JP2014153577A - Imaging lens, and imaging device and portable terminal - Google Patents

Imaging lens, and imaging device and portable terminal Download PDF

Info

Publication number
JP2014153577A
JP2014153577A JP2013023900A JP2013023900A JP2014153577A JP 2014153577 A JP2014153577 A JP 2014153577A JP 2013023900 A JP2013023900 A JP 2013023900A JP 2013023900 A JP2013023900 A JP 2013023900A JP 2014153577 A JP2014153577 A JP 2014153577A
Authority
JP
Japan
Prior art keywords
lens
imaging
imaging lens
conditional expression
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013023900A
Other languages
Japanese (ja)
Inventor
Takashi Kawasaki
貴志 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013023900A priority Critical patent/JP2014153577A/en
Priority to TW102121027A priority patent/TWI503563B/en
Priority to TW102211166U priority patent/TWM472861U/en
Priority to CN201320342551.7U priority patent/CN203480114U/en
Priority to CN201310235029.3A priority patent/CN103984081A/en
Publication of JP2014153577A publication Critical patent/JP2014153577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a five-lens imaging lens that causes less stray light while being smaller than conventional types, and that has excellently corrected various aberrations.SOLUTION: An imaging lens 10 forms a subject image on an imaging surface (projected surface) I of an imaging element 51, and comprises, in order from an object side: a positive first lens L1 having a convex surface facing the object side in the vicinity of an optical axis AX; a second lens L2 that is negative in the vicinity of the optical axis AX; a third lens L3; a fourth lens L4; and a negative fifth lens L5 having a concave surface facing an image side in the vicinity of the optical axis AX. In this imaging lens 10, since an image-side surface S32 a third lens L3 is inclined toward an image side at an effective diameter position at which the image-side surface S32 intersects with a dotted line, and marginal rays of a pencil of light rays that is formed having a maximum image height is thereby flipped up on the image-side surface S32 of the third lens L3, it is easy to cause light after passing through the third lens L3 to have a large angle with respect to the optical axis AX, which is advantageous to having a low profile.

Description

本発明は、迷光を抑えた小型の撮像レンズ、撮像装置及び携帯端末に関し、特に本発明は5枚のレンズを有する、低背に好適な撮像レンズ、撮像装置及び携帯端末に関する。   The present invention relates to a small imaging lens, an imaging apparatus, and a portable terminal that suppress stray light. In particular, the present invention relates to an imaging lens, an imaging apparatus, and a portable terminal that have five lenses and are suitable for a low profile.

近年、CCD(Charged Coupled Device)型イメージセンサーあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の撮像素子を用いた撮像素子の高性能化及び小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及しつつある。さらに最近では、上記のような携帯情報端末に搭載される表示素子の大型化及び高精細化を受け、撮像素子も高画素化が求められており、これらの撮像装置に搭載される撮像レンズには、さらなる高性能化への要求が高まっている。このような用途の撮像レンズとして、3枚あるいは4枚構成のレンズに比べ高性能化が可能であることから、5枚構成の撮像レンズが提案されている(例えば特許文献1参照)。一方で、携帯情報端末の薄型化も求められており、撮像装置に搭載される撮像レンズの低背化への要求も高まっており、高性能化のためにレンズ枚数を増やしつつも同等もしくはさらなる低背化が必要とされている。しかしながら、低背化を進めると、光が光軸方向に進む距離が短くなるが光軸垂直方向へ進む距離は変わらないため、レンズ内において光線が光軸に対し大きな角度を持つようになる。光がレンズの有効領域以外へ入射しやすくなり、結果として迷光が発生しやすくなってしまう。   In recent years, along with the improvement in performance and miniaturization of an image sensor using an image sensor such as a CCD (Charged Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, a mobile phone or mobile phone equipped with an image pickup device Information terminals are spreading. More recently, with the increase in size and definition of the display elements mounted on the portable information terminals as described above, the imaging elements are also required to have higher pixels. There is a growing demand for higher performance. As an imaging lens for such an application, since a higher performance is possible compared with a lens having three or four lenses, an imaging lens having a five-lens configuration has been proposed (for example, see Patent Document 1). On the other hand, there is a demand for thinner portable information terminals, and there is an increasing demand for lowering the height of an imaging lens mounted on an imaging device. Low profile is needed. However, when the height is lowered, the distance that the light travels in the optical axis direction is shortened, but the distance that the light travels in the vertical direction of the optical axis is not changed. Light is likely to enter outside the effective area of the lens, and stray light is likely to be generated as a result.

この迷光の対策のため、開口絞りとは別に遮光絞りを持った5枚構成の撮像レンズとして、物体側より順に正の屈折力を有する第1レンズと、第2レンズと、第3レンズと、第4レンズと、少なくとも片面が変曲点を持った非球面である第5レンズとで構成され、第1レンズから第3レンズまでの間に固定された遮光絞りと、第3レンズから第5レンズまでの間に固定された遮光絞りとを備える撮像レンズが開示されている(特許文献2参照)。   As a countermeasure against this stray light, as a five-lens imaging lens having a light-shielding diaphragm in addition to the aperture diaphragm, a first lens having a positive refractive power in order from the object side, a second lens, and a third lens; A fourth lens, and a fifth lens that is an aspherical surface having at least one inflection point, a light-shielding stop fixed between the first lens and the third lens, and a third lens to a fifth lens. An imaging lens including a light-shielding diaphragm fixed between the lenses is disclosed (see Patent Document 2).

しかしながら、上記特許文献2に記載の撮像レンズは、第3レンズの像側面の形状が変曲点の無い凸面に近く、低背化する場合に周辺像高に結像する光束の周縁光線の発散を第2レンズの凹面のみに頼ることとなり、強い屈折のため大きな収差が発生してしまい、高性能化が難しくなる。   However, in the imaging lens described in Patent Document 2, the shape of the image side surface of the third lens is close to a convex surface having no inflection point, and when the height is lowered, the divergence of the peripheral ray of the light beam formed at the peripheral image height Is dependent only on the concave surface of the second lens, and a large aberration occurs due to strong refraction, making it difficult to achieve high performance.

国際公開2010/024198号International Publication No. 2010/024198 中国実用新案公告第202330849号明細書China Utility Model Notification No. 202330849

本発明は、このような問題点に鑑みてなされたものであり、従来タイプより小型でありながらも、迷光が少なく、諸収差が良好に補正された、5枚構成の撮像レンズを提供することを目的とする。   The present invention has been made in view of such problems, and provides a five-lens imaging lens that is smaller than a conventional type, has less stray light, and has various aberrations corrected satisfactorily. With the goal.

ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型化が可能となる。
L/2Y<0.90 … (15)
ただし、
L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:撮像素子の撮像面対角線長(撮像素子の矩形実効画素領域の対角線長)
ここで、像側焦点とは撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記Lの値を計算するものとする。
Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size.
L / 2Y <0.90 (15)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: Diagonal length of the imaging surface of the imaging device (diagonal length of the rectangular effective pixel area of the imaging device)
Here, the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens. When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of the image pickup device package is disposed between the most image side surface of the image pickup lens and the image side focal position, the parallel plate is used. The part is assumed to be the air conversion distance and the value of L is calculated.

なお、値L/2Yについては、より望ましくは、下式の範囲がよい。
L/2Y<0.78 … (15')
The value L / 2Y is more preferably in the range of the following formula.
L / 2Y <0.78 (15 ′)

上記目的を達成するため、本発明に係る撮像レンズは、物体側から順に、物体側に凸面を向けた正の第1レンズと、第2レンズと、第3レンズと、第4レンズと、像側に凹面を向けた第5レンズとからなり、第5レンズの像側面は、非球面で有効径内に変曲点を持ち、第2レンズ及び第3レンズの少なくとも一方が負レンズであり、開口絞りは、第3レンズより物体側にあり、第3レンズと第4レンズとの間、及び、第4レンズと第5レンズとの間に遮光絞りを有し、第3レンズの像側面は、変曲点を持ち、有効径の7割以上の一部もしくは全体が負のパワーを持つ。   In order to achieve the above object, an imaging lens according to the present invention includes, in order from the object side, a positive first lens having a convex surface directed toward the object side, a second lens, a third lens, a fourth lens, and an image. A fifth lens having a concave surface facing the side, the image side surface of the fifth lens is aspheric and has an inflection point within the effective diameter, and at least one of the second lens and the third lens is a negative lens, The aperture stop is closer to the object side than the third lens, has a light-shielding stop between the third lens and the fourth lens, and between the fourth lens and the fifth lens, and the image side surface of the third lens is It has an inflection point, and part or all of 70% or more of the effective diameter has negative power.

本発明に係る撮像レンズでは、第1レンズが物体側に凸面を向けることで、全系の主点位置が物体側に寄るため、光学全長の短縮に有利になる。また、第5レンズの像側面を凹面とすることで、バックフォーカスを伸ばすことができるため、AF機構などを配置するのに必要な所望のバックフォーカスを確保することが可能となる。さらに、第5レンズの像側面を有効径内に変曲点を持った非球面とすることで、周辺像高の光線が像面へ入射する際の入射角を小さく抑えることが可能になるため、撮像素子を用いた場合のセンサの受光効率を向上させることができる。開口絞りを第3レンズよりも物体側に配置することで、射出瞳を像面から遠ざけることができるため、センサー入射角を小さく抑えることができる。
本発明のように5枚のレンズを有する撮像レンズを低背化するには、5枚レンズのうち物体側のレンズに正のパワーを集めることで全系の主点位置を物体側に寄せ、さらに各レンズ間の間隔を詰めてレンズの占める領域を小さくすることが必要である。加えて大口径化すると、第1レンズの物体側の凸面で大きな球面収差が発生してしまうため、第2レンズ以降のレンズで球面収差を補正する必要がある。その場合、軸上光線高さの高い負レンズの方が効果的に球面収差を補正できるため、物体側に近く軸上光線高さの高い第2レンズ又は第3レンズの少なくとも一方を負レンズにすることで効果的に球面収差を補正することができる。しかし、低背化していくと最大画角よりも大きな画角で撮像レンズに入射する光線は、前記負レンズ通過後に光軸に対して大きな角度を持っているため、第4レンズや第5レンズの有効径外に入射し、迷光が発生しやすくなってしまう。
そこで、第1の撮像レンズでは、第3及び第4レンズ間と第4及び第5レンズ間とに遮光絞りを配置することで、迷光を回避することができる。また、第3レンズの像側面が有効径位置で像側に傾くことで、最大像高に結像する光線束の周縁光線が第3レンズの像側面で跳ね上げられるため、第3レンズの通過後の光線に光軸に対して大きな角度を持たせることが容易になり、低背化に有利になる。
また、第3レンズの像側面が変曲点を持ち、有効径の7割以上の一部もしくは全体が負のパワーを持っている。負のパワーとは、平行光線が入射したときに、光軸から遠ざかる方向に光線が屈折されることをいう。有効径内の一部において平行光線が光軸から遠ざかる方向に屈折される場合、その面の一部が負のパワーを持つという。このように、第3レンズの有効径の7割以上の一部もしくは全体が負のパワーを持っていることで、最大像高に結像する光線束の周縁光線が第3レンズの像側面で跳ね上げられるため、第3レンズの通過後の光線に光軸に対して大きな角度を持たせることが容易になるため、低背化に有利になる。
In the imaging lens according to the present invention, since the first lens has a convex surface directed toward the object side, the principal point position of the entire system is close to the object side, which is advantageous for shortening the optical total length. In addition, since the back focus can be extended by making the image side surface of the fifth lens concave, it is possible to secure a desired back focus necessary for arranging the AF mechanism or the like. Furthermore, by making the image side surface of the fifth lens an aspherical surface having an inflection point within the effective diameter, the incident angle when a light beam having a peripheral image height is incident on the image surface can be kept small. The light receiving efficiency of the sensor when using the image sensor can be improved. By arranging the aperture stop closer to the object side than the third lens, the exit pupil can be moved away from the image plane, so that the sensor incident angle can be kept small.
In order to reduce the height of an imaging lens having five lenses as in the present invention, the main point position of the entire system is brought closer to the object side by collecting positive power to the object side lens among the five lenses, Furthermore, it is necessary to reduce the area occupied by the lenses by reducing the distance between the lenses. In addition, when the aperture is increased, a large spherical aberration occurs on the convex surface on the object side of the first lens, so it is necessary to correct the spherical aberration with the second and subsequent lenses. In that case, since a negative lens with a high axial ray height can effectively correct spherical aberration, at least one of the second lens and the third lens having a high axial ray height close to the object side is used as a negative lens. By doing so, it is possible to effectively correct the spherical aberration. However, as the height is lowered, the light incident on the imaging lens at a field angle larger than the maximum field angle has a large angle with respect to the optical axis after passing through the negative lens. The light enters the outside of the effective diameter, and stray light is likely to be generated.
Therefore, in the first imaging lens, stray light can be avoided by arranging a light-shielding diaphragm between the third and fourth lenses and between the fourth and fifth lenses. Further, since the image side surface of the third lens is tilted toward the image side at the effective diameter position, the peripheral ray of the light bundle formed at the maximum image height is bounced up on the image side surface of the third lens. It becomes easy to give a later light beam a large angle with respect to the optical axis, which is advantageous in reducing the height.
Further, the image side surface of the third lens has an inflection point, and a part or all of 70% or more of the effective diameter has negative power. Negative power means that when a parallel light beam is incident, the light beam is refracted in a direction away from the optical axis. When parallel rays are refracted in a direction away from the optical axis in a part within the effective diameter, a part of the surface is said to have negative power. In this way, a part or the whole of 70% or more of the effective diameter of the third lens has a negative power, so that the peripheral ray of the light bundle formed at the maximum image height is on the image side surface of the third lens. Since it is flipped up, it becomes easy to give the light beam after passing through the third lens a large angle with respect to the optical axis, which is advantageous in reducing the height.

ここで、第1レンズの物体側面又は第5レンズの像側面については、有効径5割までの形状をRの項のみで最小二乗法によりフィッティングしたときに、曲率中心が空気側なら凹、媒質側なら凸と定義する。また、この明細書のみに関することであるが、光軸近傍、光軸周辺ということで特に断らない限り、上記定義が適用される。   Here, for the object side surface of the first lens or the image side surface of the fifth lens, when the shape up to 50% of the effective diameter is fitted by the least square method with only the R term, if the center of curvature is on the air side, it is concave. If the side is defined as convex. In addition, as to only this specification, the above definition applies unless otherwise specified in the vicinity of the optical axis and the vicinity of the optical axis.

本発明の別の側面では、上記撮像レンズにおいて、第4レンズの物体側面は非球面形状を有し、条件式(1)
0.015<AS7/f<0.07 … (1)
ただし、
AS7:第4レンズの物体側面の非球面形状と、第4レンズの有効径位置及び中心点を結ぶ球面形状との最大乖離量(mm)
f:撮像レンズ全系の焦点距離
を満たす。
In another aspect of the present invention, in the imaging lens, the object side surface of the fourth lens has an aspheric shape, and conditional expression (1)
0.015 <AS7 / f <0.07 (1)
However,
AS7: Maximum deviation (mm) between the aspherical shape of the object side surface of the fourth lens and the spherical shape connecting the effective diameter position and the center point of the fourth lens
f: Satisfies the focal length of the entire imaging lens system.

第4レンズの物体側面の周辺部は、第3レンズで屈折し光軸に対して大きな角度を持った周辺像高に結像する光線に対し、垂直に近い面角度とすることで光線の屈折角を小さく抑えることができ、コマ収差などの発生を抑えることができる。しかし、球面形状に近い形状のまま周辺部の面角度を光線に垂直に近づけると、面のサグ量が大きくなってしまい、光学全長に占める第4レンズの領域が大きくなってしまうため、低背化の妨げとなる。第4レンズの物体側面が非球面形状を有し、かつ値AS7/fが条件式(1)の下限を上回ることで、球面形状から乖離した形状をとることができるため、周辺部の面角度を光線に垂直に近づけた場合でも、面のサグ量を小さい形状とすることができ、低背化に有利になる。一方、値AS7/fが条件式(1)の上限を下回ることで、球面形状からの乖離が大きくなり過ぎて、レンズの成形性が損なわれるのを防ぐことができる。   The peripheral part of the object side surface of the fourth lens is refracted by making the surface angle close to perpendicular to the light beam that is refracted by the third lens and forms a peripheral image height having a large angle with the optical axis. The angle can be kept small, and the occurrence of coma and the like can be suppressed. However, if the surface angle of the peripheral part is made perpendicular to the light beam while maintaining a shape close to a spherical shape, the amount of sag on the surface increases and the area of the fourth lens occupying the entire optical length increases. It will be a hindrance. Since the object side surface of the fourth lens has an aspherical shape and the value AS7 / f exceeds the lower limit of the conditional expression (1), a shape deviating from the spherical shape can be obtained. Even when the sapphire is made perpendicular to the light beam, the sag amount of the surface can be made small, which is advantageous for reducing the height. On the other hand, when the value AS7 / f is less than the upper limit of the conditional expression (1), it is possible to prevent the deviation from the spherical shape from becoming too large and impairing the moldability of the lens.

なお、値AS7/fについては、より望ましくは下式の範囲とする。
0.02<AS7/f<0.05 … (1')
The value AS7 / f is more preferably in the range of the following formula.
0.02 <AS7 / f <0.05 (1 ′)

本発明のさらに別の側面では、条件式(2)
0.75<dΦ/dz<2.5 … (2)
dΦ:第4及び第5レンズ間の遮光絞りの直径と第3及び第4レンズ間の遮光絞りの直径との差
dz:第4及び第5レンズ間の遮光絞りと第3及び第4レンズ間の遮光絞りとの間隔
を満たす。
In still another aspect of the present invention, conditional expression (2)
0.75 <dΦ / dz <2.5 (2)
dΦ: difference between the diameter of the light-shielding diaphragm between the fourth and fifth lenses and the diameter of the light-shielding diaphragm between the third and fourth lenses dz: between the light-shielding diaphragm between the fourth and fifth lenses and the third and fourth lenses The distance from the light-shielding diaphragm is satisfied.

第3及び第4レンズ間の遮光絞りIと第4及び第5レンズ間の遮光絞りIIとを、条件式(2)を満たすようにすることで、迷光を回避することができる。条件式(2)の値dΦ/dzが下限を上回ることで、第4及び第5レンズ間の遮光絞りIIの径に対し第3及び第4レンズ間の遮光絞りIの径が小さくなり、第3レンズから射出した光軸に対し大きな角度を持った光線に対しても、第4レンズのフランジ部を充分遮光することができるため、第4レンズのフランジ部への光線入射に起因する迷光の発生を防ぐことができる。一方、条件式(2)の値dΦ/dzが上限を下回ることで、第3及び第4レンズ間の遮光絞りIの径に対し、第4及び第5レンズ間の遮光絞りIIの径が大きくなり過ぎないため、第5レンズのフランジ部を充分遮光することができ、第5レンズのフランジ部への光線入射に起因する迷光の発生を防ぐことができる。
なお、値dΦ/dzについては、より望ましくは下式の範囲とする。
0.90<dΦ/dz<2.0 … (2')
Stray light can be avoided by satisfying the conditional expression (2) between the light-shielding stop I between the third and fourth lenses and the light-shielding stop II between the fourth and fifth lenses. When the value dΦ / dz of conditional expression (2) exceeds the lower limit, the diameter of the light-shielding diaphragm I between the third and fourth lenses becomes smaller than the diameter of the light-shielding diaphragm II between the fourth and fifth lenses. Since the flange portion of the fourth lens can be sufficiently shielded even with respect to light rays having a large angle with respect to the optical axis emitted from the three lenses, stray light caused by the incidence of light rays on the flange portion of the fourth lens can be prevented. Occurrence can be prevented. On the other hand, when the value dΦ / dz of conditional expression (2) is below the upper limit, the diameter of the light-shielding diaphragm II between the fourth and fifth lenses is larger than the diameter of the light-shielding diaphragm I between the third and fourth lenses. Therefore, the flange portion of the fifth lens can be sufficiently shielded, and stray light caused by the incidence of light rays on the flange portion of the fifth lens can be prevented.
The value dΦ / dz is more preferably in the range of the following formula.
0.90 <dΦ / dz <2.0 (2 ′)

本発明の別の側面では、条件式(3)
0.03<et6/f<0.10 … (3)
et6:第3レンズ像側面の有効径位置と第4レンズの物体側面の有効径位置との光軸方向の間隔
f:撮像レンズ全系の焦点距離
を満たす。
In another aspect of the present invention, conditional expression (3)
0.03 <et6 / f <0.10 (3)
et6: Distance in the optical axis direction between the effective diameter position of the third lens image side surface and the effective diameter position of the object side surface of the fourth lens f: The focal length of the entire imaging lens system is satisfied.

条件式(3)の値et6/fが下限を上回ることで、第3レンズと第4レンズとの周辺に遮光絞りIを入れる間隔を確保することができる。一方、値et6/fが条件式(3)の上限を下回ることで、間隔が広がり過ぎることによって、低背化の妨げとなることを防ぐことができる。
なお、値et6/fについては、より望ましくは下式の範囲とする。
0.05<et6/f<0.08 … (3')
When the value et6 / f of the conditional expression (3) exceeds the lower limit, it is possible to secure an interval for putting the light-shielding stop I around the third lens and the fourth lens. On the other hand, when the value et6 / f falls below the upper limit of the conditional expression (3), it is possible to prevent the height from being hindered by the interval being too wide.
The value et6 / f is more preferably in the range of the following formula.
0.05 <et6 / f <0.08 (3 ′)

本発明のさらに別の側面では、条件式(4)
40<θS7<80 … (4)
ただし、
θS7:第4レンズの物体側面の有効径の7割以上における最大面角度(°)
を満たす。
In still another aspect of the present invention, conditional expression (4)
40 <θS7 <80 (4)
However,
θS7: Maximum surface angle (°) at 70% or more of the effective diameter of the object side surface of the fourth lens
Meet.

条件式(4)の値θS7が下限を上回ることで、第3レンズで屈折し光軸に対し大きな角度を持った光線に対し、垂直に近い面角度とすることで屈折角を小さく抑えることができるため、コマ収差などの発生を抑えることができる。一方、値θS7が条件式(4)の上限を下回ることで、面角度が大きくなり過ぎることによって、成形性を損なうことを防ぐことができる。
なお、値θS7については、より望ましくは下式の範囲とする。
50<θS7<75 … (4')
When the value θS7 of the conditional expression (4) exceeds the lower limit, the refraction angle can be kept small by setting the surface angle close to perpendicular to the light beam refracted by the third lens and having a large angle with respect to the optical axis. Therefore, the occurrence of coma and the like can be suppressed. On the other hand, when the value θS7 is less than the upper limit of the conditional expression (4), it is possible to prevent the formability from being impaired by the surface angle becoming too large.
The value θS7 is more preferably in the range of the following equation.
50 <θS7 <75 (4 ′)

本発明のさらに別の側面では、条件式(5)
|Sag6|/f<0.10 … (5)
ただし、
|Sag6|:第3レンズの像側面のサグ量最大値
f:撮像レンズ全系の焦点距離
を満たす。
In still another aspect of the present invention, conditional expression (5)
| Sag6 | / f <0.10 (5)
However,
| Sag6 |: Maximum sag amount on the image side surface of the third lens f: Satisfies the focal length of the entire imaging lens system.

条件式(5)の範囲を満たすように値|Sag6|/fを設定することで、第3レンズの像側面のサグ量が小さくなるため、レンズ全長において第3レンズが占める光軸方向に対する領域を小さくすることができるため、低背化に有利になる。
なお、値|Sag6|/fについては、より望ましくは下式の範囲とする。
|Sag6|/f<0.05 … (5')
By setting the value | Sag6 | / f so as to satisfy the range of the conditional expression (5), the sag amount on the image side surface of the third lens is reduced. Therefore, the region in the optical axis direction occupied by the third lens in the entire lens length Can be reduced, which is advantageous in reducing the height.
The value | Sag6 | / f is more preferably in the range of the following equation.
| Sag6 | / f <0.05 (5 ')

本発明のさらに別の側面では、条件式(6)
−15<θS6<15 … (6)
ただし、
θS6:第3レンズの像側面の有効径の9割以上における最大面角度(°)
を満たす。
In still another aspect of the present invention, conditional expression (6)
−15 <θS6 <15 (6)
However,
θS6: Maximum surface angle (°) at 90% or more of the effective diameter of the image side surface of the third lens
Meet.

条件式(6)の範囲を満たすように値θS6を設定することで、周辺像高に結像する光線束の周縁光線を発散するように屈折させるできるため、第3レンズ通過後に光軸に対し大きな角度を持たせることが容易になり低背化に有利になる。
なお、値θS6については、より望ましくは下式の範囲とする。
−10<θS6<10 … (6')
By setting the value θS6 so as to satisfy the range of the conditional expression (6), it is possible to refract the peripheral rays of the light bundle formed at the peripheral image height so as to diverge. It becomes easy to have a large angle, which is advantageous for reducing the height.
The value θS6 is more preferably in the range of the following equation.
−10 <θS6 <10 (6 ′)

本発明のさらに別の側面では、条件式(7)
0.65<Sag7/d7<1.50 … (7)
ただし、
Sag7:第4レンズの物体側面のサグ量最大値
d7:第4レンズの中心厚
を満たす。
In still another aspect of the present invention, conditional expression (7)
0.65 <Sag7 / d7 <1.50 (7)
However,
Sag7: Maximum sag amount on the object side surface of the fourth lens d7: Satisfies the center thickness of the fourth lens.

条件式(7)の値Sag7/d7が下限を上回ることで、撮像レンズ内で第4レンズの物体側面が占める光軸方向の領域が大きくなるため、第4レンズの物体側面の形状自由度が大きくなり、第3レンズ通過後の光線に対し、収差が発生しにくい形状をとることができる。一方、値Sag7/d7が条件式(7)の上限を下回ることで、第4レンズの物体側面のサグ量が大きくなり過ぎず、低背化に効果的となる。
なお、値Sag7/d7については、より望ましくは下式の範囲とする。
0.75<Sag7/d7<1.30 … (7')
When the value Sag7 / d7 of the conditional expression (7) exceeds the lower limit, the area in the optical axis direction occupied by the object side surface of the fourth lens in the imaging lens increases, and therefore the degree of freedom of shape of the object side surface of the fourth lens is increased. It becomes large and can take a shape in which aberration does not easily occur with respect to the light beam after passing through the third lens. On the other hand, when the value Sag7 / d7 is less than the upper limit of the conditional expression (7), the amount of sag on the object side surface of the fourth lens does not become too large, which is effective in reducing the height.
The value Sag7 / d7 is more preferably in the range of the following formula.
0.75 <Sag7 / d7 <1.30 (7 ′)

本発明のさらに別の側面では、条件式(8)
0.45<θr6/θr4<1.00 … (8)
ただし、
θr4:第2レンズの像側面における対角像高光束の光軸から遠い側の周縁光線の屈折角
θr6:第3レンズの像側面における対角像高光束の光軸から遠い側の周縁光線の屈折角
を満たす。
In still another aspect of the present invention, conditional expression (8)
0.45 <θr6 / θr4 <1.00 (8)
However,
θr4: Refraction angle of the peripheral ray on the side farther from the optical axis of the diagonal image high light flux on the image side surface of the second lens θr6: Refraction angle on the side far from the optical axis of the diagonal image high light flux on the image side surface of the third lens Satisfies the refraction angle.

条件式(8)の値θr6/θr4が下限を上回ることで、第2レンズの像側面と第3レンズの像側面とで、光線の跳ね上げを分担することができるため、収差の発生を小さく抑えることができる。一方、条件式(8)の値θr6/θr4が上限を下回ることで、第3レンズでの光線の跳ね上げが強くなり過ぎることよって収差が発生するのを防ぐことができる。
なお、値θr6/θr4については、より望ましくは下式の範囲とする。
0.50<θr6/θr4<0.90 … (8')
Since the value θr6 / θr4 in conditional expression (8) exceeds the lower limit, the image side surface of the second lens and the image side surface of the third lens can share the jumping up of the light beam, so that the occurrence of aberration is reduced. Can be suppressed. On the other hand, when the value θr6 / θr4 of the conditional expression (8) is below the upper limit, it is possible to prevent the occurrence of aberration due to excessively strong jumping of the light beam by the third lens.
The value θr6 / θr4 is more preferably in the range of the following equation.
0.50 <θr6 / θr4 <0.90 (8 ′)

本発明のさらに別の側面では、条件式(9)
0.05<et8/f<0.20 … (9)
ただし、
et8:第4レンズ像側面の有効径位置と第5レンズの物体側面の有効径位置との光軸方向の間隔
f:撮像レンズ全系の焦点距離
を満たす。
In still another aspect of the present invention, conditional expression (9)
0.05 <et8 / f <0.20 (9)
However,
et8: Distance in the optical axis direction between the effective diameter position of the fourth lens image side surface and the effective diameter position of the object side surface of the fifth lens f: The focal length of the entire imaging lens system is satisfied.

条件式(9)の値et8/fが下限を上回ることで、第4レンズと第5レンズとの間に遮光絞りIIを入れる隙間を確保でき、条件式(9)の値et8/fが上限を下回ることで、第4レンズと第5レンズとの間隔が開き過ぎ低背化の妨げになるのを防ぐことができる。
なお、値et8/fについては、より望ましくは下式の範囲とする。
0.07<et8/f<0.15 … (9')
When the value et8 / f of the conditional expression (9) exceeds the lower limit, a gap for inserting the light-shielding stop II can be secured between the fourth lens and the fifth lens, and the value et8 / f of the conditional expression (9) is the upper limit. If the distance is less than the range, it is possible to prevent the distance between the fourth lens and the fifth lens from becoming too large and hindering a reduction in height.
The value et8 / f is more preferably in the range of the following formula.
0.07 <et8 / f <0.15 (9 ′)

本発明のさらに別の側面では、第5レンズは負レンズであり、条件式(10)
45<v5<70 … (10)
ただし、
v5:第5レンズのアッベ数
を満たす。
In still another aspect of the invention, the fifth lens is a negative lens, and the conditional expression (10)
45 <v5 <70 (10)
However,
v5: Satisfies the Abbe number of the fifth lens.

第5レンズを負レンズとすることで、低背化しつつもある程度のバックフォーカスを確保することができるため、レンズにゴミやキズなどが付いた場合の影響を小さくすることができる。また、第5レンズの像側面に変曲点があることによってその周辺部は正のパワーを持っているが、第5レンズのアッベ数v5を条件式(10)の下限を上回るように設定することで、第5レンズの周辺部にて発生する色収差を抑えることができるため、倍率色収差を小さくすることができ、高性能化が可能になる。一方、条件式(10)のアッベ数v5が上限を下回ることで、負レンズであるため軸上色収差の発生も抑えることができる。
なお、値v5については、より望ましくは下式の範囲とする。
50<v5<60 … (10')
By making the fifth lens a negative lens, it is possible to secure a certain amount of back focus while reducing the height, so that the influence of dust or scratches on the lens can be reduced. In addition, since the inflection point is present on the image side surface of the fifth lens, its peripheral portion has a positive power, but the Abbe number v5 of the fifth lens is set to exceed the lower limit of the conditional expression (10). As a result, chromatic aberration occurring in the periphery of the fifth lens can be suppressed, so that lateral chromatic aberration can be reduced, and high performance can be achieved. On the other hand, since the Abbe number v5 in the conditional expression (10) is less than the upper limit, since it is a negative lens, the occurrence of longitudinal chromatic aberration can also be suppressed.
The value v5 is more preferably in the range of the following equation.
50 <v5 <60 (10 ′)

本発明のさらに別の側面では、条件式(11)
1.45<n1<1.65 … (11)
ただし、
n1:第1レンズの屈折率
を満たす。
In still another aspect of the present invention, conditional expression (11)
1.45 <n1 <1.65 (11)
However,
n1: satisfies the refractive index of the first lens.

低背化を進めると、全系の主点位置を物体側に寄せることになるため、第1レンズの物体側面の凸面の曲率半径が小さくなる。そのため、入射瞳の周縁に入射する光は、大きな球面収差を持ってしまう。特に大口径化した場合、顕著に球面収差が大きくなり、高性能化の妨げになる。そこで、第1レンズの屈折率n1が条件式(11)の下限を上回るようにすることで、面角度を緩くしても同じ焦点距離とすることができるため、物体側の強い凸面で大きな球面収差の発生を防ぐことができる。また、逆に第1レンズの屈折率が高くなると第1レンズの前側主点と後側主点との間隔が開いてくるため、焦点距離に関連する後側主点が像側に寄ってしまい、焦点距離が短くなり広角化してしまう。第1レンズの後側主点を物体側に寄せるため、第1レンズ自体を物体側に寄せると、光学全長が大きくなってしまうため、低背化に不利になる。物体側の凸面を強くしメニスカス形状に近づけていくことで、光学全長を維持したまま後側主点を物体側に寄せることができるが、そうするとより大きな球面収差が発生してしまう。そこで、第1レンズの屈折率n1が条件式(11)の上限を下回るようにすることで、低背化しつつも物体側の凸面が強くなり過ぎることがなく、第1レンズで発生する球面収差を小さく抑えることができる。
なお、値n1については、より望ましくは下式の範囲とする。
1.50<n1<1.60 … (11')
When the height is lowered, the principal point position of the entire system is moved toward the object side, so that the radius of curvature of the convex surface of the object side surface of the first lens becomes smaller. Therefore, the light incident on the periphery of the entrance pupil has a large spherical aberration. In particular, when the aperture is increased, the spherical aberration is remarkably increased, which hinders high performance. Therefore, by setting the refractive index n1 of the first lens to exceed the lower limit of the conditional expression (11), the same focal length can be obtained even if the surface angle is relaxed. Therefore, a large spherical surface with a strong convex surface on the object side. Occurrence of aberration can be prevented. Conversely, when the refractive index of the first lens is increased, the distance between the front principal point and the rear principal point of the first lens is increased, and the rear principal point related to the focal length is shifted to the image side. The focal length becomes shorter and the angle becomes wider. Since the rear principal point of the first lens is brought closer to the object side, if the first lens itself is brought closer to the object side, the total optical length becomes larger, which is disadvantageous for lowering the height. By strengthening the convex surface on the object side and bringing it closer to the meniscus shape, the rear principal point can be brought closer to the object side while maintaining the optical total length, but this causes a larger spherical aberration. Therefore, by making the refractive index n1 of the first lens lower than the upper limit of the conditional expression (11), the convex surface on the object side does not become too strong while reducing the height, and spherical aberration generated in the first lens. Can be kept small.
The value n1 is more preferably in the range of the following formula.
1.50 <n1 <1.60 (11 ′)

本発明のさらに別の側面では、第2レンズは負レンズである。このように、第2レンズを負レンズとすることで、第1レンズで発生する色収差や球面収差を、光線高さの高い第2レンズで補正することになるため、効果的に補正ができ高性能化に有利になる。   In still another aspect of the present invention, the second lens is a negative lens. In this way, by making the second lens a negative lens, chromatic aberration and spherical aberration occurring in the first lens are corrected by the second lens having a high ray height, so that it can be effectively corrected. It becomes advantageous for performance improvement.

本発明のさらに別の側面では、第2レンズは物体側面の曲率半径の絶対値よりも像側面の曲率半径の絶対値の方が小さい。第2レンズの物体側面への光線入射角を小さく抑え、球面収差の補正を適切にすることができ、高性能を保つことができる。   In yet another aspect of the present invention, the second lens has a smaller absolute value of the curvature radius of the image side surface than the absolute value of the curvature radius of the object side surface. The light incident angle on the object side surface of the second lens can be kept small, the spherical aberration can be corrected appropriately, and high performance can be maintained.

本発明のさらに別の側面では、第2レンズの像側面は有効径の7割以上の一部もしくは全体が負のパワーを持つ。このように、第2レンズの像側面の有効径の7割以上の一部もしくは全体が負のパワーを持っていることで、周辺像高へ結像する光線束の周縁光線を発散させるように屈折させやすくなるため、低背化や倍率色収差の補正に有利になる。   In still another aspect of the present invention, the image side surface of the second lens has a negative power partly or entirely of 70% or more of the effective diameter. As described above, a part or the whole of 70% or more of the effective diameter of the image side surface of the second lens has a negative power so that the peripheral ray of the light bundle formed at the peripheral image height is diverged. Since it becomes easy to refract, it is advantageous for low profile and lateral chromatic aberration correction.

本発明のさらに別の側面では、条件式(12)
15<v2<30 … (12)
ただし、
v2:第2レンズのアッベ数
を満たす。
In still another aspect of the present invention, conditional expression (12)
15 <v2 <30 (12)
However,
v2: satisfies the Abbe number of the second lens.

第2レンズのアッベ数v2が条件式(12)の上限を下回ることで、第1レンズで発生する軸上色収差と倍率色収差とを補正することができる。一方、アッベ数v2が条件式(12)の下限を上回ることで、色収差の過剰補正を防ぐことができる。
なお、値v2については、より望ましくは下式の範囲とする。
20<v2<25 … (12')
When the Abbe number v2 of the second lens is less than the upper limit of the conditional expression (12), the longitudinal chromatic aberration and the lateral chromatic aberration generated in the first lens can be corrected. On the other hand, when the Abbe number v2 exceeds the lower limit of the conditional expression (12), excessive correction of chromatic aberration can be prevented.
The value v2 is more preferably in the range of the following formula.
20 <v2 <25 (12 ′)

本発明のさらに別の側面では、条件式(13)
−0.2<f/f4<2.0 … (13)
ただし、
f4:第4レンズの焦点距離
f:撮像レンズ全系の焦点距離
を満たす。
In still another aspect of the present invention, conditional expression (13)
-0.2 <f / f4 <2.0 (13)
However,
f4: Focal length of the fourth lens f: Satisfies the focal length of the entire imaging lens system.

第4レンズの焦点距離に関する値f/f4が条件式(13)の上限を下回ることで、第4レンズの正のパワーが強くなり過ぎることにより、全系の焦点距離が短くなってしまい、必要以上に広角化するのを防ぐことができる。また、第4レンズの焦点距離に関する値f/f4が条件式(13)の下限を上回ることで、第4レンズが強い負のパワーを持って全系の焦点距離が長くなり、望遠化してしまうのを防ぐことができる。   Since the value f / f4 related to the focal length of the fourth lens is below the upper limit of the conditional expression (13), the positive power of the fourth lens becomes too strong, which shortens the focal length of the entire system. The widening of the angle can be prevented. Further, when the value f / f4 related to the focal length of the fourth lens exceeds the lower limit of the conditional expression (13), the fourth lens has a strong negative power, and the focal length of the entire system becomes long and telephoto. Can be prevented.

本発明のさらに別の側面では、条件式(14)
1.1<f123/f<1.7 … (14)
ただし、
f123:第1レンズから第3レンズまでの合成焦点距離
f:撮像レンズ全系の焦点距離
を満たす。
In still another aspect of the present invention, conditional expression (14)
1.1 <f123 / f <1.7 (14)
However,
f123: Composite focal length from the first lens to the third lens f: Satisfies the focal length of the entire imaging lens system.

第1レンズから第3レンズの合成焦点距離に関する値f123/fを条件式(14)の範囲とすることで、第1レンズから第3レンズまでの正のパワーが適切にできるため、正のパワーが強くなり過ぎることによる収差の発生を防ぎつつ、光学全長を小さくすることができる。   By setting the value f123 / f related to the combined focal length of the first lens to the third lens within the range of the conditional expression (14), the positive power from the first lens to the third lens can be appropriately achieved. It is possible to reduce the optical total length while preventing the occurrence of aberrations due to the excessively strong intensity.

本発明のさらに別の側面では、実質的にパワーを持たないレンズをさらに有する。   In still another aspect of the present invention, the lens further includes a lens having substantially no power.

上記目的を達成するため、本発明に係る撮像装置は、上述の撮像レンズと、撮像素子とを備える。本発明の撮像レンズを用いることで、迷光が少なく諸収差が良好に補正された小型の撮像装置を得ることができる。   In order to achieve the above object, an imaging apparatus according to the present invention includes the imaging lens described above and an imaging element. By using the imaging lens of the present invention, it is possible to obtain a small imaging device with little stray light and various aberrations corrected satisfactorily.

上記目的を達成するため、本発明に係る携帯端末は、上述の撮像装置を備える。   In order to achieve the above object, a mobile terminal according to the present invention includes the above-described imaging device.

本発明の一実施形態の撮像レンズを備える撮像装置を説明する図である。It is a figure explaining an imaging device provided with the imaging lens of one embodiment of the present invention. レンズや遮光絞りの状態を説明する部分拡大断面図である。It is a partial expanded sectional view explaining the state of a lens or a light-shielding stop. 図1の撮像装置を備える携帯端末を説明するブロック図である。It is a block diagram explaining a portable terminal provided with the imaging device of FIG. (A)及び(B)は、それぞれ携帯端末の表面側及び裏面側の斜視図である。(A) And (B) is a perspective view of the surface side and back surface side of a portable terminal, respectively. 第4レンズの物体側面を具体的に説明する図である。It is a figure explaining the object side surface of a 4th lens concretely. 実施例1の撮像レンズの断面図である3 is a cross-sectional view of the imaging lens of Example 1. FIG. (A)〜(E)は、実施例1の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 1. FIG. 実施例2の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 2. FIG. (A)〜(E)は、実施例2の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 3. FIG. (A)〜(E)は、実施例3の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 3. FIGS. 実施例4の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 4. FIG. (A)〜(E)は、実施例4の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 4. FIGS. 実施例5の撮像レンズの断面図であるFIG. 10 is a cross-sectional view of the imaging lens of Example 5. (A)〜(E)は、実施例5の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 5. FIGS. 実施例6の撮像レンズの断面図であるFIG. 10 is a cross-sectional view of the imaging lens of Example 6. (A)〜(E)は、実施例6の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 6. FIG. 実施例7の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 7. FIG. (A)〜(E)は、実施例7の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 7. FIGS. 実施例8の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 8. FIG. (A)〜(E)は、実施例8の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 8. FIGS. 実施例9の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 9. FIG. (A)〜(E)は、実施例9の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 9. FIGS.

以下、図1等を参照して、本発明の一実施形態である撮像レンズについて説明する。なお、図1で例示した撮像レンズ10は、後述する実施例1の撮像レンズ15と同一の構成となっている。   Hereinafter, with reference to FIG. 1 etc., the imaging lens which is one Embodiment of this invention is demonstrated. The imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 15 of Example 1 described later.

図1は、本発明の一実施形態である撮像レンズを備えるカメラモジュールを説明する断面図である。   FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.

カメラモジュール50は、被写体像を形成する撮像レンズ10と、撮像レンズ10によって形成された被写体像を検出する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、撮像レンズ10等を保持するとともに物体側からの光束を入射させる開口部OPを有する鏡筒部54とを備える。撮像レンズ10は、被写体像を撮像素子51の像面又は撮像面(被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述する撮像装置に組み込まれて使用されるが、単独でも撮像装置と呼ぶものとする。   The camera module 50 includes an imaging lens 10 that forms a subject image, an imaging device 51 that detects a subject image formed by the imaging lens 10, and a wiring board 52 that holds the imaging device 51 from behind and has wiring and the like. And a lens barrel portion 54 having an opening OP for holding the imaging lens 10 and the like and allowing a light beam from the object side to enter. The imaging lens 10 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element 51. The camera module 50 is used by being incorporated in an imaging device to be described later.

撮像レンズ10は、物体側から順に、開口絞りASと、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5とを備える。撮像レンズ10は、小型であり、その尺度として、以下の式(15)を満たすレベルの小型化を目指している。
L/2Y<0.90 … (15)
ここで、Lは撮像レンズ10全系の最も物体側のレンズ面S11から像側焦点までの光軸AX上の距離であり、2Yは撮像素子51の撮像面対角線長(撮像素子51の矩形実効画素領域の対角線長)であり、像側焦点とは撮像レンズ10に光軸AXと平行な平行光線が入射した場合の像点をいう。この範囲を満たすことで、カメラモジュール50全体の小型軽量化が可能となる。
The imaging lens 10 includes, in order from the object side, an aperture stop AS, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. The imaging lens 10 is small in size, and as a scale, it aims at miniaturization at a level satisfying the following expression (15).
L / 2Y <0.90 (15)
Here, L is the distance on the optical axis AX from the most object-side lens surface S11 of the entire imaging lens 10 system to the image-side focal point, and 2Y is the diagonal length of the imaging surface of the imaging device 51 (the rectangular effective of the imaging device 51). Diagonal length of the pixel region), and the image-side focal point refers to an image point when parallel light rays parallel to the optical axis AX are incident on the imaging lens 10. By satisfying this range, the entire camera module 50 can be reduced in size and weight.

なお、撮像レンズ10の最も像側のレンズ面S52と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板Fが配置される場合には、平行平板F部分は空気換算距離としたうえで上記Lの値を計算するものとする。また、より望ましくは下式の範囲とする。
L/2Y<0.78 … (15')
When a parallel plate F such as an optical low-pass filter, an infrared cut filter, or a seal glass of an image pickup device package is disposed between the most image side lens surface S52 of the image pickup lens 10 and the image side focal position. , The value of L is calculated after the parallel plate F portion is defined as an air conversion distance. More preferably, it is in the range of the following formula.
L / 2Y <0.78 (15 ′)

撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部51aの表面は、像面又は撮像面(被投影面)Iとなっている。   The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof. The surface of the photoelectric conversion unit 51a as the light receiving unit is an image plane or an imaging plane (projected plane) I.

配線基板52は、撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や駆動機構55aを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。   The wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54). The wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.

撮像素子51の撮像レンズ10側には、不図示のホルダー部材によって、平行平板Fが撮像素子51等を覆うように配置・固定されている。   On the imaging lens 10 side of the imaging element 51, a parallel plate F is disposed and fixed by a holder member (not shown) so as to cover the imaging element 51 and the like.

鏡筒部54は、撮像レンズ10を収納し保持している。鏡筒部54は、撮像レンズ10を構成するレンズL1〜L5のうちいずれか1つ以上のレンズを光軸AXに沿って移動させることにより、撮像レンズ10の合焦の動作を可能にするため、例えば駆動機構55aを有している。駆動機構55aは、例えばボイスコイルモーターとガイドとを備え、特定のレンズを光軸AXに沿って往復移動させる。   The lens barrel 54 houses and holds the imaging lens 10. The lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L5 constituting the imaging lens 10 along the optical axis AX. For example, it has a drive mechanism 55a. The drive mechanism 55a includes, for example, a voice coil motor and a guide, and reciprocates a specific lens along the optical axis AX.

図2等を参照して、鏡筒部54内に保持される撮像レンズ10の状態を説明する。撮像レンズ10を構成する第1〜第5レンズL1〜L5は、支持用のフランジ部39をそれぞれ有しており、フランジ部39を介して隣接するレンズと積層され、鏡筒部分54a内に保持されている。これらのレンズL1〜L5の間には、フランジ部39に挟まれて第1〜第4遮光絞りFS1〜FS4が配置され、迷光の発生を防止している。第1〜第4遮光絞りFS1〜FS4は、例えば金属の薄板で形成される。鏡筒部分54aの物体側には、レンズL1の有効径の周囲を覆うような開口絞りASが形成されている。   With reference to FIG. 2 etc., the state of the imaging lens 10 hold | maintained in the lens-barrel part 54 is demonstrated. The first to fifth lenses L1 to L5 constituting the imaging lens 10 each have a supporting flange portion 39, are stacked with adjacent lenses via the flange portion 39, and are held in the lens barrel portion 54a. Has been. Between these lenses L1 to L5, the first to fourth light shielding stops FS1 to FS4 are arranged sandwiched by the flange portion 39 to prevent the generation of stray light. The first to fourth light shielding stops FS1 to FS4 are formed of, for example, a metal thin plate. An aperture stop AS that covers the periphery of the effective diameter of the lens L1 is formed on the object side of the lens barrel portion 54a.

次に、図3、4(A)及び4(B)を参照して、図1に例示されるカメラモジュール50を搭載した携帯電話機その他の携帯端末300の一例について説明する。   Next, with reference to FIGS. 3, 4 (A) and 4 (B), an example of a mobile phone or other mobile terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described.

携帯端末300は、スマートフォン型の携帯通信端末であり、カメラモジュール50を有する撮像装置100と、各部を統括的に制御するとともに各処理に応じたプログラムを実行する制御部(CPU)310と、通信に関連するデータ、撮像した映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである表示操作部320と、電源スイッチ等を含む操作部330と、アンテナ341を介して外部サーバー等との間の各種情報通信を実現するための無線通信部340と、携帯端末300のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)360と、制御部310によって実行される各種処理プログラムやデータ、処理データ、もしくは撮像装置100による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)370とを備えている。   The mobile terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging device 100 having a camera module 50, a control unit (CPU) 310 that performs overall control of each unit and executes a program corresponding to each process, and communication. Various operations between a display operation unit 320 that is a touch panel that displays data related to the image, captured video, and the like and receives a user operation, an operation unit 330 including a power switch, and an external server via the antenna 341 Executed by a wireless communication unit 340 for realizing information communication, a storage unit (ROM) 360 storing necessary data such as a system program, various processing programs, and a terminal ID of the mobile terminal 300, and the control unit 310 Various processing programs and data, processing data, or imaging data by the imaging device 100 Temporary storage unit used as a work area for temporarily storing data or the like and a (RAM) 370.

撮像装置100は、既に説明したカメラモジュール50のほかに、制御部103、光学系駆動部105、撮像素子駆動部107、画像メモリー108等を備える。   In addition to the camera module 50 described above, the imaging apparatus 100 includes a control unit 103, an optical system driving unit 105, an imaging element driving unit 107, an image memory 108, and the like.

制御部103は、撮像装置100の各部を制御する。制御部103は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、ROMから読み出されてRAMに展開された各種プログラムとCPUとの協働によって各種処理を実行する。なお、制御部310は、撮像装置100の制御部103と通信可能に接続されており、制御信号や画像データの授受が可能になっている。   The control unit 103 controls each unit of the imaging device 100. The control unit 103 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs are read out from the ROM and expanded in the RAM, in cooperation with the CPU. Execute the process. The control unit 310 is communicably connected to the control unit 103 of the imaging apparatus 100, and can exchange control signals and image data.

光学系駆動部105は、制御部103の制御により合焦、露出等を行う際に、撮像レンズ10の第1及び第2駆動機構55aを動作させて撮像レンズ10の状態を制御する。光学系駆動部105は、駆動機構55aを動作させて撮像レンズ10中の特定のレンズを光軸AXに沿って適宜移動させることにより、撮像レンズ10に合焦動作を行わせる。   The optical system driving unit 105 controls the state of the imaging lens 10 by operating the first and second driving mechanisms 55 a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the control unit 103. The optical system driving unit 105 operates the driving mechanism 55a to appropriately move a specific lens in the imaging lens 10 along the optical axis AX, thereby causing the imaging lens 10 to perform a focusing operation.

撮像素子駆動部107は、制御部103の制御により露出等を行う際に、撮像素子51の動作を制御する。具体的には、撮像素子駆動部107は、タイミング信号に基づいて撮像素子51を走査駆動させて制御する。また、撮像素子駆動部107は、撮像素子51から出力された検出信号又は光電変換信号としてのアナログ信号をデジタルの画像データに変換する。さらに、撮像素子駆動部107は、撮像素子51によって検出された画像信号に対して、歪み補正、色補正、圧縮等の各種画像処理を施すことができる。   The image sensor drive unit 107 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control unit 103. Specifically, the image sensor drive unit 107 controls the image sensor 51 by scanning and driving based on the timing signal. Further, the image sensor driving unit 107 converts the detection signal output from the image sensor 51 or an analog signal as a photoelectric conversion signal into digital image data. Further, the image sensor driving unit 107 can perform various image processing such as distortion correction, color correction, and compression on the image signal detected by the image sensor 51.

画像メモリー108は、デジタル化された画像信号を撮像素子駆動部107から受け取って、読み出し及び書き込み可能な画像データとして記憶する。   The image memory 108 receives the digitized image signal from the image sensor driving unit 107 and stores it as readable and writable image data.

ここで、上記撮像装置100を含む携帯端末300の撮影動作を説明する。携帯端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、撮像レンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1参照)に結像される。撮像素子51は、撮像素子駆動部107によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分出力する。   Here, the photographing operation of the mobile terminal 300 including the imaging device 100 will be described. When the camera mode in which the mobile terminal 300 is operated as a camera is set, subject monitoring (through image display) and image shooting execution are performed. In monitoring, an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51. The image sensor 51 is scanned and driven by the image sensor driving unit 107, and outputs an analog signal for one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.

このアナログ信号は、撮像素子51に付属する回路においてRGBの各原色成分毎に適宜ゲイン調整された後に、デジタルデータに変換される。そのデジタルデータは、画素補間処理及びY補正処理を含むカラープロセス処理が行われて、デジタル値の輝度信号Y及び色差信号Cb,Cr(画像データ)が生成されて画像メモリー108に格納される。格納されたデジタルデータは、画像メモリー108から定期的に読み出されてそのビデオ信号が生成されて、制御部103及び制御部310を介して、表示操作部320に出力される。   This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51. The digital data is subjected to color process processing including pixel interpolation processing and Y correction processing, and a digital luminance signal Y and color difference signals Cb, Cr (image data) are generated and stored in the image memory 108. The stored digital data is periodically read out from the image memory 108 to generate a video signal thereof, and is output to the display operation unit 320 via the control unit 103 and the control unit 310.

この表示操作部320は、モニタリングにおいてはファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部320を介して行う操作入力に基づいて、光学系駆動部105の駆動により撮像レンズ10の合焦、露出等が設定される。   The display operation unit 320 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 105 based on an operation input performed by the user via the display operation unit 320 at any time.

このようなモニタリング状態において、ユーザーが表示操作部320を適宜操作することにより、静止画像データが撮影される。表示操作部320の操作内容に応じて、画像メモリー108に格納された1コマの画像データが読み出されて、撮像素子駆動部107により圧縮される。その圧縮された画像データは、制御部103及び制御部310を介して、例えばRAM370等に記録される。   In such a monitoring state, when the user appropriately operates the display operation unit 320, still image data is captured. One frame of image data stored in the image memory 108 is read in accordance with the operation content of the display operation unit 320, and compressed by the image sensor driving unit 107. The compressed image data is recorded in the RAM 370, for example, via the control unit 103 and the control unit 310.

なお、上述の撮像装置100は、本発明に好適な撮像装置の一例であり、本発明は、これに限定されるものではない。   The above-described imaging apparatus 100 is an example of an imaging apparatus suitable for the present invention, and the present invention is not limited to this.

すなわち、カメラモジュール50又は撮像レンズ10を搭載した撮像装置は、スマートフォン型の携帯端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるであってもよい。   That is, the imaging device equipped with the camera module 50 or the imaging lens 10 is not limited to being built in the smartphone-type mobile terminal 300, but may be built into a mobile phone, a PHS (Personal Handyphone System), or the like. Of course, it may be incorporated in a PDA (Personal Digital Assistant), a tablet personal computer, a mobile personal computer, a digital still camera, a video camera, or the like.

以下、図1等に戻って、本発明の一実施形態である撮像レンズ10について詳細に説明する。図1に示す撮像レンズ10は、撮像素子51の撮像面(被投影面)Iに被写体像を結像させるものであって、物体側から順に、物体側に凸面を向けた正の第1レンズL1と、光軸AX近傍で負の第2レンズL2と、第3レンズL3と、第4レンズL4と、像側に凹面を向けた負の第5レンズL5とを備える。上記撮像レンズ10において、第5レンズL5の像側面S52は、非球面で有効径内に変曲点Pを持つ。また、第2レンズL2は、物体側面S21の曲率半径の絶対値よりも像側面S22の曲率半径の絶対値の方が小さい。第2レンズL2の像側面S22は、上端の有効径位置で像側に傾いている。第3レンズL3の像側面S32は、非球面形状を有し、変曲点Pを持ち、上端の有効径位置で像側に傾いている。第4レンズL4の物体側面S41は、非球面形状を有する。撮像レンズ10は、第3レンズL3より物体側に開口絞りASを有し、開口絞りASは、図示の例では第1レンズL1より物体側に配置されている。撮像レンズ10は、第3レンズL3と第4レンズL4との間に第3遮光絞りFS3を有し、第4レンズL4と第5レンズL5との間に第4遮光絞りFS4を有し、図示の例では第1レンズL1と第2レンズL2との間に第1遮光絞りFS1を有し、第2レンズL2と第3レンズL3との間に第2遮光絞りFS2を有する。なお、本実施形態において、第2レンズL2を負レンズとしたが、第3レンズL3を負レンズとしてもよいし、第2及び第3レンズL2,L3をともに負レンズとしてもよい。いずれの場合においても、第3レンズL3の有効径の7割以上の一部もしくは全体が負のパワーを持つ。   Hereinafter, returning to FIG. 1 and the like, the imaging lens 10 according to an embodiment of the present invention will be described in detail. An imaging lens 10 shown in FIG. 1 forms a subject image on an imaging surface (projected surface) I of an imaging device 51, and is a positive first lens with a convex surface facing the object side in order from the object side. L1, a negative second lens L2 near the optical axis AX, a third lens L3, a fourth lens L4, and a negative fifth lens L5 having a concave surface facing the image side. In the imaging lens 10, the image side surface S52 of the fifth lens L5 is aspheric and has an inflection point P within the effective diameter. In the second lens L2, the absolute value of the curvature radius of the image side surface S22 is smaller than the absolute value of the curvature radius of the object side surface S21. The image side surface S22 of the second lens L2 is inclined toward the image side at the effective diameter position at the upper end. The image side surface S32 of the third lens L3 has an aspherical shape, has an inflection point P, and is inclined toward the image side at the effective diameter position of the upper end. The object side surface S41 of the fourth lens L4 has an aspheric shape. The imaging lens 10 has an aperture stop AS on the object side of the third lens L3, and the aperture stop AS is disposed on the object side of the first lens L1 in the illustrated example. The imaging lens 10 has a third light shielding stop FS3 between the third lens L3 and the fourth lens L4, and has a fourth light shielding stop FS4 between the fourth lens L4 and the fifth lens L5. In the example, the first light-shielding stop FS1 is provided between the first lens L1 and the second lens L2, and the second light-shielding stop FS2 is provided between the second lens L2 and the third lens L3. In the present embodiment, the second lens L2 is a negative lens, but the third lens L3 may be a negative lens, or both the second and third lenses L2 and L3 may be negative lenses. In any case, a part or all of 70% or more of the effective diameter of the third lens L3 has negative power.

上記撮像レンズ10によれば、第1レンズL1の物体側面S11が凸であり、光学全長の短縮に有利になる。また、第2レンズL2に負レンズを配置することで、色収差の補正効果を高めることができる。さらに、第5レンズL5の像側面S52を凹とすることで、AF機構などを配置するのに必要な所望のバックフォーカスを確保することが容易となる。さらに、第5レンズL5の像側面S52を有効径内に変曲点Pを持った非球面とすることで、周辺像高の光線LAが像面へ入射する際の入射角を小さく抑えることができ、撮像素子51を用いた場合の撮像面Iにおける受光効率を向上させることができる。開口絞りASを第3レンズL3よりも物体側(より望ましくは第2レンズL2よりも物体側)に配置することで、射出瞳を像面から遠ざけることができるため、撮像面Iへの入射角を小さく抑えることができる。
また、上記撮像レンズ10では、第3及び第4レンズL3,L4間と第4及び第5レンズL4,L5間とに遮光絞りFS3,FS4を配置すること等により、迷光を回避している。また、第3レンズL3の像側面S32が点線と交差する有効径位置で像側に傾くことで、最大像高に結像する光線束の周縁光線が第3レンズL3の像側面S32で跳ね上げられるため、第3レンズL3の通過後の光線に光軸AXに対し大きな角度を持たせることが容易になり、低背化に有利になる。
According to the imaging lens 10, the object side surface S11 of the first lens L1 is convex, which is advantageous for shortening the optical total length. Further, by arranging a negative lens in the second lens L2, the effect of correcting chromatic aberration can be enhanced. Furthermore, by making the image side surface S52 of the fifth lens L5 concave, it becomes easy to secure a desired back focus necessary for arranging the AF mechanism and the like. Further, by making the image side surface S52 of the fifth lens L5 an aspherical surface having the inflection point P within the effective diameter, the incident angle when the light beam LA having the peripheral image height is incident on the image plane can be suppressed to be small. In addition, the light receiving efficiency on the imaging surface I when the imaging element 51 is used can be improved. By arranging the aperture stop AS on the object side of the third lens L3 (more preferably on the object side of the second lens L2), the exit pupil can be moved away from the image plane. Can be kept small.
Further, in the imaging lens 10, stray light is avoided by arranging the light-shielding stops FS3 and FS4 between the third and fourth lenses L3 and L4 and between the fourth and fifth lenses L4 and L5. Further, when the image side surface S32 of the third lens L3 is tilted to the image side at the effective diameter position intersecting the dotted line, the peripheral ray of the light bundle formed at the maximum image height jumps up at the image side surface S32 of the third lens L3. Therefore, it becomes easy to give the light beam after passing through the third lens L3 a large angle with respect to the optical axis AX, which is advantageous in reducing the height.

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴に加えて、既に説明した条件式(1)
0.015<AS7/f<0.07 … (1)
を満足する。ただし、値AS7は、第4レンズL4の物体側面S41の非球面形状と第4レンズL4の物体側面S41の有効径位置及び中心点を結ぶ球面形状SP(図5参照)との最大乖離量(mm)であり、値fは、撮像レンズ10全系の焦点距離である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(1')を満たす。
0.02<AS7/f<0.05 … (1')
The imaging lens 10 of the present embodiment has the conditional expression (1) described above in addition to the characteristics of the image side surface of the third lens.
0.015 <AS7 / f <0.07 (1)
Satisfied. However, the value AS7 is the maximum deviation amount between the aspherical shape of the object side surface S41 of the fourth lens L4 and the spherical shape SP (see FIG. 5) connecting the effective diameter position and the center point of the object side surface S41 of the fourth lens L4. mm), and the value f is the focal length of the entire imaging lens 10 system.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (1 ′).
0.02 <AS7 / f <0.05 (1 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(2)
0.75<dΦ/dz<2.5 … (2)
を満足する。ただし、値dΦは、第4及び第5レンズL4,L5間の第4遮光絞りFS4の直径(内径)と第3及び第4レンズL3,L4間の第3遮光絞りFS3の直径(内径)との差であり、値dzは、第4及び第5レンズL4,L5間の第4遮光絞りFS4と第3及び第4レンズL3,L4間の第3遮光絞りFS3との間隔である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(2')を満たす。
0.90<dΦ/dz<2.0 … (2')
The imaging lens 10 of the present embodiment has the conditional expression (2) already described in addition to the characteristics of the image side surface of the third lens.
0.75 <dΦ / dz <2.5 (2)
Satisfied. However, the value dΦ is the diameter (inner diameter) of the fourth light shielding stop FS4 between the fourth and fifth lenses L4, L5 and the diameter (inner diameter) of the third light shielding stop FS3 between the third and fourth lenses L3, L4. The value dz is the distance between the fourth light-shielding stop FS4 between the fourth and fifth lenses L4 and L5 and the third light-shielding stop FS3 between the third and fourth lenses L3 and L4.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (2 ′).
0.90 <dΦ / dz <2.0 (2 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(3)
0.03<et6/f<0.10 … (3)
を満足する。ただし、値et6は、第3レンズL3の像側面S32の有効径位置と第4レンズL4の物体側面S41の有効径位置との光軸AX方向の間隔である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(3')を満たす。
0.05<et6/f<0.08 … (3')
The imaging lens 10 of the present embodiment has the conditional expression (3) already described in addition to the characteristics of the image side surface of the third lens.
0.03 <et6 / f <0.10 (3)
Satisfied. However, the value et6 is the distance in the optical axis AX direction between the effective diameter position of the image side surface S32 of the third lens L3 and the effective diameter position of the object side surface S41 of the fourth lens L4.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (3 ′).
0.05 <et6 / f <0.08 (3 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(4)
40<θS7<80 … (4)
を満足する。ただし、値θS7は、第4レンズL4の物体側面S41の有効径の7割以上における最大面角度(°)である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(4')を満たす。
50<θS7<75 … (4')
The imaging lens 10 of the present embodiment has the conditional expression (4) already described in addition to the characteristics of the image side surface of the third lens.
40 <θS7 <80 (4)
Satisfied. However, the value θS7 is the maximum surface angle (°) at 70% or more of the effective diameter of the object side surface S41 of the fourth lens L4.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (4 ′).
50 <θS7 <75 (4 ′)

ここで、レンズの光学面に真空蒸着法にて反射防止膜を施す場合、面角度が大きい箇所において膜厚が薄く成膜されてしまう現象が一般に知られている。膜厚が薄くなると設計膜厚の場合に比べ、透過率波長特性が短波長側にシフトしてしまうため、反射防止の効果を狙った波長帯の長波長側の光の反射率が上がってしまう。従って、条件式(4)を満足するように、第4レンズL4の物体側面S41の有効径における面角度が大きいと、前記現象が起こりレンズ周辺部において狙った透過率波長特性が得られない。そのため、第4レンズL4の物体側面S41の反射防止膜のみ、撮像レンズ10の他の光学面の反射防止膜とは異なる設計とする場合がある。例えば、第4レンズL4の物体側面S41の反射防止膜は、光軸AXと成す角度θが0度で入射する光の反射率が波長帯420〜750nmの範囲内で1.5%以下となるように、厚さを設定し、その他の光学面の反射防止膜は光軸AXと成す角度θが0度で入射する光の反射率が波長帯420〜650nmの範囲内で1%以下となるような設計とする。   Here, when an antireflection film is applied to the optical surface of a lens by a vacuum vapor deposition method, it is generally known that a thin film is formed at a location where the surface angle is large. When the film thickness is reduced, the transmittance wavelength characteristic shifts to the short wavelength side as compared with the case of the designed film thickness, so that the reflectance of light on the long wavelength side of the wavelength band aiming at the antireflection effect increases. . Therefore, if the surface angle at the effective diameter of the object side surface S41 of the fourth lens L4 is large so as to satisfy the conditional expression (4), the above phenomenon occurs and the transmittance wavelength characteristic aimed at the periphery of the lens cannot be obtained. Therefore, only the antireflection film on the object side surface S41 of the fourth lens L4 may be designed differently from the antireflection film on the other optical surfaces of the imaging lens 10. For example, the antireflection film on the object side surface S41 of the fourth lens L4 has a reflectance of 1.5% or less in the wavelength band of 420 to 750 nm when the angle θ formed with the optical axis AX is 0 degrees. Thus, the thickness is set, and the antireflection film of the other optical surface is 1% or less in the wavelength band of 420 to 650 nm in the incident light when the angle θ formed with the optical axis AX is 0 degree. Design as follows.

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(5)
|Sag6|/f<0.10 … (5)
を満足する。ただし、値|Sag6|は、第3レンズL3の像側面S32のサグ量最大値である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(5')を満たす。
|Sag6|/f<0.05 … (5')
The imaging lens 10 of the present embodiment has the conditional expression (5) already described in addition to the characteristics of the image side surface of the third lens.
| Sag6 | / f <0.10 (5)
Satisfied. However, the value | Sag6 | is the maximum sag amount of the image side surface S32 of the third lens L3.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (5 ′).
| Sag6 | / f <0.05 (5 ')

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(6)
−15<θS6<15 … (6)
を満足する。ただし、値θS6は、第3レンズL3の像側面S32の有効径の9割以上における最大面角度(°)である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(6')を満たす。
−10<θS6<10 … (6')
The imaging lens 10 of the present embodiment has the conditional expression (6) described above in addition to the characteristics of the image side surface of the third lens.
−15 <θS6 <15 (6)
Satisfied. However, the value θS6 is the maximum surface angle (°) at 90% or more of the effective diameter of the image side surface S32 of the third lens L3.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (6 ′).
−10 <θS6 <10 (6 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(7)
0.65<Sag7/d7<1.50 … (7)
満足する。ただし、値Sag7は、第4レンズL4の物体側面S41のサグ量最大値であり、値d7は、第4レンズL4の中心厚である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(7')を満たす。
0.75<Sag7/d7<1.30 … (7')
The imaging lens 10 of the present embodiment has the conditional expression (7) already described in addition to the characteristics of the image side surface of the third lens.
0.65 <Sag7 / d7 <1.50 (7)
Satisfied. However, the value Sag7 is the maximum sag amount of the object side surface S41 of the fourth lens L4, and the value d7 is the center thickness of the fourth lens L4.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (7 ′).
0.75 <Sag7 / d7 <1.30 (7 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(8)
0.45<θr6/θr4<1.00 … (8)
を満足する。ただし、値θr4は、第2レンズL2の像側面S22における対角像高光束の光軸AXから遠い側の周縁光線LA2の屈折角であり、値θr6は、第3レンズL3の像側面S32における対角像高光束の光軸AXから遠い側の周縁光線LA2の屈折角である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(8')を満たす。
0.50<θr6/θr4<0.90 … (8')
The imaging lens 10 of the present embodiment has the conditional expression (8) already described in addition to the characteristics of the image side surface of the third lens.
0.45 <θr6 / θr4 <1.00 (8)
Satisfied. However, the value θr4 is the refraction angle of the peripheral ray LA2 farther from the optical axis AX of the diagonal image high light beam at the image side surface S22 of the second lens L2, and the value θr6 is at the image side surface S32 of the third lens L3. This is the refraction angle of the peripheral ray LA2 on the side farther from the optical axis AX of the diagonal image high luminous flux.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (8 ′).
0.50 <θr6 / θr4 <0.90 (8 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(9)
0.05<et8/f<0.20 … (9)
を満足する。ただし、値et8は、第4レンズL4の像側面S42の有効径位置と第5レンズL5の物体側面S51の有効径位置との光軸AX方向の間隔である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(9')を満たす。
0.07<et8/f<0.15 … (9')
The imaging lens 10 of the present embodiment has the conditional expression (9) already described in addition to the characteristics of the image side surface of the third lens.
0.05 <et8 / f <0.20 (9)
Satisfied. However, the value et8 is the distance in the optical axis AX direction between the effective diameter position of the image side surface S42 of the fourth lens L4 and the effective diameter position of the object side surface S51 of the fifth lens L5.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (9 ′).
0.07 <et8 / f <0.15 (9 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(10)
45<v5<70 … (10)
を満足する。ただし、値v5は、第5レンズL5のアッベ数である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(10')を満たす。
50<v5<60 … (10')
The imaging lens 10 of the present embodiment has the conditional expression (10) described above in addition to the characteristics of the image side surface of the third lens.
45 <v5 <70 (10)
Satisfied. However, the value v5 is the Abbe number of the fifth lens L5.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (10 ′).
50 <v5 <60 (10 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(11)
1.45<n1<1.65 … (11)
を満足する。ただし、値n1は、第1レンズL1の屈折率である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(11')を満たす。
1.50<n1<1.60 … (11')
The imaging lens 10 of the present embodiment has the conditional expression (11) already described in addition to the characteristics of the image side surface of the third lens.
1.45 <n1 <1.65 (11)
Satisfied. However, the value n1 is the refractive index of the first lens L1.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (11 ′).
1.50 <n1 <1.60 (11 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(12)
15<v2<30 … (12)
を満足する。ただし、値v2は、第2レンズL2のアッベ数である。
なお、本実施形態の撮像レンズ10は、より好ましくは、下記の条件式(12')を満たす。
20<v2<25 … (12')
The imaging lens 10 of the present embodiment has the conditional expression (12) already described in addition to the characteristics of the image side surface of the third lens.
15 <v2 <30 (12)
Satisfied. However, the value v2 is the Abbe number of the second lens L2.
Note that the imaging lens 10 of the present embodiment more preferably satisfies the following conditional expression (12 ′).
20 <v2 <25 (12 ′)

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(13)
−0.2<f/f4<2.0 … (13)
を満足する。ただし、値f4は、第4レンズL4の焦点距離である。
The imaging lens 10 of the present embodiment has the conditional expression (13) described above in addition to the characteristics of the image side surface of the third lens.
-0.2 <f / f4 <2.0 (13)
Satisfied. However, the value f4 is the focal length of the fourth lens L4.

本実施形態の撮像レンズ10は、上記第3レンズの像側面の特徴等に加えて、既に説明した条件式(14)
1.1<f123/f<1.7 … (14)
を満足する。ただし、値f123は、第1レンズL1から第3レンズL3までの合成焦点距離である。
The imaging lens 10 of the present embodiment has the conditional expression (14) already described in addition to the characteristics of the image side surface of the third lens.
1.1 <f123 / f <1.7 (14)
Satisfied. However, the value f123 is the combined focal length from the first lens L1 to the third lens L3.

本実施形態の撮像レンズ10では、特に図示していないが、実質的にパワーを持たないレンズをさらに備えるものとできる。   In the imaging lens 10 of the present embodiment, although not particularly illustrated, a lens having substantially no power can be further provided.

〔実施例〕
以下、本発明に係る撮像レンズの具体的な実施例について説明する。各実施例において、rは曲率半径を意味し、dは軸上面間隔を意味し、ndはレンズ材料のd線に対する屈折率を意味し、vdはレンズ材料のアッベ数を意味し、「eff.dia.」は有効径を意味する。また、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸AX方向にX軸をとり、光軸AXと垂直方向の高さをhとして以下の「数1」で表す。

Figure 2014153577
ただし、
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
さらに、各実施例において、「STO」は開口絞りASを意味し、「FS」は遮光絞りFS1〜FS4を意味する。「OBJ」は物体面であり、「IMG」は撮像面又は像面である。
なお、各実施例の撮像レンズが前提とする使用基本波長は587.56nmであり、曲率半径等の面形状の単位はmmである。 〔Example〕
Hereinafter, specific examples of the imaging lens according to the present invention will be described. In each embodiment, r represents the radius of curvature, d represents the axial top surface spacing, nd represents the refractive index of the lens material with respect to the d-line, vd represents the Abbe number of the lens material, “eff. “dia.” means an effective diameter. In addition, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin, the X axis in the optical axis AX direction, The height in the direction perpendicular to the axis AX is represented by “Equation 1” below.
Figure 2014153577
However,
Ai: i-order aspherical coefficient R: radius of curvature K: conical constant Further, in each embodiment, “STO” means the aperture stop AS, and “FS” means the light-shielding stops FS1 to FS4. “OBJ” is an object plane, and “IMG” is an imaging plane or an image plane.
In addition, the use fundamental wavelength which the imaging lens of each Example presupposes is 587.56 nm, and the unit of surface shape, such as a curvature radius, is mm.

〔実施例1〕
実施例1のレンズ面のデータを以下の表1に示す。
〔表1〕
面番号 r d nd vd eff. dia.
OBJ INFINITY 1e+020
STO INFINITY 0.0471 1.304
2 INFINITY -0.2200 1.304
3* 1.0985 0.3720 1.54470 56.15 1.326
4* 69.6947 0.0470 1.325
5 FS INFINITY 0.0000 1.324
6* 4.8325 0.1410 1.64200 21.99 1.321
7* 1.5004 0.2200 1.319
8 FS INFINITY 0.0840 1.424
9* 34.0952 0.3780 1.54470 56.15 1.533
10* -20.4924 -0.0300 1.765
11 FS INFINITY 0.3980 2.040
12* -14.0939 0.3960 1.54470 56.15 2.223
13* -0.8148 -0.3300 2.662
14 FS INFINITY 0.5280 3.200
15* -4.9217 0.2370 1.54470 56.15 3.659
16* 0.8510 0.3800 3.742
17 INFINITY 0.1100 1.51633 64.14 4.288
18 INFINITY 0.2950 4.344
IMG INFINITY 0.0000
[Example 1]
The lens surface data of Example 1 is shown in Table 1 below.
[Table 1]
Surface number rd nd vd eff.dia.
OBJ INFINITY 1e + 020
STO INFINITY 0.0471 1.304
2 INFINITY -0.2200 1.304
3 * 1.0985 0.3720 1.54470 56.15 1.326
4 * 69.6947 0.0470 1.325
5 FS INFINITY 0.0000 1.324
6 * 4.8325 0.1410 1.64200 21.99 1.321
7 * 1.5004 0.2200 1.319
8 FS INFINITY 0.0840 1.424
9 * 34.0952 0.3780 1.54470 56.15 1.533
10 * -20.4924 -0.0300 1.765
11 FS INFINITY 0.3980 2.040
12 * -14.0939 0.3960 1.54470 56.15 2.223
13 * -0.8148 -0.3300 2.662
14 FS INFINITY 0.5280 3.200
15 * -4.9217 0.2370 1.54470 56.15 3.659
16 * 0.8510 0.3800 3.742
17 INFINITY 0.1100 1.51633 64.14 4.288
18 INFINITY 0.2950 4.344
IMG INFINITY 0.0000

実施例1のレンズ面の非球面係数を以下の表2に示す。
〔表2〕
第3面
K=7.84081e-002, A4=9.93435e-003, A6=5.02035e-002, A8=-1.94121e-002,
A10=2.45608e-001, A12=3.53437e-001, A14=-1.31664e+000
第4面
K=-8.00000e+001, A4=7.85845e-002, A6=2.06196e-001, A8=4.53534e-002,
A10=-1.38523e+000, A12=-1.49706e+000, A14=3.20190e+000
第6面
K=-1.53489e+001, A4=-7.82755e-002, A6=7.62915e-001, A8=-9.32301e-001,
A10=-2.11519e+000, A12=-4.62527e-001, A14=5.13072e+000
第7面
K=-9.25340e+000, A3=-9.17026e-003, A4=2.41073e-001, A5=-2.55538e-003,
A6=3.25291e-001, A8=-1.95887e-001, A10=-5.22547e-001, A12=-1.44253e+000,
A14=6.01197e+000
第9面
K=7.96983e+001, A3=2.20811e-002, A4=-3.47438e-001, A5=6.77792e-003,
A6=3.36281e-001, A8=-6.74153e-001, A10=6.01068e-002, A12=3.07337e+000,
A14=-2.20975e+000
第10面
K=0.00000e+000, A3=-2.08223e-002, A4=-2.00238e-001, A5=-4.57015e-003,
A6=-1.47530e-001, A8=7.91072e-002, A10=1.57376e-001, A12=-4.74293e-001,
A14=7.31079e-001
第12面
K=6.56470e+001, A3=5.38590e-002, A4=-2.78523e-001, A5=2.38887e-001,
A6=4.62587e-002, A8=-3.31257e-001, A10=2.03204e-001, A12=-1.31271e-001,
A14=5.80562e-002
第13面
K=-6.13979e+000, A3=-9.78081e-002, A4=-2.61925e-001, A5=2.29911e-001,
A6=3.46688e-001, A8=-2.90986e-001, A10=-3.60164e-002, A12=1.04591e-001,
A14=-3.00530e-002
第15面
K=-2.13485e+000, A3=-3.35603e-001, A4=1.07428e-001, A5=5.73446e-002,
A6=3.17956e-002, A8=-1.41488e-002, A10=-2.24613e-003, A12=1.25247e-003,
A14=-1.13676e-004
第16面
K=-8.28042e+000, A3=-1.88368e-001, A4=1.28782e-002, A5=3.66406e-002,
A6=-2.03155e-003, A8=-1.19453e-002, A10=2.47955e-003, A12=-3.84405e-004,
A14=9.81768e-005
なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10−002)を、e(たとえば2.5e−002)を用いて表すものとする。
The aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below.
[Table 2]
Third side
K = 7.84081e-002, A4 = 9.93435e-003, A6 = 5.02035e-002, A8 = -1.94121e-002,
A10 = 2.45608e-001, A12 = 3.53437e-001, A14 = -1.31664e + 000
4th page
K = -8.00000e + 001, A4 = 7.85845e-002, A6 = 2.06196e-001, A8 = 4.53534e-002,
A10 = -1.38523e + 000, A12 = -1.49706e + 000, A14 = 3.20190e + 000
6th page
K = -1.53489e + 001, A4 = -7.82755e-002, A6 = 7.62915e-001, A8 = -9.32301e-001,
A10 = -2.11519e + 000, A12 = -4.62527e-001, A14 = 5.13072e + 000
7th page
K = -9.25340e + 000, A3 = -9.17026e-003, A4 = 2.41073e-001, A5 = -2.55538e-003,
A6 = 3.25291e-001, A8 = -1.95887e-001, A10 = -5.22547e-001, A12 = -1.44253e + 000,
A14 = 6.01197e + 000
9th page
K = 7.96983e + 001, A3 = 2.20811e-002, A4 = -3.47438e-001, A5 = 6.77792e-003,
A6 = 3.36281e-001, A8 = -6.74153e-001, A10 = 6.01068e-002, A12 = 3.07337e + 000,
A14 = -2.20975e + 000
10th page
K = 0.00000e + 000, A3 = -2.08223e-002, A4 = -2.00238e-001, A5 = -4.57015e-003,
A6 = -1.47530e-001, A8 = 7.91072e-002, A10 = 1.57376e-001, A12 = -4.74293e-001,
A14 = 7.31079e-001
12th page
K = 6.56470e + 001, A3 = 5.38590e-002, A4 = -2.78523e-001, A5 = 2.38887e-001,
A6 = 4.62587e-002, A8 = -3.31257e-001, A10 = 2.03204e-001, A12 = -1.31271e-001,
A14 = 5.80562e-002
Side 13
K = -6.13979e + 000, A3 = -9.78081e-002, A4 = -2.61925e-001, A5 = 2.29911e-001,
A6 = 3.46688e-001, A8 = -2.90986e-001, A10 = -3.60164e-002, A12 = 1.04591e-001,
A14 = -3.00530e-002
15th page
K = -2.13485e + 000, A3 = -3.35603e-001, A4 = 1.07428e-001, A5 = 5.73446e-002,
A6 = 3.17956e-002, A8 = -1.41488e-002, A10 = -2.24613e-003, A12 = 1.25247e-003,
A14 = -1.13676e-004
16th page
K = -8.28042e + 000, A3 = -1.88368e-001, A4 = 1.28782e-002, A5 = 3.66406e-002,
A6 = -2.03155e-003, A8 = -1.19453e-002, A10 = 2.47955e-003, A12 = -3.84405e-004,
A14 = 9.81768e-005
In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −002 ) is expressed using e (for example, 2.5e−002).

実施例1の撮像レンズの特性を以下に列挙する。
FL 2.719
Fno 1.96
w 80.42
Ymax 2.295
BF 0.624
TL 3.189
ここで、FLは撮像レンズ全系の焦点距離を意味し、FnoはFナンバーを意味し、wは対角線画角を意味し、Ymaxは撮像素子の撮像面対角線長の半値を意味し、BFはバックフォーカスを意味し、TLは系全長を意味する。なお、以上の符号は、これ以降の実施例でも同様の意味を有するものとする。
The characteristics of the imaging lens of Example 1 are listed below.
FL 2.719
Fno 1.96
w 80.42
Ymax 2.295
BF 0.624
TL 3.189
Here, FL means the focal length of the entire imaging lens system, Fno means the F number, w means the diagonal field angle, Ymax means the half value of the diagonal length of the imaging surface of the imaging device, and BF means This means back focus, and TL means the total length of the system. In addition, the above code | symbol shall have the same meaning also in the subsequent Examples.

実施例1の単レンズデータを以下の表3に示す。
〔表3〕
Elem Surfs Focal Length Diameter
1 3- 4 2.0451 1.326
2 6- 7 -3.4465 1.321
3 9-10 23.5557 1.765
4 12-13 1.5711 2.662
5 15-16 -1.3130 3.742
The single lens data of Example 1 is shown in Table 3 below.
[Table 3]
Elem Surfs Focal Length Diameter
1 3- 4 2.0451 1.326
2 6- 7 -3.4465 1.321
3 9-10 23.5557 1.765
4 12-13 1.5711 2.662
5 15-16 -1.3130 3.742

図6は、実施例1の撮像レンズ15等の断面図である。撮像レンズ15は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた凸平に近いメニスカスの第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有する両凸の第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5とを備える。全てのレンズL1〜L5は、プラスチック材料から形成されている。第1レンズL1外縁の物体側には、開口絞りASが配置され、レンズL1〜L5の間には、遮光絞りFS1〜FS4が配置されている。なお、第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 6 is a cross-sectional view of the imaging lens 15 and the like of the first embodiment. The imaging lens 15 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and having a convex surface facing the object side, and a negative refractive power around the optical axis AX. A second meniscus lens L2 having a convex surface facing the object side, a biconvex third lens L3 having a weak positive refractive power around the optical axis AX, and a positive refractive power around the optical axis AX. And a meniscus fourth lens L4 having a convex surface facing the image side, and a biconcave fifth lens L5 having negative refractive power around the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop AS is disposed on the object side of the outer edge of the first lens L1, and light-shielding stops FS1 to FS4 are disposed between the lenses L1 to L5. A parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図7(A)〜7(C)は、実施例1の撮像レンズ15の諸収差図(球面収差、非点収差、歪曲収差)を示し、図7(D)及び7(E)は、実施例1の撮像レンズ15のメリディオナルコマ収差を示している。   7A to 7C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 15 of Example 1, and FIG. 7D and FIG. 3 shows meridional coma aberration of the imaging lens 15 of Example 1. FIG.

〔実施例2〕
実施例2のレンズ面のデータを以下の表4に示す。
〔表4〕
面番号 r d nd vd eff. dia.
OBJ INFINITY 1e+020
1 INFINITY 0.0000 1.200
STO INFINITY -0.1800 1.200
3* 0.9815 0.3330 1.54470 55.99 1.201
4* 4.9212 0.0610 1.114
5 FS INFINITY 0.0000 1.088
6* 2.3711 0.1500 1.64000 22.99 1.101
7* 1.2489 0.1710 1.135
8 FS INFINITY 0.0300 1.254
9* 6.9716 0.2450 1.54470 55.99 1.298
10* -16.8430 0.0300 1.390
11 FS INFINITY 0.4570 1.502
12* -2.9160 0.4500 1.64000 22.99 1.653
13* -2.9933 -0.3000 2.386
14 FS INFINITY 0.3500 2.978
15* 1.4752 0.4850 1.54470 55.99 3.712
16* 0.9635 0.3790 3.940
17 INFINITY 0.1100 1.51600 64.09 4.298
18 INFINITY 0.3500 4.348
IMG INFINITY 0.0000
[Example 2]
The lens surface data of Example 2 is shown in Table 4 below.
[Table 4]
Surface number rd nd vd eff.dia.
OBJ INFINITY 1e + 020
1 INFINITY 0.0000 1.200
STO INFINITY -0.1800 1.200
3 * 0.9815 0.3330 1.54470 55.99 1.201
4 * 4.9212 0.0610 1.114
5 FS INFINITY 0.0000 1.088
6 * 2.3711 0.1500 1.64000 22.99 1.101
7 * 1.2489 0.1710 1.135
8 FS INFINITY 0.0300 1.254
9 * 6.9716 0.2450 1.54470 55.99 1.298
10 * -16.8430 0.0300 1.390
11 FS INFINITY 0.4570 1.502
12 * -2.9160 0.4500 1.64000 22.99 1.653
13 * -2.9933 -0.3000 2.386
14 FS INFINITY 0.3500 2.978
15 * 1.4752 0.4850 1.54470 55.99 3.712
16 * 0.9635 0.3790 3.940
17 INFINITY 0.1100 1.51600 64.09 4.298
18 INFINITY 0.3500 4.348
IMG INFINITY 0.0000

実施例2のレンズ面の非球面係数を以下の表5に示す。
〔表5〕
第3面
K=5.21930e-002, A4=-3.12446e-002, A6=3.77245e-001, A8=-1.28331e+000,
A10=2.29492e+000, A12=4.34645e-001, A14=-1.40784e+000
第4面
K=-8.00000e+001, A4=-3.03041e-001, A6=1.82539e+000, A8=-3.14746e+000,
A10=7.18971e-002, A12=8.20605e+000, A14=-1.02407e+001
第6面
K=-8.00000e+001, A4=-2.81974e-001, A6=1.72586e+000, A8=-1.44494e+000,
A10=-7.64125e+000, A12=1.77489e+001, A14=-1.73755e+001
第7面
K=-1.07676e+001, A4=3.25628e-002, A6=1.61839e+000, A8=-2.74931e+000,
A10=6.41592e+000, A12=-2.12222e+001, A14=3.13853e+001
第9面
K=3.72358e+000, A4=-3.29222e-001, A6=1.23503e-001, A8=1.80994e+000,
A10=-3.86685e+000, A12=6.22366e-001, A14=3.83345e+001, A16=-5.53900e+001
第10面
K=8.00000e+001, A4=-1.67761e-001, A6=-7.37376e-001, A8=3.11210e+000,
A10=-5.00410e+000, A12=1.86447e+000, A14=7.63368e+000
第12面
K=-1.70918e+001, A4=1.44682e-001, A6=-1.68005e+000, A8=5.69642e+000,
A10=-1.87443e+001, A12=3.58991e+001, A14=-3.83571e+001, A16=1.57268e+001
第13面
K=1.83911e+000, A4=-3.31564e-001, A6=1.92382e+000, A8=-5.69702e+000,
A10=8.90891e+000, A12=-8.02703e+000, A14=3.87798e+000, A16=-7.71205e-001
第15面
K=-3.97848e+001, A4=-3.59014e-001, A6=2.64856e-001, A8=-7.17287e-002,
A10=1.04882e-003, A12=3.70112e-003, A14=-7.69582e-004, A16=5.03311e-005
第16面
K=-7.28644e+000, A4=-2.23101e-001, A6=1.18034e-001, A8=-3.67353e-002,
A10=5.12364e-003, A12=1.18093e-004, A14=-6.68772e-005
The aspherical coefficient of the lens surface of Example 2 is shown in Table 5 below.
[Table 5]
Third side
K = 5.21930e-002, A4 = -3.12446e-002, A6 = 3.77245e-001, A8 = -1.28331e + 000,
A10 = 2.29492e + 000, A12 = 4.34645e-001, A14 = -1.40784e + 000
4th page
K = -8.00000e + 001, A4 = -3.03041e-001, A6 = 1.82539e + 000, A8 = -3.14746e + 000,
A10 = 7.18971e-002, A12 = 8.20605e + 000, A14 = -1.02407e + 001
6th page
K = -8.00000e + 001, A4 = -2.81974e-001, A6 = 1.72586e + 000, A8 = -1.44494e + 000,
A10 = -7.64125e + 000, A12 = 1.77489e + 001, A14 = -1.73755e + 001
7th page
K = -1.07676e + 001, A4 = 3.25628e-002, A6 = 1.61839e + 000, A8 = -2.74931e + 000,
A10 = 6.41592e + 000, A12 = -2.12222e + 001, A14 = 3.13853e + 001
9th page
K = 3.72358e + 000, A4 = -3.29222e-001, A6 = 1.23503e-001, A8 = 1.80994e + 000,
A10 = -3.86685e + 000, A12 = 6.22366e-001, A14 = 3.83345e + 001, A16 = -5.53900e + 001
10th page
K = 8.00000e + 001, A4 = -1.67761e-001, A6 = -7.37376e-001, A8 = 3.11210e + 000,
A10 = -5.00410e + 000, A12 = 1.86447e + 000, A14 = 7.63368e + 000
12th page
K = -1.70918e + 001, A4 = 1.44682e-001, A6 = -1.68005e + 000, A8 = 5.69642e + 000,
A10 = -1.87443e + 001, A12 = 3.58991e + 001, A14 = -3.83571e + 001, A16 = 1.57268e + 001
Side 13
K = 1.83911e + 000, A4 = -3.31564e-001, A6 = 1.92382e + 000, A8 = -5.69702e + 000,
A10 = 8.90891e + 000, A12 = -8.02703e + 000, A14 = 3.87798e + 000, A16 = -7.71205e-001
15th page
K = -3.97848e + 001, A4 = -3.59014e-001, A6 = 2.64856e-001, A8 = -7.17287e-002,
A10 = 1.04882e-003, A12 = 3.70112e-003, A14 = -7.69582e-004, A16 = 5.03311e-005
16th page
K = -7.28644e + 000, A4 = -2.23101e-001, A6 = 1.18034e-001, A8 = -3.67353e-002,
A10 = 5.12364e-003, A12 = 1.18093e-004, A14 = -6.68772e-005

実施例2の撮像レンズの特性を以下に列挙する。
FL 2.845
Fno 2.46
w 75.00
Ymax 2.299
BF 0.663
TL 3.264
The characteristics of the imaging lens of Example 2 are listed below.
FL 2.845
Fno 2.46
w 75.00
Ymax 2.299
BF 0.663
TL 3.264

実施例2の単レンズデータを以下の表6に示す。
〔表6〕
Elem Surfs Focal Length Diameter
1 3- 4 2.1856 1.201
2 6- 7 -4.3499 1.135
3 9-10 9.0851 1.390
4 12-13 138.7077 2.386
5 15-16 -7.6599 3.940
The single lens data of Example 2 is shown in Table 6 below.
[Table 6]
Elem Surfs Focal Length Diameter
1 3- 4 2.1856 1.201
2 6- 7 -4.3499 1.135
3 9-10 9.0851 1.390
4 12-13 138.7077 2.386
5 15-16 -7.6599 3.940

図8は、実施例2の撮像レンズ17等の断面図である。撮像レンズ17は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で正の屈折力を有する両凸の第3レンズL3と、光軸AX周辺で弱い正の屈折力を有し像側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5とを備える。全てのレンズL1〜L5は、プラスチック材料から形成されている。第1レンズL1外縁の物体側には、開口絞りASが配置され、レンズL1〜L5の間には、遮光絞りFS1〜FS4が配置されている。なお、第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 8 is a cross-sectional view of the imaging lens 17 and the like of the second embodiment. The imaging lens 17 includes, in order from the object side, a meniscus first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a negative refractive power around the optical axis AX. A second meniscus lens L2 having a convex surface facing the side, a biconvex third lens L3 having a positive refractive power around the optical axis AX, and a weak positive refractive power around the optical axis AX, on the image side A fourth meniscus lens L4 having a convex surface and a fifth meniscus lens L5 having a negative refractive power around the optical axis AX and having a convex surface facing the object side. All the lenses L1 to L5 are made of a plastic material. An aperture stop AS is disposed on the object side of the outer edge of the first lens L1, and light-shielding stops FS1 to FS4 are disposed between the lenses L1 to L5. A parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図9(A)〜9(C)は、実施例2の撮像レンズ17の諸収差図(球面収差、非点収差、歪曲収差)を示し、図9(D)及び9(E)は、実施例2の撮像レンズ17のメリディオナルコマ収差を示している。   9A to 9C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 17 of Example 2, and FIGS. 9D and 9E show the examples. The meridional coma aberration of the imaging lens 17 of Example 2 is shown.

〔実施例3〕
実施例3のレンズ面のデータを以下の表7に示す。
〔表7〕
面番号 r d nd vd eff. dia.
OBJ INFINITY 1e+020
1 INFINITY 0.0500 1.390
STO INFINITY -0.2193 1.390
3* 1.1800 0.4200 1.56300 57.51 1.469
4* 42.7721 0.0450 1.457
5 FS INFINITY 0.0050 1.460
6* 7.8610 0.1500 1.63469 23.86 1.436
7* 1.7182 0.2330 1.426
8 FS INFINITY 0.0800 1.522
9* 14.4840 0.3440 1.54470 56.15 1.601
10* -50.6611 -0.0200 1.805
11 FS INFINITY 0.4150 2.110
12* -8.4724 0.4430 1.54470 56.15 2.208
13* -0.8793 -0.3500 2.571
14 FS INFINITY 0.5730 3.350
15* -7.8062 0.2500 1.54470 56.15 3.225
16* 0.9205 0.4030 3.653
17 INFINITY 0.1100 1.51633 64.14 4.214
18 INFINITY 0.3170 4.270
IMG INFINITY 0.0000
Example 3
The lens surface data of Example 3 is shown in Table 7 below.
[Table 7]
Surface number rd nd vd eff.dia.
OBJ INFINITY 1e + 020
1 INFINITY 0.0500 1.390
STO INFINITY -0.2193 1.390
3 * 1.1800 0.4200 1.56300 57.51 1.469
4 * 42.7721 0.0450 1.457
5 FS INFINITY 0.0050 1.460
6 * 7.8610 0.1500 1.63469 23.86 1.436
7 * 1.7182 0.2330 1.426
8 FS INFINITY 0.0800 1.522
9 * 14.4840 0.3440 1.54470 56.15 1.601
10 * -50.6611 -0.0200 1.805
11 FS INFINITY 0.4150 2.110
12 * -8.4724 0.4430 1.54470 56.15 2.208
13 * -0.8793 -0.3500 2.571
14 FS INFINITY 0.5730 3.350
15 * -7.8062 0.2500 1.54470 56.15 3.225
16 * 0.9205 0.4030 3.653
17 INFINITY 0.1100 1.51633 64.14 4.214
18 INFINITY 0.3170 4.270
IMG INFINITY 0.0000

実施例3のレンズ面の非球面係数を以下の表8に示す。
〔表8〕
第3面
K=1.20295e-001, A4=6.16800e-003, A6=2.76128e-002, A8=-3.96066e-002,
A10=1.84881e-001, A12=3.57419e-001, A14=-8.81536e-001
第4面
K=-8.00000e+001, A4=5.55389e-002, A6=1.80024e-001, A8=4.46350e-003,
A10=-6.87161e-001, A12=-8.75790e-001, A14=8.08143e-001
第6面
K=1.32066e+001, A4=-4.95968e-002, A6=5.56985e-001, A8=-6.42766e-001,
A10=-1.16447e+000, A12=-4.63545e-001, A14=1.85764e+000
第7面
K=-1.07421e+001, A3=-1.05703e-002, A4=2.39385e-001, A5=-6.04010e-003,
A6=1.93047e-001, A8=-8.57504e-002, A10=-3.35227e-001, A12=-1.03234e+000,
A14=2.96635e+000
第9面
K=-7.97371e+001, A3=1.67912e-002, A4=-2.77390e-001, A5=1.92700e-002,
A6=1.69485e-001, A8=-3.02528e-001, A10=6.12083e-002, A12=1.37218e+000,
A14=-9.78111e-001
第10面
K=0.00000e+000, A3=-5.63340e-003, A4=-1.91253e-001, A5=1.64110e-003,
A6=-6.40458e-002, A8=-1.82102e-002, A10=8.73276e-002, A12=-1.21725e-001,
A14=2.96975e-001
第12面
K=2.29161e+001, A3=3.99084e-002, A4=-1.95641e-001, A5=1.86176e-001,
A6=-1.76248e-002, A8=-1.32199e-001, A10=1.87856e-002, A12=-1.86391e-002,
A14=2.32222e-002
第13面
K=-6.38388e+000, A3=-1.05440e-001, A4=-2.20541e-001, A5=2.04086e-001,
A6=2.31088e-001, A8=-2.05007e-001, A10=-2.63676e-004, A12=4.99831e-002,
A14=-1.46342e-002
第15面
K=-2.26757e+001, A3=-2.86183e-001, A4=5.81917e-002, A5=3.75230e-002,
A6=2.60152e-002, A8=-5.73625e-003, A10=-1.44745e-003, A12=3.59149e-004,
A14=-8.91027e-006
第16面
K=-8.30202e+000, A3=-1.52265e-001, A4=-1.20981e-003, A5=2.02348e-002,
A6=3.52404e-003, A8=-7.10145e-003, A10=1.12607e-003, A12=-1.67122e-004,
A14=4.35180e-005
The aspherical coefficients of the lens surfaces of Example 3 are shown in Table 8 below.
[Table 8]
Third side
K = 1.20295e-001, A4 = 6.16800e-003, A6 = 2.76128e-002, A8 = -3.96066e-002,
A10 = 1.84881e-001, A12 = 3.57419e-001, A14 = -8.81536e-001
4th page
K = -8.00000e + 001, A4 = 5.55389e-002, A6 = 1.80024e-001, A8 = 4.46350e-003,
A10 = -6.87161e-001, A12 = -8.75790e-001, A14 = 8.08143e-001
6th page
K = 1.32066e + 001, A4 = -4.95968e-002, A6 = 5.56985e-001, A8 = -6.42766e-001,
A10 = -1.16447e + 000, A12 = -4.63545e-001, A14 = 1.85764e + 000
7th page
K = -1.07421e + 001, A3 = -1.05703e-002, A4 = 2.39385e-001, A5 = -6.04010e-003,
A6 = 1.93047e-001, A8 = -8.57504e-002, A10 = -3.35227e-001, A12 = -1.03234e + 000,
A14 = 2.96635e + 000
9th page
K = -7.97371e + 001, A3 = 1.67912e-002, A4 = -2.77390e-001, A5 = 1.92700e-002,
A6 = 1.69485e-001, A8 = -3.02528e-001, A10 = 6.12083e-002, A12 = 1.37218e + 000,
A14 = -9.78111e-001
10th page
K = 0.00000e + 000, A3 = -5.63340e-003, A4 = -1.91253e-001, A5 = 1.64110e-003,
A6 = -6.40458e-002, A8 = -1.82102e-002, A10 = 8.73276e-002, A12 = -1.21725e-001,
A14 = 2.96975e-001
12th page
K = 2.29161e + 001, A3 = 3.99084e-002, A4 = -1.95641e-001, A5 = 1.86176e-001,
A6 = -1.76248e-002, A8 = -1.32199e-001, A10 = 1.87856e-002, A12 = -1.86391e-002,
A14 = 2.32222e-002
Side 13
K = -6.38388e + 000, A3 = -1.05440e-001, A4 = -2.20541e-001, A5 = 2.04086e-001,
A6 = 2.31088e-001, A8 = -2.05007e-001, A10 = -2.63676e-004, A12 = 4.99831e-002,
A14 = -1.46342e-002
15th page
K = -2.26757e + 001, A3 = -2.86183e-001, A4 = 5.81917e-002, A5 = 3.75230e-002,
A6 = 2.60152e-002, A8 = -5.73625e-003, A10 = -1.44745e-003, A12 = 3.59149e-004,
A14 = -8.91027e-006
16th page
K = -8.30202e + 000, A3 = -1.52265e-001, A4 = -1.20981e-003, A5 = 2.02348e-002,
A6 = 3.52404e-003, A8 = -7.10145e-003, A10 = 1.12607e-003, A12 = -1.67122e-004,
A14 = 4.35180e-005

実施例3の撮像レンズの特性を以下に列挙する。
FL 2.891
Fno 2.08
w 76.78
Ymax 2.293
BF 0.664
TL 3.381
The characteristics of the imaging lens of Example 3 are listed below.
FL 2.891
Fno 2.08
w 76.78
Ymax 2.293
BF 0.664
TL 3.381

実施例3の単レンズデータを以下の表9に示す。
〔表9〕
Elem Surfs Focal Length Diameter
1 3- 4 2.1476 1.469
2 6- 7 -3.4975 1.436
3 9-10 20.7173 1.805
4 12-13 1.7648 2.571
5 15-16 -1.4965 3.653
The single lens data of Example 3 is shown in Table 9 below.
[Table 9]
Elem Surfs Focal Length Diameter
1 3- 4 2.1476 1.469
2 6- 7 -3.4975 1.436
3 9-10 20.7173 1.805
4 12-13 1.7648 2.571
5 15-16 -1.4965 3.653

図10は、実施例3の撮像レンズ18等の断面図である。撮像レンズ18は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた凸平に近いメニスカスの第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有する凸平に近い両凸の第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5とを備える。全てのレンズL1〜L5は、プラスチック材料から形成されている。第1レンズL1外縁の物体側には、開口絞りASが配置され、レンズL1〜L5の間には、遮光絞りFS1〜FS4が配置されている。なお、第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 10 is a cross-sectional view of the imaging lens 18 and the like of the third embodiment. The imaging lens 18 includes, in order from the object side, a meniscus first lens L1 having a positive refractive power around the optical axis AX and having a convex surface facing the object side, and a negative refractive power around the optical axis AX. A second meniscus lens L2 having a convex surface facing the object side, a convexly biconvex third lens L3 having a weak positive refractive power around the optical axis AX, and a positive lens around the optical axis AX. A meniscus fourth lens L4 having a refractive power and having a convex surface facing the image side, and a biconcave fifth lens L5 having a negative refractive power around the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop AS is disposed on the object side of the outer edge of the first lens L1, and light-shielding stops FS1 to FS4 are disposed between the lenses L1 to L5. A parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図11(A)〜11(C)は、実施例3の撮像レンズ18の諸収差図(球面収差、非点収差、歪曲収差)を示し、図11(D)及び11(E)は、実施例3の撮像レンズ18のメリディオナルコマ収差を示している。   11A to 11C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 18 of Example 3, and FIGS. 11D and 11E show the examples. 6 shows meridional coma aberration of the imaging lens 18 of Example 3.

〔実施例4〕
実施例4のレンズ面のデータを以下の表10に示す。
〔表10〕
面番号 r d nd vd eff. dia.
OBJ INFINITY 1e+020
1 INFINITY 0.0500 1.464
STO INFINITY -0.2435 1.464
3* 1.2568 0.4040 1.54470 56.00 1.502
4* 8.0180 0.0700 1.491
5 FS INFINITY 0.0190 1.504
6* 6.6322 0.1500 1.63469 23.86 1.476
7* 2.2303 0.2000 1.538
8 FS INFINITY 0.0520 1.614
9* 9.8569 0.3470 1.54470 56.15 1.669
10* -96.1813 0.0000 1.797
11 FS INFINITY 0.3350 2.000
12* -18.8022 0.5390 1.54470 56.15 2.080
13* -0.8532 -0.3000 2.499
14 FS INFINITY 0.5120 3.428
15* -7.9875 0.2500 1.54470 56.15 3.108
16* 0.8801 0.2500 3.675
17 INFINITY 0.1100 1.51633 64.14 4.073
18 INFINITY 0.4850 4.134
IMG INFINITY 0.0000
Example 4
The lens surface data of Example 4 is shown in Table 10 below.
[Table 10]
Surface number rd nd vd eff.dia.
OBJ INFINITY 1e + 020
1 INFINITY 0.0500 1.464
STO INFINITY -0.2435 1.464
3 * 1.2568 0.4040 1.54470 56.00 1.502
4 * 8.0180 0.0700 1.491
5 FS INFINITY 0.0190 1.504
6 * 6.6322 0.1500 1.63469 23.86 1.476
7 * 2.2303 0.2000 1.538
8 FS INFINITY 0.0520 1.614
9 * 9.8569 0.3470 1.54470 56.15 1.669
10 * -96.1813 0.0000 1.797
11 FS INFINITY 0.3350 2.000
12 * -18.8022 0.5390 1.54470 56.15 2.080
13 * -0.8532 -0.3000 2.499
14 FS INFINITY 0.5120 3.428
15 * -7.9875 0.2500 1.54470 56.15 3.108
16 * 0.8801 0.2500 3.675
17 INFINITY 0.1100 1.51633 64.14 4.073
18 INFINITY 0.4850 4.134
IMG INFINITY 0.0000

実施例4のレンズ面の非球面係数を以下の表11に示す。
〔表11〕
第3面
K=2.02519e-001, A4=-4.12703e-003, A6=3.50029e-002, A8=-8.53752e-004,
A10=1.06591e-001, A12=1.88864e-001, A14=-3.63334e-001
第4面
K=1.07858e+001, A4=-2.23728e-002, A6=1.89132e-001, A8=1.21639e-001,
A10=-4.51691e-001, A12=-4.98517e-001, A14=-1.60631e-001
第6面
K=-7.02254e+001, A4=-1.10347e-001, A6=5.60675e-001, A8=-4.55026e-001,
A10=-1.06523e+000, A12=-4.97676e-001, A14=7.89701e-001
第7面
K=-2.57603e+001, A3=-3.72850e-003, A4=1.91204e-001, A5=-4.23794e-002,
A6=1.95713e-001, A8=-8.32246e-002, A10=-2.90752e-001, A12=-1.01859e+000,
A14=1.68623e+000
第9面
K=-7.16430e+001, A3=6.97586e-003, A4=-2.61556e-001, A5=6.10427e-002,
A6=1.68379e-001, A8=-4.23603e-001, A10=2.04512e-001, A12=1.97297e+000,
A14=-1.87145e+000
第10面
K=0.00000e+000, A3=-8.13216e-003, A4=-1.85193e-001, A5=-8.44559e-003,
A6=-6.86785e-002, A8=-2.90003e-003, A10=4.12544e-002, A12=-1.91061e-001,
A14=4.72884e-001
第12面
K=8.00000e+001, A3=4.82563e-002, A4=-2.25745e-001, A5=2.08621e-001,
A6=-2.87079e-002, A8=-1.89260e-001, A10=4.14664e-002, A12=1.97713e-002,
A14=-2.49444e-002
第13面
K=-6.28687e+000, A3=-9.87785e-002, A4=-2.32143e-001, A5=1.90900e-001,
A6=2.30808e-001, A8=-2.02504e-001, A10=-2.96206e-003, A12=4.86242e-002,
A14=-1.38078e-002
第15面
K=5.09168e+000, A3=-3.00349e-001, A4=5.94822e-002, A5=3.98436e-002,
A6=2.72056e-002, A8=-5.70579e-003, A10=-1.45576e-003, A12=3.67231e-004,
A14=-1.13945e-005
第16面
K=-8.02522e+000, A3=-1.48533e-001, A4=1.81488e-003, A5=2.19876e-002,
A6=2.72398e-003, A8=-7.00641e-003, A10=1.27333e-003, A12=-1.63098e-004,
A14=2.91955e-005
The aspheric coefficients of the lens surfaces of Example 4 are shown in Table 11 below.
[Table 11]
Third side
K = 2.02519e-001, A4 = -4.12703e-003, A6 = 3.50029e-002, A8 = -8.53752e-004,
A10 = 1.06591e-001, A12 = 1.88864e-001, A14 = -3.63334e-001
4th page
K = 1.07858e + 001, A4 = -2.23728e-002, A6 = 1.89132e-001, A8 = 1.21639e-001,
A10 = -4.51691e-001, A12 = -4.98517e-001, A14 = -1.60631e-001
6th page
K = -7.02254e + 001, A4 = -1.10347e-001, A6 = 5.60675e-001, A8 = -4.55026e-001,
A10 = -1.06523e + 000, A12 = -4.97676e-001, A14 = 7.89701e-001
7th page
K = -2.57603e + 001, A3 = -3.72850e-003, A4 = 1.91204e-001, A5 = -4.23794e-002,
A6 = 1.95713e-001, A8 = -8.32246e-002, A10 = -2.90752e-001, A12 = -1.01859e + 000,
A14 = 1.68623e + 000
9th page
K = -7.16430e + 001, A3 = 6.97586e-003, A4 = -2.61556e-001, A5 = 6.10427e-002,
A6 = 1.68379e-001, A8 = -4.23603e-001, A10 = 2.04512e-001, A12 = 1.97297e + 000,
A14 = -1.87145e + 000
10th page
K = 0.00000e + 000, A3 = -8.13216e-003, A4 = -1.85193e-001, A5 = -8.44559e-003,
A6 = -6.86785e-002, A8 = -2.90003e-003, A10 = 4.12544e-002, A12 = -1.91061e-001,
A14 = 4.72884e-001
12th page
K = 8.00000e + 001, A3 = 4.82563e-002, A4 = -2.25745e-001, A5 = 2.08621e-001,
A6 = -2.87079e-002, A8 = -1.89260e-001, A10 = 4.14664e-002, A12 = 1.97713e-002,
A14 = -2.49444e-002
Side 13
K = -6.28687e + 000, A3 = -9.87785e-002, A4 = -2.32143e-001, A5 = 1.90900e-001,
A6 = 2.30808e-001, A8 = -2.02504e-001, A10 = -2.96206e-003, A12 = 4.86242e-002,
A14 = -1.38078e-002
15th page
K = 5.09168e + 000, A3 = -3.00349e-001, A4 = 5.94822e-002, A5 = 3.98436e-002,
A6 = 2.72056e-002, A8 = -5.70579e-003, A10 = -1.45576e-003, A12 = 3.67231e-004,
A14 = -1.13945e-005
16th page
K = -8.02522e + 000, A3 = -1.48533e-001, A4 = 1.81488e-003, A5 = 2.19876e-002,
A6 = 2.72398e-003, A8 = -7.00641e-003, A10 = 1.27333e-003, A12 = -1.63098e-004,
A14 = 2.91955e-005

実施例4の撮像レンズの特性を以下に列挙する。
FL 2.723
Fno 1.86
w 80.28
Ymax 2.294
BF 0.664
TL 3.386
The characteristics of the imaging lens of Example 4 are listed below.
FL 2.723
Fno 1.86
w 80.28
Ymax 2.294
BF 0.664
TL 3.386

実施例4の単レンズデータを以下の表12に示す。
〔表12〕
Elem Surfs Focal Length Diameter
1 3- 4 2.6798 1.502
2 6- 7 -5.3656 1.538
3 9-10 16.4328 1.797
4 12-13 1.6236 2.499
5 15-16 -1.4411 3.675
The single lens data of Example 4 is shown in Table 12 below.
[Table 12]
Elem Surfs Focal Length Diameter
1 3- 4 2.6798 1.502
2 6- 7 -5.3656 1.538
3 9-10 16.4328 1.797
4 12-13 1.6236 2.499
5 15-16 -1.4411 3.675

図12は、実施例4の撮像レンズ23等の断面図である。撮像レンズ23は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有する凸平に近い両凸の第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5とを備える。全てのレンズL1〜L5は、プラスチック材料から形成されている。第1レンズL1外縁の物体側には、開口絞りASが配置され、レンズL1〜L5の間には、遮光絞りFS1〜FS4が配置されている。なお、第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 12 is a cross-sectional view of the imaging lens 23 and the like of the fourth embodiment. The imaging lens 23 includes, in order from the object side, a meniscus first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a negative refractive power around the optical axis AX. A second meniscus lens L2 having a convex surface facing the side, a third convex biconvex lens L3 having a weak positive refractive power around the optical axis AX, and a positive refractive power around the optical axis AX. And a meniscus fourth lens L4 having a convex surface facing the image side, and a biconcave fifth lens L5 having negative refractive power around the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop AS is disposed on the object side of the outer edge of the first lens L1, and light-shielding stops FS1 to FS4 are disposed between the lenses L1 to L5. A parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図13(A)〜13(C)は、実施例4の撮像レンズ23の諸収差図(球面収差、非点収差、歪曲収差)を示し、図13(D)及び13(E)は、実施例4の撮像レンズ23のメリディオナルコマ収差を示している。   13A to 13C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 23 of Example 4, and FIGS. 13D and 13E show the examples. 10 shows meridional coma aberration of the imaging lens 23 of Example 4.

〔実施例5〕
実施例5のレンズ面のデータを以下の表13に示す。
〔表13〕
面番号 r d nd vd eff. dia.
OBJ INFINITY 1e+020
STO INFINITY 0.0000 1.436
2 INFINITY -0.2870 1.436
3* 1.0070 0.4360 1.54470 55.99 1.437
4* 4.4637 0.0450 1.327
5 FS INFINITY 0.0000 1.312
6* 3.3464 0.1500 1.64000 23.29 1.278
7* 1.8013 0.2020 1.130
8 FS INFINITY 0.1000 1.320
9* -71.6959 0.2300 1.54470 55.99 1.313
10* -26.1486 -0.0500 1.522
11 FS INFINITY 0.4250 1.690
12* -3.4186 0.3230 1.64000 23.29 1.767
13* -4.3498 -0.3200 2.382
14 FS INFINITY 0.3700 2.980
15* 1.6158 0.6180 1.54470 55.99 3.640
16* 1.2788 0.3630 3.870
17 INFINITY 0.1100 1.51633 64.14 4.333
18 INFINITY 0.3430 4.368
IMG INFINITY 0.0000
Example 5
The lens surface data of Example 5 is shown in Table 13 below.
[Table 13]
Surface number rd nd vd eff.dia.
OBJ INFINITY 1e + 020
STO INFINITY 0.0000 1.436
2 INFINITY -0.2870 1.436
3 * 1.0070 0.4360 1.54470 55.99 1.437
4 * 4.4637 0.0450 1.327
5 FS INFINITY 0.0000 1.312
6 * 3.3464 0.1500 1.64000 23.29 1.278
7 * 1.8013 0.2020 1.130
8 FS INFINITY 0.1000 1.320
9 * -71.6959 0.2300 1.54470 55.99 1.313
10 * -26.1486 -0.0500 1.522
11 FS INFINITY 0.4250 1.690
12 * -3.4186 0.3230 1.64000 23.29 1.767
13 * -4.3498 -0.3200 2.382
14 FS INFINITY 0.3700 2.980
15 * 1.6158 0.6180 1.54470 55.99 3.640
16 * 1.2788 0.3630 3.870
17 INFINITY 0.1100 1.51633 64.14 4.333
18 INFINITY 0.3430 4.368
IMG INFINITY 0.0000

実施例5のレンズ面の非球面係数を以下の表14に示す。
〔表14〕
第3面
K=-6.57711e-002, A4=1.87744e-002, A6=8.89395e-002, A8=-2.10715e-001,
A10=7.50299e-001, A12=-1.29577e+000, A14=1.24466e+000
第4面
K=-7.99987e+001, A4=-3.69373e-001, A6=1.53873e+000, A8=-2.33959e+000,
A10=-5.87555e-001, A12=7.16396e+000, A14=-6.72109e+000
第6面
K=-7.53568e+001, A4=-5.63195e-001, A6=2.21534e+000, A8=-2.11612e+000,
A10=-5.39776e+000, A12=1.78352e+001, A14=-1.50203e+001
第7面
K=-2.09163e+001, A4=3.82920e-002, A6=8.07164e-001, A8=-9.53705e-001,
A10=6.19105e+000, A12=-2.18787e+001, A14=3.13844e+001
第9面
K=-4.53393e+000, A4=-4.17160e-001, A6=-2.24877e-001, A8=2.35151e+000,
A10=-7.93832e+000, A12=4.80928e+000, A14=3.83357e+001, A16=-5.53896e+001
第10面
K=7.75444e+001, A4=-2.85713e-001, A6=-4.81983e-001, A8=1.66316e+000,
A10=-3.35328e+000, A12=4.86831e+000, A14=-1.33944e+000
第12面
K=-3.17714e+001, A4=2.63823e-001, A6=-1.69814e+000, A8=5.64088e+000,
A10=-1.86920e+001, A12=3.60010e+001, A14=-3.74695e+001, A16=1.56625e+001
第13面
K=4.80458e+000, A4=-3.46799e-001, A6=1.93223e+000, A8=-5.74051e+000,
A10=8.90348e+000, A12=-7.99894e+000, A14=3.88427e+000, A16=-7.78210e-001
第15面
K=-3.47047e+001, A4=-3.77991e-001, A6=2.65778e-001, A8=-7.13874e-002,
A10=1.14099e-003, A12=3.68352e-003, A14=-7.92031e-004, A16=5.50885e-005
第16面
K=-6.65888e+000, A4=-2.20019e-001, A6=1.09281e-001, A8=-3.73100e-002,
A10=5.20772e-003, A12=1.05444e-004, A14=-6.24856e-005
The aspheric coefficients of the lens surfaces of Example 5 are shown in Table 14 below.
[Table 14]
Third side
K = -6.57711e-002, A4 = 1.87744e-002, A6 = 8.89395e-002, A8 = -2.10715e-001,
A10 = 7.50299e-001, A12 = -1.29577e + 000, A14 = 1.24466e + 000
4th page
K = -7.99987e + 001, A4 = -3.69373e-001, A6 = 1.53873e + 000, A8 = -2.33959e + 000,
A10 = -5.87555e-001, A12 = 7.16396e + 000, A14 = -6.72109e + 000
6th page
K = -7.53568e + 001, A4 = -5.63195e-001, A6 = 2.21534e + 000, A8 = -2.11612e + 000,
A10 = -5.39776e + 000, A12 = 1.78352e + 001, A14 = -1.50203e + 001
7th page
K = -2.09163e + 001, A4 = 3.82920e-002, A6 = 8.07164e-001, A8 = -9.53705e-001,
A10 = 6.19105e + 000, A12 = -2.18787e + 001, A14 = 3.13844e + 001
9th page
K = -4.53393e + 000, A4 = -4.17160e-001, A6 = -2.24877e-001, A8 = 2.35151e + 000,
A10 = -7.93832e + 000, A12 = 4.80928e + 000, A14 = 3.83357e + 001, A16 = -5.53896e + 001
10th page
K = 7.75444e + 001, A4 = -2.85713e-001, A6 = -4.81983e-001, A8 = 1.66316e + 000,
A10 = -3.35328e + 000, A12 = 4.86831e + 000, A14 = -1.33944e + 000
12th page
K = -3.17714e + 001, A4 = 2.63823e-001, A6 = -1.69814e + 000, A8 = 5.64088e + 000,
A10 = -1.86920e + 001, A12 = 3.60010e + 001, A14 = -3.74695e + 001, A16 = 1.56625e + 001
Side 13
K = 4.80458e + 000, A4 = -3.46799e-001, A6 = 1.93223e + 000, A8 = -5.74051e + 000,
A10 = 8.90348e + 000, A12 = -7.99894e + 000, A14 = 3.88427e + 000, A16 = -7.78210e-001
15th page
K = -3.47047e + 001, A4 = -3.77991e-001, A6 = 2.65778e-001, A8 = -7.13874e-002,
A10 = 1.14099e-003, A12 = 3.68352e-003, A14 = -7.92031e-004, A16 = 5.50885e-005
16th page
K = -6.65888e + 000, A4 = -2.20019e-001, A6 = 1.09281e-001, A8 = -3.73100e-002,
A10 = 5.20772e-003, A12 = 1.05444e-004, A14 = -6.24856e-005

実施例5の撮像レンズの特性を以下に列挙する。
FL 2.945
Fno 2.05
w 75.00
Ymax 2.298
BF 0.665
TL 3.308
The characteristics of the imaging lens of Example 5 are listed below.
FL 2.945
Fno 2.05
w 75.00
Ymax 2.298
BF 0.665
TL 3.308

実施例5の単レンズデータを以下の表15に示す。
〔表15〕
Elem Surfs Focal Length Diameter
1 3- 4 2.2856 1.437
2 6- 7 -6.3353 1.278
3 9-10 75.4312 1.522
4 12-13 -28.8606 2.382
5 15-16 -31.8629 3.870
The single lens data of Example 5 is shown in Table 15 below.
[Table 15]
Elem Surfs Focal Length Diameter
1 3- 4 2.2856 1.437
2 6- 7 -6.3353 1.278
3 9-10 75.4312 1.522
4 12-13 -28.8606 2.382
5 15-16 -31.8629 3.870

図14は、実施例5の撮像レンズ24等の断面図である。撮像レンズ24は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有し略平板状で物体側に僅かに凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で弱い負の屈折力を有し像側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5とを備える。全てのレンズL1〜L5は、プラスチック材料から形成されている。第1レンズL1外縁の物体側には、開口絞りASが配置され、レンズL1〜L5の間には、遮光絞りFS1〜FS4が配置されている。なお、第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 14 is a cross-sectional view of the imaging lens 24 and the like according to the fifth embodiment. The imaging lens 24 includes, in order from the object side, a meniscus first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a negative refractive power around the optical axis AX. A second meniscus lens L2 having a convex surface facing the side, a third meniscus lens L3 having a weak positive refractive power around the optical axis AX and having a substantially flat shape and a slightly convex surface facing the object side, and an optical axis A fourth meniscus lens L4 having a weak negative refracting power around AX and having a convex surface facing the image side, and a fifth meniscus having a weak negative refracting power around the optical axis AX and having a convex surface facing the object side. And a lens L5. All the lenses L1 to L5 are made of a plastic material. An aperture stop AS is disposed on the object side of the outer edge of the first lens L1, and light-shielding stops FS1 to FS4 are disposed between the lenses L1 to L5. A parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図15(A)〜15(C)は、実施例5の撮像レンズ24の諸収差図(球面収差、非点収差、歪曲収差)を示し、図15(D)及び15(E)は、実施例5の撮像レンズ24のメリディオナルコマ収差を示している。   FIGS. 15A to 15C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 24 of Example 5, and FIGS. 15D and 15E show the examples. 10 shows meridional coma aberration of the imaging lens 24 of Example 5. FIG.

〔実施例6〕
実施例6のレンズ面のデータを以下の表16に示す。
〔表16〕
面番号 r d nd vd eff. dia.
OBJ INFINITY 1e+020
1 FS INFINITY 0.0500 1.304
2 INFINITY -0.2080 1.304
3* 1.1249 0.3740 1.54470 55.99 1.304
4* -36.1053 0.0330 1.219
STO INFINITY 0.0140 1.200
6* 8.4757 0.1410 1.63469 23.86 1.211
7* 1.6330 0.2380 1.263
8 FS INFINITY 0.0660 1.468
9* 9.9552 0.3490 1.54470 56.15 1.488
10* INFINITY -0.0190 1.731
11 FS INFINITY 0.4020 1.960
12* -19.0041 0.3960 1.54470 56.15 2.184
13* -0.8281 -0.2830 2.652
14 FS INFINITY 0.4760 3.400
15* -4.1782 0.2520 1.54470 56.15 3.616
16* 0.8800 0.3790 3.727
17 INFINITY 0.1100 1.51633 64.14 4.295
18 INFINITY 0.2950 4.351
IMG INFINITY 0.0000
Example 6
The lens surface data of Example 6 is shown in Table 16 below.
[Table 16]
Surface number rd nd vd eff.dia.
OBJ INFINITY 1e + 020
1 FS INFINITY 0.0500 1.304
2 INFINITY -0.2080 1.304
3 * 1.1249 0.3740 1.54470 55.99 1.304
4 * -36.1053 0.0330 1.219
STO INFINITY 0.0140 1.200
6 * 8.4757 0.1410 1.63469 23.86 1.211
7 * 1.6330 0.2380 1.263
8 FS INFINITY 0.0660 1.468
9 * 9.9552 0.3490 1.54470 56.15 1.488
10 * INFINITY -0.0190 1.731
11 FS INFINITY 0.4020 1.960
12 * -19.0041 0.3960 1.54470 56.15 2.184
13 * -0.8281 -0.2830 2.652
14 FS INFINITY 0.4760 3.400
15 * -4.1782 0.2520 1.54470 56.15 3.616
16 * 0.8800 0.3790 3.727
17 INFINITY 0.1100 1.51633 64.14 4.295
18 INFINITY 0.2950 4.351
IMG INFINITY 0.0000

実施例6のレンズ面の非球面係数を以下の表17に示す。
〔表17〕
第3面
K=8.40264e-002, A4=1.02321e-002, A6=5.03617e-002, A8=-1.50596e-002,
A10=2.37600e-001, A12=3.52465e-001, A14=-1.42856e+000
第4面
K=-8.00000e+001, A4=9.74015e-002, A6=2.00287e-001, A8=-1.21203e-002,
A10=-1.44040e+000, A12=-1.49800e+000, A14=3.26565e+000
第6面
K=-1.51570e+001, A4=-7.79693e-002, A6=7.46629e-001, A8=-9.74241e-001,
A10=-2.17276e+000, A12=-4.43062e-001, A14=5.61041e+000
第7面
K=-1.07565e+001, A3=-1.85220e-002, A4=2.19991e-001, A5=-2.69574e-002,
A6=3.01310e-001, A8=-2.00645e-001, A10=-5.24269e-001, A12=-1.49950e+000,
A14=5.67612e+000
第9面
K=-2.46828e+001, A3=2.00398e-002, A4=-3.56055e-001, A5=5.29551e-003,
A6=3.33816e-001, A8=-6.78811e-001, A10=4.37584e-002, A12=2.98366e+000,
A14=-2.44695e+000
第10面
K=0.00000e+000, A3=-2.58543e-002, A4=-2.01044e-001, A5=-1.47727e-002,
A6=-1.48195e-001, A8=8.35685e-002, A10=1.56334e-001, A12=-4.60494e-001,
A14=7.71746e-001
第12面
K=7.89034e+001, A3=4.44820e-002, A4=-2.61281e-001, A5=2.27258e-001,
A6=5.68724e-002, A8=-3.46559e-001, A10=1.88372e-001, A12=-1.06288e-001,
A14=4.47185e-002
第13面
K=-6.09314e+000, A3=-9.70957e-002, A4=-2.64846e-001, A5=2.51452e-001,
A6=3.44712e-001, A8=-3.07330e-001, A10=-3.30800e-002, A12=1.08985e-001,
A14=-3.16370e-002
第15面
K=-3.74130e+000, A3=-3.28773e-001, A4=1.08535e-001, A5=5.69349e-002,
A6=3.16204e-002, A8=-1.41890e-002, A10=-2.28439e-003, A12=1.24091e-003,
A14=-1.08557e-004
第16面
K=-8.42520e+000, A3=-1.88142e-001, A4=1.53126e-002, A5=3.59111e-002,
A6=-2.12707e-003, A8=-1.20069e-002, A10=2.38451e-003, A12=-3.95316e-004,
A14=1.06959e-004
Table 17 below shows the aspheric coefficients of the lens surfaces of Example 6.
[Table 17]
Third side
K = 8.40264e-002, A4 = 1.02321e-002, A6 = 5.03617e-002, A8 = -1.50596e-002,
A10 = 2.37600e-001, A12 = 3.52465e-001, A14 = -1.42856e + 000
4th page
K = -8.00000e + 001, A4 = 9.74015e-002, A6 = 2.00287e-001, A8 = -1.21203e-002,
A10 = -1.44040e + 000, A12 = -1.49800e + 000, A14 = 3.26565e + 000
6th page
K = -1.51570e + 001, A4 = -7.79693e-002, A6 = 7.46629e-001, A8 = -9.74241e-001,
A10 = -2.17276e + 000, A12 = -4.43062e-001, A14 = 5.61041e + 000
7th page
K = -1.07565e + 001, A3 = -1.85220e-002, A4 = 2.19991e-001, A5 = -2.69574e-002,
A6 = 3.01310e-001, A8 = -2.00645e-001, A10 = -5.24269e-001, A12 = -1.49950e + 000,
A14 = 5.67612e + 000
9th page
K = -2.46828e + 001, A3 = 2.00398e-002, A4 = -3.56055e-001, A5 = 5.29551e-003,
A6 = 3.33816e-001, A8 = -6.78811e-001, A10 = 4.37584e-002, A12 = 2.98366e + 000,
A14 = -2.44695e + 000
10th page
K = 0.00000e + 000, A3 = -2.58543e-002, A4 = -2.01044e-001, A5 = -1.47727e-002,
A6 = -1.48195e-001, A8 = 8.35685e-002, A10 = 1.56334e-001, A12 = -4.60494e-001,
A14 = 7.71746e-001
12th page
K = 7.89034e + 001, A3 = 4.44820e-002, A4 = -2.61281e-001, A5 = 2.27258e-001,
A6 = 5.68724e-002, A8 = -3.46559e-001, A10 = 1.88372e-001, A12 = -1.06288e-001,
A14 = 4.47185e-002
Side 13
K = -6.09314e + 000, A3 = -9.70957e-002, A4 = -2.64846e-001, A5 = 2.51452e-001,
A6 = 3.44712e-001, A8 = -3.07330e-001, A10 = -3.30800e-002, A12 = 1.08985e-001,
A14 = -3.16370e-002
15th page
K = -3.74130e + 000, A3 = -3.28773e-001, A4 = 1.08535e-001, A5 = 5.69349e-002,
A6 = 3.16204e-002, A8 = -1.41890e-002, A10 = -2.28439e-003, A12 = 1.24091e-003,
A14 = -1.08557e-004
16th page
K = -8.42520e + 000, A3 = -1.88142e-001, A4 = 1.53126e-002, A5 = 3.59111e-002,
A6 = -2.12707e-003, A8 = -1.20069e-002, A10 = 2.38451e-003, A12 = -3.95316e-004,
A14 = 1.06959e-004

実施例6の撮像レンズの特性を以下に列挙する。
FL 2.726
Fno 1.97
w 80.46
Ymax 2.295
BF 0.626
TL 3.186
The characteristics of the imaging lens of Example 6 are listed below.
FL 2.726
Fno 1.97
w 80.46
Ymax 2.295
BF 0.626
TL 3.186

実施例6の単レンズデータを以下の表18に示す。
〔表18〕
Elem Surfs Focal Length Diameter
1 3- 4 2.0099 1.304
2 6- 7 -3.2127 1.263
3 9-10 18.2765 1.731
4 12-13 1.5774 2.652
5 15-16 -1.3114 3.727
The single lens data of Example 6 is shown in Table 18 below.
[Table 18]
Elem Surfs Focal Length Diameter
1 3- 4 2.0099 1.304
2 6- 7 -3.2127 1.263
3 9-10 18.2765 1.731
4 12-13 1.5774 2.652
5 15-16 -1.3114 3.727

図16は、実施例6の撮像レンズ26等の断面図である。撮像レンズ26は、物体側より順に、光軸AX周辺で正の屈折力を有し凸平に近い両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けた凸平の第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5とを備える。全てのレンズL1〜L5は、プラスチック材料から形成されている。第1レンズL1と第2レンズL2と間には、開口絞りASが配置されている。第1レンズL1外縁の物体側には、遮光絞りFS1が配置され、レンズL2〜L5の間には、遮光絞りFS2〜FS4が配置されている。なお、第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 16 is a cross-sectional view of the imaging lens 26 and the like of the sixth embodiment. The imaging lens 26 is, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX and close to a convex plane, and a negative refractive power around the optical axis AX toward the object side. A second meniscus lens L2 having a convex surface, a convex third lens L3 having a weak positive refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX And a meniscus fourth lens L4 having a convex surface facing the image side, and a biconcave fifth lens L5 having negative refractive power around the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop AS is disposed between the first lens L1 and the second lens L2. A light-shielding stop FS1 is disposed on the object side of the outer edge of the first lens L1, and light-shielding stops FS2 to FS4 are disposed between the lenses L2 to L5. A parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図17(A)〜17(C)は、実施例6の撮像レンズ26の諸収差図(球面収差、非点収差、歪曲収差)を示し、図17(D)及び17(E)は、実施例6の撮像レンズ26のメリディオナルコマ収差を示している。   17A to 17C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 26 of Example 6, and FIGS. 17D and 17E show the examples. 7 shows meridional coma aberration of the imaging lens 26 of Example 6.

〔実施例7〕
実施例7のレンズ面のデータを以下の表19に示す。
〔表19〕
面番号 r d nd vd eff. dia.
OBJ INFINITY 1e+020
STO INFINITY 0.0500 1.304
2 INFINITY -0.2200 1.304
3* 1.0857 0.3630 1.54470 56.00 1.305
4* 8.1718 0.0570 1.216
5 FS INFINITY -0.0100 1.190
6* 3.1098 0.1410 1.63469 23.86 1.201
7* 1.4403 0.2540 1.237
8 FS INFINITY 0.0980 1.476
9* 49.2357 0.3230 1.54470 56.15 1.598
10* -12.9135 -0.0500 1.756
11 FS INFINITY 0.4280 2.080
12* -7.7806 0.3590 1.54470 56.15 2.074
13* -0.9314 -0.3300 2.502
14 FS INFINITY 0.6000 2.940
15* -2.9973 0.2360 1.54470 56.15 3.323
16* 1.1145 0.3630 3.638
17 INFINITY 0.1100 1.51633 64.14 4.292
18 INFINITY 0.2730 4.351
IMG INFINITY 0.0000
Example 7
The lens surface data of Example 7 is shown in Table 19 below.
[Table 19]
Surface number rd nd vd eff.dia.
OBJ INFINITY 1e + 020
STO INFINITY 0.0500 1.304
2 INFINITY -0.2200 1.304
3 * 1.0857 0.3630 1.54470 56.00 1.305
4 * 8.1718 0.0570 1.216
5 FS INFINITY -0.0100 1.190
6 * 3.1098 0.1410 1.63469 23.86 1.201
7 * 1.4403 0.2540 1.237
8 FS INFINITY 0.0980 1.476
9 * 49.2357 0.3230 1.54470 56.15 1.598
10 * -12.9135 -0.0500 1.756
11 FS INFINITY 0.4280 2.080
12 * -7.7806 0.3590 1.54470 56.15 2.074
13 * -0.9314 -0.3300 2.502
14 FS INFINITY 0.6000 2.940
15 * -2.9973 0.2360 1.54470 56.15 3.323
16 * 1.1145 0.3630 3.638
17 INFINITY 0.1100 1.51633 64.14 4.292
18 INFINITY 0.2730 4.351
IMG INFINITY 0.0000

実施例7のレンズ面の非球面係数を以下の表20に示す。
〔表20〕
非球面係数
第3面
K=1.73380e-001, A4=4.43256e-003, A6=3.72606e-002, A8=-6.56219e-003,
A10=2.26339e-001, A12=3.38390e-001, A14=-1.30834e+000
第4面
K=-8.00000e+001, A4=1.54234e-002, A6=2.84951e-001, A8=-4.88615e-002,
A10=-1.40133e+000, A12=-1.37798e+000, A14=3.11248e+000
第6面
K=-1.83748e+001, A4=-8.32558e-002, A6=6.85797e-001, A8=-9.35273e-001,
A10=-2.07282e+000, A12=-3.84205e-001, A14=5.00835e+000
第7面
K=-8.44438e+000, A3=-9.20460e-003, A4=2.96508e-001, A5=-1.26192e-002,
A6=2.41452e-001, A8=-1.97538e-001, A10=-3.90770e-001, A12=-1.36346e+000,
A14=5.94126e+000
第9面
K=8.00000e+001, A3=3.02113e-002, A4=-3.20664e-001, A5=5.43858e-002,
A6=2.44702e-001, A8=-4.80922e-001, A10=5.25911e-002, A12=2.46165e+000,
A14=-2.03066e+000
第10面
K=0.00000e+000, A3=-6.46732e-003, A4=-2.20744e-001, A5=1.95666e-003,
A6=-7.65808e-002, A8=-1.85170e-002, A10=1.30669e-001, A12=-2.67612e-001,
A14=5.88789e-001
第12面
K=4.72147e+001, A3=3.47848e-002, A4=-2.42134e-001, A5=2.39067e-001,
A6=-4.01586e-002, A8=-2.13031e-001, A10=5.52927e-002, A12=-2.30662e-002,
A14=1.11740e-002
第13面
K=-6.81461e+000, A3=-1.07431e-001, A4=-2.80731e-001, A5=2.48387e-001,
A6=3.07155e-001, A8=-3.07188e-001, A10=3.22283e-003, A12=9.69519e-002,
A14=-3.33563e-002
第15面
K=-1.42099e+001, A3=-3.20224e-001, A4=7.77760e-002, A5=5.12229e-002,
A6=3.55687e-002, A8=-9.46570e-003, A10=-2.78569e-003, A12=6.55579e-004,
A14=1.37201e-005
第16面
K=-1.24702e+001, A3=-1.48441e-001, A4=-6.87741e-003, A5=2.41497e-002,
A6=4.95825e-003, A8=-1.02330e-002, A10=2.00168e-003, A12=-3.45065e-004,
A14=8.07609e-005
Table 20 below shows the aspheric coefficients of the lens surfaces of Example 7.
[Table 20]
Aspheric coefficient third surface
K = 1.73380e-001, A4 = 4.43256e-003, A6 = 3.72606e-002, A8 = -6.56219e-003,
A10 = 2.26339e-001, A12 = 3.38390e-001, A14 = -1.30834e + 000
4th page
K = -8.00000e + 001, A4 = 1.54234e-002, A6 = 2.84951e-001, A8 = -4.88615e-002,
A10 = -1.40133e + 000, A12 = -1.37798e + 000, A14 = 3.11248e + 000
6th page
K = -1.83748e + 001, A4 = -8.32558e-002, A6 = 6.85797e-001, A8 = -9.35273e-001,
A10 = -2.07282e + 000, A12 = -3.84205e-001, A14 = 5.00835e + 000
7th page
K = -8.44438e + 000, A3 = -9.20460e-003, A4 = 2.96508e-001, A5 = -1.26192e-002,
A6 = 2.41452e-001, A8 = -1.97538e-001, A10 = -3.90770e-001, A12 = -1.36346e + 000,
A14 = 5.94126e + 000
9th page
K = 8.00000e + 001, A3 = 3.02113e-002, A4 = -3.20664e-001, A5 = 5.43858e-002,
A6 = 2.44702e-001, A8 = -4.80922e-001, A10 = 5.25911e-002, A12 = 2.46165e + 000,
A14 = -2.03066e + 000
10th page
K = 0.00000e + 000, A3 = -6.46732e-003, A4 = -2.20744e-001, A5 = 1.95666e-003,
A6 = -7.65808e-002, A8 = -1.85170e-002, A10 = 1.30669e-001, A12 = -2.67612e-001,
A14 = 5.88789e-001
12th page
K = 4.72147e + 001, A3 = 3.47848e-002, A4 = -2.42134e-001, A5 = 2.39067e-001,
A6 = -4.01586e-002, A8 = -2.13031e-001, A10 = 5.52927e-002, A12 = -2.30662e-002,
A14 = 1.11740e-002
Side 13
K = -6.81461e + 000, A3 = -1.07431e-001, A4 = -2.80731e-001, A5 = 2.48387e-001,
A6 = 3.07155e-001, A8 = -3.07188e-001, A10 = 3.22283e-003, A12 = 9.69519e-002,
A14 = -3.33563e-002
15th page
K = -1.42099e + 001, A3 = -3.20224e-001, A4 = 7.77760e-002, A5 = 5.12229e-002,
A6 = 3.55687e-002, A8 = -9.46570e-003, A10 = -2.78569e-003, A12 = 6.55579e-004,
A14 = 1.37201e-005
16th page
K = -1.24702e + 001, A3 = -1.48441e-001, A4 = -6.87741e-003, A5 = 2.41497e-002,
A6 = 4.95825e-003, A8 = -1.02330e-002, A10 = 2.00168e-003, A12 = -3.45065e-004,
A14 = 8.07609e-005

実施例7の撮像レンズの特性を以下に列挙する。
FL 2.832
Fno 2.05
w 78.27
Ymax 2.291
BF 0.621
TL 3.178
The characteristics of the imaging lens of Example 7 are listed below.
FL 2.832
Fno 2.05
w 78.27
Ymax 2.291
BF 0.621
TL 3.178

実施例7の単レンズデータを以下の表21に示す。
〔表21〕
Elem Surfs Focal Length Diameter
1 3- 4 2.2579 1.305
2 6- 7 -4.3703 1.237
3 9-10 18.8160 1.756
4 12-13 1.9073 2.502
5 15-16 -1.4620 3.638
The single lens data of Example 7 is shown in Table 21 below.
[Table 21]
Elem Surfs Focal Length Diameter
1 3- 4 2.2579 1.305
2 6- 7 -4.3703 1.237
3 9-10 18.8160 1.756
4 12-13 1.9073 2.502
5 15-16 -1.4620 3.638

図18は、実施例7の撮像レンズ27等の断面図である。撮像レンズ27は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有する平凸に近い両凸の第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5とを備える。全てのレンズL1〜L5は、プラスチック材料から形成されている。第1レンズL1外縁の物体側には、開口絞りASが配置され、レンズL1〜L5の間には、遮光絞りFS1〜FS4が配置されている。なお、第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 18 is a cross-sectional view of the imaging lens 27 and the like according to the seventh embodiment. The imaging lens 27 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and an object having a negative refractive power around the optical axis AX. A second meniscus lens L2 having a convex surface facing the side, a biconvex third lens L3 having a weak positive refractive power around the optical axis AX, and a biconvex third lens L3 having a positive positive refractive power around the optical axis AX. And a meniscus fourth lens L4 having a convex surface facing the image side, and a biconcave fifth lens L5 having negative refractive power around the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop AS is disposed on the object side of the outer edge of the first lens L1, and light-shielding stops FS1 to FS4 are disposed between the lenses L1 to L5. A parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図19(A)〜19(C)は、実施例7の撮像レンズ27の諸収差図(球面収差、非点収差、歪曲収差)を示し、図19(D)及び19(E)は、実施例7の撮像レンズ27のメリディオナルコマ収差を示している。   FIGS. 19A to 19C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 27 of Example 7, and FIGS. 19D and 19E show the examples. 10 shows meridional coma aberration of the imaging lens 27 of Example 7. FIG.

〔実施例8〕
実施例8のレンズ面のデータを以下の表22に示す。
〔表22〕
面番号 r d nd vd eff. dia.
OBJ INFINITY 1e+020
1 INFINITY 0.0500 1.390
STO INFINITY -0.2480 1.390
3* 1.1053 0.3820 1.54470 56.00 1.390
4* 25.4045 0.0380 1.309
5 FS INFINITY 0.0160 1.300
6* 5.8920 0.1410 1.63469 23.86 1.300
7* 1.6146 0.2360 1.321
8 FS INFINITY 0.0640 1.480
9* 16.4299 0.3360 1.54470 56.15 1.598
10* -16.7544 -0.0060 1.757
11 FS INFINITY 0.3770 2.040
12* -11.0729 0.4030 1.54470 56.15 2.113
13* -0.8776 -0.3300 2.556
14 FS INFINITY 0.5640 3.140
15* -3.5905 0.2360 1.54470 56.15 3.390
16* 0.9964 0.3710 3.663
17 INFINITY 0.1100 1.51633 64.14 4.274
18 INFINITY 0.2820 4.330
IMG INFINITY 0.0000
Example 8
The lens surface data of Example 8 is shown in Table 22 below.
[Table 22]
Surface number rd nd vd eff.dia.
OBJ INFINITY 1e + 020
1 INFINITY 0.0500 1.390
STO INFINITY -0.2480 1.390
3 * 1.1053 0.3820 1.54470 56.00 1.390
4 * 25.4045 0.0380 1.309
5 FS INFINITY 0.0160 1.300
6 * 5.8920 0.1410 1.63469 23.86 1.300
7 * 1.6146 0.2360 1.321
8 FS INFINITY 0.0640 1.480
9 * 16.4299 0.3360 1.54470 56.15 1.598
10 * -16.7544 -0.0060 1.757
11 FS INFINITY 0.3770 2.040
12 * -11.0729 0.4030 1.54470 56.15 2.113
13 * -0.8776 -0.3300 2.556
14 FS INFINITY 0.5640 3.140
15 * -3.5905 0.2360 1.54470 56.15 3.390
16 * 0.9964 0.3710 3.663
17 INFINITY 0.1100 1.51633 64.14 4.274
18 INFINITY 0.2820 4.330
IMG INFINITY 0.0000

実施例8のレンズ面の非球面係数を以下の表23に示す。
〔表23〕
第3面
K=1.62514e-001, A4=-8.98292e-004, A6=4.54336e-002, A8=-2.73319e-003,
A10=2.30274e-001, A12=3.45125e-001, A14=-1.32786e+000
第4面
K=-1.93893e+001, A4=4.35111e-002, A6=2.77899e-001, A8=-2.61310e-002,
A10=-1.37455e+000, A12=-1.50543e+000, A14=2.77206e+000
第6面
K=-1.36249e+001, A4=-7.17390e-002, A6=7.05117e-001, A8=-9.46454e-001,
A10=-2.16655e+000, A12=-4.97699e-001, A14=4.96373e+000
第7面
K=-1.08493e+001, A3=-1.27634e-002, A4=2.94444e-001, A5=-9.18674e-003,
A6=2.26141e-001, A8=-2.58022e-001, A10=-3.83535e-001, A12=-1.32357e+000,
A14=5.39470e+000
第9面
K=6.49613e+001, A3=2.45526e-002, A4=-3.19033e-001, A5=4.25781e-002,
A6=2.38811e-001, A8=-4.63675e-001, A10=7.00370e-002, A12=2.46346e+000,
A14=-2.02429e+000
第10面
K=0.00000e+000, A3=2.58179e-003, A4=-2.32693e-001, A5=5.01409e-003,
A6=-7.32355e-002, A8=-2.54092e-002, A10=1.25676e-001, A12=-2.64607e-001,
A14=6.15434e-001
第12面
K=2.03388e+001, A3=3.17790e-002, A4=-2.28753e-001, A5=2.27579e-001,
A6=-4.21970e-002, A8=-2.06446e-001, A10=5.01729e-002, A12=-2.94495e-002,
A14=1.89381e-002
第13面
K=-6.33003e+000, A3=-9.76035e-002, A4=-2.77113e-001, A5=2.50360e-001,
A6=3.06966e-001, A8=-3.09782e-001, A10=8.02296e-004, A12=9.62978e-002,
A14=-3.20380e-002
第15面
K=-2.05412e+001, A3=-3.20488e-001, A4=7.41430e-002, A5=4.91917e-002,
A6=3.50046e-002, A8=-9.14111e-003, A10=-2.62533e-003, A12=6.75709e-004,
A14=-2.00236e-006
第16面
K=-1.03289e+001, A3=-1.54387e-001, A4=-4.13212e-003, A5=2.51123e-002,
A6=4.88690e-003, A8=-1.06791e-002, A10=1.88157e-003, A12=-3.41999e-004,
A14=9.25579e-005
Table 23 below shows the aspheric coefficients of the lens surfaces of Example 8.
[Table 23]
Third side
K = 1.62514e-001, A4 = -8.98292e-004, A6 = 4.54336e-002, A8 = -2.73319e-003,
A10 = 2.30274e-001, A12 = 3.45125e-001, A14 = -1.32786e + 000
4th page
K = -1.93893e + 001, A4 = 4.35111e-002, A6 = 2.77899e-001, A8 = -2.61310e-002,
A10 = -1.37455e + 000, A12 = -1.50543e + 000, A14 = 2.77206e + 000
6th page
K = -1.36249e + 001, A4 = -7.17390e-002, A6 = 7.05117e-001, A8 = -9.46454e-001,
A10 = -2.16655e + 000, A12 = -4.97699e-001, A14 = 4.96373e + 000
7th page
K = -1.08493e + 001, A3 = -1.27634e-002, A4 = 2.94444e-001, A5 = -9.18674e-003,
A6 = 2.26141e-001, A8 = -2.58022e-001, A10 = -3.83535e-001, A12 = -1.32357e + 000,
A14 = 5.39470e + 000
9th page
K = 6.49613e + 001, A3 = 2.45526e-002, A4 = -3.19033e-001, A5 = 4.25781e-002,
A6 = 2.38811e-001, A8 = -4.63675e-001, A10 = 7.00370e-002, A12 = 2.46346e + 000,
A14 = -2.02429e + 000
10th page
K = 0.00000e + 000, A3 = 2.58179e-003, A4 = -2.32693e-001, A5 = 5.01409e-003,
A6 = -7.32355e-002, A8 = -2.54092e-002, A10 = 1.25676e-001, A12 = -2.64607e-001,
A14 = 6.15434e-001
12th page
K = 2.03388e + 001, A3 = 3.17790e-002, A4 = -2.28753e-001, A5 = 2.27579e-001,
A6 = -4.21970e-002, A8 = -2.06446e-001, A10 = 5.01729e-002, A12 = -2.94495e-002,
A14 = 1.89381e-002
Side 13
K = -6.33003e + 000, A3 = -9.76035e-002, A4 = -2.77113e-001, A5 = 2.50360e-001,
A6 = 3.06966e-001, A8 = -3.09782e-001, A10 = 8.02296e-004, A12 = 9.62978e-002,
A14 = -3.20380e-002
15th page
K = -2.05412e + 001, A3 = -3.20488e-001, A4 = 7.41430e-002, A5 = 4.91917e-002,
A6 = 3.50046e-002, A8 = -9.14111e-003, A10 = -2.62533e-003, A12 = 6.75709e-004,
A14 = -2.00236e-006
16th page
K = -1.03289e + 001, A3 = -1.54387e-001, A4 = -4.13212e-003, A5 = 2.51123e-002,
A6 = 4.88690e-003, A8 = -1.06791e-002, A10 = 1.88157e-003, A12 = -3.41999e-004,
A14 = 9.25579e-005

実施例8の撮像レンズの特性を以下に列挙する。
FL 2.725
Fno 1.96
w 80.45
Ymax 2.295
BF 0.621
TL 3.183
The characteristics of the imaging lens of Example 8 are listed below.
FL 2.725
Fno 1.96
w 80.45
Ymax 2.295
BF 0.621
TL 3.183

実施例8の単レンズデータを以下の表24に示す。
〔表24〕
Elem Surfs Focal Length Diameter
1 3- 4 2.1098 1.390
2 6- 7 -3.5496 1.321
3 9-10 15.2836 1.757
4 12-13 1.7258 2.556
5 15-16 -1.4064 3.663
The single lens data of Example 8 is shown in Table 24 below.
[Table 24]
Elem Surfs Focal Length Diameter
1 3- 4 2.1098 1.390
2 6- 7 -3.5496 1.321
3 9-10 15.2836 1.757
4 12-13 1.7258 2.556
5 15-16 -1.4064 3.663

図20は、実施例8の撮像レンズ29等の断面図である。撮像レンズ29は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた凸平に近いメニスカスの第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有する両凸の第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5とを備える。全てのレンズL1〜L5は、プラスチック材料から形成されている。第1レンズL1外縁の物体側には、開口絞りASが配置され、レンズL1〜L5の間には、遮光絞りFS1〜FS4が配置されている。なお、第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 20 is a cross-sectional view of the imaging lens 29 and the like according to the eighth embodiment. The imaging lens 29 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and having a convex surface facing the object side, and a negative refractive power around the optical axis AX. A second meniscus lens L2 having a convex surface facing the object side, a biconvex third lens L3 having a weak positive refractive power around the optical axis AX, and a positive refractive power around the optical axis AX. And a meniscus fourth lens L4 having a convex surface facing the image side, and a biconcave fifth lens L5 having negative refractive power around the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop AS is disposed on the object side of the outer edge of the first lens L1, and light-shielding stops FS1 to FS4 are disposed between the lenses L1 to L5. A parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図21(A)〜21(C)は、実施例8の撮像レンズ29の諸収差図(球面収差、非点収差、歪曲収差)を示し、図21(D)及び21(E)は、実施例8の撮像レンズ29のメリディオナルコマ収差を示している。   FIGS. 21A to 21C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 29 of Example 8, and FIGS. 21D and 21E show the examples. 10 shows meridional coma aberration of the imaging lens 29 of Example 8. FIG.

〔実施例9〕
実施例9のレンズ面のデータを以下の表25に示す。
〔表25〕
面番号 r d nd vd eff. dia.
OBJ INFINITY 1e+020
1 FS INFINITY 0.0000 1.430
2 INFINITY -0.2603 1.430
3* 1.0123 0.4130 1.54470 55.99 1.429
4* 3.7185 0.0550 1.328
STO INFINITY 0.0000 1.306
6* 2.8231 0.1500 1.64000 22.99 1.278
7* 1.6845 0.1800 1.132
8 FS INFINITY 0.1160 1.324
9* 24.6917 0.1890 1.54470 55.99 1.323
10* -24.2917 -0.0200 1.454
11 FS INFINITY 0.4360 1.640
12* -4.0293 0.3300 1.64000 22.99 1.757
13* -2.7449 -0.3000 2.362
14 FS INFINITY 0.3500 2.988
15* 1.9631 0.5490 1.54470 55.99 3.508
16* 1.1114 0.3660 3.775
17 INFINITY 0.1100 1.51633 64.14 4.340
18 INFINITY 0.3400 4.386
IMG INFINITY 0.0000
Example 9
The lens surface data of Example 9 is shown in Table 25 below.
[Table 25]
Surface number rd nd vd eff.dia.
OBJ INFINITY 1e + 020
1 FS INFINITY 0.0000 1.430
2 INFINITY -0.2603 1.430
3 * 1.0123 0.4130 1.54470 55.99 1.429
4 * 3.7185 0.0550 1.328
STO INFINITY 0.0000 1.306
6 * 2.8231 0.1500 1.64000 22.99 1.278
7 * 1.6845 0.1800 1.132
8 FS INFINITY 0.1160 1.324
9 * 24.6917 0.1890 1.54470 55.99 1.323
10 * -24.2917 -0.0200 1.454
11 FS INFINITY 0.4360 1.640
12 * -4.0293 0.3300 1.64000 22.99 1.757
13 * -2.7449 -0.3000 2.362
14 FS INFINITY 0.3500 2.988
15 * 1.9631 0.5490 1.54470 55.99 3.508
16 * 1.1114 0.3660 3.775
17 INFINITY 0.1100 1.51633 64.14 4.340
18 INFINITY 0.3400 4.386
IMG INFINITY 0.0000

実施例9のレンズ面の非球面係数を以下の表26に示す。
〔表26〕
第3面
K=-6.26507e-002, A4=2.38370e-003, A6=1.89893e-001, A8=-3.74627e-001,
A10=6.14314e-001, A12=-8.25390e-001, A14=1.52043e+000
第4面
K=-5.96410e+001, A4=-4.16478e-001, A6=1.59346e+000, A8=-2.37201e+000,
A10=-4.83646e-001, A12=8.37888e+000, A14=-9.12240e+000
第6面
K=-7.09673e+001, A4=-6.60932e-001, A6=2.24445e+000, A8=-1.67706e+000,
A10=-5.36649e+000, A12=1.61208e+001, A14=-1.51991e+001
第7面
K=-2.04738e+001, A4=-6.02700e-002, A6=1.02572e+000, A8=-1.19138e+000,
A10=7.60784e+000, A12=-2.49757e+001, A14=3.13844e+001
第9面
K=8.00000e+001, A4=-5.93743e-001, A6=5.51192e-002, A8=2.12471e+000,
A10=-9.32947e+000, A12=9.57098e+000, A14=3.83357e+001, A16=-5.53896e+001
第10面
K=-8.00000e+001, A4=-4.69254e-001, A6=-3.29722e-001, A8=1.70508e+000,
A10=-4.39810e+000, A12=6.35402e+000, A14=3.53412e-001
第12面
K=-6.62835e+001, A4=2.21419e-001, A6=-1.62188e+000, A8=5.81030e+000,
A10=-1.95438e+001, A12=3.61305e+001, A14=-3.52101e+001, A16=1.35054e+001
第13面
K=-1.58612e+001, A4=-2.46060e-001, A6=1.76650e+000, A8=-5.70601e+000,
A10=8.95277e+000, A12=-8.01231e+000, A14=3.86179e+000, A16=-7.66740e-001
第15面
K=-6.37878e+001, A4=-3.69650e-001, A6=2.66546e-001, A8=-7.23684e-002,
A10=1.03034e-003, A12=3.75390e-003, A14=-7.66838e-004, A16=4.81655e-005
第16面
K=-7.56176e+000, A4=-2.23118e-001, A6=1.10389e-001, A8=-3.65242e-002,
A10=4.94625e-003, A12=4.15199e-005, A14=-3.77553e-005
Table 26 below shows the aspheric coefficients of the lens surfaces of Example 9.
[Table 26]
Third side
K = -6.26507e-002, A4 = 2.38370e-003, A6 = 1.89893e-001, A8 = -3.74627e-001,
A10 = 6.14314e-001, A12 = -8.25390e-001, A14 = 1.52043e + 000
4th page
K = -5.96410e + 001, A4 = -4.16478e-001, A6 = 1.59346e + 000, A8 = -2.37201e + 000,
A10 = -4.83646e-001, A12 = 8.37888e + 000, A14 = -9.12240e + 000
6th page
K = -7.09673e + 001, A4 = -6.60932e-001, A6 = 2.24445e + 000, A8 = -1.67706e + 000,
A10 = -5.36649e + 000, A12 = 1.61208e + 001, A14 = -1.51991e + 001
7th page
K = -2.04738e + 001, A4 = -6.02700e-002, A6 = 1.02572e + 000, A8 = -1.19138e + 000,
A10 = 7.60784e + 000, A12 = -2.49757e + 001, A14 = 3.13844e + 001
9th page
K = 8.00000e + 001, A4 = -5.93743e-001, A6 = 5.51192e-002, A8 = 2.12471e + 000,
A10 = -9.32947e + 000, A12 = 9.57098e + 000, A14 = 3.83357e + 001, A16 = -5.53896e + 001
10th page
K = -8.00000e + 001, A4 = -4.69254e-001, A6 = -3.29722e-001, A8 = 1.70508e + 000,
A10 = -4.39810e + 000, A12 = 6.35402e + 000, A14 = 3.53412e-001
12th page
K = -6.62835e + 001, A4 = 2.21419e-001, A6 = -1.62188e + 000, A8 = 5.81030e + 000,
A10 = -1.95438e + 001, A12 = 3.61305e + 001, A14 = -3.52101e + 001, A16 = 1.35054e + 001
Side 13
K = -1.58612e + 001, A4 = -2.46060e-001, A6 = 1.76650e + 000, A8 = -5.70601e + 000,
A10 = 8.95277e + 000, A12 = -8.01231e + 000, A14 = 3.86179e + 000, A16 = -7.66740e-001
15th page
K = -6.37878e + 001, A4 = -3.69650e-001, A6 = 2.66546e-001, A8 = -7.23684e-002,
A10 = 1.03034e-003, A12 = 3.75390e-003, A14 = -7.66838e-004, A16 = 4.81655e-005
16th page
K = -7.56176e + 000, A4 = -2.23118e-001, A6 = 1.10389e-001, A8 = -3.65242e-002,
A10 = 4.94625e-003, A12 = 4.15199e-005, A14 = -3.77553e-005

実施例9の撮像レンズの特性を以下に列挙する。
FL 2.839
Fno 2.05
w 76.34
Ymax 2.299
BF 0.659
TL 3.227
The characteristics of the imaging lens of Example 9 are listed below.
FL 2.839
Fno 2.05
w 76.34
Ymax 2.299
BF 0.659
TL 3.227

実施例9の単レンズデータを以下の表27に示す。
〔表27〕
Elem Surfs Focal Length Diameter
1 3- 4 2.4233 1.429
2 6- 7 -6.8797 1.278
3 9-10 22.5109 1.454
4 12-13 12.2282 2.362
5 15-16 -6.0866 3.775
The single lens data of Example 9 is shown in Table 27 below.
[Table 27]
Elem Surfs Focal Length Diameter
1 3- 4 2.4233 1.429
2 6- 7 -6.8797 1.278
3 9-10 22.5109 1.454
4 12-13 12.2282 2.362
5 15-16 -6.0866 3.775

図22は、実施例9の撮像レンズ30等の断面図である。撮像レンズ30は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた凸平に近いメニスカスの第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有する両凸の第3レンズL3と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で負の屈折力を有する両凹の第5レンズL5とを備える。全てのレンズL1〜L5は、プラスチック材料から形成されている。第1レンズL1外縁の物体側には、開口絞りASが配置され、レンズL1〜L5の間には、遮光絞りFS1〜FS4が配置されている。なお、第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができる。   FIG. 22 is a cross-sectional view of the imaging lens 30 and the like according to the ninth embodiment. The imaging lens 30 includes, in order from the object side, a meniscus first lens L1 having a positive refractive power around the optical axis AX and having a convex surface facing the object side, and a negative refractive power around the optical axis AX. A second meniscus lens L2 having a convex surface facing the object side, a biconvex third lens L3 having a weak positive refractive power around the optical axis AX, and a positive refractive power around the optical axis AX. And a meniscus fourth lens L4 having a convex surface facing the image side, and a biconcave fifth lens L5 having negative refractive power around the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop AS is disposed on the object side of the outer edge of the first lens L1, and light-shielding stops FS1 to FS4 are disposed between the lenses L1 to L5. A parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object.

図23(A)〜23(C)は、実施例9の撮像レンズ30の諸収差図(球面収差、非点収差、歪曲収差)を示し、図23(D)及び23(E)は、実施例9の撮像レンズ30のメリディオナルコマ収差を示している。   FIGS. 23A to 23C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 30 of Example 9, and FIGS. 23D and 23E show the examples. 10 shows meridional coma aberration of the imaging lens 30 of Example 9. FIG.

以下の表28は、参考のため、各条件式(1)〜(14)に対応する各実施例1〜9の値をまとめたものである。
〔表28〕

Figure 2014153577
Table 28 below summarizes the values of Examples 1 to 9 corresponding to the conditional expressions (1) to (14) for reference.
[Table 28]
Figure 2014153577

以上では、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。例えば、遮光絞りFS1〜FS4は、金属板に限らず、樹脂又はセラミックスの板状部材とすることができ、レンズのフランジ部39を遮光性の材料で塗装することによっても組み込むことができる。さらに、遮光絞りFS1〜FS4は、完全な遮光体に限らず、口径外で減光を行うものであってもよい。遮光絞りFS1〜FS4を遮光板等とする場合、一対のレンズ間に複数の遮光板等を配置することもできる。   In the above, the present invention has been described based on the embodiments and examples, but the present invention is not limited to the above-described embodiments and the like. For example, the light-shielding stops FS1 to FS4 are not limited to metal plates, but can be plate-like members made of resin or ceramics, and can also be incorporated by painting the flange portion 39 of the lens with a light-shielding material. Furthermore, the light-shielding stops FS1 to FS4 are not limited to a complete light-shielding body, and may perform light reduction outside the aperture. When the light-shielding stops FS1 to FS4 are used as light-shielding plates or the like, a plurality of light-shielding plates or the like can be arranged between a pair of lenses.

10…撮像レンズ、 50…カメラモジュール、 51…撮像素子、 100…撮像装置、 300…携帯端末、AX…光軸、 L1−L5…レンズ、AS…開口絞り、 FS1−FS4…遮光絞り、 I…撮像面(像面)   DESCRIPTION OF SYMBOLS 10 ... Imaging lens, 50 ... Camera module, 51 ... Imaging device, 100 ... Imaging device, 300 ... Portable terminal, AX ... Optical axis, L1-L5 ... Lens, AS ... Aperture stop, FS1-FS4 ... Light-shielding stop, I ... Imaging surface (image surface)

Claims (21)

物体側から順に、物体側に凸面を向けた正の第1レンズと、第2レンズと、第3レンズと、第4レンズと、像側に凹面を向けた第5レンズとからなり、
前記第5レンズの像側面は、非球面で有効径内に変曲点を持ち、
前記第2レンズ及び前記第3レンズの少なくとも一方が負レンズであり、
開口絞りは、前記第3レンズより物体側にあり、
前記第3レンズと前記第4レンズとの間、及び、前記第4レンズと前記第5レンズとの間に遮光絞りを有し、
前記第3レンズの像側面は、変曲点を持ち、有効径の7割以上の一部もしくは全体が負のパワーを持つことを特徴とする撮像レンズ。
In order from the object side, a positive first lens having a convex surface facing the object side, a second lens, a third lens, a fourth lens, and a fifth lens having a concave surface facing the image side,
The image side surface of the fifth lens is aspheric and has an inflection point within the effective diameter,
At least one of the second lens and the third lens is a negative lens;
The aperture stop is closer to the object side than the third lens,
A light-shielding diaphragm between the third lens and the fourth lens and between the fourth lens and the fifth lens;
The imaging lens, wherein the image side surface of the third lens has an inflection point, and a part or all of 70% or more of the effective diameter has a negative power.
前記第4レンズの物体側面は非球面形状を有し、条件式(1)を満たすことを特徴とする請求項1に記載の撮像レンズ。
0.015<AS7/f<0.07 … (1)
ただし、
AS7:前記第4レンズの物体側面の非球面形状と、前記第4レンズの有効径位置及び中心点を結ぶ球面形状との最大乖離量(mm)
f:撮像レンズ全系の焦点距離
2. The imaging lens according to claim 1, wherein an object side surface of the fourth lens has an aspherical shape and satisfies the conditional expression (1).
0.015 <AS7 / f <0.07 (1)
However,
AS7: Maximum deviation (mm) between the aspherical shape of the object side surface of the fourth lens and the spherical shape connecting the effective diameter position and the center point of the fourth lens
f: Focal length of the entire imaging lens system
条件式(2)を満たすことを特徴とする請求項1及び2のいずれか一項に記載の撮像レンズ。
0.75<dΦ/dz<2.5 … (2)
dΦ:前記第4及び第5レンズ間の遮光絞りの直径と前記第3及び第4レンズ間の遮光絞りの直径との差
dz:前記第4及び第5レンズ間の遮光絞りと前記第3及び第4レンズ間の遮光絞りとの間隔
The imaging lens according to claim 1, wherein the conditional expression (2) is satisfied.
0.75 <dΦ / dz <2.5 (2)
dΦ: difference between the diameter of the light-shielding diaphragm between the fourth and fifth lenses and the diameter of the light-shielding diaphragm between the third and fourth lenses dz: the light-shielding diaphragm between the fourth and fifth lenses and the third and fourth lenses Distance between the fourth lens and the light-shielding diaphragm
条件式(3)を満たすことを特徴とする請求項1から3までのいずれか一項に記載の撮像レンズ。
0.03<et6/f<0.10 … (3)
et6:前記第3レンズの像側面の有効径位置と前記第4レンズの物体側面の有効径位置との光軸方向の間隔
f:撮像レンズ全系の焦点距離
The imaging lens according to claim 1, wherein the conditional expression (3) is satisfied.
0.03 <et6 / f <0.10 (3)
et6: Distance in the optical axis direction between the effective diameter position of the image side surface of the third lens and the effective diameter position of the object side surface of the fourth lens f: Focal length of the entire imaging lens system
条件式(4)を満たすことを特徴とする請求項1から4までのいずれか一項に記載の撮像レンズ。
40<θS7<80 … (4)
ただし、
θS7:前記第4レンズの物体側面の有効径の7割以上における最大面角度(°)
The imaging lens according to claim 1, wherein the conditional expression (4) is satisfied.
40 <θS7 <80 (4)
However,
θS7: Maximum surface angle (°) at 70% or more of the effective diameter of the object side surface of the fourth lens
条件式(5)を満たすことを特徴とする請求項1から5までのいずれか一項に記載の撮像レンズ。
|Sag6|/f<0.10 … (5)
ただし、
|Sag6|:前記第3レンズの像側面のサグ量最大値
f:撮像レンズ全系の焦点距離
The imaging lens according to claim 1, wherein the conditional expression (5) is satisfied.
| Sag6 | / f <0.10 (5)
However,
| Sag6 |: Maximum sag amount on the image side surface of the third lens f: Focal length of the entire imaging lens system
条件式(6)を満たすことを特徴とする請求項1から6までのいずれか一項に記載の撮像レンズ。
−15<θS6<15 … (6)
ただし、
θS6:前記第3レンズの像側面の有効径の9割以上における最大面角度(°)
The imaging lens according to any one of claims 1 to 6, wherein conditional expression (6) is satisfied.
−15 <θS6 <15 (6)
However,
θS6: Maximum surface angle (°) at 90% or more of the effective diameter of the image side surface of the third lens
条件式(7)を満たすことを特徴とする請求項1から7までのいずれか一項に記載の撮像レンズ。
0.65<Sag7/d7<1.50 … (7)
ただし、
Sag7:前記第4レンズの物体側面のサグ量最大値
d7:前記第4レンズの中心厚
The imaging lens according to claim 1, wherein the conditional expression (7) is satisfied.
0.65 <Sag7 / d7 <1.50 (7)
However,
Sag7: Maximum sag amount on the object side surface of the fourth lens d7: Center thickness of the fourth lens
条件式(8)を満たすことを特徴とする請求項1から8までのいずれか一項に記載の撮像レンズ。
0.45<θr6/θr4<1.00 … (8)
ただし、
θr4:前記第2レンズの像側面における対角像高光束の光軸から遠い側の周縁光線の屈折角
θr6:前記第3レンズの像側面における対角像高光束の光軸から遠い側の周縁光線の屈折角
The imaging lens according to any one of claims 1 to 8, wherein conditional expression (8) is satisfied.
0.45 <θr6 / θr4 <1.00 (8)
However,
θr4: refraction angle of the peripheral ray far from the optical axis of the diagonal image high light beam on the image side surface of the second lens θr6: peripheral edge of the third lens on the image side of the diagonal image high beam far from the optical axis Ray angle of refraction
条件式(9)を満たすことを特徴とする請求項1から9までのいずれか一項に記載の撮像レンズ。
0.05<et8/f<0.20 … (9)
ただし、
et8:前記第4レンズの像側面の有効径位置と前記第5レンズの物体側面の有効径位置との光軸方向の間隔
f:撮像レンズ全系の焦点距離
The imaging lens according to any one of claims 1 to 9, wherein conditional expression (9) is satisfied.
0.05 <et8 / f <0.20 (9)
However,
et8: Distance in the optical axis direction between the effective diameter position of the image side surface of the fourth lens and the effective diameter position of the object side surface of the fifth lens f: Focal length of the entire imaging lens system
前記第5レンズは負レンズであり、条件式(10)を満たすことを特徴とする請求項1から10までのいずれか一項に記載の撮像レンズ。
45<v5<70 … (10)
ただし、
v5:前記第5レンズのアッベ数
The imaging lens according to any one of claims 1 to 10, wherein the fifth lens is a negative lens and satisfies the conditional expression (10).
45 <v5 <70 (10)
However,
v5: Abbe number of the fifth lens
条件式(11)を満たすことを特徴とする請求項1から11までのいずれか一項に記載の撮像レンズ。
1.45<n1<1.65 … (11)
ただし、
n1:前記第1レンズの屈折率
The imaging lens according to claim 1, wherein the conditional expression (11) is satisfied.
1.45 <n1 <1.65 (11)
However,
n1: Refractive index of the first lens
前記第2レンズは、負レンズであることを特徴とする請求項1から12までのいずれか一項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 12, wherein the second lens is a negative lens. 前記第2レンズは、物体側面の曲率半径の絶対値よりも像側面の曲率半径の絶対値の方が小さいことを特徴とする請求項1から13までのいずれか一項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 13, wherein the second lens has an absolute value of the curvature radius of the image side surface smaller than the absolute value of the curvature radius of the object side surface. 前記第2レンズの像側面は、有効径の7割以上の一部もしくは全体が負のパワーを持つことを特徴とする請求項1から14までのいずれか一項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 14, wherein an image side surface of the second lens has a negative power partly or entirely of 70% or more of the effective diameter. 条件式(12)を満たすことを特徴とする請求項13に記載の撮像レンズ。
15<v2<30 … (12)
ただし、
v2:前記第2レンズのアッベ数
The imaging lens according to claim 13, wherein the conditional expression (12) is satisfied.
15 <v2 <30 (12)
However,
v2: Abbe number of the second lens
条件式(13)を満たすことを特徴とする請求項1から16までのいずれか一項に記載の撮像レンズ。
−0.2<f/f4<2.0 … (13)
ただし、
f4:前記第4レンズの焦点距離
The imaging lens according to claim 1, wherein the conditional expression (13) is satisfied.
-0.2 <f / f4 <2.0 (13)
However,
f4: focal length of the fourth lens
条件式(14)を満たすことを特徴とする請求項1から17までのいずれか一項に記載の撮像レンズ。
1.1<f123/f<1.7 … (14)
ただし、
f123:前記第1レンズから前記第3レンズまでの合成焦点距離
The imaging lens according to claim 1, wherein the conditional expression (14) is satisfied.
1.1 <f123 / f <1.7 (14)
However,
f123: Composite focal length from the first lens to the third lens
実質的にパワーを持たないレンズをさらに有することを特徴とする請求項1から18までのいずれか一項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 18, further comprising a lens having substantially no power. 請求項1から19までのいずれか一項に記載の撮像レンズと、撮像素子とを備えることを特徴とする撮像装置。   An imaging apparatus comprising: the imaging lens according to any one of claims 1 to 19; and an imaging element. 請求項20に記載の撮像装置を備えることを特徴とする携帯端末。   A portable terminal comprising the imaging device according to claim 20.
JP2013023900A 2013-02-08 2013-02-08 Imaging lens, and imaging device and portable terminal Pending JP2014153577A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013023900A JP2014153577A (en) 2013-02-08 2013-02-08 Imaging lens, and imaging device and portable terminal
TW102121027A TWI503563B (en) 2013-02-08 2013-06-14 Image pickup lens, image pickup apparatus, and portable terminal
TW102211166U TWM472861U (en) 2013-02-08 2013-06-14 Image pickup lens, image pickup apparatus, and portable terminal
CN201320342551.7U CN203480114U (en) 2013-02-08 2013-06-14 Camera lens, camera device and mobile terminal
CN201310235029.3A CN103984081A (en) 2013-02-08 2013-06-14 Image pickup lens, image pickup apparatus, and portable terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013023900A JP2014153577A (en) 2013-02-08 2013-02-08 Imaging lens, and imaging device and portable terminal

Publications (1)

Publication Number Publication Date
JP2014153577A true JP2014153577A (en) 2014-08-25

Family

ID=50228418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013023900A Pending JP2014153577A (en) 2013-02-08 2013-02-08 Imaging lens, and imaging device and portable terminal

Country Status (3)

Country Link
JP (1) JP2014153577A (en)
CN (2) CN203480114U (en)
TW (2) TWM472861U (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102850A (en) * 2013-11-28 2015-06-04 カンタツ株式会社 Image capturing lens
JP5922854B1 (en) * 2016-01-27 2016-05-24 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5986696B1 (en) * 2016-06-16 2016-09-06 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
CN106873116A (en) * 2017-04-06 2017-06-20 浙江舜宇光学有限公司 Pick-up lens
JP2017187566A (en) * 2016-04-04 2017-10-12 カンタツ株式会社 Image capturing lens
TWI622792B (en) * 2015-01-12 2018-05-01 鴻海精密工業股份有限公司 Imaging lens
JP2021033277A (en) * 2019-08-16 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
CN113866950A (en) * 2017-04-18 2021-12-31 浙江舜宇光学有限公司 Imaging lens
CN114089449A (en) * 2020-08-06 2022-02-25 三营超精密光电(晋城)有限公司 Optical lens, optical lens and electronic device
CN114442278A (en) * 2017-05-26 2022-05-06 浙江舜宇光学有限公司 Camera lens

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153577A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Imaging lens, and imaging device and portable terminal
TWI548893B (en) 2014-11-12 2016-09-11 大立光電股份有限公司 Photographing optical lens assembly, image capturing device and electronic device
CN105759408A (en) * 2014-12-18 2016-07-13 佳凌科技股份有限公司 Camera lens
TWI554781B (en) 2015-05-29 2016-10-21 先進光電科技股份有限公司 Optical image capturing system
CN113238339B (en) * 2019-07-11 2023-04-07 华为技术有限公司 Lens, camera and electronic equipment
CN111142222B (en) * 2019-12-23 2021-07-30 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN112596206A (en) * 2020-12-18 2021-04-02 四川都乐光电科技有限公司 Wide-angle lens of mobile phone
CN116794803A (en) * 2022-03-21 2023-09-22 浙江舜宇光学有限公司 Imaging lens group

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015034A (en) * 2001-04-26 2003-01-15 Hitachi Ltd Lens device for projection, and backproject type image display device using the same
JP2007240653A (en) * 2006-03-06 2007-09-20 Ricoh Co Ltd Imaging lens, image reader, and image forming apparatus
JP5308778B2 (en) * 2008-11-10 2013-10-09 オリンパス株式会社 Wide angle optical system and imaging apparatus using the same
JP5348563B2 (en) * 2010-01-13 2013-11-20 コニカミノルタ株式会社 Imaging lens, imaging device, and portable terminal
US20140015991A1 (en) * 2011-03-25 2014-01-16 Konica Minolta, Inc. Imaging optical system, imaging device, and digital apparatus
CN202119964U (en) * 2011-04-27 2012-01-18 天津复印技术研究所 Fine laser scanning f-theta lens
KR101580748B1 (en) * 2011-06-24 2015-12-28 코니카 미놀타 가부시키가이샤 Image pickup optical system, image pickup device, and digital apparatus
TWI416163B (en) * 2011-07-19 2013-11-21 Largan Precision Co Ltd Optical image capturing lens system
TWI440884B (en) * 2011-11-07 2014-06-11 Largan Precision Co Ltd Photographing system
TWI474069B (en) * 2012-06-05 2015-02-21 Largan Precision Co Ltd Image capturing optical lens assembly
JP2014153577A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Imaging lens, and imaging device and portable terminal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102850A (en) * 2013-11-28 2015-06-04 カンタツ株式会社 Image capturing lens
TWI622792B (en) * 2015-01-12 2018-05-01 鴻海精密工業股份有限公司 Imaging lens
JP5922854B1 (en) * 2016-01-27 2016-05-24 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP2017187566A (en) * 2016-04-04 2017-10-12 カンタツ株式会社 Image capturing lens
JP5986696B1 (en) * 2016-06-16 2016-09-06 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
CN106873116A (en) * 2017-04-06 2017-06-20 浙江舜宇光学有限公司 Pick-up lens
CN106873116B (en) * 2017-04-06 2023-07-14 浙江舜宇光学有限公司 Image pickup lens
CN113866950B (en) * 2017-04-18 2024-05-28 浙江舜宇光学有限公司 Imaging lens
CN113866950A (en) * 2017-04-18 2021-12-31 浙江舜宇光学有限公司 Imaging lens
CN114442278A (en) * 2017-05-26 2022-05-06 浙江舜宇光学有限公司 Camera lens
CN114442278B (en) * 2017-05-26 2024-04-26 浙江舜宇光学有限公司 Image pickup lens
JP2021033277A (en) * 2019-08-16 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
CN114089449A (en) * 2020-08-06 2022-02-25 三营超精密光电(晋城)有限公司 Optical lens, optical lens and electronic device

Also Published As

Publication number Publication date
TWM472861U (en) 2014-02-21
CN203480114U (en) 2014-03-12
TWI503563B (en) 2015-10-11
CN103984081A (en) 2014-08-13
TW201432293A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
JP6191820B2 (en) Imaging lens, imaging device, and portable terminal
JP2014153577A (en) Imaging lens, and imaging device and portable terminal
JP6160423B2 (en) Imaging lens, imaging device, and portable terminal
JP2014153576A (en) Imaging lens, and imaging device and portable terminal
JP5904623B2 (en) Imaging lens and imaging device provided with imaging lens
US9557536B2 (en) Zoom lens and image pickup device
JP6347156B2 (en) Imaging lens, imaging device, and portable terminal
WO2017199633A1 (en) Imaging lens and imaging device
JP5854227B2 (en) Imaging lens and imaging apparatus
JP6836142B2 (en) Imaging optical system and imaging device
US7623305B2 (en) Image capturing lens and imaging apparatus
JP2015072402A (en) Image capturing lens, image capturing device, and mobile terminal
CN103984080B (en) Imaging lens system, camera head and mobile terminal
JP5742737B2 (en) Imaging lens, imaging device, and portable terminal
JP2015072404A (en) Image capturing lens, image capturing device, and mobile terminal
JP2014115431A (en) Imaging lens, imaging apparatus, and portable terminal
WO2013137312A1 (en) Image pickup lens, image pickup device, and portable terminal
JP2015114505A (en) Imaging lens and imaging device
JP2013182090A (en) Imaging lens, imaging apparatus, and portable terminal
JP2013156389A (en) Imaging lens, imaging device and portable terminal
WO2014050476A1 (en) Image pickup lens, image pickup device, and mobile terminal
JP2015087495A (en) Imaging lens, imaging apparatus and portable terminal
WO2014073685A1 (en) Image capture lens, image capture device, and portable terminal
JP2014153574A (en) Imaging lens, and imaging device and portable terminal
JP2015060083A (en) Zoom lens and image capturing device