4=-1.29667e-001, A6=5.47890e-002,
A8=8.98655e-005, A10=-2.95027e-002, A12=1.92387e-002,
A14=-4.39134e-003
第7面
K=-4.97343e+000, A3=1.15845e-003, A4=-8.13230e-005,
A5=-5.46532e-002, A6=5.89218e-002, A8=-1.98925e-002,
A10=4.60948e-003, A12=-1.75613e-003, A14=7.65322e-004
第9面
K=7.91456e+000, A3=-1.25687e-002, A4=3.41420e-002,
A5=-1.54718e-001, A6=1.55154e-001, A8=-1.08553e-001,
A10=7.33305e-002, A12=-3.15441e-002, A14=5.74023e-003
第10面
K=1.29130e+001, A3=-2.48744e-002, A4=-1.07692e-001,
A5=1.55047e-002, A6=5.33261e-002, A8=-4.58463e-002,
A10=1.92479e-002, A12=-3.99468e-003
第11面
K=-3.87234e+001, A3=-5.11261e-003, A4=-2.67667e-001,
A5=1.25283e-001, A6=-6.39194e-003, A8=1.01574e-002,
A10=-1.16100e-002, A12=3.49056e-003
第12面
K=2.85425e+000, A3=4.75549e-003, A4=-2.92393e-001,
A5=1.08503e-001, A6=3.50565e-002, A8=-2.92994e-002,
A10=8.77838e-003, A12=-2.13609e-003, A14=2.89451e-004
第13面
K=3.18559e+001, A3=-4.40889e-003, A4=-2.08563e-002,
A5=-7.89804e-003, A6=2.87983e-003, A8=-8.98647e-003,
A10=2.72075e-003, A12=-3.64518e-004, A14=-1.46345e-004
第14面
K=-4.64894e+000, A3=-7.69243e-003, A4=1.65555e-002,
A5=-1.06547e-002, A6=-2.61912e-003, A8=-1.63000e-003,
A10=4.95583e-004, A12=1.40486e-004, A14=-2.67668e-005
第15面
K=-6.00010e+000, A3=-7.48570e-002, A4=-5.80109e-002,
A5=1.74786e-002, A6=6.83640e-003, A8=-1.99745e-003,
A10=4.97304e-004, A12=1.23715e-004, A14=-2.97540e-005
第16面
K=-2.23016e+001, A3=6.22312e-002, A4=-1.53281e-001,
A5=8.91907e-002, A6=-2.15018e-002, A8=7.17837e-004,
A10=-4.02533e-005, A12=-1.34598e-006, A14=3.94287e-007
The aspherical coefficients of the lens surfaces of Example 3 are shown in Table 8 below.
[Table 8]
Second side
K = 0.00000e + 000, A4 = 8.84451e-002, A6 = 2.95727e-003,
A8 = -5.72419e-004, A10 = -1.95404e-003, A12 = 8.52222e-004,
A14 = -1.37018e-004
Third side
K = 0.00000e + 000, A4 = 1.23262e-001, A6 = -1.23168e-002,
A8 = 1.37087e-002, A10 = -8.65602e-003, A12 = 2.97155e-003,
A14 = -5.38316e-004
4th page
K = 1.26537e + 000, A4 = -1.64577e-002, A6 = 1.50602e-003,
A8 = -2.87637e-003, A10 = 3.47653e-003, A12 = -2.27129e-003,
A14 = 7.78201e-004
5th page
K = 3.02209e + 001, A4 = -4.82283e-002, A6 = 2.70640e-002,
A8 = -5.53284e-003, A10 = -2.64052e-003, A12 = 2.28737e-003,
A14 = 2.53236e-004
6th page
K = -4.96016e-001, A4 = -1.29667e-001, A6 = 5.47890e-002,
A8 = 8.98655e-005, A10 = -2.95027e-002, A12 = 1.92387e-002,
A14 = -4.39134e-003
7th page
K = -4.97343e + 000, A3 = 1.15845e-003, A4 = -8.13230e-005,
A5 = -5.46532e-002, A6 = 5.89218e-002, A8 = -1.98925e-002,
A10 = 4.60948e-003, A12 = -1.75613e-003, A14 = 7.65322e-004
9th page
K = 7.91456e + 000, A3 = -1.25687e-002, A4 = 3.41420e-002,
A5 = -1.54718e-001, A6 = 1.55154e-001, A8 = -1.08553e-001,
A10 = 7.33305e-002, A12 = -3.15441e-002, A14 = 5.74023e-003
10th page
K = 1.29130e + 001, A3 = -2.48744e-002, A4 = -1.07692e-001,
A5 = 1.55047e-002, A6 = 5.33261e-002, A8 = -4.58463e-002,
A10 = 1.92479e-002, A12 = -3.99468e-003
11th page
K = -3.87234e + 001, A3 = -5.11261e-003, A4 = -2.67667e-001,
A5 = 1.25283e-001, A6 = -6.39194e-003, A8 = 1.01574e-002,
A10 = -1.16100e-002, A12 = 3.49056e-003
12th page
K = 2.85425e + 000, A3 = 4.75549e-003, A4 = -2.92393e-001,
A5 = 1.08503e-001, A6 = 3.50565e-002, A8 = -2.92994e-002,
A10 = 8.77838e-003, A12 = -2.13609e-003, A14 = 2.89451e-004
Side 13
K = 3.18559e + 001, A3 = -4.40889e-003, A4 = -2.08563e-002,
A5 = -7.89804e-003, A6 = 2.87983e-003, A8 = -8.98647e-003,
A10 = 2.72075e-003, A12 = -3.64518e-004, A14 = -1.46345e-004
14th page
K = -4.64894e + 000, A3 = -7.69243e-003, A4 = 1.65555e-002,
A5 = -1.06547e-002, A6 = -2.61912e-003, A8 = -1.63000e-003,
A10 = 4.95583e-004, A12 = 1.40486e-004, A14 = -2.67668e-005
15th page
K = -6.00010e + 000, A3 = -7.48570e-002, A4 = -5.80109e-002,
A5 = 1.74786e-002, A6 = 6.83640e-003, A8 = -1.99745e-003,
A10 = 4.97304e-004, A12 = 1.23715e-004, A14 = -2.97540e-005
16th page
K = -2.23016e + 001, A3 = 6.22312e-002, A4 = -1.53281e-001,
A5 = 8.91907e-002, A6 = -2.15018e-002, A8 = 7.17837e-004,
A10 = -4.02533e-005, A12 = -1.34598e-006, A14 = 3.94287e-007

実施例3の撮像レンズの特性を以下に列挙する。
FL 3.699
Fno 1.45
w 75.37
Ymax 2.921
BF 0.797
TL 5.452
BFa 0.760
TLa 5.415
The characteristics of the imaging lens of Example 3 are listed below.
FL 3.699
Fno 1.45
w 75.37
Ymax 2.921
BF 0.797
TL 5.452
BFa 0.760
TLa 5.415

実施例3の単レンズデータを以下の表9に示す。
〔表9〕
Elem Surfs Focal Length Diameter
1 2- 3 34.0783 2.700
2 4- 5 5.7133 2.638
3 6- 7 -6.9719 2.448
4 9-10 5.6466 2.641
5 11-12 -25.8603 2.945
6 13-14 2.9873 3.458
7 15-16 -2.2693 4.870
The single lens data of Example 3 is shown in Table 9 below.
[Table 9]
Elem Surfs Focal Length Diameter
1 2- 3 34.0783 2.700
2 4--5 5.7133 2.638
3 6- 7 -6.9719 2.448
4 9-10 5.6466 2.641
5 11-12 -25.8603 2.945
6 13-14 2.9873 3.458
7 15-16 -2.2693 4.870

図9は、実施例3の撮像レンズ13等の断面図である。撮像レンズ13は、物体側より順に、光軸AX周辺で弱い正の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第3及び第4レンズL3,L4の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側には、遮光絞りFSが配置されている。   FIG. 9 is a cross-sectional view of the imaging lens 13 and the like of the third embodiment. The imaging lens 13 has, in order from the object side, a meniscus first lens L1 having a weak positive refractive power around the optical axis AX and a convex surface facing the image side, and a positive refractive power around the optical axis AX. Second meniscus lens L2 having a convex surface facing the object side, third meniscus lens L3 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and positive refraction around the optical axis AX A biconvex fourth lens L4 having a force, a meniscus fifth lens L5 having a weak negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX. A biconvex sixth lens L6 and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the third and fourth lenses L3 and L4, and a light-shielding stop FS is disposed on the object side of the outer edge of the first lens L1.

図10(A)〜10(C)は、実施例3の撮像レンズ13の諸収差図(球面収差、非点収差、歪曲収差)を示し、図10(D)及び10(E)は、実施例3の撮像レンズ13の横収差を示している。   FIGS. 10A to 10C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 13 of Example 3, and FIGS. 10D and 10E show the examples. The lateral aberration of the imaging lens 13 of Example 3 is shown.

〔実施例4〕
実施例4のレンズ面のデータを以下の表10に示す。
〔表10〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 6.3046 0.2500 1.54470 56.2 2.625
3* -9.4866 0.2399 2.605
STO INFINITY -0.1899 2.618
5* 6.1552 0.8055 1.54470 56.2 2.628
6* -42.4798 0.0500 2.367
7* 1.5502 0.1500 1.63469 23.9 2.231
8* 1.0815 0.4141 2.183
9 FS INFINITY 0.0000 2.300
10* 6.7291 0.4966 1.54470 56.2 2.292
11* -8.4855 0.2285 2.502
12* -12.5714 0.2841 1.63469 23.9 2.744
13* 19.5086 0.4216 3.049
14* 4.1124 0.5854 1.54470 56.2 3.466
15* -2.2595 0.3348 3.777
16* 3.1012 0.3196 1.54470 56.2 4.581
17* 0.9193 0.7000 5.238
18 INFINITY 0.1100 1.51633 64.1 5.732
19 INFINITY 0.1036
Example 4
The lens surface data of Example 4 is shown in Table 10 below.
[Table 10]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 6.3046 0.2500 1.54470 56.2 2.625
3 * -9.4866 0.2399 2.605
STO INFINITY -0.1899 2.618
5 * 6.1552 0.8055 1.54470 56.2 2.628
6 * -42.4798 0.0500 2.367
7 * 1.5502 0.1500 1.63469 23.9 2.231
8 * 1.0815 0.4141 2.183
9 FS INFINITY 0.0000 2.300
10 * 6.7291 0.4966 1.54470 56.2 2.292
11 * -8.4855 0.2285 2.502
12 * -12.5714 0.2841 1.63469 23.9 2.744
13 * 19.5086 0.4216 3.049
14 * 4.1124 0.5854 1.54470 56.2 3.466
15 * -2.2595 0.3348 3.777
16 * 3.1012 0.3196 1.54470 56.2 4.581
17 * 0.9193 0.7000 5.238
18 INFINITY 0.1100 1.51633 64.1 5.732
19 INFINITY 0.1036

実施例4のレンズ面の非球面係数を以下の表11に示す。
〔表11〕
第2面
K=-3.18132e+000, A4=-8.42749e-002, A6=2.98151e-002,
A8=1.20225e-002, A10=-9.90738e-003, A12=3.15687e-003,
A14=-4.83089e-004
第3面
K=0.00000e+000, A4=8.18853e-003, A6=-7.39367e-003,
A8=1.71372e-002, A10=-4.04286e-003
第5面
K=0.00000e+000, A4=1.22121e-001, A6=-5.88922e-002,
A8=2.16243e-002, A10=1.88365e-003, A12=-4.10725e-003,
A14=1.23043e-003
第6面
K=-8.00000e+001, A4=8.97433e-002, A6=-1.43315e-001,
A8=1.22827e-001, A10=-6.63551e-002, A12=2.48543e-002,
A14=-4.86280e-003
第7面
K=-9.98047e+000, A4=-3.05894e-002, A6=-8.63774e-002,
A8=6.45443e-002, A10=-2.29745e-002, A12=7.02732e-003,
A14=-3.54185e-003
第8面
K=-5.00816e+000, A3=6.20312e-005, A4=-3.57506e-002,
A5=-8.86682e-003, A6=5.27635e-002, A8=-1.28898e-001,
A10=1.69685e-001, A12=-1.10465e-001, A14=2.74896e-002
第10面
K=2.92067e+001, A3=-2.25310e-002, A4=7.14700e-002,
A5=-2.64148e-001, A6=2.63231e-001, A8=-1.82365e-001,
A10=1.22328e-001, A12=-6.69479e-002, A14=1.37178e-002
第11面
K=-7.41328e+000, A3=2.78211e-002, A4=-1.76722e-001,
A5=1.10775e-001, A6=-6.83699e-002, A8=2.50527e-002,
A10=-1.16384e-002, A12=6.71983e-004
第12面
K=8.00000e+001, A3=7.44190e-002, A4=-4.75423e-001,
A5=4.00836e-001, A6=-2.07634e-001, A8=1.07831e-001,
A10=-2.43620e-002, A12=-6.00379e-004
第13面
K=-8.00000e+001, A3=3.49696e-002, A4=-3.40559e-001,
A5=1.72525e-001, A6=-1.46331e-002, A8=1.31068e-002,
A10=2.27015e-003, A12=-3.11352e-003, A14=2.70093e-004
第14面
K=9.68760e-002, A3=-1.09570e-002, A4=3.61112e-002,
A5=-1.33785e-001, A6=8.78463e-002, A8=-3.80285e-002,
A10=1.52616e-002, A12=-3.49773e-003, A14=3.26590e-004
第15面
K=-1.85389e+001, A3=-8.90869e-002, A4=5.49142e-002,
A5=1.93718e-002, A6=-3.00384e-002, A8=-1.02180e-002,
A10=7.54221e-003, A12=-1.23949e-003, A14=4.71979e-005
第16面
K=-4.32755e+001, A3=-1.87586e-001, A4=-1.21890e-001,
A5=6.61914e-002, A6=2.75434e-002, A8=-4.72995e-003,
A10=-4.37315e-004, A12=1.32823e-004, A14=-7.74779e-006
第17面
K=-3.90456e+000, A3=-1.42503e-001, A4=-7.46234e-002,
A5=1.17662e-001, A6=-3.72449e-002, A8=1.21959e-003,
A10=-1.07047e-004, A12=1.44805e-005, A14=-5.73559e-007
The aspherical coefficients of the lens surfaces of Example 4 are shown in Table 11 below.
[Table 11]
Second side
K = -3.18132e + 000, A4 = -8.42749e-002, A6 = 2.98151e-002,
A8 = 1.20225e-002, A10 = -9.90738e-003, A12 = 3.15687e-003,
A14 = -4.83089e-004
Third side
K = 0.00000e + 000, A4 = 8.18853e-003, A6 = -7.39367e-003,
A8 = 1.71372e-002, A10 = -4.04286e-003
5th page
K = 0.00000e + 000, A4 = 1.22121e-001, A6 = -5.88922e-002,
A8 = 2.16243e-002, A10 = 1.88365e-003, A12 = -4.10725e-003,
A14 = 1.23043e-003
6th page
K = -8.00000e + 001, A4 = 8.97433e-002, A6 = -1.43315e-001,
A8 = 1.22827e-001, A10 = -6.63551e-002, A12 = 2.48543e-002,
A14 = -4.86280e-003
7th page
K = -9.98047e + 000, A4 = -3.05894e-002, A6 = -8.63774e-002,
A8 = 6.45443e-002, A10 = -2.29745e-002, A12 = 7.02732e-003,
A14 = -3.54185e-003
8th page
K = -5.00816e + 000, A3 = 6.20312e-005, A4 = -3.57506e-002,
A5 = -8.86682e-003, A6 = 5.27635e-002, A8 = -1.28898e-001,
A10 = 1.69685e-001, A12 = -1.10465e-001, A14 = 2.74896e-002
10th page
K = 2.92067e + 001, A3 = -2.25310e-002, A4 = 7.14700e-002,
A5 = -2.64148e-001, A6 = 2.63231e-001, A8 = -1.82365e-001,
A10 = 1.22328e-001, A12 = -6.69479e-002, A14 = 1.37178e-002
11th page
K = -7.41328e + 000, A3 = 2.78211e-002, A4 = -1.76722e-001,
A5 = 1.10775e-001, A6 = -6.83699e-002, A8 = 2.50527e-002,
A10 = -1.16384e-002, A12 = 6.71983e-004
12th page
K = 8.00000e + 001, A3 = 7.44190e-002, A4 = -4.75423e-001,
A5 = 4.00836e-001, A6 = -2.07634e-001, A8 = 1.07831e-001,
A10 = -2.43620e-002, A12 = -6.00379e-004
Side 13
K = -8.00000e + 001, A3 = 3.49696e-002, A4 = -3.40559e-001,
A5 = 1.72525e-001, A6 = -1.46331e-002, A8 = 1.31068e-002,
A10 = 2.27015e-003, A12 = -3.11352e-003, A14 = 2.70093e-004
14th page
K = 9.68760e-002, A3 = -1.09570e-002, A4 = 3.61112e-002,
A5 = -1.33785e-001, A6 = 8.78463e-002, A8 = -3.80285e-002,
A10 = 1.52616e-002, A12 = -3.49773e-003, A14 = 3.26590e-004
15th page
K = -1.85389e + 001, A3 = -8.90869e-002, A4 = 5.49142e-002,
A5 = 1.93718e-002, A6 = -3.00384e-002, A8 = -1.02180e-002,
A10 = 7.54221e-003, A12 = -1.23949e-003, A14 = 4.71979e-005
16th page
K = -4.32755e + 001, A3 = -1.87586e-001, A4 = -1.21890e-001,
A5 = 6.61914e-002, A6 = 2.75434e-002, A8 = -4.72995e-003,
A10 = -4.37315e-004, A12 = 1.32823e-004, A14 = -7.74779e-006
17th page
K = -3.90456e + 000, A3 = -1.42503e-001, A4 = -7.46234e-002,
A5 = 1.17662e-001, A6 = -3.72449e-002, A8 = 1.21959e-003,
A10 = -1.07047e-004, A12 = 1.44805e-005, A14 = -5.73559e-007

実施例4の撮像レンズの特性を以下に列挙する。
FL 3.756
Fno 1.43
w 75.39
Ymax 2.921
BF 0.914
TL 5.304
BFa 0.876
TLa 5.266
The characteristics of the imaging lens of Example 4 are listed below.
FL 3.756
Fno 1.43
w 75.39
Ymax 2.921
BF 0.914
TL 5.304
BFa 0.876
TLa 5.266

実施例4の単レンズデータを以下の表12に示す。
〔表12〕
Elem Surfs Focal Length Diameter
1 2- 3 6.9924 2.625
2 5- 6 9.9281 2.628
3 7- 8 -6.4349 2.231
4 10-11 6.9702 2.502
5 12-13 -12.0039 3.049
6 14-15 2.7668 3.777
7 16-17 -2.5293 5.238
The single lens data of Example 4 is shown in Table 12 below.
[Table 12]
Elem Surfs Focal Length Diameter
1 2- 3 6.9924 2.625
2 5--6 9.9281 2.628
3 7- 8 -6.4349 2.231
4 10-11 6.9702 2.502
5 12-13 -12.0039 3.049
6 14-15 2.7668 3.777
7 16-17 -2.5293 5.238

図11は、実施例4の撮像レンズ14等の断面図である。撮像レンズ14は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 11 is a cross-sectional view of the imaging lens 14 and the like of the fourth embodiment. The imaging lens 14 is, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a substantially convex surface having a positive refractive power around the optical axis AX and facing the object side. A convex second lens L2, a meniscus third lens L3 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a biconvex having a positive refractive power around the optical axis AX A fourth lens L4, a biconcave fifth lens L5 having negative refractive power around the optical axis AX, a biconvex sixth lens L6 having positive refractive power around the optical axis AX, and the periphery of the optical axis AX And a meniscus seventh lens L7 having negative refractive power and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4, A light-shielding stop FS is disposed.

図12(A)〜12(C)は、実施例4の撮像レンズ14の諸収差図(球面収差、非点収差、歪曲収差)を示し、図12(D)及び12(E)は、実施例4の撮像レンズ14の横収差を示している。   12A to 12C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 14 of Example 4, and FIGS. 12D and 12E show the results. 10 shows lateral aberration of the imaging lens 14 of Example 4. FIG.

〔実施例5〕
実施例5のレンズ面のデータを以下の表13に示す。
〔表13〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.1200 2.719
2* -2.6118 0.2000 1.54000 45 2.710
3* -2.9734 0.3803 2.571
4 FS INFINITY -0.3303 2.658
5* 1.9042 0.8622 1.54470 56 2.735
6* -14.3008 0.0000 2.634
STO INFINITY 0.1286 2.548
8* 7.0726 0.1500 1.63469 23.9 2.410
9* 2.2078 0.3030 2.214
10 FS INFINITY 0.0000 2.240
11* 5.5742 0.4916 1.54470 56 2.364
12* -32.1022 0.2345 2.458
13* 3.0804 0.2000 1.63469 23.9 2.478
14* 2.6279 0.2870 2.674
15* 6.6362 0.3426 1.54000 45 2.800
16* -2.9087 0.6350 3.211
17* -2.3861 0.3227 1.54470 56 3.671
18* 3.2217 0.4000 4.617
19 INFINITY 0.1100 1.51633 64.1 5.600
20 INFINITY 0.1648
Example 5
The lens surface data of Example 5 is shown in Table 13 below.
[Table 13]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.1200 2.719
2 * -2.6118 0.2000 1.54000 45 2.710
3 * -2.9734 0.3803 2.571
4 FS INFINITY -0.3303 2.658
5 * 1.9042 0.8622 1.54470 56 2.735
6 * -14.3008 0.0000 2.634
STO INFINITY 0.1286 2.548
8 * 7.0726 0.1500 1.63469 23.9 2.410
9 * 2.2078 0.3030 2.214
10 FS INFINITY 0.0000 2.240
11 * 5.5742 0.4916 1.54470 56 2.364
12 * -32.1022 0.2345 2.458
13 * 3.0804 0.2000 1.63469 23.9 2.478
14 * 2.6279 0.2870 2.674
15 * 6.6362 0.3426 1.54000 45 2.800
16 * -2.9087 0.6350 3.211
17 * -2.3861 0.3227 1.54470 56 3.671
18 * 3.2217 0.4000 4.617
19 INFINITY 0.1100 1.51633 64.1 5.600
20 INFINITY 0.1648

実施例5のレンズ面の非球面係数を以下の表14に示す。
〔表14〕
第2面
K=0.00000e+000, A4=8.66377e-002, A6=3.41365e-003,
A8=-3.10253e-003, A10=-1.32314e-003, A12=8.49806e-004,
A14=-1.57371e-004
第3面
K=0.00000e+000, A4=9.89752e-002, A6=1.97075e-003,
A8=7.77106e-003, A10=-1.02422e-002, A12=5.24427e-003,
A14=-1.11775e-003
第5面
K=2.05205e-001, A4=-6.38897e-003, A6=9.70827e-004,
A8=-4.41012e-003, A10=3.72338e-003, A12=-1.82964e-003,
A14=3.80674e-004
第6面
K=4.04715e+001, A4=-3.44214e-002, A6=1.97723e-002,
A8=-2.55265e-003, A10=-1.51412e-003, A12=1.02973e-003,
A14=-9.06250e-005
第8面
K=1.13228e+001, A4=-1.13344e-001, A6=7.67389e-002,
A8=-4.98718e-003, A10=-3.10363e-002, A12=2.01553e-002,
A14=-4.28410e-003
第9面
K=-7.55781e+000, A3=-3.06228e-003, A4=1.07611e-003,
A5=-5.09050e-002, A6=8.60696e-002, A8=-1.79738e-002,
A10=-1.85391e-003, A12=-2.35451e-004, A14=2.87368e-003
第11面
K=1.21089e+001, A3=-1.78166e-002, A4=5.60649e-002,
A5=-1.74922e-001, A6=1.51516e-001, A8=-9.35294e-002,
A10=6.96969e-002, A12=-3.57119e-002, A14=9.35937e-003
第12面
K=-7.67350e+001, A3=-1.16000e-002, A4=-9.65332e-002,
A5=1.16432e-002, A6=3.14841e-002, A8=-5.38177e-002,
A10=2.92519e-002, A12=-5.95350e-003
第13面
K=-1.76118e+001, A3=-1.66768e-002, A4=-2.82736e-001,
A5=1.18434e-001, A6=-5.69067e-003, A8=-2.08740e-002,
A10=-1.56115e-002, A12=9.87586e-003
第14面
K=2.57198e+000, A3=-2.17822e-002, A4=-3.71147e-001,
A5=1.25519e-001, A6=3.41324e-002, A8=-4.20787e-002,
A10=5.95502e-003, A12=-2.53658e-003, A14=1.14333e-003
第15面
K=-6.89757e+001, A3=-3.37431e-002, A4=-1.10107e-002,
A5=-1.37735e-002, A6=-5.65327e-002, A8=1.22081e-002,
A10=2.08289e-002, A12=-2.00191e-002, A14=4.40044e-003
第16面
K=-1.38743e+001, A3=-3.96781e-002, A4=-2.34418e-003,
A5=-7.77839e-003, A6=-2.94887e-002, A8=1.16843e-002,
A10=3.62369e-003, A12=-6.35622e-004, A14=-1.86518e-004
第17面
K=-3.13432e-001, A3=-1.10807e-001, A4=-6.36104e-002,
A5=4.02999e-002, A6=1.64647e-002, A8=-8.18427e-004,
A10=5.80182e-004, A12=-2.17031e-004, A14=7.91834e-006
第18面
K=-8.00000e+001, A3=2.20638e-002, A4=-1.44001e-001,
A5=1.00504e-001, A6=-2.62785e-002, A8=8.72918e-004,
A10=-4.66588e-005, A12=-1.10324e-005, A14=1.98010e-006
The aspheric coefficients of the lens surfaces of Example 5 are shown in Table 14 below.
[Table 14]
Second side
K = 0.00000e + 000, A4 = 8.66377e-002, A6 = 3.41365e-003,
A8 = -3.10253e-003, A10 = -1.32314e-003, A12 = 8.49806e-004,
A14 = -1.57371e-004
Third side
K = 0.00000e + 000, A4 = 9.89752e-002, A6 = 1.97075e-003,
A8 = 7.77106e-003, A10 = -1.02422e-002, A12 = 5.24427e-003,
A14 = -1.11775e-003
5th page
K = 2.05205e-001, A4 = -6.38897e-003, A6 = 9.70827e-004,
A8 = -4.41012e-003, A10 = 3.72338e-003, A12 = -1.82964e-003,
A14 = 3.80674e-004
6th page
K = 4.04715e + 001, A4 = -3.44214e-002, A6 = 1.97723e-002,
A8 = -2.55265e-003, A10 = -1.51412e-003, A12 = 1.02973e-003,
A14 = -9.06250e-005
8th page
K = 1.13228e + 001, A4 = -1.13344e-001, A6 = 7.67389e-002,
A8 = -4.98718e-003, A10 = -3.10363e-002, A12 = 2.01553e-002,
A14 = -4.28410e-003
9th page
K = -7.55781e + 000, A3 = -3.06228e-003, A4 = 1.07611e-003,
A5 = -5.09050e-002, A6 = 8.60696e-002, A8 = -1.79738e-002,
A10 = -1.85391e-003, A12 = -2.35451e-004, A14 = 2.87368e-003
11th page
K = 1.21089e + 001, A3 = -1.78166e-002, A4 = 5.60649e-002,
A5 = -1.74922e-001, A6 = 1.51516e-001, A8 = -9.35294e-002,
A10 = 6.96969e-002, A12 = -3.57119e-002, A14 = 9.35937e-003
12th page
K = -7.67350e + 001, A3 = -1.16000e-002, A4 = -9.65332e-002,
A5 = 1.16432e-002, A6 = 3.14841e-002, A8 = -5.38177e-002,
A10 = 2.92519e-002, A12 = -5.95350e-003
Side 13
K = -1.76118e + 001, A3 = -1.66768e-002, A4 = -2.82736e-001,
A5 = 1.18434e-001, A6 = -5.69067e-003, A8 = -2.08740e-002,
A10 = -1.56115e-002, A12 = 9.87586e-003
14th page
K = 2.57198e + 000, A3 = -2.17822e-002, A4 = -3.71147e-001,
A5 = 1.25519e-001, A6 = 3.41324e-002, A8 = -4.20787e-002,
A10 = 5.95502e-003, A12 = -2.53658e-003, A14 = 1.14333e-003
15th page
K = -6.89757e + 001, A3 = -3.37431e-002, A4 = -1.10107e-002,
A5 = -1.37735e-002, A6 = -5.65327e-002, A8 = 1.22081e-002,
A10 = 2.08289e-002, A12 = -2.00191e-002, A14 = 4.40044e-003
16th page
K = -1.38743e + 001, A3 = -3.96781e-002, A4 = -2.34418e-003,
A5 = -7.77839e-003, A6 = -2.94887e-002, A8 = 1.16843e-002,
A10 = 3.62369e-003, A12 = -6.35622e-004, A14 = -1.86518e-004
17th page
K = -3.13432e-001, A3 = -1.10807e-001, A4 = -6.36104e-002,
A5 = 4.02999e-002, A6 = 1.64647e-002, A8 = -8.18427e-004,
A10 = 5.80182e-004, A12 = -2.17031e-004, A14 = 7.91834e-006
18th page
K = -8.00000e + 001, A3 = 2.20638e-002, A4 = -1.44001e-001,
A5 = 1.00504e-001, A6 = -2.62785e-002, A8 = 8.72918e-004,
A10 = -4.66588e-005, A12 = -1.10324e-005, A14 = 1.98010e-006

実施例5撮像レンズの特性を以下に列挙する。
FL 3.695
Fno 1.45
w 75.43
Ymax 2.921
BF 0.675
TL 5.002
BFa 0.637
TLa 4.964
Example 5 The characteristics of the imaging lens are listed below.
FL 3.695
Fno 1.45
w 75.43
Ymax 2.921
BF 0.675
TL 5.002
BFa 0.637
TLa 4.964

実施例5の単レンズデータを以下の表15に示す。
〔表15〕
Elem Surfs Focal Length Diameter
1 2- 3 -49.3261 2.710
2 5- 6 3.1440 2.735
3 8- 9 -5.1185 2.410
4 11-12 8.7598 2.458
5 13-14 -34.0261 2.674
6 15-16 3.7927 3.211
7 17-18 -2.4666 4.617
The single lens data of Example 5 is shown in Table 15 below.
[Table 15]
Elem Surfs Focal Length Diameter
1 2- 3 -49.3261 2.710
2 5- 6 3.1440 2.735
3 8- 9 -5.1185 2.410
4 11-12 8.7598 2.458
5 13-14 -34.0261 2.674
6 15-16 3.7927 3.211
7 17-18 -2.4666 4.617

図13は、実施例5の撮像レンズ15等の断面図である。撮像レンズ15は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第1及び第2レンズL1,L2の間と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 13 is a cross-sectional view of the imaging lens 15 and the like according to the fifth embodiment. The imaging lens 15 includes, in order from the object side, a meniscus first lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and both having a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface directed toward the object side, and a positive refractive power around the optical axis AX toward the object side A substantially convex fourth lens L4 having a convex surface, a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and a convex surface facing the object side, and positive refraction around the optical axis AX A biconvex sixth lens L6 having power and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and the object side of the outer edge of the first lens L1, between the first and second lenses L1 and L2, and third In addition, a light-shielding stop FS is disposed between the fourth lenses L3 and L4.

図14(A)〜14(C)は、実施例5の撮像レンズ15の諸収差図(球面収差、非点収差、歪曲収差)を示し、図14(D)及び14(E)は、実施例5の撮像レンズ15の横収差を示している。   14A to 14C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 15 of Example 5, and FIGS. 14D and 14E show the results. 10 shows lateral aberrations of the imaging lens 15 of Example 5. FIG.

〔実施例6〕
実施例6のレンズ面のデータを以下の表16に示す。
〔表16〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0500 2.753
2* -3.9482 0.2000 1.54000 45 2.724
3* -4.6862 0.0500 2.544
4* 1.9256 0.9475 1.54470 56 2.688
5* -11.1749 0.0500 2.574
STO INFINITY 0.0000 2.402
7* 4.5491 0.1500 1.63469 23.9 2.399
8* 1.9535 0.3530 2.379
9* 9.5514 0.4601 1.54470 56 2.502
10* -22.4376 0.2526 2.570
11* 2.4552 0.2000 1.63469 23.9 2.544
12* 2.0076 0.2555 2.788
13* 4.4599 0.4140 1.54000 45 2.930
14* -2.8721 0.5910 3.355
15* -2.8064 0.3262 1.54470 56 3.920
16* 2.6784 0.4000 4.789
17 INFINITY 0.1100 1.51633 64.1 5.666
18 INFINITY 0.1849
Example 6
The lens surface data of Example 6 is shown in Table 16 below.
[Table 16]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0500 2.753
2 * -3.9482 0.2000 1.54000 45 2.724
3 * -4.6862 0.0500 2.544
4 * 1.9256 0.9475 1.54470 56 2.688
5 * -11.1749 0.0500 2.574
STO INFINITY 0.0000 2.402
7 * 4.5491 0.1500 1.63469 23.9 2.399
8 * 1.9535 0.3530 2.379
9 * 9.5514 0.4601 1.54470 56 2.502
10 * -22.4376 0.2526 2.570
11 * 2.4552 0.2000 1.63469 23.9 2.544
12 * 2.0076 0.2555 2.788
13 * 4.4599 0.4140 1.54000 45 2.930
14 * -2.8721 0.5910 3.355
15 * -2.8064 0.3262 1.54470 56 3.920
16 * 2.6784 0.4000 4.789
17 INFINITY 0.1100 1.51633 64.1 5.666
18 INFINITY 0.1849

実施例6のレンズ面の非球面係数を以下の表17に示す。
〔表17〕
第2面
K=0.00000e+000, A4=6.60940e-002, A6=2.34556e-003,
A8=1.72006e-003, A10=-1.86009e-003, A12=1.42231e-004,
A14=9.51271e-006
第3面
K=0.00000e+000, A4=7.67677e-002, A6=6.15227e-003,
A8=8.76821e-003, A10=-7.49515e-003, A12=3.38566e-003,
A14=-7.82908e-004
第4面
K=8.57576e-002, A4=-5.69281e-003, A6=1.36480e-003,
A8=-2.71124e-003, A10=2.51598e-003, A12=-1.76101e-003,
A14=3.67584e-004
第5面
K=3.61335e+001, A4=-4.07402e-002, A6=2.14631e-002,
A8=-5.05335e-003, A10=-4.01614e-004, A12=5.69402e-004,
A14=1.48069e-005
第7面
K=-1.38888e+001, A4=-1.26316e-001, A6=7.84482e-002,
A8=-3.04202e-003, A10=-3.05723e-002, A12=2.03388e-002,
A14=-4.32195e-003
第8面
K=-6.24072e+000, A3=-6.63719e-003, A4=-1.01195e-003,
A5=-5.75352e-002, A6=8.50586e-002, A8=-2.12801e-002,
A10=8.35905e-004, A12=1.68962e-003, A14=1.29183e-003
第9面
K=3.40000e+001, A3=-2.09095e-002, A4=7.12686e-002,
A5=-1.68433e-001, A6=1.42226e-001, A8=-9.47376e-002,
A10=7.04853e-002, A12=-3.42479e-002, A14=8.41232e-003
第10面
K=-1.15866e-001, A3=-8.45181e-003, A4=-8.63135e-002,
A5=1.61035e-002, A6=2.57261e-002, A8=-5.79964e-002,
A10=3.28412e-002, A12=-7.03278e-003
第11面
K=-9.58842e+000, A3=-7.95928e-003, A4=-2.74729e-001,
A5=1.21335e-001, A6=1.45770e-002, A8=-3.57904e-002,
A10=-2.29138e-002, A12=1.19880e-002
第12面
K=9.45374e-001, A3=-5.47024e-003, A4=-4.09555e-001,
A5=1.60089e-001, A6=3.15095e-002, A8=-5.20951e-002,
A10=8.11498e-003, A12=-3.61401e-003, A14=1.49097e-003
第13面
K=-4.77026e+000, A3=-2.05532e-002, A4=-2.75418e-002,
A5=-2.18779e-002, A6=-4.24057e-002, A8=1.96996e-003,
A10=2.47039e-002, A12=-1.85002e-002, A14=3.76278e-003
第14面
K=-8.69614e+000, A3=-2.57276e-002, A4=1.25995e-002,
A5=1.34003e-003, A6=-5.87004e-002, A8=1.10495e-002,
A10=6.32408e-003, A12=-6.69096e-004, A14=-2.71292e-004
第15面
K=-1.76510e-001, A3=-1.36320e-001, A4=-5.71684e-002,
A5=3.03369e-002, A6=1.93890e-002, A8=1.42053e-003,
A10=6.28457e-005, A12=-3.36458e-004, A14=4.03316e-005
第16面
K=-5.15746e+001, A3=2.07397e-002, A4=-1.66939e-001,
A5=1.25638e-001, A6=-3.31993e-002, A8=5.61442e-004,
A10=1.04328e-004, A12=-2.96535e-005, A14=2.76353e-006
Table 17 below shows the aspheric coefficients of the lens surfaces of Example 6.
[Table 17]
Second side
K = 0.00000e + 000, A4 = 6.60940e-002, A6 = 2.34556e-003,
A8 = 1.72006e-003, A10 = -1.86009e-003, A12 = 1.42231e-004,
A14 = 9.51271e-006
Third side
K = 0.00000e + 000, A4 = 7.67677e-002, A6 = 6.15227e-003,
A8 = 8.76821e-003, A10 = -7.49515e-003, A12 = 3.38566e-003,
A14 = -7.82908e-004
4th page
K = 8.57576e-002, A4 = -5.69281e-003, A6 = 1.36480e-003,
A8 = -2.71124e-003, A10 = 2.51598e-003, A12 = -1.76101e-003,
A14 = 3.67584e-004
5th page
K = 3.61335e + 001, A4 = -4.07402e-002, A6 = 2.14631e-002,
A8 = -5.05335e-003, A10 = -4.01614e-004, A12 = 5.69402e-004,
A14 = 1.48069e-005
7th page
K = -1.38888e + 001, A4 = -1.26316e-001, A6 = 7.84482e-002,
A8 = -3.04202e-003, A10 = -3.05723e-002, A12 = 2.03388e-002,
A14 = -4.32195e-003
8th page
K = -6.24072e + 000, A3 = -6.63719e-003, A4 = -1.01195e-003,
A5 = -5.75352e-002, A6 = 8.50586e-002, A8 = -2.12801e-002,
A10 = 8.35905e-004, A12 = 1.68962e-003, A14 = 1.29183e-003
9th page
K = 3.40000e + 001, A3 = -2.09095e-002, A4 = 7.12686e-002,
A5 = -1.68433e-001, A6 = 1.42226e-001, A8 = -9.47376e-002,
A10 = 7.04853e-002, A12 = -3.42479e-002, A14 = 8.41232e-003
10th page
K = -1.15866e-001, A3 = -8.45181e-003, A4 = -8.63135e-002,
A5 = 1.61035e-002, A6 = 2.57261e-002, A8 = -5.79964e-002,
A10 = 3.28412e-002, A12 = -7.03278e-003
11th page
K = -9.58842e + 000, A3 = -7.95928e-003, A4 = -2.74729e-001,
A5 = 1.21335e-001, A6 = 1.45770e-002, A8 = -3.57904e-002,
A10 = -2.29138e-002, A12 = 1.19880e-002
12th page
K = 9.45374e-001, A3 = -5.47024e-003, A4 = -4.09555e-001,
A5 = 1.60089e-001, A6 = 3.15095e-002, A8 = -5.20951e-002,
A10 = 8.11498e-003, A12 = -3.61401e-003, A14 = 1.49097e-003
Side 13
K = -4.77026e + 000, A3 = -2.05532e-002, A4 = -2.75418e-002,
A5 = -2.18779e-002, A6 = -4.24057e-002, A8 = 1.96996e-003,
A10 = 2.47039e-002, A12 = -1.85002e-002, A14 = 3.76278e-003
14th page
K = -8.69614e + 000, A3 = -2.57276e-002, A4 = 1.25995e-002,
A5 = 1.34003e-003, A6 = -5.87004e-002, A8 = 1.10495e-002,
A10 = 6.32408e-003, A12 = -6.69096e-004, A14 = -2.71292e-004
15th page
K = -1.76510e-001, A3 = -1.36320e-001, A4 = -5.71684e-002,
A5 = 3.03369e-002, A6 = 1.93890e-002, A8 = 1.42053e-003,
A10 = 6.28457e-005, A12 = -3.36458e-004, A14 = 4.03316e-005
16th page
K = -5.15746e + 001, A3 = 2.07397e-002, A4 = -1.66939e-001,
A5 = 1.25638e-001, A6 = -3.31993e-002, A8 = 5.61442e-004,
A10 = 1.04328e-004, A12 = -2.96535e-005, A14 = 2.76353e-006

実施例6の撮像レンズの特性を以下に列挙する。
FL 3.695
Fno 1.45
w 75.34
Ymax 2.921
BF 0.695
TL 4.995
BFa 0.657
TLa 4.957
The characteristics of the imaging lens of Example 6 are listed below.
FL 3.695
Fno 1.45
w 75.34
Ymax 2.921
BF 0.695
TL 4.995
BFa 0.657
TLa 4.957

実施例6の単レンズデータを以下の表18に示す。
〔表18〕
Elem Surfs Focal Length Diameter
1 2- 3 -51.2959 2.724
2 4- 5 3.0944 2.688
3 7- 8 -5.5184 2.399
4 9-10 12.3621 2.570
5 11-12 -20.9893 2.788
6 13-14 3.3006 3.355
7 15-16 -2.4643 4.789
The single lens data of Example 6 is shown in Table 18 below.
[Table 18]
Elem Surfs Focal Length Diameter
1 2- 3 -51.2959 2.724
2 4- 5 3.0944 2.688
3 7-8 -5.5184 2.399
4 9-10 12.3621 2.570
5 11-12 -20.9893 2.788
6 13-14 3.3006 3.355
7 15-16 -2.4643 4.789

図15は、実施例6の撮像レンズ16等の断面図である。撮像レンズ16は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側には、遮光絞りFSが配置されている。   FIG. 15 is a cross-sectional view of the imaging lens 16 and the like according to the sixth embodiment. The imaging lens 16 includes, in order from the object side, a meniscus first lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and both having a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface directed toward the object side, and a positive refractive power around the optical axis AX toward the object side A substantially convex fourth lens L4 having a convex surface, a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and a convex surface facing the object side, and positive refraction around the optical axis AX A biconvex sixth lens L6 having power and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and a light-shielding stop FS is disposed on the object side of the outer edge of the first lens L1.

図16(A)〜16(C)は、実施例6の撮像レンズ16の諸収差図(球面収差、非点収差、歪曲収差)を示し、図16(D)及び16(E)は、実施例6の撮像レンズ16の横収差を示している。   16A to 16C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 16 of Example 6, and FIGS. 16D and 16E show the examples. The lateral aberration of the imaging lens 16 of Example 6 is shown.

〔実施例7〕
実施例7のレンズ面のデータを以下の表19に示す。
〔表19〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.1800 2.717
2* -2.0268 0.2430 1.54000 45 2.707
3* -2.3807 0.0720 2.521
4* 2.1789 0.8937 1.54470 56 2.590
5* -4.6036 0.0500 2.510
STO INFINITY 0.0000 2.334
7* 2.8002 0.1500 1.63469 23.9 2.293
8* 1.4895 0.3804 2.389
9 FS INFINITY 0.0000 2.460
10* 40.0659 0.5161 1.54470 56 2.504
11* -5.6313 0.1985 2.575
12* 2.9575 0.2000 1.63469 23.9 2.551
13* 2.0452 0.2865 2.777
14* 5.9382 0.4461 1.54000 45 2.896
15* -2.2081 0.5235 3.258
16* -4.0678 0.3232 1.54470 56 3.845
17* 2.0652 0.4000 4.900
18 INFINITY 0.1100 1.51633 64.1 5.600
19 INFINITY 0.2407
Example 7
The lens surface data of Example 7 is shown in Table 19 below.
[Table 19]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.1800 2.717
2 * -2.0268 0.2430 1.54000 45 2.707
3 * -2.3807 0.0720 2.521
4 * 2.1789 0.8937 1.54470 56 2.590
5 * -4.6036 0.0500 2.510
STO INFINITY 0.0000 2.334
7 * 2.8002 0.1500 1.63469 23.9 2.293
8 * 1.4895 0.3804 2.389
9 FS INFINITY 0.0000 2.460
10 * 40.0659 0.5161 1.54470 56 2.504
11 * -5.6313 0.1985 2.575
12 * 2.9575 0.2000 1.63469 23.9 2.551
13 * 2.0452 0.2865 2.777
14 * 5.9382 0.4461 1.54000 45 2.896
15 * -2.2081 0.5235 3.258
16 * -4.0678 0.3232 1.54470 56 3.845
17 * 2.0652 0.4000 4.900
18 INFINITY 0.1100 1.51633 64.1 5.600
19 INFINITY 0.2407

実施例7のレンズ面の非球面係数を以下の表20に示す。
〔表20〕
第2面
K=0.00000e+000, A4=1.26850e-001, A6=-9.43517e-003,
A8=-1.29035e-003, A10=-1.92495e-003, A12=1.43750e-003,
A14=-2.85508e-004
第3面
K=0.00000e+000, A4=1.36879e-001, A6=-3.91416e-003,
A8=7.50924e-004, A10=-2.57169e-003, A12=1.21042e-003,
A14=-2.85081e-004
第4面
K=-3.47847e-002, A4=-5.34814e-003, A6=3.92094e-003,
A8=-3.23237e-003, A10=2.19789e-003, A12=-9.74314e-004,
A14=1.04661e-004
第5面
K=3.97820e+000, A4=3.14487e-003, A6=6.78877e-003,
A8=-5.09900e-003, A10=2.31222e-003, A12=-6.15709e-004,
A14=9.30610e-005
第7面
K=-1.60036e+000, A4=-1.29070e-001, A6=5.99680e-002,
A8=-4.30173e-003, A10=-3.04624e-002, A12=1.90753e-002,
A14=-3.87706e-003
第8面
K=-3.69028e+000, A3=-7.02013e-003, A4=-1.82810e-002,
A5=-6.72533e-002, A6=8.91852e-002, A8=-2.61718e-002,
A10=-3.80622e-003, A12=3.24985e-003, A14=-1.10275e-004
第10面
K=-6.91943e+001, A3=-8.73220e-003, A4=9.09517e-002,
A5=-1.60498e-001, A6=1.42487e-001, A8=-9.56521e-002,
A10=7.18280e-002, A12=-3.14114e-002, A14=5.62188e-003
第11面
K=-4.78161e+001, A3=-1.93791e-003, A4=-8.75732e-002,
A5=1.20899e-002, A6=2.91611e-002, A8=-5.39583e-002,
A10=3.16662e-002, A12=-6.59907e-003
第12面
K=-1.64024e+001, A3=-1.57960e-002, A4=-2.66456e-001,
A5=1.20448e-001, A6=1.55635e-002, A8=-3.34658e-002,
A10=-2.07473e-002, A12=1.33908e-002
第13面
K=9.80921e-001, A3=-1.31180e-002, A4=-4.06020e-001,
A5=1.73164e-001, A6=3.51872e-002, A8=-5.50507e-002,
A10=8.65942e-003, A12=-1.89224e-003, A14=1.07455e-003
第14面
K=-3.21448e+001, A3=-1.47495e-002, A4=-6.63584e-003,
A5=-1.71697e-002, A6=-4.20541e-002, A8=2.52481e-004,
A10=2.50276e-002, A12=-1.85822e-002, A14=3.74123e-003
第15面
K=-4.75365e+000, A3=-1.83012e-002, A4=1.87727e-002,
A5=6.51519e-003, A6=-5.70449e-002, A8=1.11618e-002,
A10=6.09234e-003, A12=-8.37515e-004, A14=-2.32603e-004
第16面
K=5.42787e-001, A3=-1.27642e-001, A4=-6.26001e-002,
A5=2.62835e-002, A6=1.77640e-002, A8=1.40702e-003,
A10=1.48137e-004, A12=-3.12846e-004, A14=3.53889e-005
第17面
K=-2.45806e+001, A3=3.33841e-002, A4=-1.74153e-001,
A5=1.25330e-001, A6=-3.31086e-002, A8=6.08087e-004,
A10=1.16042e-004, A12=-2.85915e-005, A14=2.44691e-006
Table 20 below shows the aspheric coefficients of the lens surfaces of Example 7.
[Table 20]
Second side
K = 0.00000e + 000, A4 = 1.26850e-001, A6 = -9.43517e-003,
A8 = -1.29035e-003, A10 = -1.92495e-003, A12 = 1.43750e-003,
A14 = -2.85508e-004
Third side
K = 0.00000e + 000, A4 = 1.36879e-001, A6 = -3.91416e-003,
A8 = 7.50924e-004, A10 = -2.57169e-003, A12 = 1.21042e-003,
A14 = -2.85081e-004
4th page
K = -3.47847e-002, A4 = -5.34814e-003, A6 = 3.92094e-003,
A8 = -3.23237e-003, A10 = 2.19789e-003, A12 = -9.74314e-004,
A14 = 1.04661e-004
5th page
K = 3.97820e + 000, A4 = 3.14487e-003, A6 = 6.78877e-003,
A8 = -5.09900e-003, A10 = 2.31222e-003, A12 = -6.15709e-004,
A14 = 9.30610e-005
7th page
K = -1.60036e + 000, A4 = -1.29070e-001, A6 = 5.99680e-002,
A8 = -4.30173e-003, A10 = -3.04624e-002, A12 = 1.90753e-002,
A14 = -3.87706e-003
8th page
K = -3.69028e + 000, A3 = -7.02013e-003, A4 = -1.82810e-002,
A5 = -6.72533e-002, A6 = 8.91852e-002, A8 = -2.61718e-002,
A10 = -3.80622e-003, A12 = 3.24985e-003, A14 = -1.10275e-004
10th page
K = -6.91943e + 001, A3 = -8.73220e-003, A4 = 9.09517e-002,
A5 = -1.60498e-001, A6 = 1.42487e-001, A8 = -9.56521e-002,
A10 = 7.18280e-002, A12 = -3.14114e-002, A14 = 5.62188e-003
11th page
K = -4.78161e + 001, A3 = -1.93791e-003, A4 = -8.75732e-002,
A5 = 1.20899e-002, A6 = 2.91611e-002, A8 = -5.39583e-002,
A10 = 3.16662e-002, A12 = -6.59907e-003
12th page
K = -1.64024e + 001, A3 = -1.57960e-002, A4 = -2.66456e-001,
A5 = 1.20448e-001, A6 = 1.55635e-002, A8 = -3.34658e-002,
A10 = -2.07473e-002, A12 = 1.33908e-002
Side 13
K = 9.80921e-001, A3 = -1.31180e-002, A4 = -4.06020e-001,
A5 = 1.73164e-001, A6 = 3.51872e-002, A8 = -5.50507e-002,
A10 = 8.65942e-003, A12 = -1.89224e-003, A14 = 1.07455e-003
14th page
K = -3.21448e + 001, A3 = -1.47495e-002, A4 = -6.63584e-003,
A5 = -1.71697e-002, A6 = -4.20541e-002, A8 = 2.52481e-004,
A10 = 2.50276e-002, A12 = -1.85822e-002, A14 = 3.74123e-003
15th page
K = -4.75365e + 000, A3 = -1.83012e-002, A4 = 1.87727e-002,
A5 = 6.51519e-003, A6 = -5.70449e-002, A8 = 1.11618e-002,
A10 = 6.09234e-003, A12 = -8.37515e-004, A14 = -2.32603e-004
16th page
K = 5.42787e-001, A3 = -1.27642e-001, A4 = -6.26001e-002,
A5 = 2.62835e-002, A6 = 1.77640e-002, A8 = 1.40702e-003,
A10 = 1.48137e-004, A12 = -3.12846e-004, A14 = 3.53889e-005
17th page
K = -2.45806e + 001, A3 = 3.33841e-002, A4 = -1.74153e-001,
A5 = 1.25330e-001, A6 = -3.31086e-002, A8 = 6.08087e-004,
A10 = 1.16042e-004, A12 = -2.85915e-005, A14 = 2.44691e-006

実施例7の撮像レンズの特性を以下に列挙する。
FL 3.468
Fno 1.45
w 79.95
Ymax 2.921
BF 0.751
TL 5.214
BFa 0.713
TLa 5.176
The characteristics of the imaging lens of Example 7 are listed below.
FL 3.468
Fno 1.45
w 79.95
Ymax 2.921
BF 0.751
TL 5.214
BFa 0.713
TLa 5.176

実施例7の単レンズデータを以下の表21に示す。
〔表21〕
Elem Surfs Focal Length Diameter
1 2- 3 -33.2533 2.707
2 4- 5 2.8474 2.590
3 7- 8 -5.2467 2.389
4 10-11 9.1005 2.575
5 12-13 -11.4174 2.777
6 14-15 3.0390 3.258
7 16-17 -2.4688 4.900
The single lens data of Example 7 is shown in Table 21 below.
[Table 21]
Elem Surfs Focal Length Diameter
1 2- 3 -33.2533 2.707
2 4- 5 2.8474 2.590
3 7-8 -5.2467 2.389
4 10-11 9.1005 2.575
5 12-13 -11.4174 2.777
6 14-15 3.0390 3.258
7 16-17 -2.4688 4.900

図17は、実施例7の撮像レンズ17等の断面図である。撮像レンズ17は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けた略平凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 17 is a cross-sectional view of the imaging lens 17 and the like of the seventh embodiment. The imaging lens 17 includes, in order from the object side, a first meniscus lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a positive refractive power around the optical axis AX and having a positive refractive power on the image side A substantially planoconvex fourth lens L4 having a convex surface, a meniscus fifth lens L5 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX A biconvex sixth lens L6 and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. A light-shielding stop FS is disposed.

図18(A)〜18(C)は、実施例7の撮像レンズ17の諸収差図(球面収差、非点収差、歪曲収差)を示し、図18(D)及び18(E)は、実施例7の撮像レンズ17の横収差を示している。   18A to 18C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 17 of Example 7, and FIGS. 18D and 18E show the examples. 10 shows lateral aberration of the imaging lens 17 of Example 7. FIG.

〔実施例8〕
実施例8のレンズ面のデータを以下の表22に示す。
〔表22〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.1900 2.720
2* -2.0640 0.3010 1.54000 45 2.702
3* -2.5035 0.2330 2.303
STO INFINITY -0.0800 2.369
5* 2.2172 0.8051 1.54470 56 2.550
6* -3.9551 0.0500 2.533
7 FS INFINITY 0.0000 2.400
8* 2.6308 0.1500 1.63469 23.9 2.418
9* 1.4371 0.3675 2.533
10* -3e+003 0.5420 1.54470 56 2.602
11* -4.6031 0.1093 2.620
12* 3.1977 0.2000 1.63469 23.9 2.543
13* 2.0191 0.3014 2.699
14* 4.9249 0.4349 1.54000 45 2.816
15* -2.1746 0.5174 3.152
16* -4.7441 0.3164 1.54470 56 3.711
17* 1.9953 0.4000 4.616
18 INFINITY 0.1100 1.51633 64.1 5.391
19 INFINITY 0.2534
Example 8
The lens surface data of Example 8 is shown in Table 22 below.
[Table 22]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.1900 2.720
2 * -2.0640 0.3010 1.54000 45 2.702
3 * -2.5035 0.2330 2.303
STO INFINITY -0.0800 2.369
5 * 2.2172 0.8051 1.54470 56 2.550
6 * -3.9551 0.0500 2.533
7 FS INFINITY 0.0000 2.400
8 * 2.6308 0.1500 1.63469 23.9 2.418
9 * 1.4371 0.3675 2.533
10 * -3e + 003 0.5420 1.54470 56 2.602
11 * -4.6031 0.1093 2.620
12 * 3.1977 0.2000 1.63469 23.9 2.543
13 * 2.0191 0.3014 2.699
14 * 4.9249 0.4349 1.54000 45 2.816
15 * -2.1746 0.5174 3.152
16 * -4.7441 0.3164 1.54470 56 3.711
17 * 1.9953 0.4000 4.616
18 INFINITY 0.1100 1.51633 64.1 5.391
19 INFINITY 0.2534

実施例8のレンズ面の非球面係数を以下の表23に示す。
〔表23〕
第2面
K=0.00000e+000, A4=1.18496e-001, A6=-1.08715e-002,
A8=6.53424e-004, A10=-1.87619e-003, A12=1.05565e-003,
A14=-1.99488e-004
第3面
K=0.00000e+000, A4=1.30967e-001, A6=-3.82055e-003,
A8=1.83699e-003, A10=-1.74657e-003, A12=1.37785e-003,
A14=-4.68160e-004
第5面
K=-1.58016e-001, A4=-7.22487e-003, A6=1.96485e-003,
A8=-3.49944e-003, A10=2.38231e-003, A12=-8.74902e-004,
A14=-3.10344e-005
第6面
K=3.99718e+000, A4=5.42379e-003, A6=4.64837e-003,
A8=-5.51843e-003, A10=2.98692e-003, A12=-3.23195e-004,
A14=-1.38998e-004
第8面
K=-8.84856e-001, A4=-1.25294e-001, A6=5.26371e-002,
A8=-5.16284e-003, A10=-2.93759e-002, A12=1.95055e-002,
A14=-4.41679e-003
第9面
K=-3.20126e+000, A3=-1.01762e-002, A4=-1.51424e-002,
A5=-6.73742e-002, A6=8.69116e-002, A8=-2.69992e-002,
A10=-3.12997e-003, A12=3.46931e-003, A14=-1.13281e-003
第10面
K=-8.00000e+001, A3=-3.37845e-003, A4=9.41367e-002,
A5=-1.62505e-001, A6=1.41797e-001, A8=-9.17879e-002,
A10=7.39969e-002, A12=-3.12384e-002, A14=4.92381e-003
第11面
K=-5.84934e+001, A3=-1.92715e-003, A4=-9.41768e-002,
A5=7.52025e-003, A6=2.74069e-002, A8=-5.21631e-002,
A10=3.31542e-002, A12=-5.89766e-003
第12面
K=-1.21120e+001, A3=-2.45539e-002, A4=-2.69353e-001,
A5=1.18346e-001, A6=1.63695e-002, A8=-3.13570e-002,
A10=-1.95222e-002, A12=1.38046e-002
第13面
K=1.05933e+000, A3=-1.96768e-002, A4=-4.07223e-001,
A5=1.73465e-001, A6=3.43064e-002, A8=-5.56597e-002,
A10=9.01372e-003, A12=-1.45351e-003, A14=9.96933e-004
第14面
K=-1.22865e+000, A3=-2.14395e-002, A4=-6.76967e-003,
A5=-2.41383e-002, A6=-4.07694e-002, A8=9.68868e-004,
A10=2.41787e-002, A12=-1.91126e-002, A14=3.95700e-003
第15面
K=-4.91745e+000, A3=-1.15474e-002, A4=2.44653e-002,
A5=9.82954e-003, A6=-5.62544e-002, A8=1.08070e-002,
A10=5.84553e-003, A12=-9.12457e-004, A14=-2.11530e-004
第16面
K=6.05456e-001, A3=-1.24505e-001, A4=-6.21168e-002,
A5=2.61098e-002, A6=1.75575e-002, A8=1.30561e-003,
A10=1.17113e-004, A12=-3.16955e-004, A14=3.79497e-005
第17面
K=-2.31247e+001, A3=4.10107e-002, A4=-1.76061e-001,
A5=1.24745e-001, A6=-3.32487e-002, A8=6.17052e-004,
A10=1.19239e-004, A12=-2.82415e-005, A14=2.46103e-006
Table 23 below shows the aspheric coefficients of the lens surfaces of Example 8.
[Table 23]
Second side
K = 0.00000e + 000, A4 = 1.18496e-001, A6 = -1.08715e-002,
A8 = 6.53424e-004, A10 = -1.87619e-003, A12 = 1.05565e-003,
A14 = -1.99488e-004
Third side
K = 0.00000e + 000, A4 = 1.30967e-001, A6 = -3.82055e-003,
A8 = 1.83699e-003, A10 = -1.74657e-003, A12 = 1.37785e-003,
A14 = -4.68160e-004
5th page
K = -1.58016e-001, A4 = -7.22487e-003, A6 = 1.96485e-003,
A8 = -3.49944e-003, A10 = 2.38231e-003, A12 = -8.74902e-004,
A14 = -3.10344e-005
6th page
K = 3.99718e + 000, A4 = 5.42379e-003, A6 = 4.64837e-003,
A8 = -5.51843e-003, A10 = 2.98692e-003, A12 = -3.23195e-004,
A14 = -1.38998e-004
8th page
K = -8.84856e-001, A4 = -1.25294e-001, A6 = 5.26371e-002,
A8 = -5.16284e-003, A10 = -2.93759e-002, A12 = 1.95055e-002,
A14 = -4.41679e-003
9th page
K = -3.20126e + 000, A3 = -1.01762e-002, A4 = -1.51424e-002,
A5 = -6.73742e-002, A6 = 8.69116e-002, A8 = -2.69992e-002,
A10 = -3.12997e-003, A12 = 3.46931e-003, A14 = -1.13281e-003
10th page
K = -8.00000e + 001, A3 = -3.37845e-003, A4 = 9.41367e-002,
A5 = -1.62505e-001, A6 = 1.41797e-001, A8 = -9.17879e-002,
A10 = 7.39969e-002, A12 = -3.12384e-002, A14 = 4.92381e-003
11th page
K = -5.84934e + 001, A3 = -1.92715e-003, A4 = -9.41768e-002,
A5 = 7.52025e-003, A6 = 2.74069e-002, A8 = -5.21631e-002,
A10 = 3.31542e-002, A12 = -5.89766e-003
12th page
K = -1.21120e + 001, A3 = -2.45539e-002, A4 = -2.69353e-001,
A5 = 1.18346e-001, A6 = 1.63695e-002, A8 = -3.13570e-002,
A10 = -1.95222e-002, A12 = 1.38046e-002
Side 13
K = 1.05933e + 000, A3 = -1.96768e-002, A4 = -4.07223e-001,
A5 = 1.73465e-001, A6 = 3.43064e-002, A8 = -5.56597e-002,
A10 = 9.01372e-003, A12 = -1.45351e-003, A14 = 9.96933e-004
14th page
K = -1.22865e + 000, A3 = -2.14395e-002, A4 = -6.76967e-003,
A5 = -2.41383e-002, A6 = -4.07694e-002, A8 = 9.68868e-004,
A10 = 2.41787e-002, A12 = -1.91126e-002, A14 = 3.95700e-003
15th page
K = -4.91745e + 000, A3 = -1.15474e-002, A4 = 2.44653e-002,
A5 = 9.82954e-003, A6 = -5.62544e-002, A8 = 1.08070e-002,
A10 = 5.84553e-003, A12 = -9.12457e-004, A14 = -2.11530e-004
16th page
K = 6.05456e-001, A3 = -1.24505e-001, A4 = -6.21168e-002,
A5 = 2.61098e-002, A6 = 1.75575e-002, A8 = 1.30561e-003,
A10 = 1.17113e-004, A12 = -3.16955e-004, A14 = 3.79497e-005
17th page
K = -2.31247e + 001, A3 = 4.10107e-002, A4 = -1.76061e-001,
A5 = 1.24745e-001, A6 = -3.32487e-002, A8 = 6.17052e-004,
A10 = 1.19239e-004, A12 = -2.82415e-005, A14 = 2.46103e-006

実施例8の撮像レンズの特性を以下に列挙する。
FL 3.235
Fno 1.45
w 83.95
Ymax 2.921
BF 0.763
TL 5.201
BFa 0.726
TLa 5.164
The characteristics of the imaging lens of Example 8 are listed below.
FL 3.235
Fno 1.45
w 83.95
Ymax 2.921
BF 0.763
TL 5.201
BFa 0.726
TLa 5.164

実施例8の単レンズデータを以下の表24に示す。
〔表24〕
Elem Surfs Focal Length Diameter
1 2- 3 -28.6566 2.702
2 5- 6 2.7341 2.550
3 8- 9 -5.2461 2.533
4 10-11 8.4631 2.620
5 12-13 -9.2400 2.699
6 14-15 2.8548 3.152
7 16-17 -2.5366 4.616
The single lens data of Example 8 is shown in Table 24 below.
[Table 24]
Elem Surfs Focal Length Diameter
1 2- 3 -28.6566 2.702
2 5--6 2.7341 2.550
3 8- 9 -5.2461 2.533
4 10-11 8.4631 2.620
5 12-13 -9.2400 2.699
6 14-15 2.8548 3.152
7 16-17 -2.5366 4.616

図19は、実施例8の撮像レンズ18等の断面図である。撮像レンズ18は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けた略平凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第2及び第3レンズL2,L3の間とには、遮光絞りFSが配置されている。   FIG. 19 is a cross-sectional view of the imaging lens 18 and the like of the eighth embodiment. The imaging lens 18 includes, in order from the object side, a meniscus first lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and both having a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a positive refractive power around the optical axis AX and having a positive refractive power on the image side A substantially planoconvex fourth lens L4 having a convex surface, a meniscus fifth lens L5 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX A biconvex sixth lens L6 and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the second and third lenses L2 and L3, A light-shielding stop FS is disposed.

図20(A)〜20(C)は、実施例8の撮像レンズ18の諸収差図(球面収差、非点収差、歪曲収差)を示し、図20(D)及び20(E)は、実施例8の撮像レンズ18の横収差を示している。   20A to 20C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 18 of Example 8, and FIGS. 20D and 20E show the results. 10 shows lateral aberration of the imaging lens 18 of Example 8. FIG.

〔実施例9〕
実施例9のレンズ面のデータを以下の表25に示す。
〔表25〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.1500 2.731
2* -2.6706 0.3296 1.54000 45 2.700
3* -3.2929 0.0600 2.457
4* 2.2844 0.7398 1.54470 56 2.590
5* -4.1005 0.0000 2.559
STO INFINITY 0.0500 2.303
7* 2.5691 0.1521 1.63469 23.9 2.348
8* 1.4190 0.3641 2.440
9* 66.8998 0.5517 1.54470 56 2.530
10* -5.8282 0.1438 2.572
11* 2.8561 0.2057 1.63469 23.9 2.521
12* 2.0286 0.3087 2.740
13* 6.5565 0.4566 1.54000 45 2.839
14* -1.8976 0.4925 3.180
15* -6.9919 0.3237 1.54470 56 3.760
16* 1.6938 0.4000 4.800
17 INFINITY 0.1100 1.51633 64.1 5.540
18 INFINITY 0.2842
Example 9
The lens surface data of Example 9 is shown in Table 25 below.
[Table 25]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.1500 2.731
2 * -2.6706 0.3296 1.54000 45 2.700
3 * -3.2929 0.0600 2.457
4 * 2.2844 0.7398 1.54470 56 2.590
5 * -4.1005 0.0000 2.559
STO INFINITY 0.0500 2.303
7 * 2.5691 0.1521 1.63469 23.9 2.348
8 * 1.4190 0.3641 2.440
9 * 66.8998 0.5517 1.54470 56 2.530
10 * -5.8282 0.1438 2.572
11 * 2.8561 0.2057 1.63469 23.9 2.521
12 * 2.0286 0.3087 2.740
13 * 6.5565 0.4566 1.54000 45 2.839
14 * -1.8976 0.4925 3.180
15 * -6.9919 0.3237 1.54470 56 3.760
16 * 1.6938 0.4000 4.800
17 INFINITY 0.1100 1.51633 64.1 5.540
18 INFINITY 0.2842

実施例9のレンズ面の非球面係数を以下の表26に示す。
〔表26〕
第2面
K=0.00000e+000, A4=9.16532e-002, A6=-9.16032e-003,
A8=7.97003e-004, A10=-2.44461e-003, A12=9.93359e-004,
A14=-1.60545e-004
第3面
K=0.00000e+000, A4=1.22767e-001, A6=-4.55167e-003,
A8=3.25643e-003, A10=-2.03848e-003, A12=1.09725e-003,
A14=-5.37144e-004
第4面
K=-3.39603e-002, A4=-4.44855e-003, A6=2.67814e-003,
A8=-3.89527e-003, A10=2.20568e-003, A12=-8.52325e-004,
A14=6.17824e-005
第5面
K=4.37643e+000, A4=3.12511e-003, A6=4.09462e-003,
A8=-5.52487e-003, A10=3.11865e-003, A12=-2.24483e-004,
A14=-1.15244e-004
第7面
K=-6.85310e-001, A4=-1.23806e-001, A6=5.37161e-002,
A8=-4.75671e-003, A10=-2.95537e-002, A12=1.94245e-002,
A14=-4.23367e-003
第8面
K=-3.30919e+000, A3=-8.03043e-003, A4=-1.40659e-002,
A5=-6.66366e-002, A6=8.69486e-002, A8=-2.68318e-002,
A10=-2.70449e-003, A12=3.74888e-003, A14=-1.17261e-003
第9面
K=7.99995e+001, A3=-2.34135e-003, A4=9.44466e-002,
A5=-1.62610e-001, A6=1.41719e-001, A8=-9.17599e-002,
A10=7.40113e-002, A12=-3.12266e-002, A14=4.92241e-003
第10面
K=-5.81439e+001, A3=1.80776e-003, A4=-8.98844e-002,
A5=9.12266e-003, A6=2.73600e-002, A8=-5.29650e-002,
A10=3.27949e-002, A12=-5.99956e-003
第11面
K=-1.40404e+001, A3=-1.90986e-002, A4=-2.71438e-001,
A5=1.16967e-001, A6=1.61024e-002, A8=-3.12765e-002,
A10=-1.97047e-002, A12=1.34335e-002
第12面
K=1.05724e+000, A3=-1.76875e-002, A4=-4.06576e-001,
A5=1.72175e-001, A6=3.27509e-002, A8=-5.61915e-002,
A10=9.16470e-003, A12=-1.31945e-003, A14=8.90122e-004
第13面
K=8.22699e-001, A3=-1.98752e-002, A4=-4.61988e-003,
A5=-2.03266e-002, A6=-3.91889e-002, A8=-2.02502e-004,
A10=2.44918e-002, A12=-1.89130e-002, A14=3.93057e-003
第14面
K=-4.36675e+000, A3=-1.57478e-002, A4=2.28844e-002,
A5=1.08313e-002, A6=-5.52604e-002, A8=1.13348e-002,
A10=5.82050e-003, A12=-9.68878e-004, A14=-2.02210e-004
第15面
K=5.78851e+000, A3=-1.27661e-001, A4=-7.07918e-002,
A5=2.33788e-002, A6=1.74878e-002, A8=1.69955e-003,
A10=1.79249e-004, A12=-3.13589e-004, A14=3.42863e-005
第16面
K=-1.46157e+001, A3=3.24757e-002, A4=-1.81800e-001,
A5=1.31878e-001, A6=-3.43686e-002, A8=3.81662e-004,
A10=1.49157e-004, A12=-2.27321e-005, A14=1.37729e-006
Table 26 below shows the aspheric coefficients of the lens surfaces of Example 9.
[Table 26]
Second side
K = 0.00000e + 000, A4 = 9.16532e-002, A6 = -9.16032e-003,
A8 = 7.97003e-004, A10 = -2.44461e-003, A12 = 9.93359e-004,
A14 = -1.60545e-004
Third side
K = 0.00000e + 000, A4 = 1.22767e-001, A6 = -4.55167e-003,
A8 = 3.25643e-003, A10 = -2.03848e-003, A12 = 1.09725e-003,
A14 = -5.37144e-004
4th page
K = -3.39603e-002, A4 = -4.44855e-003, A6 = 2.67814e-003,
A8 = -3.89527e-003, A10 = 2.20568e-003, A12 = -8.52325e-004,
A14 = 6.17824e-005
5th page
K = 4.37643e + 000, A4 = 3.12511e-003, A6 = 4.09462e-003,
A8 = -5.52487e-003, A10 = 3.11865e-003, A12 = -2.24483e-004,
A14 = -1.15244e-004
7th page
K = -6.85310e-001, A4 = -1.23806e-001, A6 = 5.37161e-002,
A8 = -4.75671e-003, A10 = -2.95537e-002, A12 = 1.94245e-002,
A14 = -4.23367e-003
8th page
K = -3.30919e + 000, A3 = -8.03043e-003, A4 = -1.40659e-002,
A5 = -6.66366e-002, A6 = 8.69486e-002, A8 = -2.68318e-002,
A10 = -2.70449e-003, A12 = 3.74888e-003, A14 = -1.17261e-003
9th page
K = 7.99995e + 001, A3 = -2.34135e-003, A4 = 9.44466e-002,
A5 = -1.62610e-001, A6 = 1.41719e-001, A8 = -9.17599e-002,
A10 = 7.40113e-002, A12 = -3.12266e-002, A14 = 4.92241e-003
10th page
K = -5.81439e + 001, A3 = 1.80776e-003, A4 = -8.98844e-002,
A5 = 9.12266e-003, A6 = 2.73600e-002, A8 = -5.29650e-002,
A10 = 3.27949e-002, A12 = -5.99956e-003
11th page
K = -1.40404e + 001, A3 = -1.90986e-002, A4 = -2.71438e-001,
A5 = 1.16967e-001, A6 = 1.61024e-002, A8 = -3.12765e-002,
A10 = -1.97047e-002, A12 = 1.34335e-002
12th page
K = 1.05724e + 000, A3 = -1.76875e-002, A4 = -4.06576e-001,
A5 = 1.72175e-001, A6 = 3.27509e-002, A8 = -5.61915e-002,
A10 = 9.16470e-003, A12 = -1.31945e-003, A14 = 8.90122e-004
Side 13
K = 8.22699e-001, A3 = -1.98752e-002, A4 = -4.61988e-003,
A5 = -2.03266e-002, A6 = -3.91889e-002, A8 = -2.02502e-004,
A10 = 2.44918e-002, A12 = -1.89130e-002, A14 = 3.93057e-003
14th page
K = -4.36675e + 000, A3 = -1.57478e-002, A4 = 2.28844e-002,
A5 = 1.08313e-002, A6 = -5.52604e-002, A8 = 1.13348e-002,
A10 = 5.82050e-003, A12 = -9.68878e-004, A14 = -2.02210e-004
15th page
K = 5.78851e + 000, A3 = -1.27661e-001, A4 = -7.07918e-002,
A5 = 2.33788e-002, A6 = 1.74878e-002, A8 = 1.69955e-003,
A10 = 1.79249e-004, A12 = -3.13589e-004, A14 = 3.42863e-005
16th page
K = -1.46157e + 001, A3 = 3.24757e-002, A4 = -1.81800e-001,
A5 = 1.31878e-001, A6 = -3.43686e-002, A8 = 3.81662e-004,
A10 = 1.49157e-004, A12 = -2.27321e-005, A14 = 1.37729e-006

実施例9の撮像レンズの特性を以下に列挙する。
FL 3.284
Fno 1.45
w 82.17
Ymax 2.921
BF 0.794
TL 5.122
BFa 0.757
TLa 5.085
The characteristics of the imaging lens of Example 9 are listed below.
FL 3.284
Fno 1.45
w 82.17
Ymax 2.921
BF 0.794
TL 5.122
BFa 0.757
TLa 5.085

実施例9の単レンズデータを以下の表27に示す。
〔表27〕
Elem Surfs Focal Length Diameter
1 2- 3 -32.1338 2.700
2 4- 5 2.8081 2.590
3 7- 8 -5.2642 2.440
4 9-10 9.8688 2.572
5 11-12 -12.2099 2.740
6 13-14 2.7780 3.180
7 15-16 -2.4707 4.800
The single lens data of Example 9 is shown in Table 27 below.
[Table 27]
Elem Surfs Focal Length Diameter
1 2- 3 -32.1338 2.700
2 4- 5 2.8081 2.590
3 7-8 -5.2642 2.440
4 9-10 9.8688 2.572
5 11-12 -12.2099 2.740
6 13-14 2.7780 3.180
7 15-16 -2.4707 4.800

図21は、実施例9の撮像レンズ19等の断面図である。撮像レンズ19は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けた略平凸の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側には、遮光絞りFSが配置されている。   FIG. 21 is a cross-sectional view of the imaging lens 19 and the like of the ninth embodiment. The imaging lens 19 includes, in order from the object side, a meniscus first lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and both having a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a positive refractive power around the optical axis AX and having a positive refractive power on the image side A substantially planoconvex fourth lens L4 having a convex surface, a meniscus fifth lens L5 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX A biconvex sixth lens L6 and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and a light-shielding stop FS is disposed on the object side of the outer edge of the first lens L1.

図22(A)〜22(C)は、実施例9の撮像レンズ19の諸収差図(球面収差、非点収差、歪曲収差)を示し、図22(D)及び22(E)は、実施例9の撮像レンズ19の横収差を示している。   22A to 22C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 19 of Example 9, and FIGS. 22D and 22E show the results. 10 shows lateral aberrations of the imaging lens 19 of Example 9. FIG.

〔実施例10〕
実施例10のレンズ面のデータを以下の表28に示す。
〔表28〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.1500 2.700
2* -4.1482 0.3069 1.54470 56 2.573
3* -5.3036 0.2479 2.471
STO INFINITY -0.1979 2.480
5* 2.1867 0.7201 1.54470 56 2.598
6* -9.4776 0.0533 2.524
7* 3.2637 0.1591 1.63469 23.9 2.407
8* 1.6582 0.3000 2.403
9 FS INFINITY -0.0300 2.360
10* 4.9743 0.4519 1.54470 56 2.472
11* -19.1666 0.3289 2.503
12* 2.6601 0.2042 1.63469 23.9 2.453
13* 2.2169 0.3338 2.645
14* 7.6349 0.7167 1.54470 56 2.800
15* -2.0275 0.4107 3.300
16* -3.5168 0.3493 1.54470 56 3.480
17* 1.8358 0.4000 4.760
18 INFINITY 0.1100 1.51633 64.1 5.600
19 INFINITY 0.2649
Example 10
The lens surface data of Example 10 is shown in Table 28 below.
[Table 28]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.1500 2.700
2 * -4.1482 0.3069 1.54470 56 2.573
3 * -5.3036 0.2479 2.471
STO INFINITY -0.1979 2.480
5 * 2.1867 0.7201 1.54470 56 2.598
6 * -9.4776 0.0533 2.524
7 * 3.2637 0.1591 1.63469 23.9 2.407
8 * 1.6582 0.3000 2.403
9 FS INFINITY -0.0300 2.360
10 * 4.9743 0.4519 1.54470 56 2.472
11 * -19.1666 0.3289 2.503
12 * 2.6601 0.2042 1.63469 23.9 2.453
13 * 2.2169 0.3338 2.645
14 * 7.6349 0.7167 1.54470 56 2.800
15 * -2.0275 0.4107 3.300
16 * -3.5168 0.3493 1.54470 56 3.480
17 * 1.8358 0.4000 4.760
18 INFINITY 0.1100 1.51633 64.1 5.600
19 INFINITY 0.2649

実施例10のレンズ面の非球面係数を以下の表29に示す。
〔表29〕
第2面
K=0.00000e+000, A4=5.96877e-002, A6=-1.15602e-003,
A8=-9.60282e-004, A10=-3.09630e-003, A12=1.44483e-003,
A14=-2.28463e-004
第3面
K=0.00000e+000, A4=9.04162e-002, A6=-1.93363e-003,
A8=3.49298e-003, A10=-4.32480e-003, A12=-3.27685e-004,
A14=2.18563e-004
第5面
K=2.79466e-001, A4=-1.22985e-004, A6=1.10119e-003,
A8=-8.40028e-004, A10=2.41108e-003, A12=-1.32580e-003,
A14=2.79306e-004
第6面
K=3.66669e+001, A4=-1.83739e-002, A6=1.96437e-002,
A8=-4.93325e-003, A10=1.92883e-003, A12=-2.82615e-004,
A14=1.48358e-005
第7面
K=-1.37230e+000, A4=-1.27878e-001, A6=5.49794e-002,
A8=-5.58528e-003, A10=-3.18575e-002, A12=1.85001e-002,
A14=-4.26671e-003
第8面
K=-4.10535e+000, A3=-9.49133e-003, A4=-1.73177e-002,
A5=-6.85814e-002, A6=8.21449e-002, A8=-2.92922e-002,
A10=-3.39264e-003, A12=3.13129e-003, A14=-5.58880e-004
第10面
K=-1.47619e+001, A3=-2.34465e-002, A4=9.12355e-002,
A5=-1.58548e-001, A6=1.40968e-001, A8=-9.82761e-002,
A10=7.27274e-002, A12=-2.95451e-002, A14=4.72464e-003
第11面
K=-8.00000e+001, A3=-8.73072e-003, A4=-7.62082e-002,
A5=1.17446e-002, A6=2.39115e-002, A8=-5.41515e-002,
A10=3.19100e-002, A12=-5.54421e-003
第12面
K=-1.36579e+001, A3=6.48169e-003, A4=-2.54841e-001,
A5=1.17885e-001, A6=1.14566e-002, A8=-3.24245e-002,
A10=-1.94061e-002, A12=1.18033e-002
第13面
K=1.47635e+000, A3=1.14752e-002, A4=-4.01103e-001,
A5=1.69711e-001, A6=3.15451e-002, A8=-5.44365e-002,
A10=9.05868e-003, A12=-1.25098e-003, A14=1.14482e-003
第14面
K=7.69308e+000, A3=-2.45655e-003, A4=-5.10921e-002,
A5=-1.74267e-002, A6=-1.59404e-002, A8=-1.19933e-002,
A10=2.64976e-002, A12=-1.67167e-002, A14=3.22577e-003
第15面
K=-6.53250e+000, A3=-6.40765e-003, A4=-1.04050e-002,
A5=1.08573e-002, A6=-4.68058e-002, A8=1.22102e-002,
A10=3.54713e-003, A12=-1.45410e-003, A14=1.06181e-004
第16面
K=2.37754e+000, A3=-6.76175e-002, A4=-1.09426e-001,
A5=2.83541e-002, A6=2.10496e-002, A8=9.86885e-004,
A10=1.47129e-004, A12=-3.14647e-004, A14=7.01794e-005
第17面
K=-1.48036e+001, A3=2.43759e-002, A4=-1.75141e-001,
A5=1.24696e-001, A6=-3.05571e-002, A8=-1.66295e-004,
A10=2.62886e-004, A12=-3.66610e-005, A14=1.79919e-006
Table 29 below shows the aspheric coefficients of the lens surfaces of Example 10.
[Table 29]
Second side
K = 0.00000e + 000, A4 = 5.96877e-002, A6 = -1.15602e-003,
A8 = -9.60282e-004, A10 = -3.09630e-003, A12 = 1.44483e-003,
A14 = -2.28463e-004
Third side
K = 0.00000e + 000, A4 = 9.04162e-002, A6 = -1.93363e-003,
A8 = 3.49298e-003, A10 = -4.32480e-003, A12 = -3.27685e-004,
A14 = 2.18563e-004
5th page
K = 2.79466e-001, A4 = -1.22985e-004, A6 = 1.10119e-003,
A8 = -8.40028e-004, A10 = 2.41108e-003, A12 = -1.32580e-003,
A14 = 2.79306e-004
6th page
K = 3.66669e + 001, A4 = -1.83739e-002, A6 = 1.96437e-002,
A8 = -4.93325e-003, A10 = 1.92883e-003, A12 = -2.82615e-004,
A14 = 1.48358e-005
7th page
K = -1.37230e + 000, A4 = -1.27878e-001, A6 = 5.49794e-002,
A8 = -5.58528e-003, A10 = -3.18575e-002, A12 = 1.85001e-002,
A14 = -4.26671e-003
8th page
K = -4.10535e + 000, A3 = -9.49133e-003, A4 = -1.73177e-002,
A5 = -6.85814e-002, A6 = 8.21449e-002, A8 = -2.92922e-002,
A10 = -3.39264e-003, A12 = 3.13129e-003, A14 = -5.58880e-004
10th page
K = -1.47619e + 001, A3 = -2.34465e-002, A4 = 9.12355e-002,
A5 = -1.58548e-001, A6 = 1.40968e-001, A8 = -9.82761e-002,
A10 = 7.27274e-002, A12 = -2.95451e-002, A14 = 4.72464e-003
11th page
K = -8.00000e + 001, A3 = -8.73072e-003, A4 = -7.62082e-002,
A5 = 1.17446e-002, A6 = 2.39115e-002, A8 = -5.41515e-002,
A10 = 3.19100e-002, A12 = -5.54421e-003
12th page
K = -1.36579e + 001, A3 = 6.48169e-003, A4 = -2.54841e-001,
A5 = 1.17885e-001, A6 = 1.14566e-002, A8 = -3.24245e-002,
A10 = -1.94061e-002, A12 = 1.18033e-002
Side 13
K = 1.47635e + 000, A3 = 1.14752e-002, A4 = -4.01103e-001,
A5 = 1.69711e-001, A6 = 3.15451e-002, A8 = -5.44365e-002,
A10 = 9.05868e-003, A12 = -1.25098e-003, A14 = 1.14482e-003
14th page
K = 7.69308e + 000, A3 = -2.45655e-003, A4 = -5.10921e-002,
A5 = -1.74267e-002, A6 = -1.59404e-002, A8 = -1.19933e-002,
A10 = 2.64976e-002, A12 = -1.67167e-002, A14 = 3.22577e-003
15th page
K = -6.53250e + 000, A3 = -6.40765e-003, A4 = -1.04050e-002,
A5 = 1.08573e-002, A6 = -4.68058e-002, A8 = 1.22102e-002,
A10 = 3.54713e-003, A12 = -1.45410e-003, A14 = 1.06181e-004
16th page
K = 2.37754e + 000, A3 = -6.76175e-002, A4 = -1.09426e-001,
A5 = 2.83541e-002, A6 = 2.10496e-002, A8 = 9.86885e-004,
A10 = 1.47129e-004, A12 = -3.14647e-004, A14 = 7.01794e-005
17th page
K = -1.48036e + 001, A3 = 2.43759e-002, A4 = -1.75141e-001,
A5 = 1.24696e-001, A6 = -3.05571e-002, A8 = -1.66295e-004,
A10 = 2.62886e-004, A12 = -3.66610e-005, A14 = 1.79919e-006

実施例10の撮像レンズの特性を以下に列挙する。
FL 3.613
Fno 1.49
w 76.69
Ymax 2.921
BF 0.775
TL 5.280
BFa 0.737
TLa 5.242
The characteristics of the imaging lens of Example 10 are listed below.
FL 3.613
Fno 1.49
w 76.69
Ymax 2.921
BF 0.775
TL 5.280
BFa 0.737
TLa 5.242

実施例10の単レンズデータを以下の表30に示す。
〔表30〕
Elem Surfs Focal Length Diameter
1 2- 3 -38.5706 2.573
2 5- 6 3.3345 2.598
3 7- 8 -5.5236 2.407
4 10-11 7.2987 2.503
5 12-13 -25.5295 2.645
6 14-15 3.0202 3.300
7 16-17 -2.1646 4.760
The single lens data of Example 10 is shown in Table 30 below.
[Table 30]
Elem Surfs Focal Length Diameter
1 2- 3 -38.5706 2.573
2 5- 6 3.3345 2.598
3 7-8 -5.5236 2.407
4 10-11 7.2987 2.503
5 12-13 -25.5295 2.645
6 14-15 3.0202 3.300
7 16-17 -2.1646 4.760

図23は、実施例10の撮像レンズ20等の断面図である。撮像レンズ20は、物体側より順に、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有する両凸の第2レンズL2と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有する両凸の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 23 is a cross-sectional view of the imaging lens 20 and the like of the tenth embodiment. The imaging lens 20 includes, in order from the object side, a first meniscus lens L1 having a weak negative refractive power around the optical axis AX and a convex surface facing the image side, and a positive refractive power around the optical axis AX. A convex second lens L2, a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a biconvex second lens having a positive refractive power around the optical axis AX. Four lenses L4, a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and having a convex surface facing the object side, and a sixth biconvex lens having a positive refractive power around the optical axis AX L6 and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4, A light-shielding stop FS is disposed.

図24(A)〜24(C)は、実施例10の撮像レンズ20の諸収差図(球面収差、非点収差、歪曲収差)を示し、図24(D)及び24(E)は、実施例10の撮像レンズ20の横収差を示している。   24A to 24C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 20 of Example 10, and FIGS. 24D and 24E show the examples. The lateral aberration of the imaging lens 20 of Example 10 is shown.

以下の表31は、参考のため、各条件式(1)〜(10)に対応する各実施例1〜10の値をまとめたものである。
〔表31〕

Figure 2015072404
Table 31 below summarizes the values of Examples 1 to 10 corresponding to the conditional expressions (1) to (10) for reference.
[Table 31]
Figure 2015072404

以上では、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。例えば、開口絞りASは、これに隣接する1つ又は2つのレンズの外側に延びるフランジ部に固定するものに限らず、鏡筒部分54aに直接的に支持させることができる。遮光絞りFSも、これに隣接する1つ又は2つのレンズの外側に延びるフランジ部に固定するものに限らず、鏡筒部分54aに直接的に支持させることができる。   In the above, the present invention has been described based on the embodiments and examples, but the present invention is not limited to the above-described embodiments and the like. For example, the aperture stop AS is not limited to be fixed to a flange portion extending outside the one or two lenses adjacent to the aperture stop AS, but can be directly supported by the lens barrel portion 54a. The light-shielding stop FS is not limited to be fixed to the flange portion extending to the outside of one or two lenses adjacent to the light-shielding stop FS, and can be directly supported by the lens barrel portion 54a.

開口絞りASや遮光絞りFSは、金属板に限らず、樹脂又はセラミックスの板状部材とすることができ、レンズのフランジ部を遮光性の材料で塗装することによっても組み込むことができる。さらに、開口絞りASや遮光絞りFSは、完全な遮光体に限らず、口径外で減光を行うものであってもよい。遮光絞りFSを遮光板等とする場合、一対のレンズ間に複数の遮光板等を配置することもできる。   The aperture stop AS and the light-shielding stop FS are not limited to metal plates, but can be plate members made of resin or ceramics, and can also be incorporated by painting the flange portion of the lens with a light-shielding material. Further, the aperture stop AS and the light-shielding stop FS are not limited to a complete light-shielding body, and may be one that performs light reduction outside the aperture. When the light-shielding stop FS is a light-shielding plate or the like, a plurality of light-shielding plates or the like can be arranged between a pair of lenses.

10,11〜26…撮像レンズ、 50…カメラモジュール、 51…撮像素子、 100…撮像装置、 300…携帯通信端末、 AX…光軸、 L1−L7…レンズ、 AS,FS…絞り   DESCRIPTION OF SYMBOLS 10, 11-26 ... Imaging lens, 50 ... Camera module, 51 ... Imaging device, 100 ... Imaging device, 300 ... Portable communication terminal, AX ... Optical axis, L1-L7 ... Lens, AS, FS ... Aperture

Claims (18)

物体側より順に、第1レンズ、正の第2レンズ、第3レンズ、第4レンズ、第5レンズ、第6レンズ、及び第7レンズからなり、
前記第7レンズの像側面は、非球面形状を有し、中心以外の有効径内に極値を有し、
下記の条件式を満たす、撮像レンズ。
15<θS6<45 … (1)
θS6:前記第3レンズの像側面の有効径内で像側に傾いた場合を正として最も大きな面角度
In order from the object side, the first lens, the positive second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens,
The image side surface of the seventh lens has an aspheric shape, has an extreme value within an effective diameter other than the center,
An imaging lens that satisfies the following conditional expression.
15 <θS6 <45 (1)
θS6: The largest surface angle when positive when the image is tilted to the image side within the effective diameter of the image side surface of the third lens
前記第7レンズは、光軸近傍において像側に凹面を向けた負レンズである、請求項1に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the seventh lens is a negative lens having a concave surface facing the image side in the vicinity of the optical axis. 前記第4レンズよりも物体側に開口絞り有する、請求項1及び2のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, further comprising an aperture stop closer to the object side than the fourth lens. 前記第2レンズは、物体側に凸面を向けた正レンズである、請求項1〜3のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the second lens is a positive lens having a convex surface directed toward the object side. 前記第3レンズが像側に凹面を向けた負レンズであり、下記の条件式を満足する、請求項1〜4のいずれか一項に記載の撮像レンズ。
17<ν3<35 … (2)
ν3:第3レンズのアッベ数
The imaging lens according to claim 1, wherein the third lens is a negative lens having a concave surface directed toward the image side, and satisfies the following conditional expression.
17 <ν3 <35 (2)
ν3: Abbe number of the third lens
前記第4レンズから前記第6レンズまでの各レンズは、少なくとも片側に非球面を有する、請求項1〜5のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein each lens from the fourth lens to the sixth lens has an aspheric surface on at least one side. 下記の条件式を満たす、請求項1〜6のいずれか一項に記載の撮像レンズ。
0.5<f456/f<1.0 … (3)
f456:前記第4レンズから前記第6レンズまでの合成焦点距離
f:全系の焦点距離
The imaging lens according to claim 1, which satisfies the following conditional expression.
0.5 <f456 / f <1.0 (3)
f456: Composite focal length from the fourth lens to the sixth lens f: Focal length of the entire system
下記の条件式を満たす、請求項1〜7のいずれか一項に記載の撮像レンズ。
−1.0<f7/f<−0.3 … (4)
f7:前記第7レンズの焦点距離
f:全系の焦点距離
The imaging lens according to claim 1, which satisfies the following conditional expression.
−1.0 <f7 / f <−0.3 (4)
f7: focal length of the seventh lens f: focal length of the entire system
下記の条件式を満たす、請求項1〜8のいずれか一項に記載の撮像レンズ。
−0.2<f/f1<0.2 … (5)
f1:前記第1レンズの焦点距離
f:全系の焦点距離
The imaging lens according to any one of claims 1 to 8, which satisfies the following conditional expression.
-0.2 <f / f1 <0.2 (5)
f1: Focal length of the first lens f: Focal length of the entire system
下記の条件式を満たす、請求項1〜9のいずれか一項に記載の撮像レンズ。
0.5<f2/f<2.0 … (6)
f2:前記第2レンズの焦点距離
f:全系の焦点距離
The imaging lens according to any one of claims 1 to 9, which satisfies the following conditional expression.
0.5 <f2 / f <2.0 (6)
f2: focal length of the second lens f: focal length of the entire system
下記の条件式を満たす、請求項1〜10のいずれか一項に記載の撮像レンズ。
−3.0<f3/f<−1.0 … (7)
f3:前記第3レンズの焦点距離
f:全系の焦点距離
The imaging lens according to any one of claims 1 to 10, which satisfies the following conditional expression.
−3.0 <f3 / f <−1.0 (7)
f3: focal length of the third lens f: focal length of the entire system
下記の条件式を満たす、請求項1〜11のいずれか一項に記載の撮像レンズ。
1.0<f23/f<4.0 … (8)
f23:前記第2レンズ及び前記3レンズの合成焦点距離
f:全系の焦点距離
The imaging lens according to any one of claims 1 to 11, which satisfies the following conditional expression.
1.0 <f23 / f <4.0 (8)
f23: Composite focal length of the second lens and the three lenses f: Focal length of the entire system
前記第1レンズの物体側面は、中心以外の有効径内に極値を有する、請求項1〜12のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the object side surface of the first lens has an extreme value within an effective diameter other than the center. 前記第4レンズよりも物体側に、開口絞りと、当該開口絞りとは別の少なくとも1つの遮光絞りとを有し、下記の条件式を満たす、請求項1〜13のいずれか一項に記載の撮像レンズ。
0.5<Φ1/Φ2<1.2 … (9)
Φ1:前記開口絞りと前記遮光絞りとのうち、最も物体側にある方の開口径
Φ2:前記開口絞りと前記遮光絞りとのうち、最も像側にある方の開口径
14. The apparatus according to claim 1, further comprising an aperture stop and at least one light-shielding stop different from the aperture stop on the object side relative to the fourth lens, wherein the following conditional expression is satisfied. Imaging lens.
0.5 <Φ1 / Φ2 <1.2 (9)
Φ1: The aperture diameter of the aperture stop and the light-shielding stop closest to the object side Φ2: The aperture diameter of the aperture stop and the light-shielding stop closest to the image side
下記の条件式を満たす、請求項1〜14のいずれか一項に記載の撮像レンズ。
2.0<CT2/ET2<5.0 … (10)
CT2:前記第2レンズの中心厚
ET2:前記第2レンズの縁厚
The imaging lens according to claim 1, which satisfies the following conditional expression.
2.0 <CT2 / ET2 <5.0 (10)
CT2: Center thickness of the second lens ET2: Edge thickness of the second lens
実質的にパワーを持たない光学素子をさらに有する、請求項1〜15のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, further comprising an optical element having substantially no power. 請求項1〜16のいずれか一項に記載の撮像レンズと、前記撮像素子とを備える、撮像装置。   An imaging device comprising the imaging lens according to any one of claims 1 to 16 and the imaging element. 請求項17に記載の撮像装置を備える、携帯端末。   A portable terminal comprising the imaging device according to claim 17.
JP2013208753A 2013-10-04 2013-10-04 Image capturing lens, image capturing device, and mobile terminal Pending JP2015072404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208753A JP2015072404A (en) 2013-10-04 2013-10-04 Image capturing lens, image capturing device, and mobile terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208753A JP2015072404A (en) 2013-10-04 2013-10-04 Image capturing lens, image capturing device, and mobile terminal

Publications (1)

Publication Number Publication Date
JP2015072404A true JP2015072404A (en) 2015-04-16

Family

ID=53014806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208753A Pending JP2015072404A (en) 2013-10-04 2013-10-04 Image capturing lens, image capturing device, and mobile terminal

Country Status (1)

Country Link
JP (1) JP2015072404A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690479B1 (en) * 2016-03-07 2016-12-28 주식회사 세코닉스 High-resolution photographing lens system
CN106324797A (en) * 2015-06-29 2017-01-11 佳能企业股份有限公司 Optical lens
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US9671591B2 (en) 2015-04-16 2017-06-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
CN106908932A (en) * 2016-12-30 2017-06-30 玉晶光电(厦门)有限公司 Optical imaging lens
WO2017199633A1 (en) * 2016-05-19 2017-11-23 ソニー株式会社 Imaging lens and imaging device
US9835823B2 (en) 2012-08-13 2017-12-05 Largan Precision Co., Ltd. Image lens assembly system
KR101859383B1 (en) * 2015-10-19 2018-05-18 삼성전기주식회사 Optical Imaging System
CN108089295A (en) * 2017-12-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
KR20180060137A (en) 2016-11-28 2018-06-07 삼성전기주식회사 Optical Imaging System
CN108663782A (en) * 2018-08-13 2018-10-16 浙江舜宇光学有限公司 Pick-up lens
US10310227B2 (en) 2017-02-18 2019-06-04 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US10459203B2 (en) 2017-08-18 2019-10-29 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
WO2020024635A1 (en) * 2018-08-02 2020-02-06 浙江舜宇光学有限公司 Optical imaging lens
US10690888B2 (en) 2014-01-10 2020-06-23 Kantatsu Co., Ltd. Imaging lens
CN111522130A (en) * 2019-02-01 2020-08-11 大立光电股份有限公司 Optical photographing lens assembly, image capturing device and electronic device
CN111983785A (en) * 2020-09-11 2020-11-24 南昌欧菲精密光学制品有限公司 Optical imaging system, image capturing module and electronic device
CN112180563A (en) * 2020-11-03 2021-01-05 浙江舜宇光学有限公司 Optical imaging lens
CN112346208A (en) * 2019-08-09 2021-02-09 华为技术有限公司 Large-aperture lens and terminal equipment
CN112578532A (en) * 2019-09-30 2021-03-30 华为技术有限公司 Optical lens, camera module and terminal
CN112666682A (en) * 2020-12-14 2021-04-16 福建福光天瞳光学有限公司 Low-distortion 4K pixel optical lens and imaging method thereof
CN112731623A (en) * 2017-11-23 2021-04-30 大立光电股份有限公司 Optical image capturing lens and image capturing device
WO2022035134A1 (en) * 2020-08-10 2022-02-17 엘지이노텍 주식회사 Optical system
WO2022109795A1 (en) * 2020-11-24 2022-06-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly which takes into consideration image processing-based distortion correction, camera module and imaging device
CN114624857A (en) * 2020-12-11 2022-06-14 大立光电股份有限公司 Image capturing optical lens, image capturing device and electronic device
WO2022124854A1 (en) * 2020-12-10 2022-06-16 엘지이노텍 주식회사 Optical system and camera module comprising same
WO2022124856A1 (en) * 2020-12-10 2022-06-16 엘지이노텍 주식회사 Optical system and camera module including same
US12061323B2 (en) 2017-01-04 2024-08-13 Largan Precision Co., Ltd. Image picking-up system, image capturing apparatus and electronic device
US12124011B2 (en) 2019-09-30 2024-10-22 Huawei Technologies Co., Ltd. Optical lens including seven lenses of −+−+−+− refractive powers, camera module, and terminal

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835823B2 (en) 2012-08-13 2017-12-05 Largan Precision Co., Ltd. Image lens assembly system
US11009683B2 (en) 2012-08-13 2021-05-18 Largan Precision Co., Ltd. Image lens assembly system
US10401595B2 (en) 2012-08-13 2019-09-03 Largan Precision Co., Ltd. Image lens assembly system
US11609409B2 (en) 2012-08-13 2023-03-21 Largan Precision Co., Ltd. Image lens assembly system
US10101564B2 (en) 2012-08-13 2018-10-16 Largan Precision Co., Ltd. Image lens assembly system
US10690888B2 (en) 2014-01-10 2020-06-23 Kantatsu Co., Ltd. Imaging lens
US10133033B2 (en) 2015-04-16 2018-11-20 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US10481368B2 (en) 2015-04-16 2019-11-19 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US11391927B2 (en) 2015-04-16 2022-07-19 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US10788650B2 (en) 2015-04-16 2020-09-29 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US9671591B2 (en) 2015-04-16 2017-06-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
CN106324797A (en) * 2015-06-29 2017-01-11 佳能企业股份有限公司 Optical lens
CN106324797B (en) * 2015-06-29 2018-12-28 佳能企业股份有限公司 Optical lens
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US11971610B2 (en) 2015-10-19 2024-04-30 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
KR101859383B1 (en) * 2015-10-19 2018-05-18 삼성전기주식회사 Optical Imaging System
US10571653B2 (en) 2015-10-19 2020-02-25 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
KR101690479B1 (en) * 2016-03-07 2016-12-28 주식회사 세코닉스 High-resolution photographing lens system
CN109073862B (en) * 2016-05-19 2021-07-27 索尼公司 Imaging lens and imaging device
CN109073862A (en) * 2016-05-19 2018-12-21 索尼公司 Imaging len and imaging device
WO2017199633A1 (en) * 2016-05-19 2017-11-23 ソニー株式会社 Imaging lens and imaging device
KR20180060137A (en) 2016-11-28 2018-06-07 삼성전기주식회사 Optical Imaging System
US12019220B2 (en) 2016-11-28 2024-06-25 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US10571656B2 (en) 2016-11-28 2020-02-25 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN106908932A (en) * 2016-12-30 2017-06-30 玉晶光电(厦门)有限公司 Optical imaging lens
US12061323B2 (en) 2017-01-04 2024-08-13 Largan Precision Co., Ltd. Image picking-up system, image capturing apparatus and electronic device
US10310227B2 (en) 2017-02-18 2019-06-04 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US11573408B2 (en) 2017-02-18 2023-02-07 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US11256069B2 (en) 2017-02-18 2022-02-22 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US11971528B2 (en) 2017-02-18 2024-04-30 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US10564403B2 (en) 2017-02-18 2020-02-18 Largan Precision Co., Ltd. Image capturing optical system, imaging apparatus and electronic device
US10459203B2 (en) 2017-08-18 2019-10-29 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11340431B2 (en) 2017-08-18 2022-05-24 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US12025778B2 (en) 2017-08-18 2024-07-02 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN112731623A (en) * 2017-11-23 2021-04-30 大立光电股份有限公司 Optical image capturing lens and image capturing device
CN108089295A (en) * 2017-12-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
WO2020024635A1 (en) * 2018-08-02 2020-02-06 浙江舜宇光学有限公司 Optical imaging lens
CN108663782A (en) * 2018-08-13 2018-10-16 浙江舜宇光学有限公司 Pick-up lens
WO2020034788A1 (en) * 2018-08-13 2020-02-20 浙江舜宇光学有限公司 Camera lens
CN111522130B (en) * 2019-02-01 2021-07-06 大立光电股份有限公司 Optical photographing lens assembly, image capturing device and electronic device
CN111522130A (en) * 2019-02-01 2020-08-11 大立光电股份有限公司 Optical photographing lens assembly, image capturing device and electronic device
WO2021027287A1 (en) * 2019-08-09 2021-02-18 华为技术有限公司 Large-aperture lens and terminal device
CN112346208A (en) * 2019-08-09 2021-02-09 华为技术有限公司 Large-aperture lens and terminal equipment
CN112346208B (en) * 2019-08-09 2022-08-26 华为技术有限公司 Large-aperture lens and terminal equipment
CN112578532B (en) * 2019-09-30 2022-04-22 华为技术有限公司 Optical lens, camera module and terminal
WO2021063103A1 (en) * 2019-09-30 2021-04-08 华为技术有限公司 Optical compound lens, camera module, and terminal
CN112578532A (en) * 2019-09-30 2021-03-30 华为技术有限公司 Optical lens, camera module and terminal
US12124011B2 (en) 2019-09-30 2024-10-22 Huawei Technologies Co., Ltd. Optical lens including seven lenses of −+−+−+− refractive powers, camera module, and terminal
WO2022035134A1 (en) * 2020-08-10 2022-02-17 엘지이노텍 주식회사 Optical system
CN111983785A (en) * 2020-09-11 2020-11-24 南昌欧菲精密光学制品有限公司 Optical imaging system, image capturing module and electronic device
CN112180563A (en) * 2020-11-03 2021-01-05 浙江舜宇光学有限公司 Optical imaging lens
WO2022109795A1 (en) * 2020-11-24 2022-06-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly which takes into consideration image processing-based distortion correction, camera module and imaging device
WO2022124856A1 (en) * 2020-12-10 2022-06-16 엘지이노텍 주식회사 Optical system and camera module including same
WO2022124854A1 (en) * 2020-12-10 2022-06-16 엘지이노텍 주식회사 Optical system and camera module comprising same
CN114624857B (en) * 2020-12-11 2023-02-28 大立光电股份有限公司 Image capturing optical lens, image capturing device and electronic device
CN114624857A (en) * 2020-12-11 2022-06-14 大立光电股份有限公司 Image capturing optical lens, image capturing device and electronic device
CN112666682A (en) * 2020-12-14 2021-04-16 福建福光天瞳光学有限公司 Low-distortion 4K pixel optical lens and imaging method thereof

Similar Documents

Publication Publication Date Title
JP6160423B2 (en) Imaging lens, imaging device, and portable terminal
JP6191820B2 (en) Imaging lens, imaging device, and portable terminal
JP2015072404A (en) Image capturing lens, image capturing device, and mobile terminal
JP2015072402A (en) Image capturing lens, image capturing device, and mobile terminal
CN206788446U (en) Pick-up lens
JP5304117B2 (en) Imaging lens, imaging device, and portable terminal
JP5854227B2 (en) Imaging lens and imaging apparatus
JP5742737B2 (en) Imaging lens, imaging device, and portable terminal
CN204422849U (en) The pick-up lens that 6 pieces of optical elements are formed
JP4518836B2 (en) Imaging lens system
JP5735712B2 (en) Imaging lens and imaging device provided with imaging lens
JP5578275B2 (en) Imaging optical system, imaging apparatus, and digital device
JP6836142B2 (en) Imaging optical system and imaging device
JP6394598B2 (en) Imaging lens, imaging device, and portable terminal
WO2013150755A1 (en) Image capture lens and image capture device comprising image capture lens
JP2014153577A (en) Imaging lens, and imaging device and portable terminal
US20160004034A1 (en) Imaging lens and imaging apparatus provided with the same
JP2014115431A (en) Imaging lens, imaging apparatus, and portable terminal
WO2010134260A1 (en) Image pickup lens and image pickup device using the same
JP2015114505A (en) Imaging lens and imaging device
CN204422848U (en) The pick-up lens that 6 pieces of optical elements are formed
JP2013182090A (en) Imaging lens, imaging apparatus, and portable terminal
JP2012203234A (en) Imaging optical system, imaging apparatus and digital instrument
JP2014153576A (en) Imaging lens, and imaging device and portable terminal
KR20060004994A (en) Small imaging lens and imaging device