WO2014073685A1 - Image capture lens, image capture device, and portable terminal - Google Patents

Image capture lens, image capture device, and portable terminal Download PDF

Info

Publication number
WO2014073685A1
WO2014073685A1 PCT/JP2013/080460 JP2013080460W WO2014073685A1 WO 2014073685 A1 WO2014073685 A1 WO 2014073685A1 JP 2013080460 W JP2013080460 W JP 2013080460W WO 2014073685 A1 WO2014073685 A1 WO 2014073685A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
object side
conditional expression
image
Prior art date
Application number
PCT/JP2013/080460
Other languages
French (fr)
Japanese (ja)
Inventor
川崎貴志
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014545789A priority Critical patent/JPWO2014073685A1/en
Publication of WO2014073685A1 publication Critical patent/WO2014073685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives

Definitions

  • the present invention relates to an imaging lens for acquiring a subject image, and an imaging apparatus and a portable terminal including the imaging lens, and in particular, an imaging lens, an imaging apparatus, and a portable terminal that can realize a wide angle of an angle of view of 75 ° or more and are suitable for a low profile.
  • an imaging lens for acquiring a subject image
  • an imaging apparatus and a portable terminal including the imaging lens, and in particular, an imaging lens, an imaging apparatus, and a portable terminal that can realize a wide angle of an angle of view of 75 ° or more and are suitable for a low profile.
  • CMOS Complementary Metal-Oxide Semiconductor
  • Patent Document 1 describes a photographing lens that is suitable for a compact camera or a lens-equipped film unit, has a wide photographing field angle of about 80 °, and has a brightness of F3.5 to F4.
  • the photographing lens includes a weak positive first lens, an aperture stop, a positive second lens, and a negative third lens, or a weak negative first lens, an aperture stop, a positive second lens, and a negative lens. It consists of a third lens.
  • an imaging lens used for a solid-state imaging device having a small pixel size is required to have a characteristic different from that of a lens for a film camera, which requires a high resolving power to cope with a highly thinned pixel. .
  • the resolving power of the lens is limited by the F value, and a bright lens with a small F value can obtain a high resolving power. Therefore, as in Patent Document 1, sufficient performance can be obtained with a brightness of about F3.5. Can not. Moreover, since the negative power of the third lens is too strong, the photographic lens of Patent Document 1 has a long back focus and is disadvantageous for shortening the optical total length.
  • Patent Document 2 describes an imaging lens including a positive first lens, an aperture stop, a positive second lens, and a negative third lens.
  • This photographic lens is widened because the second lens has a strong positive power.
  • the second lens has a meniscus shape with the convex surface facing the image side, the principal point position is shifted to the image side, resulting in an increase in the total optical length.
  • the present invention has been made in view of the above background art, and an object thereof is to provide a high-performance imaging lens that can realize a wide angle and is suitable for a low profile. Another object of the present invention is to provide an imaging apparatus incorporating the imaging lens and a portable terminal including the imaging apparatus.
  • an imaging lens includes, in order from the object side, a first lens, an aperture stop, a biconvex second lens, and a third lens.
  • the third lens has the following conditions: Satisfy the formula -0.5 ⁇ f / f3 ⁇ -0.0 (1) However, f: Focal length of the entire system (mm) f3: focal length of the third lens (mm)
  • the second lens has a biconvex shape.
  • the principal point position of the entire system can be appropriately shifted toward the image side and the focal length can be shortened.
  • the second lens has a relatively strong positive power
  • the refractive power can be shared between the object side surface and the image side surface, thereby preventing the occurrence of higher-order aberrations due to excessively strong refractive power on one side. Can do.
  • an aperture stop between the first lens and the second lens, the axial ray height of the second lens is increased.
  • Conditional expression (1) is a conditional expression for making the ratio between the focal length of the entire system and the focal length of the third lens appropriate.
  • the negative power of the third lens becomes weak, so that the back focus can be shortened and the optical total length can be shortened.
  • the third lens has a negative power by falling below the upper limit of conditional expression (1), the Petzval sum can be reduced and the curvature of field can be corrected.
  • the value f / f3 is more preferably in the range of the following formula. ⁇ 0.4 ⁇ f / f3 ⁇ 0.1 (1) ′
  • the first lens has a meniscus shape with a convex surface facing the object side.
  • the incident angle of the light beam from the object to the lens can be reduced, the occurrence of spherical aberration and coma aberration can be suppressed.
  • the third lens has a meniscus shape with a convex surface facing the image side.
  • the incident angle of the light beam on the third lens can be reduced, and rapid refraction of the light beam can be avoided even in the peripheral region, so that a decrease in aperture efficiency can be suppressed and a high peripheral light amount can be maintained.
  • the conditional expression (2) is a conditional expression for making the ratio between the focal length of the entire system and the focal length of the first lens appropriate.
  • the first lens does not have a strong negative power, so that the principal point position of the entire system is not too close to the image plane, and the optical total length can be shortened.
  • the first lens does not have a strong positive power, so that the principal point does not move too close to the object side, and a sufficiently wide angle can be achieved.
  • the value f / f1 is more preferably in the range of the following formula. ⁇ 0.3 ⁇ f / f1 ⁇ 0.3 (2) ′
  • Conditional expression (3) is a conditional expression for making the ratio of the focal length of the second lens and the focal length of the third lens appropriate.
  • the second lens has a strong positive power with respect to the negative power of the third lens, so that a wide angle can be achieved.
  • the third lens has a weak negative power with respect to the positive power of the second lens by falling below the upper limit of the conditional expression (3), the curvature of field generated by the second lens, etc. Aberration can be corrected.
  • the value f2 / f3 is more preferably in the range of the following formula. ⁇ 0.45 ⁇ f2 / f3 ⁇ 0.0 (3) ′
  • Conditional expression (4) is a conditional expression for making the shape of the second lens appropriate.
  • the second lens has a biconvex shape in which the radius of curvature of the object side surface is larger than that of the image side surface.
  • the incident angle of the light incident on the second lens on the object side surface is small. Therefore, spherical aberration and coma generated in the second lens can be suppressed.
  • the positive power of the second lens is shared without being biased to either the object side surface or the image side surface, so that appropriate aberration correction can be performed.
  • the value (r3 + r4) / (r3-r4) is more preferably in the range of the following equation. 0.0 ⁇ (r3 + r4) / (r3-r4) ⁇ 0.4 (4) ′
  • the following conditional expression is satisfied. -5.0 ⁇ P23 / P ⁇ 0.0 (5)
  • P Refractive power of the entire imaging lens system
  • P23 Refractive power of a so-called air lens formed by the image side surface of the second lens and the object side surface of the third lens.
  • the value of P23 is expressed by the following equation (6).
  • n2 Refractive index with respect to d-line of second lens
  • n3 Refractive index with respect to d-line of third lens
  • R4 Radius of curvature of image side surface of second lens
  • R5 Radius of curvature of object side surface of third lens
  • D5 With second lens Air distance on the axis with the third lens
  • Conditional expression (5) is a conditional expression for optimizing the ratio between the refractive power of the air lens between the second lens and the third lens and the refractive power of the entire system. Since the image side surface of the second lens has a convex shape, the air lens has a meniscus shape with the convex surface facing the image side. By exceeding the lower limit of conditional expression (5), the negative refracting power of the air lens between the second lens and the third lens becomes too strong, so that the light beam jumps strongly and the incident angle to the sensor increases. Can be prevented. Further, by falling below the upper limit of conditional expression (5), the refractive power of the air lens between the second lens and the third lens becomes negative to some extent, so that the Petzval sum can be reduced.
  • the value P23 / P is more preferably in the range of the following formula. -4.0 ⁇ P23 / P ⁇ -1.0 (5) '
  • Conditional expression (7) is a conditional expression for optimizing the Abbe number of the third lens. Exceeding the lower limit of conditional expression (7) can prevent excessive correction of chromatic aberration. Moreover, an inexpensive resin with good availability can be used for the third lens. In addition, the chromatic aberration generated in the second lens can be appropriately corrected by falling below the upper limit of conditional expression (7).
  • the value ⁇ 3 is more preferably in the range of the following formula. 20 ⁇ 3 ⁇ 40 (7) '
  • the optical system further includes a lens having substantially no power. Also in this case, it is possible to provide a high-performance imaging lens that achieves a wide angle while suppressing an increase in the total optical length.
  • an imaging apparatus includes the imaging lens described above and a solid-state imaging device having a photoelectric conversion unit on which a subject image is formed by the imaging lens.
  • the imaging lens is used in the imaging device, a thin or small imaging device including a high-performance imaging lens with a wide angle of view can be provided.
  • the solid-state imaging device has an imaging surface that is curved so that the peripheral portion is positioned on the object side with respect to the central portion. Since the imaging surface of the solid-state imaging device is curved, the sensor surface as the imaging surface can be matched with the lens image surface even if field curvature occurs on the lens side. Therefore, an in-focus image can be obtained from the center to the periphery. Further, since the peripheral portion is curved toward the object side, the sensor is curved so as to receive the light beam incident on the sensor, so that the light beam incident angle to the sensor can be suppressed small.
  • the imaging surface of the solid-state imaging device is curved in a cylindrical shape with a concave surface facing the object side. It is relatively easy to manufacture a solid-state imaging device having a cylindrical imaging surface.
  • the cylindrical shape there are a case where the short side direction is curved and a case where the long side direction is curved on the imaging surface of the solid-state imaging device.
  • field curvature remains, which is disadvantageous in terms of aberration correction. If the shape is curved in the short side direction, even if it is curved with the same curvature, the amount of displacement of the curved portion is smaller than in the shape curved in the long side direction, making it easier to fabricate the image sensor. Become.
  • the shape when it is curved in the long side direction, even when it is curved with the same radius of curvature, the amount of displacement can be increased compared to the case where the short side direction is curved, and the shape of the imaging surface is brought closer to the curvature of the lens surface. This is advantageous in terms of aberration correction.
  • the imaging surface of the solid-state imaging device is curved into a spherical shape with a concave surface facing the object side. It is relatively easy to manufacture a solid-state image sensor having a spherical imaging surface.
  • a portable terminal includes the above-described imaging device, and enables high-accuracy and wide-angle shooting while maintaining a thin or small size.
  • FIG. 6 is a cross-sectional view of an imaging lens and the like according to a modification of Example 1.
  • 8A to 8E are aberration diagrams of the imaging lens according to one modification of Example 1.
  • FIG. FIG. 6 is a cross-sectional view of an imaging lens and the like of Example 2.
  • FIGS. 10A to 10E are aberration diagrams of the imaging lens of Example 2.
  • FIG. FIG. 6 is a cross-sectional view of an imaging lens and the like of Example 3.
  • 12A to 12E are aberration diagrams of the imaging lens of Example 3.
  • FIG. 6 is a cross-sectional view of an imaging lens and the like of Example 4.
  • FIG. 14A to 14E are aberration diagrams of the imaging lens of Example 4.
  • the imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.
  • FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.
  • the camera module 50 includes an imaging lens 10 that forms a subject image, an imaging device 51 that detects a subject image formed by the imaging lens 10, and a wiring board 52 that holds the imaging device 51 from behind and has wiring and the like. And a lens barrel portion 54 having an opening OP for holding the imaging lens 10 and the like and allowing light rays from the object side to enter.
  • the imaging lens 10 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element 51.
  • the camera module 50 is used by being incorporated in an imaging device to be described later.
  • the imaging lens 10 includes a first lens L1, an aperture stop S, a second lens L2, and a third lens L3 in order from the object side.
  • the first lens L1 has a meniscus shape with a convex surface facing the object side
  • the second lens L2 has a biconvex shape
  • the third lens L3 has a meniscus shape with a convex surface facing the image side. ing.
  • the image sensor 51 is a sensor chip made of a solid-state image sensor.
  • the photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof.
  • the photoelectric exchange surface of the photoelectric conversion unit 51a as the light receiving unit is an image surface or an imaging surface (projected surface) I.
  • the wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54).
  • the wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.
  • the imaging surface I of the photoelectric conversion unit 51a provided in the imaging device 51 can be curved so that the peripheral part A1 is located on the object side with respect to the central part A0.
  • the imaging surface I of the imaging element 51 can be curved in a cylindrical shape with a concave surface facing the object side, or can be curved in a spherical shape with the concave surface facing the object side.
  • the imaging element 51 and the wiring board 52 can be provided with a support for keeping the photoelectric conversion unit 51a in a desired curved state.
  • the imaging surface I can be adjusted to the lens image surface even if the imaging lens 10 has a curvature of field, so that the focus from the central part A0 to the peripheral part A1 is in focus. An image can be obtained.
  • the photoelectric conversion unit 51a is bent so as to receive the incident light, so that the light incident angle on the photoelectric conversion unit 51a can be suppressed to be small.
  • the parallel plate F is disposed and fixed on the imaging lens 10 side of the imaging element 51 by a holder member (not shown) so as to cover the imaging element 51 and the like.
  • the lens barrel portion 54 houses and holds the imaging lens 10.
  • the lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L3 constituting the imaging lens 10 along the optical axis AX.
  • it has a drive mechanism 55a.
  • the drive mechanism 55a reciprocates the specific lens or all the lenses along the optical axis AX.
  • the drive mechanism 55a includes, for example, a voice coil motor and a guide.
  • the drive mechanism 55a can be configured by a stepping motor or the like instead of the voice coil motor or the like.
  • the above drive mechanism 55a is not essential and can be omitted. That is, in applications where it is not necessary to ensure a wide focus range of the imaging lens 10, the imaging lens 10 and its peripheral mechanisms can be simplified by omitting the drive mechanism 55a.
  • FIGS. 3, 4A and 4B An example of a mobile phone or other mobile communication terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 3, 4A and 4B.
  • the mobile communication terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging device 100 having a camera module 50, a control unit (CPU) 310 that comprehensively controls each unit and executes a program corresponding to each process, Between a display operation unit 320 that is a touch panel that displays data related to communication, captured video, and the like and accepts user operations, an operation unit 330 including a power switch, and the like, and an external server or the like via an antenna 341 A wireless communication unit 340 for realizing various types of information communication, a storage unit (ROM) 360 storing necessary data such as a system program, various processing programs, and a terminal ID of the mobile communication terminal 300, and a control unit 310 Various processing programs executed by the computer, data, processing data, or the imaging apparatus 100 That includes a temporary storage unit used the imaging data and the like as a work area for temporarily storing the (RAM) 370.
  • a temporary storage unit used the imaging data and the like as a work area for temporarily storing the (RAM) 370.
  • the imaging apparatus 100 includes a control unit 103, an optical system driving unit 105, an imaging element driving unit 107, an image memory 108, and the like in addition to the camera module 50 described above.
  • the control unit 103 controls each unit of the imaging apparatus 100.
  • the control unit 103 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs are read out from the ROM and expanded in the RAM in cooperation with the CPU. Execute the process.
  • the control unit 310 is communicably connected to the control unit 103 of the imaging apparatus 100, and can exchange control signals and image data.
  • the optical system driving unit 105 controls the state of the imaging lens 10 by operating the driving mechanism 55a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the control unit 103.
  • the optical system driving unit 105 operates the driving mechanism 55a to appropriately move the specific lens or all the lenses in the imaging lens 10 along the optical axis AX, thereby causing the imaging lens 10 to perform a focusing operation.
  • the image sensor driving unit 107 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control unit 103. Specifically, the image sensor drive unit 107 controls the image sensor 51 by scanning and driving based on the timing signal. Further, the image sensor driving unit 107 converts the detection signal output from the image sensor 51 or an analog signal as a photoelectric conversion signal into digital image data. Further, the image sensor driving unit 107 can perform various image processing such as distortion correction, color correction, and compression on the image signal detected by the image sensor 51.
  • the image memory 108 receives the digitized image signal from the image sensor driving unit 107 and stores it as readable and writable image data.
  • the photographing operation of the mobile communication terminal 300 including the imaging device 100 will be described.
  • subject monitoring through image display
  • image shooting execution are performed.
  • an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1 and the like) of the imaging element 51.
  • the image sensor 51 is scanned and driven by the image sensor driving unit 107, and outputs an analog signal for one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.
  • This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51.
  • the digital data is subjected to color process processing including pixel interpolation processing and Y correction processing, and a digital luminance signal Y and color difference signals Cb, Cr (image data) are generated and stored in the image memory 108.
  • the stored digital data is periodically read out from the image memory 108 to generate a video signal thereof, and is output to the display operation unit 320 via the control unit 103 and the control unit 310.
  • the display operation unit 320 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 105 based on an operation input performed by the user via the display operation unit 320 at any time.
  • the above-described imaging device 100 is an example of an imaging device suitable for the present invention, and the present invention is not limited to this.
  • the image pickup apparatus equipped with the camera module 50 or the image pickup lens 10 is not limited to the one built in the smartphone type mobile communication terminal 300, but is built into a mobile phone, a PHS (Personal Handyphone System), or the like. Alternatively, it may be incorporated in a PDA (Personal Digital Assistant), tablet personal computer, mobile personal computer, digital still camera, video camera, or the like.
  • PDA Personal Digital Assistant
  • tablet personal computer mobile personal computer
  • digital still camera video camera, or the like.
  • the control circuit and the like of the imaging device are not limited to those illustrated in FIG.
  • the imaging lens 10 shown in FIG. 1 forms a subject image on an imaging surface (projected surface) I of an image sensor 51, and has a meniscus shape with a convex surface facing the object side in order from the object side.
  • the second lens L2 since the second lens L2 has a biconvex shape, the principal point position of the entire imaging lens 10 system can be moved toward the image side to shorten the focal length, and a wide angle can be easily realized.
  • the second lens L2 has a relatively strong positive power
  • the refractive power can be shared between the object side surface S21 and the image side surface S22. Can be prevented.
  • the axial ray height of the second lens L2 is increased.
  • the higher the axial ray height of the three balls the greater the influence on the combined power. Therefore, it is easy to increase the combined power by increasing the axial ray height of the second lens L2 having a strong positive power, so that a wide angle can be achieved.
  • the third lens L3 of the imaging lens 10 satisfies the following conditional expression (1), where f is the focal length (mm) of the entire system and f3 is the focal length (mm) of the third lens L3. -0.5 ⁇ f / f3 ⁇ -0.0 (1)
  • Conditional expression (1) is a conditional expression for making the ratio between the focal length of the entire imaging lens 10 system and the focal length of the third lens L3 appropriate.
  • the negative power of the third lens L3 becomes weak, so that the back focus can be shortened and the optical total length can be shortened.
  • the third lens L3 has a negative power by falling below the upper limit of the conditional expression (1), the Petzval sum can be reduced and the field curvature can be effectively corrected. .
  • conditional expression (1) is more preferably within the range of the following expression. ⁇ 0.4 ⁇ f / f3 ⁇ 0.1 (1) ′
  • conditional expression (2) in addition to the conditional expression (1), the conditional expression (2) already described. ⁇ 0.4 ⁇ f / f1 ⁇ 0.4 (2) Satisfied.
  • f1 is the focal length (mm) of the first lens L1.
  • the value f / f1 of conditional expression (2) is more preferably within the range of the following expression. ⁇ 0.3 ⁇ f / f1 ⁇ 0.3 (2) ′
  • conditional expression (3) in addition to the conditional expression (1) and the like, the conditional expression (3) already described. ⁇ 0.7 ⁇ f2 / f3 ⁇ 0.0 (3) Satisfied.
  • f2 is the focal length (mm) of the second lens L2.
  • the value f2 / f3 of conditional expression (3) is more preferably within the range of the following expression. ⁇ 0.45 ⁇ f2 / f3 ⁇ 0.0 (3) ′
  • conditional expression (4) in addition to the conditional expression (1), the conditional expression (4) already described.
  • r3 is the radius of curvature (mm) of the object side surface S21 of the second lens L2
  • r4 is the radius of curvature (mm) of the image side surface S22 of the second lens L2.
  • the value (r3 + r4) / (r3-r4) of conditional expression (4) is more preferably within the range of the following expression. 0.0 ⁇ (r3 + r4) / (r3-r4) ⁇ 0.4 (4) ′
  • conditional expression (5) in addition to the conditional expression (1) and the like, the conditional expression (5) already described. -5.0 ⁇ P23 / P ⁇ 0.0 (5) Satisfied.
  • P is the refractive power of the entire imaging lens 10
  • P23 is the refractive power of a so-called air lens formed by the image side surface S22 of the second lens L2 and the object side surface S31 of the third lens L3.
  • the value P23 / P of conditional expression (5) is more preferably within the range of the following expression. -4.0 ⁇ P23 / P ⁇ -1.0 (5) '
  • conditional expression (7) in addition to the conditional expression (1), the conditional expression (7) already described. 15 ⁇ 3 ⁇ 50 (7) Satisfied.
  • ⁇ 3 is the Abbe number of the third lens L3.
  • the value ⁇ 3 of the conditional expression (7) is more preferably within the range of the following expression. 20 ⁇ 3 ⁇ 40 (7) '
  • the imaging lens 10 of the embodiment is not particularly illustrated, it may further include a lens that does not substantially have power.
  • r represents the radius of curvature
  • d represents the axial top surface spacing
  • nd represents the refractive index of the lens material with respect to the d-line
  • vd represents the Abbe number of the lens material
  • eff. “dia.” means an effective diameter
  • the surface where “*” is written after each surface number is a surface having an aspherical shape.
  • the aspherical shape is expressed by the following “Equation 1” where the vertex of the surface is the origin, the X axis is taken in the direction of the optical axis AX, and the height in the direction perpendicular to the optical axis AX is h.
  • Ai i-order aspherical coefficient
  • R radius of curvature
  • K conical constant
  • the basic wavelength used by the imaging lens of each example is 587.56 nm, and the unit of the surface shape such as the radius of curvature is mm. .
  • Example 1 The lens surface data of Example 1 is shown in Table 1 below.
  • Table 1 Surface number r d nd vd eff.dia.
  • OBJ means an object
  • STO means an aperture stop
  • IMG means an imaging surface or an image surface.
  • the characteristics of the imaging lens 10 of Example 1 are listed below.
  • FL 3.429 Fno 2.40 w 79.68 Ymax 2.800 BF 0.939 TL 4.521
  • FL means the focal length of the entire imaging lens 10
  • Fno means the F value
  • w means the diagonal angle of view
  • Ymax means the half value of the diagonal length of the imaging surface of the image sensor 51
  • BF means back focus
  • TL means the entire length of the system.
  • symbol shall have the same meaning also in the subsequent Examples.
  • Example 1 The single lens data of Example 1 is shown in Table 3 below. [Table 3] Lens number Surface number Focal length Effective diameter 1 1-2 -27.3077 1.860 2 4-5 2.1445 2.160 3 6-7 -33.1813 3.180
  • FIG. 5 is a cross-sectional view of the imaging lens 11 (10) of the first embodiment.
  • the imaging lens 11 has, in order from the object (OBJ) side, a meniscus first lens L1 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX.
  • a second lens L2 having a biconvex shape and a meniscus third lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the image side. All the lenses L1 to L3 are made of a plastic material.
  • An aperture stop (STO) S is disposed between the first lens L1 and the second lens L2.
  • a parallel plate (not shown) having an appropriate thickness can be disposed between the light exit surface of the third lens L3 and the imaging surface (IMG) I.
  • FIGS. 6A to 6C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 11 of Example 1, and FIGS. 6D and 6E are meridional coma aberrations of the imaging lens 11 of Example 1.
  • FIG. 7 is a cross-sectional view of an imaging lens 12 (10) and the like according to a modification of the first embodiment.
  • the imaging lens 12 in FIG. 7 has the same shape as the imaging lens 11 in FIG.
  • the imaging surface (image surface) I is a cylindrical surface curved only in the longitudinal direction in the long side direction of the drawing.
  • a specific curvature radius in the vertical direction of the imaging surface I is ⁇ 100 mm.
  • FIGS. 8A to 8C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 12 or the like of the modification of the first embodiment, and FIGS. 8D and 8E show the merit of the imaging lens 12 or the like of the modification. It shows dional coma.
  • Example 2 The lens surface data of Example 2 is shown in Table 4 below. [Table 4] Surface number r d nd vd eff.dia.
  • Example 2 The single lens data of Example 2 is shown in Table 6 below. [Table 6] Lens number Surface number Focal length Effective diameter 1 1-2 -26.9071 1.738 2 4-5 2.3370 2.167 3 6-7 -100.0000 3.218
  • FIG. 9 is a cross-sectional view of the imaging lens 13 (10) and the like of the second embodiment.
  • the imaging lens 13 includes, in order from the object side, a first meniscus lens L1 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX.
  • a second lens L2 having a convex shape and a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the image side are provided.
  • the imaging surface (image surface) I is a spherical surface that is concave on the object side.
  • the imaging surface I may be a concave aspheric surface on the object side or a concave free-form surface.
  • an aspherical surface or a free-form surface is adopted for the spherical surface, it is possible to obtain a shape that matches the curvature of field generated by the lens, so that an improvement in the overall optical performance can be expected.
  • All the lenses L1 to L3 are made of a plastic material.
  • An aperture stop S is disposed between the first lens L1 and the second lens L2.
  • a parallel plate (not shown) with an appropriate thickness can be disposed between the light exit surface of the third lens L3 and the concave imaging surface (image surface) I.
  • FIGS. 10A to 10C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 13 of Example 2, and FIGS. 10D and 10E are meridional coma aberrations of the imaging lens 13 of Example 2.
  • Example 3 The lens surface data of Example 3 is shown in Table 7 below. [Table 7] Surface number r d nd vd eff.dia. OBJ INFINITY INFINITY 1 * 2.5331 0.3000 1.54470 55.99 1.840 2 * 3.6086 0.2100 1.480 STO INFINITY 0.1310 1.080 4 * 3.3485 1.0790 1.53487 55.99 2.180 5 * -1.7397 0.6830 2.460 6 * -1.0240 0.2250 1.58300 29.99 2.560 7 * -1.4555 1.1762 3.340 IMG -5.0000
  • Example 3 The single lens data of Example 3 is shown in Table 9 below. [Table 9] Lens number Surface number Focal length Effective diameter 1 1-2 14.2062 1.840 2 4-5 2.3113 2.460 3 6-7 -7.3328 3.340
  • FIG. 11 is a cross-sectional view of the imaging lens 14 (10) of the third embodiment.
  • the imaging lens 14 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX.
  • a second lens L2 having a convex shape and a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the image side are provided.
  • the imaging surface (image surface) I is a spherical surface that is concave on the object side.
  • the imaging surface I may be a concave aspheric surface on the object side or a concave free-form surface. All the lenses L1 to L3 are made of a plastic material. An aperture stop S is disposed between the first lens L1 and the second lens L2. A parallel plate (not shown) with an appropriate thickness can be disposed between the light exit surface of the third lens L3 and the concave imaging surface (image surface) I.
  • FIGS. 12A to 12C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 14 of the third embodiment, and FIGS. 12D and 12E are meridional coma aberrations of the imaging lens 14 of the third embodiment. Is shown.
  • Example 4 The lens surface data of Example 4 is shown in Table 10 below. [Table 10] Surface number r d nd vd eff.dia. OBJ INFINITY INFINITY 1 * 1.9656 0.2770 1.54470 55.99 1.840 2 * 2.2505 0.2340 1.500 STO INFINITY 0.1310 1.240 4 * 3.1014 0.7170 1.54470 55.99 2.120 5 * -2.1769 0.2430 2.260 6 * -1.3771 0.3000 1.63469 23.89 2.600 7 * -1.8682 2.1974 2.820 IMG -5.0000
  • Example 4 The single lens data of Example 4 is shown in Table 12 below. [Table 12] Lens number Surface number Focal length Effective diameter 1 1-2 21.2274 1.840 2 4-5 2.4664 2.260 3 6-7 -10.8202 2.820
  • FIG. 13 is a cross-sectional view of the imaging lens 15 (10) and the like of the fourth embodiment.
  • the imaging lens 15 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX.
  • a second lens L2 having a convex shape and a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the image side are provided.
  • the imaging surface (image surface) I is a spherical surface that is concave on the object side.
  • the imaging surface I may be a concave aspheric surface on the object side or a concave free-form surface. All the lenses L1 to L3 are made of a plastic material. An aperture stop S is disposed between the first lens L1 and the second lens L2. A parallel plate (not shown) with an appropriate thickness can be disposed between the light exit surface of the third lens L3 and the concave imaging surface (image surface) I.
  • FIGS. 14A to 14C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 15 of Example 4.
  • FIGS. 14D and 14E are meridional coma aberrations of the imaging lens 15 of Example 4.
  • Table 13 summarizes the values of Examples 1 to 4 corresponding to the conditional expressions (1) to (5) and (7) for reference. [Table 13]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

Provided is an image capture lens, whereby it is possible to implement a wide angle of view, and which has desirable high performance with a low height. An image capture lens (10) is formed, in order from the object side, from a first lens (L1), a second lens (L2) having a biconvex shape, and a third lens (L3), wherein the third lens (L3) satisfies a conditional formula -0.5 < f/f3 < -0.0 ... (1), wherein f is the focal distance of the overall assembly, and f3 is the focal distance of the third lens (L3). With the configuration wherein the second lens (L2) has the biconvex shape, it is possible for the principal point location of the overall assembly to be brought near the imaging side and make for a short focus, making it easy to achieve a wide angle of field. With the second lens (L2) being imbued with a comparatively strong positive power, it is possible to avoid an occurrence of high-order aberration from a too-strong single-face index of refraction. Exceeding the lower bound of the conditional formula (1) allows shortening the back focus, and reducing the overall length of the optical assembly. Being below the upper bound thereof allows making the Petzval sum smaller, and correcting an imaging surface curvature.

Description

撮像レンズ、撮像装置及び携帯端末Imaging lens, imaging device, and portable terminal
 本発明は、被写体像を取得するための撮像レンズ、並びにこれを備える撮像装置及び携帯端末に関し、特に画角75°以上の広角を実現できかつ低背に好適な撮像レンズ、撮像装置及び携帯端末に関する。 The present invention relates to an imaging lens for acquiring a subject image, and an imaging apparatus and a portable terminal including the imaging lens, and in particular, an imaging lens, an imaging apparatus, and a portable terminal that can realize a wide angle of an angle of view of 75 ° or more and are suitable for a low profile. About.
 近年、小型で薄型の撮像装置が、携帯電話機やPDA(Personal Digital Assistant)等の小型で薄型の電子機器である携帯端末に搭載されるようになり、これにより遠隔地へ音声情報だけでなく画像情報も相互に伝送することが可能となっている。これらの撮像装置に使用される撮像素子として、CCD(Charge Coupled Device)型イメージセンサーやCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサー等の固体撮像素子が使用されている。近年では、固体撮像素子の画素ピッチの小型化が進み、高画素化により、高解像及び高性能化が図られてきている。一方で、高画素を維持しながらも、撮像素子自体の小型化が図られている。さらには、固体撮像素子の撮像面を湾曲化させる試みも行われている。このように高画素かつ小型であり湾曲させることも可能である固体撮像素子に好適な、小型で高い性能を有する撮像レンズが求められており、特に小型ながら広画角を実現できる高性能な撮像レンズに対する潜在的な用途及び要求が増大している。ここで、広角かつ小型で高性能を有する撮像レンズとしては、3枚レンズ構成のものが適しており、このような撮像レンズとして特許文献1、2に開示のものが存在する。 In recent years, small and thin imaging devices have been installed in portable terminals, which are small and thin electronic devices such as mobile phones and PDAs (Personal Digital Assistants), thereby enabling not only audio information but also images to remote locations. Information can also be transmitted between each other. As an image pickup device used in these image pickup devices, a solid-state image pickup device such as a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor is used. In recent years, the pixel pitch of solid-state image sensors has been reduced, and higher resolution and higher performance have been achieved with higher pixels. On the other hand, downsizing of the image sensor itself is achieved while maintaining high pixels. Furthermore, attempts have been made to curve the imaging surface of the solid-state imaging device. Thus, there is a need for a compact and high-performance imaging lens suitable for a solid-state imaging device that is high in size, small, and can be curved. Potential applications and demands for lenses are increasing. Here, a three-lens configuration is suitable as a wide-angle, small, and high-performance imaging lens, and there are those disclosed in Patent Documents 1 and 2 as such imaging lenses.
 特許文献1には、コンパクトカメラやレンズ付きフィルムユニットに好適であり、撮影画角が80°程度と広く、F3.5~F4の明るさを有する撮影レンズが記載されている。この撮影レンズは、弱い正の第1レンズ、開口絞り、正の第2レンズ、及び負の第3レンズからなり、或いは弱い負の第1レンズ、開口絞り、正の第2レンズ、及び負の第3レンズからなる。ところで、画素サイズの小さい固体撮像素子に使用される撮像レンズは、高細化された画素に対応するために高い解像力が要求されるという、フィルムカメラ用のレンズとは異なる特性を必要とされる。しかるに、レンズの解像力はF値により限界がありF値の小さい明るいレンズの方が高解像力を得られるため、特許文献1のようにF3.5程度の明るさでは、十分な性能を得ることができない。また、特許文献1の撮影レンズは、第3レンズの負のパワーが強すぎるため、バックフォーカスが長くなっており、光学全長の短縮に不利な構成となっている。 Patent Document 1 describes a photographing lens that is suitable for a compact camera or a lens-equipped film unit, has a wide photographing field angle of about 80 °, and has a brightness of F3.5 to F4. The photographing lens includes a weak positive first lens, an aperture stop, a positive second lens, and a negative third lens, or a weak negative first lens, an aperture stop, a positive second lens, and a negative lens. It consists of a third lens. By the way, an imaging lens used for a solid-state imaging device having a small pixel size is required to have a characteristic different from that of a lens for a film camera, which requires a high resolving power to cope with a highly thinned pixel. . However, the resolving power of the lens is limited by the F value, and a bright lens with a small F value can obtain a high resolving power. Therefore, as in Patent Document 1, sufficient performance can be obtained with a brightness of about F3.5. Can not. Moreover, since the negative power of the third lens is too strong, the photographic lens of Patent Document 1 has a long back focus and is disadvantageous for shortening the optical total length.
 次に、特許文献2には、正の第1レンズ、開口絞り、正の第2レンズ、及び負の第3レンズからなる撮像レンズが記載されている。この撮影レンズは、第2レンズが強い正のパワーを持つことで広角化されている。しかしながら、第2レンズが像側に凸面を向けたメニスカス形状をしているため、像側に主点位置が寄ってしまい、結果として光学全長が大きくなってしまっている。 Next, Patent Document 2 describes an imaging lens including a positive first lens, an aperture stop, a positive second lens, and a negative third lens. This photographic lens is widened because the second lens has a strong positive power. However, since the second lens has a meniscus shape with the convex surface facing the image side, the principal point position is shifted to the image side, resulting in an increase in the total optical length.
特開2006-47944号公報JP 2006-47944 A 米国特許第08054563号明細書US Patent No. 08055633
 本発明は、上記背景技術に鑑みてなされたものであり、広角を実現できかつ低背に好適な高性能の撮像レンズを提供することを目的とする。
 また、本発明は、上記撮像レンズを組み込んだ撮像装置及び当該撮像装置を備える携帯端末を提供することを目的とする。
The present invention has been made in view of the above background art, and an object thereof is to provide a high-performance imaging lens that can realize a wide angle and is suitable for a low profile.
Another object of the present invention is to provide an imaging apparatus incorporating the imaging lens and a portable terminal including the imaging apparatus.
 上記目的を達成するため、本発明に係る撮像レンズは、物体側から順に、第1レンズ、開口絞り、両凸形状の第2レンズ、及び第3レンズからなり、第3レンズは、以下の条件式を満足する。
 -0.5<f/f3<-0.0   …   (1)
ただし、
   f:全系の焦点距離(mm)
  f3:第3レンズの焦点距離(mm)
In order to achieve the above object, an imaging lens according to the present invention includes, in order from the object side, a first lens, an aperture stop, a biconvex second lens, and a third lens. The third lens has the following conditions: Satisfy the formula
-0.5 <f / f3 <-0.0 (1)
However,
f: Focal length of the entire system (mm)
f3: focal length of the third lens (mm)
 上記撮像レンズでは、第2レンズが両凸形状を有する。このように第2レンズが両凸形状を有する構成では、全系の主点位置が適度に像側に寄り短焦点化できるため、広角化することが容易となる。また、第2レンズに比較的強い正のパワーを持たせる場合、物体側面と像側面とで屈折力を分担できるため、片面の屈折力が強くなりすぎることによる、高次収差の発生を防ぐことができる。また、第1レンズ及び第2レンズ間に開口絞りを配置することで、第2レンズの軸上光線高さが高くなる。一方で、3枚玉の合成パワーP(焦点距離fの逆数)は、薄肉レンズの場合、各レンズの軸上光線高さをh1,h2,h3、各レンズのパワーをP1,P2,P3とすると下記の式で表わされる。
 P=P1+(h2/h1)×P2+(h3/h1)×P3
上式より、軸上光線高さの高いレンズほど、合成パワーに対し影響が大きいことになる。そのため、強い正のパワーを持つ第2レンズの軸上光線高さを高くすることで、合成パワーを強く(焦点距離を短く)することが容易になり、広角化が可能となる。
 条件式(1)は、全系の焦点距離と第3レンズの焦点距離との比を適切にするための条件式である。条件式(1)の下限を上回ることで、第3レンズの負のパワーが弱くなるため、バックフォーカスを短くすることができ、光学全長を短縮することができる。また、条件式(1)の上限を下回ることで、第3レンズが負のパワーを持つことになるため、ペッツバール和を小さくすることができ、像面湾曲を補正することができる。
 なお、値f/f3については、より望ましくは下式の範囲とする。
 -0.4<f/f3<-0.1   …   (1)'
In the imaging lens, the second lens has a biconvex shape. In this way, in the configuration in which the second lens has a biconvex shape, the principal point position of the entire system can be appropriately shifted toward the image side and the focal length can be shortened. In addition, when the second lens has a relatively strong positive power, the refractive power can be shared between the object side surface and the image side surface, thereby preventing the occurrence of higher-order aberrations due to excessively strong refractive power on one side. Can do. Further, by arranging an aperture stop between the first lens and the second lens, the axial ray height of the second lens is increased. On the other hand, the combined power P (the reciprocal of the focal length f) of the three balls is, in the case of a thin lens, the axial ray height of each lens is h1, h2, h3, and the power of each lens is P1, P2, P3. Then, it is expressed by the following formula.
P = P1 + (h2 / h1) × P2 + (h3 / h1) × P3
From the above equation, the higher the axial ray height, the greater the influence on the combined power. Therefore, by increasing the axial ray height of the second lens having a strong positive power, it becomes easy to increase the combined power (shorten the focal length) and widen the angle.
Conditional expression (1) is a conditional expression for making the ratio between the focal length of the entire system and the focal length of the third lens appropriate. By exceeding the lower limit of the conditional expression (1), the negative power of the third lens becomes weak, so that the back focus can be shortened and the optical total length can be shortened. Moreover, since the third lens has a negative power by falling below the upper limit of conditional expression (1), the Petzval sum can be reduced and the curvature of field can be corrected.
The value f / f3 is more preferably in the range of the following formula.
−0.4 <f / f3 <−0.1 (1) ′
 本発明の具体的な観点又は側面によれば、上記撮像レンズにおいて、第1レンズは、物体側に凸面を向けたメニスカス形状を有している。この場合、物体からの光線のレンズへの入射角を小さくすることができるため、球面収差やコマ収差の発生を抑えることができる。 According to a specific aspect or aspect of the present invention, in the imaging lens, the first lens has a meniscus shape with a convex surface facing the object side. In this case, since the incident angle of the light beam from the object to the lens can be reduced, the occurrence of spherical aberration and coma aberration can be suppressed.
 本発明の別の側面によれば、第3レンズは、像側に凸面を向けたメニスカス形状を有している。この場合、第3レンズへの光線の入射角を小さくすることができ、周辺領域においても光線の急激な屈折を回避できるため、開口効率の低下を抑制でき、高い周辺光量を保つことができる。 According to another aspect of the present invention, the third lens has a meniscus shape with a convex surface facing the image side. In this case, the incident angle of the light beam on the third lens can be reduced, and rapid refraction of the light beam can be avoided even in the peripheral region, so that a decrease in aperture efficiency can be suppressed and a high peripheral light amount can be maintained.
 本発明のさらに別の側面によれば、以下の条件式を満足する。
 -0.4≦f/f1<0.4   …   (2)
ただし、
  f1:第1レンズの焦点距離(mm)
According to still another aspect of the present invention, the following conditional expression is satisfied.
−0.4 ≦ f / f1 <0.4 (2)
However,
f1: Focal length of the first lens (mm)
 上記条件式(2)は、全系の焦点距離と第1レンズの焦点距離との比を適切にするための条件式である。条件式(2)の下限を上回ることで、第1レンズが強い負のパワーを持たないため、全系の主点位置が像面に寄りすぎることなく、光学全長の短縮が可能になる。また条件式(2)の上限を下回ることで、第1レンズが強い正のパワーを持たないため、主点が物体側に寄りすぎることがなく、十分な広角化が可能となる。
 なお、値f/f1については、より望ましくは下式の範囲とする。
 ―0.3≦f/f1<0.3   …   (2)'
The conditional expression (2) is a conditional expression for making the ratio between the focal length of the entire system and the focal length of the first lens appropriate. By exceeding the lower limit of conditional expression (2), the first lens does not have a strong negative power, so that the principal point position of the entire system is not too close to the image plane, and the optical total length can be shortened. Also, by falling below the upper limit of conditional expression (2), the first lens does not have a strong positive power, so that the principal point does not move too close to the object side, and a sufficiently wide angle can be achieved.
The value f / f1 is more preferably in the range of the following formula.
−0.3 ≦ f / f1 <0.3 (2) ′
 本発明のさらに別の側面によれば、以下の条件式を満足する。
 -0.7<f2/f3<0.0   …   (3)
ただし、
  f2:第2レンズの焦点距離(mm)
According to still another aspect of the present invention, the following conditional expression is satisfied.
−0.7 <f2 / f3 <0.0 (3)
However,
f2: focal length of the second lens (mm)
 条件式(3)は、第2レンズの焦点距離と第3レンズの焦点距離との比を適切にするための条件式である。条件式(3)の下限を上回ることで、第3レンズの負のパワーに対し、第2レンズが強い正のパワーを持つことになるため、広角化が可能になる。また、条件式(3)の上限を下回ることで、第2レンズの正のパワーに対し、第3レンズが弱い負のパワーを持つことになるため、第2レンズで発生する像面湾曲等の収差を補正することができる。
 なお、値f2/f3については、より望ましくは下式の範囲とする。
 -0.45<f2/f3<0.0   …   (3)'
Conditional expression (3) is a conditional expression for making the ratio of the focal length of the second lens and the focal length of the third lens appropriate. By exceeding the lower limit of the conditional expression (3), the second lens has a strong positive power with respect to the negative power of the third lens, so that a wide angle can be achieved. Moreover, since the third lens has a weak negative power with respect to the positive power of the second lens by falling below the upper limit of the conditional expression (3), the curvature of field generated by the second lens, etc. Aberration can be corrected.
The value f2 / f3 is more preferably in the range of the following formula.
−0.45 <f2 / f3 <0.0 (3) ′
 本発明のさらに別の側面によれば、以下の条件式を満足する。
 0.0<(r3+r4)/(r3-r4)<0.5   …   (4)
ただし、
  r3:第2レンズの物体側面の曲率半径(mm)
  r4:第2レンズの像側面の曲率半径(mm)
According to still another aspect of the present invention, the following conditional expression is satisfied.
0.0 <(r3 + r4) / (r3-r4) <0.5 (4)
However,
r3: radius of curvature of object side surface of second lens (mm)
r4: radius of curvature (mm) of the image side surface of the second lens
 条件式(4)は、第2レンズの形状を適切にするための条件式である。条件式(4)の下限を上回ることで、第2レンズは像側面よりも物体側面の曲率半径が大きい両凸形状となり、結果として第2レンズへ入射する光線の物体側面への入射角が小さくなるため、第2レンズで発生する球面収差やコマ収差を抑制することができる。また、条件式(4)の上限を下回ることで、第2レンズの正のパワーが物体側面及び像側面のいずれか一方に偏ることなく分担されるため、適切な収差補正が可能になる。
 なお、値(r3+r4)/(r3-r4)については、より望ましくは下式の範囲とする。
 0.0<(r3+r4)/(r3-r4)<0.4   …   (4)'
Conditional expression (4) is a conditional expression for making the shape of the second lens appropriate. By exceeding the lower limit of the conditional expression (4), the second lens has a biconvex shape in which the radius of curvature of the object side surface is larger than that of the image side surface. As a result, the incident angle of the light incident on the second lens on the object side surface is small. Therefore, spherical aberration and coma generated in the second lens can be suppressed. Further, by falling below the upper limit of the conditional expression (4), the positive power of the second lens is shared without being biased to either the object side surface or the image side surface, so that appropriate aberration correction can be performed.
The value (r3 + r4) / (r3-r4) is more preferably in the range of the following equation.
0.0 <(r3 + r4) / (r3-r4) <0.4 (4) ′
 本発明のさらに別の側面によれば、以下の条件式を満足する。
 -5.0<P23/P<0.0   …   (5)
ただし、
   P:撮像レンズ全系の屈折力
 P23:第2レンズの像側面と第3レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、P23の値は、下記の式(6)によって与えられる。
Figure JPOXMLDOC01-appb-I000002
ただし、
  n2:第2レンズのd線に対する屈折率
  n3:第3レンズのd線に対する屈折率
  R4:第2レンズの像側面の曲率半径
  R5:第3レンズの物体側面の曲率半径
  D5:第2レンズと第3レンズとの軸上の空気間隔
According to still another aspect of the present invention, the following conditional expression is satisfied.
-5.0 <P23 / P <0.0 (5)
However,
P: Refractive power of the entire imaging lens system P23: Refractive power of a so-called air lens formed by the image side surface of the second lens and the object side surface of the third lens. The value of P23 is expressed by the following equation (6). Given.
Figure JPOXMLDOC01-appb-I000002
However,
n2: Refractive index with respect to d-line of second lens n3: Refractive index with respect to d-line of third lens R4: Radius of curvature of image side surface of second lens R5: Radius of curvature of object side surface of third lens D5: With second lens Air distance on the axis with the third lens
 条件式(5)は、第2レンズ及び第3レンズ間の空気レンズの屈折力と全系の屈折力との比を最適にするための条件式である。第2レンズの像側面は凸形状であるため、上記の空気レンズは像側に凸面を向けたメニスカス形状となる。条件式(5)の下限を上回ることで、第2レンズ及び第3レンズ間の空気レンズの負の屈折力が強くなりすぎることによって、光線が強く跳ね上げられてセンサーへの入射角が大きくなることを防ぐことができる。また、条件式(5)の上限を下回ることで、第2レンズ及び第3レンズ間の空気レンズの屈折力がある程度以上の負になるため、ペッツバール和を小さくすることができる。
 なお、値P23/Pについては、より望ましくは下式の範囲とする。
 -4.0<P23/P<-1.0   …   (5)'
Conditional expression (5) is a conditional expression for optimizing the ratio between the refractive power of the air lens between the second lens and the third lens and the refractive power of the entire system. Since the image side surface of the second lens has a convex shape, the air lens has a meniscus shape with the convex surface facing the image side. By exceeding the lower limit of conditional expression (5), the negative refracting power of the air lens between the second lens and the third lens becomes too strong, so that the light beam jumps strongly and the incident angle to the sensor increases. Can be prevented. Further, by falling below the upper limit of conditional expression (5), the refractive power of the air lens between the second lens and the third lens becomes negative to some extent, so that the Petzval sum can be reduced.
The value P23 / P is more preferably in the range of the following formula.
-4.0 <P23 / P <-1.0 (5) '
 本発明のさらに別の側面によれば、以下の条件式を満足する。
 15<ν3<50   …   (7)
ただし、
  ν3:第3レンズのアッベ数
According to still another aspect of the present invention, the following conditional expression is satisfied.
15 <ν3 <50 (7)
However,
ν3: Abbe number of the third lens
 条件式(7)は、第3レンズのアッベ数を最適にするための条件式である。条件式(7)の下限を上回ることで、色収差の過剰補正を防ぐことができる。また、第3レンズに入手性の良い安価な樹脂を使用することができる。また、条件式(7)の上限を下回ることで、第2レンズで発生した色収差を適切に補正することができる。
 なお、値ν3については、より望ましくは下式の範囲とする。
 20<ν3<40   …   (7)'
Conditional expression (7) is a conditional expression for optimizing the Abbe number of the third lens. Exceeding the lower limit of conditional expression (7) can prevent excessive correction of chromatic aberration. Moreover, an inexpensive resin with good availability can be used for the third lens. In addition, the chromatic aberration generated in the second lens can be appropriately corrected by falling below the upper limit of conditional expression (7).
The value ν3 is more preferably in the range of the following formula.
20 <ν3 <40 (7) '
 本発明のさらに別の側面によれば、実質的にパワーを持たないレンズをさらに有する。この場合も、光学全長の増大を抑えつつ広角化を達成した高性能の撮像レンズを提供することができる。 According to still another aspect of the present invention, the optical system further includes a lens having substantially no power. Also in this case, it is possible to provide a high-performance imaging lens that achieves a wide angle while suppressing an increase in the total optical length.
 上記目的を達成するため、本発明に係る撮像装置は、上述の撮像レンズと、撮像レンズによる被写体像が結像される光電変換部を有する固体撮像素子とを備える。 In order to achieve the above object, an imaging apparatus according to the present invention includes the imaging lens described above and a solid-state imaging device having a photoelectric conversion unit on which a subject image is formed by the imaging lens.
 上記撮像装置では、上述した撮像レンズを用いるので、広画角で高性能の撮像レンズを備える薄型又は小型の撮像装置を提供することができる。 Since the above-described imaging lens is used in the imaging device, a thin or small imaging device including a high-performance imaging lens with a wide angle of view can be provided.
 本発明の具体的な観点又は側面によれば、上記撮像装置において、固体撮像素子は、周辺部が中心部よりも物体側に位置するように湾曲する撮像面を有する。固体撮像素子の撮像面が湾曲していることで、レンズ側で像面湾曲が発生していても、撮像面としてのセンサー面をレンズ像面に合わせることができる。そのため、中心部から周辺部までピントの合った像を得ることができる。また、周辺部が物体側に湾曲することでセンサーが入射する光線を迎えにいくように湾曲することなるため、センサーへの光線入射角を小さく抑えることができるようになる。 According to a specific aspect or aspect of the present invention, in the imaging apparatus, the solid-state imaging device has an imaging surface that is curved so that the peripheral portion is positioned on the object side with respect to the central portion. Since the imaging surface of the solid-state imaging device is curved, the sensor surface as the imaging surface can be matched with the lens image surface even if field curvature occurs on the lens side. Therefore, an in-focus image can be obtained from the center to the periphery. Further, since the peripheral portion is curved toward the object side, the sensor is curved so as to receive the light beam incident on the sensor, so that the light beam incident angle to the sensor can be suppressed small.
 本発明の別の側面によれば、固体撮像素子の撮像面は、物体側に凹面を向けたシリンドリカル形状に湾曲している。シリンドリカル形状の撮像面を有する固体撮像素子の作製は比較的容易である。シリンドリカル形状としては、固体撮像素子の撮像面のうち、短辺方向を湾曲させる場合と長辺方向を湾曲させる場合があるが、湾曲方向に対して最適化したレンズでは、湾曲させていない方向に対して像面湾曲が残ってしまうため、収差補正上不利となる。短辺方向が湾曲している形状だと、同じ曲率で湾曲している場合でも、長辺方向が湾曲している形状に比べ湾曲部分の変位量が少なくなるため、撮像素子の作製が容易となる。一方、長辺方向が湾曲している形状だと、同じ曲率半径で湾曲させる場合でも、短辺方向を湾曲させる場合に比べ変位量を多くでき、撮像面の形状をレンズの像面湾曲に近付けることができるため、収差補正上有利となる。 According to another aspect of the present invention, the imaging surface of the solid-state imaging device is curved in a cylindrical shape with a concave surface facing the object side. It is relatively easy to manufacture a solid-state imaging device having a cylindrical imaging surface. As the cylindrical shape, there are a case where the short side direction is curved and a case where the long side direction is curved on the imaging surface of the solid-state imaging device. On the other hand, field curvature remains, which is disadvantageous in terms of aberration correction. If the shape is curved in the short side direction, even if it is curved with the same curvature, the amount of displacement of the curved portion is smaller than in the shape curved in the long side direction, making it easier to fabricate the image sensor. Become. On the other hand, when the shape is curved in the long side direction, even when it is curved with the same radius of curvature, the amount of displacement can be increased compared to the case where the short side direction is curved, and the shape of the imaging surface is brought closer to the curvature of the lens surface. This is advantageous in terms of aberration correction.
 本発明のさらに別の側面によれば、固体撮像素子の撮像面は、物体側に凹面を向けた球面形状に湾曲している。球面形状の撮像面を有する固体撮像素子の作製は比較的容易である。 According to still another aspect of the present invention, the imaging surface of the solid-state imaging device is curved into a spherical shape with a concave surface facing the object side. It is relatively easy to manufacture a solid-state image sensor having a spherical imaging surface.
 上記目的を達成するため、本発明に係る携帯端末は、上述の撮像装置を備え、薄型又は小型を維持しつつ高精度で広画角の撮影が可能になる。 In order to achieve the above object, a portable terminal according to the present invention includes the above-described imaging device, and enables high-accuracy and wide-angle shooting while maintaining a thin or small size.
本発明の一実施形態の撮像レンズを備えるカメラモジュール(撮像装置)を説明する図である。It is a figure explaining a camera module (imaging device) provided with an imaging lens of one embodiment of the present invention. 図1に示すカメラモジュールの変形例を説明する図である。It is a figure explaining the modification of the camera module shown in FIG. 図1のカメラモジュールを備える携帯端末を説明するブロック図である。It is a block diagram explaining a portable terminal provided with the camera module of FIG. 図4A及び4Bは、それぞれ携帯端末の表面側及び裏面側の斜視図である。4A and 4B are perspective views of the front side and the back side of the mobile terminal, respectively. 実施例1の撮像レンズ等の断面図であるIt is sectional drawing of the imaging lens etc. of Example 1. 図6A~6Eは、実施例1の撮像レンズの収差図である。6A to 6E are aberration diagrams of the imaging lens of Example 1. FIG. 実施例1の一変形例の撮像レンズ等の断面図であるFIG. 6 is a cross-sectional view of an imaging lens and the like according to a modification of Example 1. 図8A~8Eは、実施例1の一変形例の撮像レンズの収差図である。8A to 8E are aberration diagrams of the imaging lens according to one modification of Example 1. FIG. 実施例2の撮像レンズ等の断面図である。FIG. 6 is a cross-sectional view of an imaging lens and the like of Example 2. 図10A~10Eは、実施例2の撮像レンズの収差図である。10A to 10E are aberration diagrams of the imaging lens of Example 2. FIG. 実施例3の撮像レンズ等の断面図である。FIG. 6 is a cross-sectional view of an imaging lens and the like of Example 3. 図12A~12Eは、実施例3の撮像レンズの収差図である。12A to 12E are aberration diagrams of the imaging lens of Example 3. FIG. 実施例4の撮像レンズ等の断面図である。6 is a cross-sectional view of an imaging lens and the like of Example 4. FIG. 図14A~14Eは、実施例4の撮像レンズの収差図である。14A to 14E are aberration diagrams of the imaging lens of Example 4. FIGS.
 以下、図1等を参照して、本発明の一実施形態である撮像レンズ等について説明する。なお、図1で例示した撮像レンズ10は、後述する実施例1の撮像レンズ11と同一の構成となっている。 Hereinafter, an imaging lens and the like according to an embodiment of the present invention will be described with reference to FIG. The imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.
 図1は、本発明の一実施形態である撮像レンズを備えるカメラモジュールを説明する断面図である。カメラモジュール50は、被写体像を形成する撮像レンズ10と、撮像レンズ10によって形成された被写体像を検出する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、撮像レンズ10等を保持するとともに物体側からの光線を入射させる開口部OPを有する鏡筒部54とを備える。撮像レンズ10は、被写体像を撮像素子51の像面又は撮像面(被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述する撮像装置に組み込まれて使用されるが、単独でも撮像装置と呼ぶものとする。 FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention. The camera module 50 includes an imaging lens 10 that forms a subject image, an imaging device 51 that detects a subject image formed by the imaging lens 10, and a wiring board 52 that holds the imaging device 51 from behind and has wiring and the like. And a lens barrel portion 54 having an opening OP for holding the imaging lens 10 and the like and allowing light rays from the object side to enter. The imaging lens 10 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element 51. The camera module 50 is used by being incorporated in an imaging device to be described later.
 撮像レンズ10は、物体側から順に、第1レンズL1と、開口絞りSと、第2レンズL2と、第3レンズL3とを備える。第1レンズL1は、物体側に凸面を向けたメニスカス形状を有し、第2レンズL2は、両凸形状を有し、第3レンズL3は、像側に凸面を向けたメニスカス形状を有している。 The imaging lens 10 includes a first lens L1, an aperture stop S, a second lens L2, and a third lens L3 in order from the object side. The first lens L1 has a meniscus shape with a convex surface facing the object side, the second lens L2 has a biconvex shape, and the third lens L3 has a meniscus shape with a convex surface facing the image side. ing.
 撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部51aの光電交換面は、像面又は撮像面(被投影面)Iとなっている。 The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof. The photoelectric exchange surface of the photoelectric conversion unit 51a as the light receiving unit is an image surface or an imaging surface (projected surface) I.
 配線基板52は、撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や駆動機構55aを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。 The wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54). The wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.
 なお、図2に示すように、撮像素子51に設けられた光電変換部51aの撮像面Iについては、周辺部A1が中心部A0よりも物体側に位置するように湾曲させることができる。この際、撮像素子51の撮像面Iは、物体側に凹面を向けたシリンドリカル形状に湾曲させることができ、或いは物体側に凹面を向けた球面形状に湾曲させることができる。このため、撮像素子51や配線基板52には、光電変換部51aを一様に湾曲した所望の状態に保つための支持体を設けることができる。撮像面Iを適宜湾曲させることで、撮像レンズ10によって像面湾曲が発生していても、撮像面Iをレンズ像面に合わせることができるため、中心部A0から周辺部A1までピントの合った像を得ることができる。また、周辺部A1が物体側に湾曲することで光電変換部51aが入射する光線を迎えにいくように湾曲することなるため、光電変換部51aへの光線入射角を小さく抑えることができる。 As shown in FIG. 2, the imaging surface I of the photoelectric conversion unit 51a provided in the imaging device 51 can be curved so that the peripheral part A1 is located on the object side with respect to the central part A0. At this time, the imaging surface I of the imaging element 51 can be curved in a cylindrical shape with a concave surface facing the object side, or can be curved in a spherical shape with the concave surface facing the object side. For this reason, the imaging element 51 and the wiring board 52 can be provided with a support for keeping the photoelectric conversion unit 51a in a desired curved state. By appropriately curving the imaging surface I, the imaging surface I can be adjusted to the lens image surface even if the imaging lens 10 has a curvature of field, so that the focus from the central part A0 to the peripheral part A1 is in focus. An image can be obtained. In addition, since the peripheral portion A1 is bent toward the object side, the photoelectric conversion unit 51a is bent so as to receive the incident light, so that the light incident angle on the photoelectric conversion unit 51a can be suppressed to be small.
 撮像素子51の撮像レンズ10側には、不図示のホルダー部材によって、平行平板Fが撮像素子51等を覆うように配置・固定されている。 The parallel plate F is disposed and fixed on the imaging lens 10 side of the imaging element 51 by a holder member (not shown) so as to cover the imaging element 51 and the like.
 鏡筒部54は、撮像レンズ10を収納し保持している。鏡筒部54は、撮像レンズ10を構成するレンズL1~L3のうちいずれか1つ以上のレンズを光軸AXに沿って移動させることにより、撮像レンズ10の合焦の動作を可能にするため、例えば駆動機構55aを有している。駆動機構55aは、特定レンズ又は全レンズを光軸AXに沿って往復移動させる。駆動機構55aは、例えばボイスコイルモーターとガイドとを備える。なお、駆動機構55aをボイスコイルモーター等の代わりにステッピングモーター等で構成することができる。以上の駆動機構55aは、必須のものではなく省略することもできる。つまり、撮像レンズ10のフォーカス範囲を広く確保する必要がない用途では、駆動機構55aを省略することで撮像レンズ10やその周辺機構を簡単なものとできる。 The lens barrel portion 54 houses and holds the imaging lens 10. The lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L3 constituting the imaging lens 10 along the optical axis AX. For example, it has a drive mechanism 55a. The drive mechanism 55a reciprocates the specific lens or all the lenses along the optical axis AX. The drive mechanism 55a includes, for example, a voice coil motor and a guide. The drive mechanism 55a can be configured by a stepping motor or the like instead of the voice coil motor or the like. The above drive mechanism 55a is not essential and can be omitted. That is, in applications where it is not necessary to ensure a wide focus range of the imaging lens 10, the imaging lens 10 and its peripheral mechanisms can be simplified by omitting the drive mechanism 55a.
 次に、図3、図4A及び4Bを参照して、図1に例示されるカメラモジュール50を搭載した携帯電話機その他の携帯通信端末300の一例について説明する。 Next, an example of a mobile phone or other mobile communication terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 3, 4A and 4B.
 携帯通信端末300は、スマートフォン型の携帯通信端末であり、カメラモジュール50を有する撮像装置100と、各部を統括的に制御するとともに各処理に応じたプログラムを実行する制御部(CPU)310と、通信に関連するデータ、撮像した映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである表示操作部320と、電源スイッチ等を含む操作部330と、アンテナ341を介して外部サーバー等との間の各種情報通信を実現するための無線通信部340と、携帯通信端末300のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)360と、制御部310によって実行される各種処理プログラムやデータ、処理データ、若しくは撮像装置100による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)370とを備えている。 The mobile communication terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging device 100 having a camera module 50, a control unit (CPU) 310 that comprehensively controls each unit and executes a program corresponding to each process, Between a display operation unit 320 that is a touch panel that displays data related to communication, captured video, and the like and accepts user operations, an operation unit 330 including a power switch, and the like, and an external server or the like via an antenna 341 A wireless communication unit 340 for realizing various types of information communication, a storage unit (ROM) 360 storing necessary data such as a system program, various processing programs, and a terminal ID of the mobile communication terminal 300, and a control unit 310 Various processing programs executed by the computer, data, processing data, or the imaging apparatus 100 That includes a temporary storage unit used the imaging data and the like as a work area for temporarily storing the (RAM) 370.
 撮像装置100は、既に説明したカメラモジュール50のほかに、制御部103、光学系駆動部105、撮像素子駆動部107、画像メモリー108等を備える。 The imaging apparatus 100 includes a control unit 103, an optical system driving unit 105, an imaging element driving unit 107, an image memory 108, and the like in addition to the camera module 50 described above.
 制御部103は、撮像装置100の各部を制御する。制御部103は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、ROMから読み出されてRAMに展開された各種プログラムとCPUとの協働によって各種処理を実行する。なお、制御部310は、撮像装置100の制御部103と通信可能に接続されており、制御信号や画像データの授受が可能になっている。 The control unit 103 controls each unit of the imaging apparatus 100. The control unit 103 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs are read out from the ROM and expanded in the RAM in cooperation with the CPU. Execute the process. The control unit 310 is communicably connected to the control unit 103 of the imaging apparatus 100, and can exchange control signals and image data.
 光学系駆動部105は、制御部103の制御により合焦、露出等を行う際に、撮像レンズ10の駆動機構55aを動作させて撮像レンズ10の状態を制御する。光学系駆動部105は、駆動機構55aを動作させて撮像レンズ10中の特定レンズ又は全レンズを光軸AXに沿って適宜移動させることにより、撮像レンズ10に合焦動作を行わせる。 The optical system driving unit 105 controls the state of the imaging lens 10 by operating the driving mechanism 55a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the control unit 103. The optical system driving unit 105 operates the driving mechanism 55a to appropriately move the specific lens or all the lenses in the imaging lens 10 along the optical axis AX, thereby causing the imaging lens 10 to perform a focusing operation.
 撮像素子駆動部107は、制御部103の制御により露出等を行う際に、撮像素子51の動作を制御する。具体的には、撮像素子駆動部107は、タイミング信号に基づいて撮像素子51を走査駆動させて制御する。また、撮像素子駆動部107は、撮像素子51から出力された検出信号又は光電変換信号としてのアナログ信号をデジタルの画像データに変換する。さらに、撮像素子駆動部107は、撮像素子51によって検出された画像信号に対して、歪み補正、色補正、圧縮等の各種画像処理を施すことができる。 The image sensor driving unit 107 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control unit 103. Specifically, the image sensor drive unit 107 controls the image sensor 51 by scanning and driving based on the timing signal. Further, the image sensor driving unit 107 converts the detection signal output from the image sensor 51 or an analog signal as a photoelectric conversion signal into digital image data. Further, the image sensor driving unit 107 can perform various image processing such as distortion correction, color correction, and compression on the image signal detected by the image sensor 51.
 画像メモリー108は、デジタル化された画像信号を撮像素子駆動部107から受け取って、読み出し及び書き込み可能な画像データとして記憶する。 The image memory 108 receives the digitized image signal from the image sensor driving unit 107 and stores it as readable and writable image data.
 ここで、上記撮像装置100を含む携帯通信端末300の撮影動作を説明する。携帯通信端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、撮像レンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1等参照)に結像される。撮像素子51は、撮像素子駆動部107によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分出力する。 Here, the photographing operation of the mobile communication terminal 300 including the imaging device 100 will be described. When the camera mode in which the mobile communication terminal 300 is operated as a camera is set, subject monitoring (through image display) and image shooting execution are performed. In monitoring, an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1 and the like) of the imaging element 51. The image sensor 51 is scanned and driven by the image sensor driving unit 107, and outputs an analog signal for one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.
 このアナログ信号は、撮像素子51に付属する回路においてRGBの各原色成分毎に適宜ゲイン調整された後に、デジタルデータに変換される。そのデジタルデータは、画素補間処理及びY補正処理を含むカラープロセス処理が行われて、デジタル値の輝度信号Y及び色差信号Cb,Cr(画像データ)が生成されて画像メモリー108に格納される。格納されたデジタルデータは、画像メモリー108から定期的に読み出されてそのビデオ信号が生成されて、制御部103及び制御部310を介して、表示操作部320に出力される。 This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51. The digital data is subjected to color process processing including pixel interpolation processing and Y correction processing, and a digital luminance signal Y and color difference signals Cb, Cr (image data) are generated and stored in the image memory 108. The stored digital data is periodically read out from the image memory 108 to generate a video signal thereof, and is output to the display operation unit 320 via the control unit 103 and the control unit 310.
 この表示操作部320は、モニタリングにおいてはファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部320を介して行う操作入力に基づいて、光学系駆動部105の駆動により撮像レンズ10の合焦、露出等が設定される。 The display operation unit 320 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 105 based on an operation input performed by the user via the display operation unit 320 at any time.
 このようなモニタリング状態において、ユーザーが表示操作部320を適宜操作することにより、静止画像データが撮影される。表示操作部320の操作内容に応じて、画像メモリー108に格納された1コマの画像データが読み出されて、撮像素子駆動部107により圧縮される。その圧縮された画像データは、制御部103及び制御部310を介して、例えば一時記憶部370等に記録される。 In such a monitoring state, when the user appropriately operates the display operation unit 320, still image data is captured. One frame of image data stored in the image memory 108 is read in accordance with the operation content of the display operation unit 320, and compressed by the image sensor driving unit 107. The compressed image data is recorded in the temporary storage unit 370, for example, via the control unit 103 and the control unit 310.
 なお、上述の撮像装置100は、本発明に好適な撮像装置の一例であり、本発明は、これに限定されるものではない。 The above-described imaging device 100 is an example of an imaging device suitable for the present invention, and the present invention is not limited to this.
 すなわち、カメラモジュール50又は撮像レンズ10を搭載した撮像装置は、スマートフォン型の携帯通信端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるであってもよい。撮像装置の制御回路等も、図3等に例示するものに限定されるものではない。 That is, the image pickup apparatus equipped with the camera module 50 or the image pickup lens 10 is not limited to the one built in the smartphone type mobile communication terminal 300, but is built into a mobile phone, a PHS (Personal Handyphone System), or the like. Alternatively, it may be incorporated in a PDA (Personal Digital Assistant), tablet personal computer, mobile personal computer, digital still camera, video camera, or the like. The control circuit and the like of the imaging device are not limited to those illustrated in FIG.
 以下、図1に戻って、本発明の一実施形態である撮像レンズ10について詳細に説明する。図1に示す撮像レンズ10は、撮像素子51の撮像面(被投影面)Iに被写体像を結像させるものであって、物体側より順に、物体側に凸面を向けたメニスカス形状を有する第1レンズL1と、開口絞りSと、両凸形状を有する第2レンズL2と、像側に凸面を向けたメニスカス形状を有する第3レンズL3とを備える。本実施形態の撮像レンズ10では、第2レンズL2が両凸形状を有するので、撮像レンズ10全系の主点位置を像側に寄せて短焦点化でき、広角化を無理なく実現することができる。また、第2レンズL2に比較的強い正のパワーを持たせる場合、物体側面S21と像側面S22とで屈折力を分担できるため、片面の屈折力が強くなりすぎることによる、高次収差の発生を防ぐことができる。さらに、第1レンズL1及び第2レンズL2間に開口絞りSを配置することで、第2レンズL2の軸上光線高さが高くなる。一方で、既に説明したように3枚玉のうち軸上光線高さの高いレンズほど合成パワーに対し影響が大きいことになる。そのため、強い正のパワーを持つ第2レンズL2の軸上光線高さを高くすることで、合成パワーを強くすることが容易になるため、広角化が可能となる。 Hereinafter, returning to FIG. 1, the imaging lens 10 according to an embodiment of the present invention will be described in detail. The imaging lens 10 shown in FIG. 1 forms a subject image on an imaging surface (projected surface) I of an image sensor 51, and has a meniscus shape with a convex surface facing the object side in order from the object side. One lens L1, an aperture stop S, a second lens L2 having a biconvex shape, and a third lens L3 having a meniscus shape having a convex surface facing the image side. In the imaging lens 10 of the present embodiment, since the second lens L2 has a biconvex shape, the principal point position of the entire imaging lens 10 system can be moved toward the image side to shorten the focal length, and a wide angle can be easily realized. it can. In addition, when the second lens L2 has a relatively strong positive power, the refractive power can be shared between the object side surface S21 and the image side surface S22. Can be prevented. Furthermore, by arranging the aperture stop S between the first lens L1 and the second lens L2, the axial ray height of the second lens L2 is increased. On the other hand, as already explained, the higher the axial ray height of the three balls, the greater the influence on the combined power. Therefore, it is easy to increase the combined power by increasing the axial ray height of the second lens L2 having a strong positive power, so that a wide angle can be achieved.
 撮像レンズ10の第3レンズL3は、fを全系の焦点距離(mm)とし、f3を第3レンズL3の焦点距離(mm)として、以下の条件式(1)を満足する。
 -0.5<f/f3<-0.0   …   (1)
この条件式(1)は、撮像レンズ10全系の焦点距離と第3レンズL3の焦点距離との比を適切にするための条件式である。条件式(1)の下限を上回ることで、第3レンズL3の負のパワーが弱くなるため、バックフォーカスを短くすることができ、光学全長を短縮することができる。また、条件式(1)の上限を下回ることで、第3レンズL3が負のパワーを持つことになるため、ペッツバール和を小さくすることができ、像面湾曲を効果的に補正することができる。
The third lens L3 of the imaging lens 10 satisfies the following conditional expression (1), where f is the focal length (mm) of the entire system and f3 is the focal length (mm) of the third lens L3.
-0.5 <f / f3 <-0.0 (1)
Conditional expression (1) is a conditional expression for making the ratio between the focal length of the entire imaging lens 10 system and the focal length of the third lens L3 appropriate. By exceeding the lower limit of the conditional expression (1), the negative power of the third lens L3 becomes weak, so that the back focus can be shortened and the optical total length can be shortened. In addition, since the third lens L3 has a negative power by falling below the upper limit of the conditional expression (1), the Petzval sum can be reduced and the field curvature can be effectively corrected. .
 なお、条件式(1)の値f/f3については、下式の範囲内とすることがより好ましい。
 -0.4<f/f3<-0.1   …   (1)'
The value f / f3 of conditional expression (1) is more preferably within the range of the following expression.
−0.4 <f / f3 <−0.1 (1) ′
 実施形態の撮像レンズ10は、上記条件式(1)に加えて、既に説明した条件式(2)
 -0.4≦f/f1<0.4   …   (2)
を満足する。ただし、f1は、第1レンズL1の焦点距離(mm)である。
 なお、条件式(2)の値f/f1については、下式の範囲内とすることがより好ましい。
 ―0.3≦f/f1<0.3   …   (2)'
In the imaging lens 10 of the embodiment, in addition to the conditional expression (1), the conditional expression (2) already described.
−0.4 ≦ f / f1 <0.4 (2)
Satisfied. Here, f1 is the focal length (mm) of the first lens L1.
The value f / f1 of conditional expression (2) is more preferably within the range of the following expression.
−0.3 ≦ f / f1 <0.3 (2) ′
 実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(3)
 -0.7<f2/f3<0.0   …   (3)
を満足する。ただし、f2は、第2レンズL2の焦点距離(mm)である。
 なお、条件式(3)の値f2/f3については、下式の範囲内とすることがより好ましい。
 -0.45<f2/f3<0.0   …   (3)'
In the imaging lens 10 of the embodiment, in addition to the conditional expression (1) and the like, the conditional expression (3) already described.
−0.7 <f2 / f3 <0.0 (3)
Satisfied. Here, f2 is the focal length (mm) of the second lens L2.
The value f2 / f3 of conditional expression (3) is more preferably within the range of the following expression.
−0.45 <f2 / f3 <0.0 (3) ′
 実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(4)
 0.0<(r3+r4)/(r3-r4)<0.5   …   (4)
を満足する。ただし、r3は、第2レンズL2の物体側面S21の曲率半径(mm)であり、r4は、第2レンズL2の像側面S22の曲率半径(mm)である。
 なお、条件式(4)の値(r3+r4)/(r3-r4)については、下式の範囲内とすることがより好ましい。
 0.0<(r3+r4)/(r3-r4)<0.4   …   (4)'
In the imaging lens 10 of the embodiment, in addition to the conditional expression (1), the conditional expression (4) already described.
0.0 <(r3 + r4) / (r3-r4) <0.5 (4)
Satisfied. Here, r3 is the radius of curvature (mm) of the object side surface S21 of the second lens L2, and r4 is the radius of curvature (mm) of the image side surface S22 of the second lens L2.
The value (r3 + r4) / (r3-r4) of conditional expression (4) is more preferably within the range of the following expression.
0.0 <(r3 + r4) / (r3-r4) <0.4 (4) ′
 実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(5)
 -5.0<P23/P<0.0   …   (5)
を満足する。ただし、Pは、撮像レンズ10全系の屈折力であり、P23は、第2レンズL2の像側面S22と第3レンズL3の物体側面S31とにより形成されるいわゆる空気レンズの屈折力である。
 なお、条件式(5)の値P23/Pについては、下式の範囲内とすることがより好ましい。
 -4.0<P23/P<-1.0   …   (5)'
In the imaging lens 10 of the embodiment, in addition to the conditional expression (1) and the like, the conditional expression (5) already described.
-5.0 <P23 / P <0.0 (5)
Satisfied. Here, P is the refractive power of the entire imaging lens 10, and P23 is the refractive power of a so-called air lens formed by the image side surface S22 of the second lens L2 and the object side surface S31 of the third lens L3.
The value P23 / P of conditional expression (5) is more preferably within the range of the following expression.
-4.0 <P23 / P <-1.0 (5) '
 実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(7)
 15<ν3<50   …   (7)
を満足する。ただし、ν3は、第3レンズL3のアッベ数である。
 なお、条件式(7)の値ν3については、下式の範囲内とすることがより好ましい。
 20<ν3<40   …   (7)'
In the imaging lens 10 of the embodiment, in addition to the conditional expression (1), the conditional expression (7) already described.
15 <ν3 <50 (7)
Satisfied. Here, ν3 is the Abbe number of the third lens L3.
Note that the value ν3 of the conditional expression (7) is more preferably within the range of the following expression.
20 <ν3 <40 (7) '
 実施形態の撮像レンズ10では、特に図示していないが、実質的にパワーを持たないレンズをさらに備えるものとできる。 Although the imaging lens 10 of the embodiment is not particularly illustrated, it may further include a lens that does not substantially have power.
〔実施例〕
 以下、本発明に係る撮像レンズの具体的な実施例について説明する。各実施例において、rは曲率半径を意味し、dは軸上面間隔を意味し、ndはレンズ材料のd線に対する屈折率を意味し、vdはレンズ材料のアッベ数を意味し、「eff.dia.」は有効径を意味する。また、各面番号の後に「*」が記載されている面が非球面形状を有する面である。非球面の形状は、面の頂点を原点とし、光軸AX方向にX軸をとり、光軸AXと垂直方向の高さをhとして以下の「数1」で表す。
Figure JPOXMLDOC01-appb-M000003
ただし、
Ai:i次の非球面係数
 R:曲率半径
 K:円錐定数
 なお、各実施例の撮像レンズが前提とする使用基本波長は587.56nmであり、曲率半径等の面形状の単位はmmである。
〔Example〕
Hereinafter, specific examples of the imaging lens according to the present invention will be described. In each embodiment, r represents the radius of curvature, d represents the axial top surface spacing, nd represents the refractive index of the lens material with respect to the d-line, vd represents the Abbe number of the lens material, “eff. “dia.” means an effective diameter. In addition, the surface where “*” is written after each surface number is a surface having an aspherical shape. The aspherical shape is expressed by the following “Equation 1” where the vertex of the surface is the origin, the X axis is taken in the direction of the optical axis AX, and the height in the direction perpendicular to the optical axis AX is h.
Figure JPOXMLDOC01-appb-M000003
However,
Ai: i-order aspherical coefficient R: radius of curvature K: conical constant The basic wavelength used by the imaging lens of each example is 587.56 nm, and the unit of the surface shape such as the radius of curvature is mm. .
 〔実施例1〕
 実施例1のレンズ面のデータを以下の表1に示す。
〔表1〕
面番号   r      d      nd     vd   eff. dia.
 OBJ   INFINITY  INFINITY
 1*   1.7002   0.2000   1.63469  23.89  1.860
 2*   1.4776   0.3440             1.620
 STO   INFINITY  0.1310             1.450
 4*   3.3386   0.8270   1.54470  55.99  1.920
 5*   -1.6398   1.3790             2.160
 6*   -0.6454   0.7010   1.63469  23.89  2.380
 7*   -0.9466   0.9390             3.180
 IMG   INFINITY
ここで、OBJは物体を意味し、STOは開口絞りを意味し、IMGは撮像面又は像面を意味する。
[Example 1]
The lens surface data of Example 1 is shown in Table 1 below.
[Table 1]
Surface number r d nd vd eff.dia.
OBJ INFINITY INFINITY
1 * 1.7002 0.2000 1.63469 23.89 1.860
2 * 1.4776 0.3440 1.620
STO INFINITY 0.1310 1.450
4 * 3.3386 0.8270 1.54470 55.99 1.920
5 * -1.6398 1.3790 2.160
6 * -0.6454 0.7010 1.63469 23.89 2.380
7 * -0.9466 0.9390 3.180
IMG INFINITY
Here, OBJ means an object, STO means an aperture stop, and IMG means an imaging surface or an image surface.
 実施例1のレンズ面の非球面係数を以下の表2に示す。
〔表2〕
第1面
 K=-1.02250e+000, A4=-1.42140e-001, A6=-1.99640e-001, 
A8=2.80520e-001, A10=-1.01730e-001
第2面
 K=-1.49510e+000, A4=-1.11850e-001, A6=-1.71480e-001, 
A8=3.44610e-001, A10=-5.85300e-002
第4面
 K=-2.91260e+000, A4=-2.26670e-002, A6=-1.17560e-002, 
A8=-2.02790e-002, A10=3.99000e-003
第5面
 K=-3.76820e-001, A4=-2.44320e-002, A6=-4.93170e-002, 
A8=3.60710e-002, A10=-2.97790e-002
第6面
 K=-9.30740e-001, A4=-1.20140e-001, A6=-1.94220e-001, 
A8=5.56610e-001, A10=-3.64520e-001, A12=8.57090e-002
第7面
 K=-7.74580e-001, A4=7.68740e-002, A6=-1.22190e-001, 
A8=1.32590e-001, A10=-4.47100e-002, A12=5.36070e-003
なお、これ以降(表のレンズデータを含む)において、10のべき乗数(例えば2.5×10-002)を、e(例えば2.5e-002)を用いて表すものとする。
The aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below.
[Table 2]
1st surface K = -1.02250e + 000, A4 = -1.42140e-001, A6 = -1.99640e-001,
A8 = 2.80520e-001, A10 = -1.01730e-001
2nd side K = -1.49510e + 000, A4 = -1.11850e-001, A6 = -1.71480e-001,
A8 = 3.44610e-001, A10 = -5.85300e-002
4th surface K = -2.91260e + 000, A4 = -2.26670e-002, A6 = -1.17560e-002,
A8 = -2.02790e-002, A10 = 3.99000e-003
5th surface K = -3.76820e-001, A4 = -2.44320e-002, A6 = -4.93170e-002,
A8 = 3.60710e-002, A10 = -2.97790e-002
6th surface K = -9.30740e-001, A4 = -1.20140e-001, A6 = -1.94220e-001,
A8 = 5.56610e-001, A10 = -3.64520e-001, A12 = 8.57090e-002
7th surface K = -7.74580e-001, A4 = 7.68740e-002, A6 = -1.22190e-001,
A8 = 1.32590e-001, A10 = -4.47100e-002, A12 = 5.36070e-003
In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −002 ) is represented using e (for example, 2.5e−002).
 実施例1の撮像レンズ10の特性を以下に列挙する。
 FL    3.429 
 Fno    2.40
 w    79.68
 Ymax   2.800 
 BF    0.939
 TL    4.521
ここで、FLは撮像レンズ10全系の焦点距離を意味し、FnoはF値を意味し、wは対角線画角を意味し、Ymaxは撮像素子51の撮像面対角線長の半値を意味し、BFはバックフォーカスを意味し、TLは系全長を意味する。なお、以上の符号は、これ以降の実施例でも同様の意味を有するものとする。
The characteristics of the imaging lens 10 of Example 1 are listed below.
FL 3.429
Fno 2.40
w 79.68
Ymax 2.800
BF 0.939
TL 4.521
Here, FL means the focal length of the entire imaging lens 10, Fno means the F value, w means the diagonal angle of view, Ymax means the half value of the diagonal length of the imaging surface of the image sensor 51, BF means back focus, and TL means the entire length of the system. In addition, the above code | symbol shall have the same meaning also in the subsequent Examples.
 実施例1の単レンズデータを以下の表3に示す。
〔表3〕
 レンズ番号  面番号  焦点距離    有効径
   1     1-2   -27.3077    1.860
   2     4-5    2.1445    2.160
   3     6-7   -33.1813    3.180
The single lens data of Example 1 is shown in Table 3 below.
[Table 3]
Lens number Surface number Focal length Effective diameter 1 1-2 -27.3077 1.860
2 4-5 2.1445 2.160
3 6-7 -33.1813 3.180
 図5は、実施例1の撮像レンズ11(10)等の断面図である。撮像レンズ11は、物体(OBJ)側より順に、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し両凸形状を有する第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凸面を向けたメニスカスの第3レンズL3とを備える。全てのレンズL1~L3は、プラスチック材料から形成されている。第1レンズL1と第2レンズL2との間には、開口絞り(STO)Sが配置されている。なお、第3レンズL3の光射出面と撮像面(IMG)Iとの間には、適当な厚さの平行平板(不図示)を配置することができる。 FIG. 5 is a cross-sectional view of the imaging lens 11 (10) of the first embodiment. The imaging lens 11 has, in order from the object (OBJ) side, a meniscus first lens L1 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX. And a second lens L2 having a biconvex shape and a meniscus third lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the image side. All the lenses L1 to L3 are made of a plastic material. An aperture stop (STO) S is disposed between the first lens L1 and the second lens L2. A parallel plate (not shown) having an appropriate thickness can be disposed between the light exit surface of the third lens L3 and the imaging surface (IMG) I.
 図6A~6Cは、実施例1の撮像レンズ11の諸収差図(球面収差、非点収差、歪曲収差)を示し、図6D及び6Eは、実施例1の撮像レンズ11のメリディオナルコマ収差を示している。 6A to 6C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 11 of Example 1, and FIGS. 6D and 6E are meridional coma aberrations of the imaging lens 11 of Example 1. FIG. Is shown.
 図7は、実施例1の変形例の撮像レンズ12(10)等の断面図である。図7の撮像レンズ12は、図5の撮像レンズ11と同一の形状を有する。ただし、撮像面(像面)Iが図面の長辺方向の縦方向に関してのみ湾曲したシリンドリカル面となっている。撮像面Iの縦方向の具体的な曲率半径は-100mmとなっている。 FIG. 7 is a cross-sectional view of an imaging lens 12 (10) and the like according to a modification of the first embodiment. The imaging lens 12 in FIG. 7 has the same shape as the imaging lens 11 in FIG. However, the imaging surface (image surface) I is a cylindrical surface curved only in the longitudinal direction in the long side direction of the drawing. A specific curvature radius in the vertical direction of the imaging surface I is −100 mm.
 図8A~8Cは、実施例1の変形例の撮像レンズ12等の諸収差図(球面収差、非点収差、歪曲収差)を示し、図8D及び8Eは、変形例の撮像レンズ12等のメリディオナルコマ収差を示している。
 〔実施例2〕
 実施例2のレンズ面のデータを以下の表4に示す。
〔表4〕
面番号   r      d      nd     vd   eff. dia.
 OBJ   INFINITY  INFINITY
 1*   1.9113   0.2000   1.63469  23.89  1.738
 2*   1.6491   0.2625             1.497
 STO   INFINITY  0.1300             1.328
 4*   3.6953   0.7852   1.54470  55.99  1.922
 5*   -1.7964   1.5346             2.167
 6*   -0.8103   0.4621   1.63469  23.89  2.549
 7*   -1.0025   0.9260             3.218
 IMG  -10.0000
8A to 8C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 12 or the like of the modification of the first embodiment, and FIGS. 8D and 8E show the merit of the imaging lens 12 or the like of the modification. It shows dional coma.
[Example 2]
The lens surface data of Example 2 is shown in Table 4 below.
[Table 4]
Surface number r d nd vd eff.dia.
OBJ INFINITY INFINITY
1 * 1.9113 0.2000 1.63469 23.89 1.738
2 * 1.6491 0.2625 1.497
STO INFINITY 0.1300 1.328
4 * 3.6953 0.7852 1.54470 55.99 1.922
5 * -1.7964 1.5346 2.167
6 * -0.8103 0.4621 1.63469 23.89 2.549
7 * -1.0025 0.9260 3.218
IMG -10.0000
 実施例2のレンズ面の非球面係数を以下の表5に示す。
〔表5〕
第1面
 K=-7.90549e-001, A4=-1.26901e-001, A6=-1.31302e-001, 
A8=1.40140e-001, A10=-3.63597e-002
第2面
 K=-1.58533e+000, A4=-8.12124e-002, A6=-1.05308e-001, 
A8=1.53864e-001, A10=2.38903e-002
第4面
 K=-3.46988e+000, A4=-6.32826e-003, A6=-2.03710e-002, 
A8=1.56187e-002, A10=-1.01193e-002
第5面
 K=4.28155e-002, A4=-1.48934e-002, A6=-2.82596e-002, 
A8=1.33315e-002, A10=-1.05396e-002
第6面
 K=-9.17482e-001, A4=-6.58332e-002, A6=-2.48431e-001, 
A8=4.57717e-001, A10=-2.68600e-001, A12=5.75106e-002
第7面
 K=-6.89111e-001, A4=5.95923e-002, A6=-1.14008e-001, 
A8=1.44539e-001, A10=-5.37087e-002, A12=7.26531e-003
The aspherical coefficient of the lens surface of Example 2 is shown in Table 5 below.
[Table 5]
1st surface K = -7.90549e-001, A4 = -1.26901e-001, A6 = -1.31302e-001,
A8 = 1.40140e-001, A10 = -3.63597e-002
2nd surface K = -1.58533e + 000, A4 = -8.12124e-002, A6 = -1.05308e-001,
A8 = 1.53864e-001, A10 = 2.38903e-002
4th surface K = -3.46988e + 000, A4 = -6.32826e-003, A6 = -2.03710e-002,
A8 = 1.56187e-002, A10 = -1.01193e-002
5th surface K = 4.28155e-002, A4 = -1.48934e-002, A6 = -2.82596e-002,
A8 = 1.33315e-002, A10 = -1.05396e-002
6th surface K = -9.17482e-001, A4 = -6.58332e-002, A6 = -2.48431e-001,
A8 = 4.57717e-001, A10 = -2.68600e-001, A12 = 5.75106e-002
7th surface K = -6.89111e-001, A4 = 5.95923e-002, A6 = -1.14008e-001,
A8 = 1.44539e-001, A10 = -5.37087e-002, A12 = 7.26531e-003
 実施例2の撮像レンズ10の特性を以下に列挙する。
 FL    3.194
 Fno    2.40
 w    89.96
 Ymax   2.779
 BF    0.926
 TL    4.300
The characteristics of the imaging lens 10 of Example 2 are listed below.
FL 3.194
Fno 2.40
w 89.96
Ymax 2.779
BF 0.926
TL 4.300
 実施例2の単レンズデータを以下の表6に示す。
〔表6〕
 レンズ番号  面番号  焦点距離    有効径
   1     1-2   -26.9071    1.738
   2     4-5    2.3370    2.167
   3     6-7   -100.0000    3.218
The single lens data of Example 2 is shown in Table 6 below.
[Table 6]
Lens number Surface number Focal length Effective diameter 1 1-2 -26.9071 1.738
2 4-5 2.3370 2.167
3 6-7 -100.0000 3.218
 図9は、実施例2の撮像レンズ13(10)等の断面図である。撮像レンズ13は、物体側より順に、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し両凸形状を有する第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凸面を向けたメニスカスの第3レンズL3とを備える。この場合、撮像面(像面)Iは、物体側に凹の球面となっている。撮像面Iは物体側に凹の非球面や、凹の自由曲面であってもよい。球面に対して非球面や自由曲面を採用した場合、レンズで発生する像面湾曲に合わせた形状とすることができるため、全体としての光学性能の向上が期待できる。全てのレンズL1~L3は、プラスチック材料から形成されている。第1レンズL1と第2レンズL2との間には、開口絞りSが配置されている。なお、第3レンズL3の光射出面と凹の撮像面(像面)Iとの間には、適当な厚さの平行平板(不図示)を配置することができる。 FIG. 9 is a cross-sectional view of the imaging lens 13 (10) and the like of the second embodiment. The imaging lens 13 includes, in order from the object side, a first meniscus lens L1 having a negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX. A second lens L2 having a convex shape and a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the image side are provided. In this case, the imaging surface (image surface) I is a spherical surface that is concave on the object side. The imaging surface I may be a concave aspheric surface on the object side or a concave free-form surface. When an aspherical surface or a free-form surface is adopted for the spherical surface, it is possible to obtain a shape that matches the curvature of field generated by the lens, so that an improvement in the overall optical performance can be expected. All the lenses L1 to L3 are made of a plastic material. An aperture stop S is disposed between the first lens L1 and the second lens L2. A parallel plate (not shown) with an appropriate thickness can be disposed between the light exit surface of the third lens L3 and the concave imaging surface (image surface) I.
 図10A~10Cは、実施例2の撮像レンズ13の諸収差図(球面収差、非点収差、歪曲収差)を示し、図10D及び10Eは、実施例2の撮像レンズ13のメリディオナルコマ収差を示している。 FIGS. 10A to 10C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 13 of Example 2, and FIGS. 10D and 10E are meridional coma aberrations of the imaging lens 13 of Example 2. FIGS. Is shown.
 〔実施例3〕
 実施例3のレンズ面のデータを以下の表7に示す。
〔表7〕
面番号   r      d      nd     vd   eff. dia.
 OBJ   INFINITY  INFINITY
 1*   2.5331   0.3000   1.54470  55.99  1.840
 2*   3.6086   0.2100             1.480
 STO   INFINITY  0.1310             1.080
 4*   3.3485   1.0790   1.53487  55.99  2.180
 5*   -1.7397   0.6830             2.460
 6*   -1.0240   0.2250   1.58300  29.99  2.560
 7*   -1.4555   1.1762             3.340
 IMG   -5.0000
Example 3
The lens surface data of Example 3 is shown in Table 7 below.
[Table 7]
Surface number r d nd vd eff.dia.
OBJ INFINITY INFINITY
1 * 2.5331 0.3000 1.54470 55.99 1.840
2 * 3.6086 0.2100 1.480
STO INFINITY 0.1310 1.080
4 * 3.3485 1.0790 1.53487 55.99 2.180
5 * -1.7397 0.6830 2.460
6 * -1.0240 0.2250 1.58300 29.99 2.560
7 * -1.4555 1.1762 3.340
IMG -5.0000
 実施例3のレンズ面の非球面係数を以下の表8に示す。
〔表8〕
第1面
 K=-3.38360e-001, A4=-4.69760e-002, A6=1.55730e-002, 
A8=6.35670e-003, A10=-3.17180e-003
第2面
 K=1.40170e+001, A4=-5.15470e-002, A6=7.14120e-002, 
A8=-5.07590e-002, A10=-1.03690e-002
第4面
 K=-1.58790e+000, A4=4.75900e-003, A6=-1.74190e-002, 
A8=2.14080e-002, A10=-1.55860e-002
第5面
 K=-3.42700e-001, A4=-2.34240e-002, A6=-6.00410e-002, 
A8=1.68470e-002, A10=-2.33520e-003
第6面
 K=-4.13100e-001, A4=1.57700e-001, A6=-2.80390e-001, 
A8=1.83450e-001, A10=-1.34250e-001, A12=6.50760e-002
第7面
 K=-4.76810e-001, A4=1.90300e-001, A6=-1.88170e-001, 
A8=1.23430e-001, A10=-3.44440e-002, A12=3.66140e-003
The aspherical coefficients of the lens surfaces of Example 3 are shown in Table 8 below.
[Table 8]
1st surface K = -3.38360e-001, A4 = -4.69760e-002, A6 = 1.55730e-002,
A8 = 6.35670e-003, A10 = -3.17180e-003
2nd surface K = 1.40170e + 001, A4 = -5.15470e-002, A6 = 7.14120e-002,
A8 = -5.07590e-002, A10 = -1.03690e-002
4th surface K = -1.58790e + 000, A4 = 4.75900e-003, A6 = -1.74190e-002,
A8 = 2.14080e-002, A10 = -1.55860e-002
5th surface K = -3.42700e-001, A4 = -2.34240e-002, A6 = -6.00410e-002,
A8 = 1.68470e-002, A10 = -2.33520e-003
6th surface K = -4.13100e-001, A4 = 1.57700e-001, A6 = -2.80390e-001,
A8 = 1.83450e-001, A10 = -1.34250e-001, A12 = 6.50760e-002
7th surface K = -4.76810e-001, A4 = 1.90300e-001, A6 = -1.88170e-001,
A8 = 1.23430e-001, A10 = -3.44440e-002, A12 = 3.66140e-003
 実施例3の撮像レンズ10の特性を以下に列挙する。
 FL    2.705
 Fno    2.40
 w    111.32
 Ymax   2.669
 BF    1.186
 TL    3.804
The characteristics of the imaging lens 10 of Example 3 are listed below.
FL 2.705
Fno 2.40
w 111.32
Ymax 2.669
BF 1.186
TL 3.804
 実施例3の単レンズデータを以下の表9に示す。
〔表9〕
 レンズ番号  面番号  焦点距離    有効径
   1     1-2    14.2062    1.840
   2     4-5    2.3113    2.460
   3     6-7    -7.3328    3.340
The single lens data of Example 3 is shown in Table 9 below.
[Table 9]
Lens number Surface number Focal length Effective diameter 1 1-2 14.2062 1.840
2 4-5 2.3113 2.460
3 6-7 -7.3328 3.340
 図11は、実施例3の撮像レンズ14(10)等の断面図である。撮像レンズ14は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し両凸形状を有する第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凸面を向けたメニスカスの第3レンズL3とを備える。この場合、撮像面(像面)Iは、物体側に凹の球面となっている。撮像面Iは物体側に凹の非球面や、凹の自由曲面であってもよい。全てのレンズL1~L3は、プラスチック材料から形成されている。第1レンズL1と第2レンズL2との間には、開口絞りSが配置されている。なお、第3レンズL3の光射出面と凹の撮像面(像面)Iとの間には、適当な厚さの平行平板(不図示)を配置することができる。 FIG. 11 is a cross-sectional view of the imaging lens 14 (10) of the third embodiment. The imaging lens 14 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX. A second lens L2 having a convex shape and a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the image side are provided. In this case, the imaging surface (image surface) I is a spherical surface that is concave on the object side. The imaging surface I may be a concave aspheric surface on the object side or a concave free-form surface. All the lenses L1 to L3 are made of a plastic material. An aperture stop S is disposed between the first lens L1 and the second lens L2. A parallel plate (not shown) with an appropriate thickness can be disposed between the light exit surface of the third lens L3 and the concave imaging surface (image surface) I.
 図12A~12Cは、実施例3の撮像レンズ14の諸収差図(球面収差、非点収差、歪曲収差)を示し、図12D及び12Eは、実施例3の撮像レンズ14のメリディオナルコマ収差を示している。 12A to 12C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 14 of the third embodiment, and FIGS. 12D and 12E are meridional coma aberrations of the imaging lens 14 of the third embodiment. Is shown.
 〔実施例4〕
 実施例4のレンズ面のデータを以下の表10に示す。
〔表10〕
面番号   r      d      nd     vd   eff. dia.
 OBJ   INFINITY  INFINITY
 1*   1.9656   0.2770   1.54470  55.99  1.840
 2*   2.2505   0.2340             1.500
 STO   INFINITY  0.1310             1.240
 4*   3.1014   0.7170   1.54470  55.99  2.120
 5*   -2.1769   0.2430             2.260
 6*   -1.3771   0.3000   1.63469  23.89  2.600
 7*   -1.8682   2.1974             2.820
 IMG   -5.0000
Example 4
The lens surface data of Example 4 is shown in Table 10 below.
[Table 10]
Surface number r d nd vd eff.dia.
OBJ INFINITY INFINITY
1 * 1.9656 0.2770 1.54470 55.99 1.840
2 * 2.2505 0.2340 1.500
STO INFINITY 0.1310 1.240
4 * 3.1014 0.7170 1.54470 55.99 2.120
5 * -2.1769 0.2430 2.260
6 * -1.3771 0.3000 1.63469 23.89 2.600
7 * -1.8682 2.1974 2.820
IMG -5.0000
 実施例4のレンズ面の非球面係数を以下の表11に示す。
〔表11〕
第1面
 K=-1.24200e+001, A4=1.35100e-001, A6=-2.49940e-001, 
A8=1.61080e-001, A10=-4.57770e-002
第2面
 K=-2.28870e+000, A4=-1.74250e-002, A6=-7.80380e-002, 
A8=7.59100e-002, A10=2.33330e-003
第4面
 K=2.35670e+000, A4=-2.24390e-002, A6=-2.16410e-002, 
A8=2.73110e-002, A10=-2.91430e-003
第5面
 K=-4.70940e-002, A4=-5.02360e-002, A6=2.41060e-002, 
A8=-7.04800e-002, A10=7.31840e-002
第6面
 K=-1.54410e+000, A4=3.00300e-002, A6=1.76620e-001, 
A8=-2.73140e-001, A10=1.80190e-001, A12=-3.95500e-002
第7面
 K=-1.36340e+000, A4=9.82060e-002, A6=1.12900e-001, 
A8=-1.12990e-001, A10=4.08630e-002, A12=-5.24860e-003
The aspherical coefficients of the lens surfaces of Example 4 are shown in Table 11 below.
[Table 11]
1st surface K = -1.24200e + 001, A4 = 1.35100e-001, A6 = -2.49940e-001,
A8 = 1.61080e-001, A10 = -4.57770e-002
2nd surface K = -2.28870e + 000, A4 = -1.74250e-002, A6 = -7.80380e-002,
A8 = 7.59100e-002, A10 = 2.33330e-003
4th surface K = 2.35670e + 000, A4 = -2.24390e-002, A6 = -2.16410e-002,
A8 = 2.73110e-002, A10 = -2.91430e-003
5th surface K = -4.70940e-002, A4 = -5.02360e-002, A6 = 2.41060e-002,
A8 = -7.04800e-002, A10 = 7.31840e-002
6th surface K = -1.54410e + 000, A4 = 3.00300e-002, A6 = 1.76620e-001,
A8 = -2.73140e-001, A10 = 1.80190e-001, A12 = -3.95500e-002
7th surface K = -1.36340e + 000, A4 = 9.82060e-002, A6 = 1.12900e-001,
A8 = -1.12990e-001, A10 = 4.08630e-002, A12 = -5.24860e-003
 実施例4の撮像レンズ10の特性を以下に列挙する。
 FL    3.067
 Fno    2.40
 w    99.08
 Ymax   2.669
 BF    2.197
 TL    4.010
The characteristics of the imaging lens 10 of Example 4 are listed below.
FL 3.067
Fno 2.40
w 99.08
Ymax 2.669
BF 2.197
TL 4.010
 実施例4の単レンズデータを以下の表12に示す。
〔表12〕
 レンズ番号  面番号  焦点距離    有効径
   1     1-2    21.2274    1.840
   2     4-5    2.4664    2.260
   3     6-7   -10.8202    2.820
The single lens data of Example 4 is shown in Table 12 below.
[Table 12]
Lens number Surface number Focal length Effective diameter 1 1-2 21.2274 1.840
2 4-5 2.4664 2.260
3 6-7 -10.8202 2.820
 図13は、実施例4の撮像レンズ15(10)等の断面図である。撮像レンズ15は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第1レンズL1と、光軸AX周辺で正の屈折力を有し両凸形状を有する第2レンズL2と、光軸AX周辺で負の屈折力を有し像側に凸面を向けたメニスカスの第3レンズL3とを備える。この場合、撮像面(像面)Iは、物体側に凹の球面となっている。撮像面Iは物体側に凹の非球面や、凹の自由曲面であってもよい。全てのレンズL1~L3は、プラスチック材料から形成されている。第1レンズL1と第2レンズL2との間には、開口絞りSが配置されている。なお、第3レンズL3の光射出面と凹の撮像面(像面)Iとの間には、適当な厚さの平行平板(不図示)を配置することができる。 FIG. 13 is a cross-sectional view of the imaging lens 15 (10) and the like of the fourth embodiment. The imaging lens 15 includes, in order from the object side, a first meniscus lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a positive refractive power around the optical axis AX. A second lens L2 having a convex shape and a third meniscus lens L3 having a negative refractive power around the optical axis AX and having a convex surface facing the image side are provided. In this case, the imaging surface (image surface) I is a spherical surface that is concave on the object side. The imaging surface I may be a concave aspheric surface on the object side or a concave free-form surface. All the lenses L1 to L3 are made of a plastic material. An aperture stop S is disposed between the first lens L1 and the second lens L2. A parallel plate (not shown) with an appropriate thickness can be disposed between the light exit surface of the third lens L3 and the concave imaging surface (image surface) I.
 図14A~14Cは、実施例4の撮像レンズ15の諸収差図(球面収差、非点収差、歪曲収差)を示し、図14D及び14Eは、実施例4の撮像レンズ15のメリディオナルコマ収差を示している。 14A to 14C are graphs showing various aberrations (spherical aberration, astigmatism, distortion) of the imaging lens 15 of Example 4. FIGS. 14D and 14E are meridional coma aberrations of the imaging lens 15 of Example 4. FIGS. Is shown.
 以下の表13は、参考のため、各条件式(1)~(5)、(7)に対応する各実施例1~4の値をまとめたものである。
〔表13〕
Figure JPOXMLDOC01-appb-I000004
Table 13 below summarizes the values of Examples 1 to 4 corresponding to the conditional expressions (1) to (5) and (7) for reference.
[Table 13]
Figure JPOXMLDOC01-appb-I000004
 以上では、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。 In the above, the present invention has been described according to the embodiments and examples, but the present invention is not limited to the above-described embodiments and the like.

Claims (14)

  1.  物体側から順に、第1レンズ、開口絞り、両凸形状の第2レンズ、及び第3レンズからなり、
     前記第3レンズは、以下の条件式を満足する撮像レンズ。
     -0.5<f/f3<-0.0   …   (1)
    ただし、
       f:全系の焦点距離(mm)
      f3:前記第3レンズの焦点距離(mm)
    In order from the object side, the first lens, an aperture stop, a biconvex second lens, and a third lens,
    The third lens is an imaging lens that satisfies the following conditional expression.
    -0.5 <f / f3 <-0.0 (1)
    However,
    f: Focal length of the entire system (mm)
    f3: Focal length (mm) of the third lens
  2.  前記第1レンズは、物体側に凸面を向けたメニスカス形状を有している、請求項1に記載の撮像レンズ。 The imaging lens according to claim 1, wherein the first lens has a meniscus shape with a convex surface facing the object side.
  3.  前記第3レンズは、像側に凸面を向けたメニスカス形状を有している、請求項1に記載の撮像レンズ。 The imaging lens according to claim 1, wherein the third lens has a meniscus shape with a convex surface facing the image side.
  4.  以下の条件式を満足する、請求項1に記載の撮像レンズ。
     -0.4≦f/f1<0.4   …   (2)
    ただし、
      f1:前記第1レンズの焦点距離(mm)
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    −0.4 ≦ f / f1 <0.4 (2)
    However,
    f1: Focal length (mm) of the first lens
  5.  以下の条件式を満足する、請求項1に記載の撮像レンズ。
     -0.7<f2/f3<0.0   …   (3)
    ただし、
      f2:前記第2レンズの焦点距離(mm)
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    −0.7 <f2 / f3 <0.0 (3)
    However,
    f2: Focal length (mm) of the second lens
  6.  以下の条件式を満足する、請求項1に記載の撮像レンズ。
     0.0<(r3+r4)/(r3-r4)<0.5   …   (4)
    ただし、
      r3:前記第2レンズの物体側面の曲率半径(mm)
      r4:前記第2レンズの像側面の曲率半径(mm)
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    0.0 <(r3 + r4) / (r3-r4) <0.5 (4)
    However,
    r3: radius of curvature of object side surface of the second lens (mm)
    r4: radius of curvature (mm) of the image side surface of the second lens
  7.  以下の条件式を満足する、請求項1に記載の撮像レンズ。
     -5.0<P23/P<0.0   …   (5)
    ただし、
       P:前記撮像レンズ全系の屈折力
     P23:前記第2レンズの像側面と前記第3レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、P23の値は、下記の式(6)によって与えられる。
    Figure JPOXMLDOC01-appb-I000001
    ただし、
      n2:前記第2レンズのd線に対する屈折率
      n3:前記第3レンズのd線に対する屈折率
      R4:前記第2レンズの像側面の曲率半径
      R5:前記第3レンズの物体側面の曲率半径
      D5:前記第2レンズと第3レンズとの軸上の空気間隔
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    -5.0 <P23 / P <0.0 (5)
    However,
    P: refractive power of the entire imaging lens system P23: refractive power of a so-called air lens formed by the image side surface of the second lens and the object side surface of the third lens, and the value of P23 is expressed by the following formula ( 6).
    Figure JPOXMLDOC01-appb-I000001
    However,
    n2: Refractive index with respect to d-line of the second lens n3: Refractive index with respect to d-line of the third lens R4: Radius of curvature of the image side surface of the second lens R5: Radius of curvature of the object side surface of the third lens D5: On-axis air gap between the second lens and the third lens
  8.  以下の条件式を満足する、請求項1に記載の撮像レンズ。
     15<ν3<50   …   (7)
    ただし、
      ν3:前記第3レンズのアッベ数
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    15 <ν3 <50 (7)
    However,
    ν3: Abbe number of the third lens
  9.  実質的にパワーを持たないレンズをさらに有する、請求項1に記載の撮像レンズ。 The imaging lens according to claim 1, further comprising a lens having substantially no power.
  10.  請求項1に記載の撮像レンズと、前記撮像レンズによる被写体像が結像される光電変換部を有する固体撮像素子とを備える撮像装置。 An imaging apparatus comprising: the imaging lens according to claim 1; and a solid-state imaging device having a photoelectric conversion unit on which a subject image is formed by the imaging lens.
  11.  前記固体撮像素子は、周辺部が中心部よりも物体側に位置するように湾曲する撮像面を有する、請求項10に記載の撮像装置。 The imaging device according to claim 10, wherein the solid-state imaging device has an imaging surface that is curved so that a peripheral portion is positioned closer to an object side than a center portion.
  12.  前記固体撮像素子の撮像面は、物体側に凹面を向けたシリンドリカル形状に湾曲している、請求項11に記載の撮像装置。 The imaging device according to claim 11, wherein the imaging surface of the solid-state imaging device is curved in a cylindrical shape with a concave surface facing the object side.
  13.  前記固体撮像素子の撮像面は、物体側に凹面を向けた球面形状に湾曲している、請求項11に記載の撮像装置。 The imaging device according to claim 11, wherein the imaging surface of the solid-state imaging device is curved into a spherical shape with a concave surface facing the object side.
  14.  請求項10に記載の撮像装置を備える携帯端末。 A portable terminal comprising the imaging device according to claim 10.
PCT/JP2013/080460 2012-11-12 2013-11-11 Image capture lens, image capture device, and portable terminal WO2014073685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014545789A JPWO2014073685A1 (en) 2012-11-12 2013-11-11 Imaging lens, imaging device, and portable terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-248051 2012-11-12
JP2012248051 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014073685A1 true WO2014073685A1 (en) 2014-05-15

Family

ID=50684776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080460 WO2014073685A1 (en) 2012-11-12 2013-11-11 Image capture lens, image capture device, and portable terminal

Country Status (2)

Country Link
JP (1) JPWO2014073685A1 (en)
WO (1) WO2014073685A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488100A (en) * 2016-10-31 2017-03-08 宇龙计算机通信科技(深圳)有限公司 A kind of camera structure and preparation method thereof, electronic equipment
JP2017058499A (en) * 2015-09-16 2017-03-23 オリンパス株式会社 Imaging optical system and optical device having the same
CN110850552A (en) * 2019-10-29 2020-02-28 江西联创电子有限公司 Optical imaging lens and imaging apparatus
US10578853B2 (en) 2015-09-04 2020-03-03 Olympus Corporation Image forming optical system, image pickup apparatus, optical apparatus, and capsule endoscope
JP2020126108A (en) * 2019-02-01 2020-08-20 日精テクノロジー株式会社 Image capturing lens
WO2022100271A1 (en) * 2020-11-16 2022-05-19 北京领邦智能装备股份公司 Lens assembly, imaging device, detection device, and detection system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221390A (en) * 1999-02-03 2000-08-11 Konica Corp Image pickup lens
JP2001156278A (en) * 1999-11-26 2001-06-08 Fuji Film Microdevices Co Ltd Solid-state image pickup device
JP2001272598A (en) * 2000-03-28 2001-10-05 Konica Corp Taking lens
JP2002098889A (en) * 2000-09-25 2002-04-05 Sony Corp Imaging lens
JP2002350720A (en) * 2001-05-25 2002-12-04 Fuji Photo Optical Co Ltd Single focus lens
JP2005037935A (en) * 2003-06-30 2005-02-10 Fujinon Corp Compact lightweight zoom lens
JP2006201674A (en) * 2005-01-24 2006-08-03 Seiko Epson Corp Wide angle imaging lens
JP2010011462A (en) * 2008-06-27 2010-01-14 Ricoh Co Ltd Electro-optic imaging system with aberrated triplet lens compensated by digital image processing
JP2011107235A (en) * 2009-11-13 2011-06-02 Panasonic Corp Camera

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221390A (en) * 1999-02-03 2000-08-11 Konica Corp Image pickup lens
JP2001156278A (en) * 1999-11-26 2001-06-08 Fuji Film Microdevices Co Ltd Solid-state image pickup device
JP2001272598A (en) * 2000-03-28 2001-10-05 Konica Corp Taking lens
JP2002098889A (en) * 2000-09-25 2002-04-05 Sony Corp Imaging lens
JP2002350720A (en) * 2001-05-25 2002-12-04 Fuji Photo Optical Co Ltd Single focus lens
JP2005037935A (en) * 2003-06-30 2005-02-10 Fujinon Corp Compact lightweight zoom lens
JP2006201674A (en) * 2005-01-24 2006-08-03 Seiko Epson Corp Wide angle imaging lens
JP2010011462A (en) * 2008-06-27 2010-01-14 Ricoh Co Ltd Electro-optic imaging system with aberrated triplet lens compensated by digital image processing
JP2011107235A (en) * 2009-11-13 2011-06-02 Panasonic Corp Camera

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10578853B2 (en) 2015-09-04 2020-03-03 Olympus Corporation Image forming optical system, image pickup apparatus, optical apparatus, and capsule endoscope
JP2017058499A (en) * 2015-09-16 2017-03-23 オリンパス株式会社 Imaging optical system and optical device having the same
CN106488100A (en) * 2016-10-31 2017-03-08 宇龙计算机通信科技(深圳)有限公司 A kind of camera structure and preparation method thereof, electronic equipment
CN106488100B (en) * 2016-10-31 2020-03-17 宇龙计算机通信科技(深圳)有限公司 Camera structure, manufacturing method thereof and electronic equipment
JP2020126108A (en) * 2019-02-01 2020-08-20 日精テクノロジー株式会社 Image capturing lens
JP7300704B2 (en) 2019-02-01 2023-06-30 日精テクノロジー株式会社 imaging lens
CN110850552A (en) * 2019-10-29 2020-02-28 江西联创电子有限公司 Optical imaging lens and imaging apparatus
CN110850552B (en) * 2019-10-29 2021-06-25 江西联创电子有限公司 Optical imaging lens and imaging apparatus
WO2022100271A1 (en) * 2020-11-16 2022-05-19 北京领邦智能装备股份公司 Lens assembly, imaging device, detection device, and detection system

Also Published As

Publication number Publication date
JPWO2014073685A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP6836142B2 (en) Imaging optical system and imaging device
JP6452643B2 (en) Imaging lens
JP6347156B2 (en) Imaging lens, imaging device, and portable terminal
JP5854227B2 (en) Imaging lens and imaging apparatus
JP6191820B2 (en) Imaging lens, imaging device, and portable terminal
WO2017199633A1 (en) Imaging lens and imaging device
JP5839038B2 (en) Imaging lens and imaging apparatus
JP6394598B2 (en) Imaging lens, imaging device, and portable terminal
JP5742737B2 (en) Imaging lens, imaging device, and portable terminal
JP2014115431A (en) Imaging lens, imaging apparatus, and portable terminal
WO2012002166A1 (en) Image capture lens and image capture device
JP6451639B2 (en) Imaging device and portable terminal
JP2015072404A (en) Image capturing lens, image capturing device, and mobile terminal
JP2015114505A (en) Imaging lens and imaging device
JP2015072402A (en) Image capturing lens, image capturing device, and mobile terminal
JP2013182090A (en) Imaging lens, imaging apparatus, and portable terminal
JP2014153577A (en) Imaging lens, and imaging device and portable terminal
JP2010060980A (en) Image pickup lens, image pickup apparatus and mobile terminal
JP2013195637A (en) Imaging lens system, image capturing device, and information device
JP2014153576A (en) Imaging lens, and imaging device and portable terminal
JP2011095301A (en) Imaging lens, imaging apparatus and portable terminal
WO2014073685A1 (en) Image capture lens, image capture device, and portable terminal
JP2010191413A (en) Zoom lens and image pickup apparatus
JP6001430B2 (en) Imaging lens
WO2014050476A1 (en) Image pickup lens, image pickup device, and mobile terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853429

Country of ref document: EP

Kind code of ref document: A1