JP2015070659A - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP2015070659A
JP2015070659A JP2013201033A JP2013201033A JP2015070659A JP 2015070659 A JP2015070659 A JP 2015070659A JP 2013201033 A JP2013201033 A JP 2013201033A JP 2013201033 A JP2013201033 A JP 2013201033A JP 2015070659 A JP2015070659 A JP 2015070659A
Authority
JP
Japan
Prior art keywords
phase
power supply
input current
phase input
switching pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013201033A
Other languages
English (en)
Inventor
裕行 梁瀬
Hiroyuki Yanase
裕行 梁瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2013201033A priority Critical patent/JP2015070659A/ja
Publication of JP2015070659A publication Critical patent/JP2015070659A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

【課題】力率改善および高調波抑制のためのスイッチ素子の過熱や破壊を防止する。
【解決手段】入力電流の値に対応するスイッチングパターンデータを選定し、選定したスイッチングパターンデータに基づいてコンバータの各MOSFETをオン,オフし、続いて同選定したスイッチングパターンデータを力率が改善する方向に逐次に補正しながらその補正後のスイッチングパターンデータに基づいて各MOSFETをオン,オフする。入力電流の互いの相異が閾値以上の場合は、インバータの出力周波数を低減する。
【選択図】図1

Description

本発明の実施形態は、交流電力を直流電力に変換する電源装置に関する。
交流電源にリアクタを介して接続されるコンバータ(整流回路)を備えた電源装置では、交流電源電圧の零クロス点を基準とする所定期間だけリアクタを通して交流電源に対する短絡路を形成し、これにより電源力率を改善するとともに入力電流に含まれる高調波を抑制するものがある。
特開2010−233292号公報
上記のような電源装置では、交流電源からの各相入力電流が不平衡状態になると、スイッチ素子のオンにより形成される短絡路に過電流が流れることがある。過電流が流れると、スイッチ素子が過熱したり、スイッチ素子が破壊に至る可能性がある。
本発明の実施形態の目的は、力率改善および高調波抑制のためのスイッチ素子の過熱や破壊を防止することができる電源装置を提供することである。
請求項1の電源装置は、交流電源の電圧を直流電圧に変換するコンバータと、この前記コンバータの出力電圧を所定周波数の交流電圧に変換するインバータと、前記交流電源と前記整流回路との接続間に設けたリアクトルと、このリアクトルおよび前記コンバータを通して前記交流電源に対する短絡路を形成するためのスイッチ素子と、前記交流電源からの入力電流をその交流電源の相ごとに検知する検知手段と、前記交流電源の電圧の所定の位相において前記スイッチ素子を断続的にオン,オフする第1制御手段と、前記検知手段で検知される各相入力電流の互いの相異が閾値以上の場合に、前記インバータの出力周波数を低減する第2制御手段と、を備える。
一実施形態の構成を示すブロック図。 一実施形態における入力電圧の波形を示す図。 一実施形態の制御を示すフローチャート。 一実施形態における入力電流の波形を示す図。 一実施形態の各相入力電流に基づく制御状態の移り変わりを示す図。
以下、この発明の一実施形態について図面を参照して説明する。
図1に示すように、三相交流電源1のR,S,T相に複数たとえば2つのコンバータ(整流回路)20が接続され、これらコンバータ20の出力端に1つの平滑コンデンサ40が共通接続される。各コンバータ20は、互いに並列接続された状態にある。コンバータ20の個数は、負荷の容量に応じて増減が可能である。
コンバータ20は、三相整流回路であり、正側ダイオード21と負側ダイオード22を直列接続しその両ダイオードの相互接続点が三相交流電源1のR相に接続されるR相用直列回路、正側ダイオード23と負側ダイオード24を直列接続しその両ダイオードの相互接続点が三相交流電源1のS相に接続されるS相用直列回路、正側ダイオード25と負側ダイオード26を直列接続しその両ダイオードの相互接続点が三相交流電源1のT相に接続されるT相用直列回路を有し、三相交流電源1の三相交流電圧を直流電圧に変換して正側出力端子(+)および負側出力端子(−)から出力する。このコンバータ20のダイオード21〜26に対し、スイッチ素子たとえばMOSFET31〜36がそれぞれ並列接続されている。
なお、MOSFET31〜36はそれぞれ内部に寄生ダイオードを有するので、これら寄生ダイオードをそのままダイオード21〜26として用いればよい。スイッチ素子として、他のトランジスタやIGBTを用いる場合は、ダイオード21〜26を別に接続する必要がある。
上記平滑コンデンサ40にインバータ60が接続され、そのインバータ60の出力端に負荷であるところのモータ2が接続される。
インバータ60は、三相インバータ回路であり、MOSFET61,62を直列接続しその両MOSFETの相互接続点がモータ2のR相に接続されるR相用直列回路、MOSFET63,64を直列接続しその両MOSFETの相互接続点がモータ2のS相に接続されるS相用直列回路、MOSFET65,66を直列接続しその両MOSFETの相互接続点がモータ2のT相に接続されるT相用直列回路を有し、平滑コンデンサ40の電圧を各MOSFETのスイッチングにより所定周波数Fの三相交流電圧に変換して各相互接続点から出力する。MOSFET61〜66は、それぞれ寄生ダイオード61a〜66aを有する。
三相交流電源1とコンバータ20のR相・S相・T相との間の各接続ラインに、リアクトル11〜13が挿入接続される。また、R相・S相・T相の各接続ラインにおけるリアクトル11〜13より上流側の位置に、零クロス検出回路41〜43および電流センサ51〜53が設けられる。これらリアクトル11〜13、零クロス検出回路41〜43、および電流センサ51〜53は、コンバータ20ごとに設けられる。
零クロス検出回路41,42,43はそれぞれ三相交流電源1からの各相入力電圧の零クロス点を検出する。電流センサ51,52,53はそれぞれ、三相交流電源1からの各相入力電流の値を検出する。なお、本実施形態においては、各相の零クロスタイミングと各相の電流値を正確に検出するために各相のそれぞれに零クロス検出回路と電流センサを設けたが、3つの相の零クロスは、2つの相の位相ずれから検出できること、各相の電流は2つの相電流から3つめの相電流を計算で求めることができることから、いずれか2つの相にのみ零クロス検出回路と電流センサを設けるようにしても良い。この場合は、部品点数の削減、低コスト化を図ることができる。
第1のコンバータ20および上記インバータ60が主制御部70に接続される。第2のコンバータ20は制御部80に接続される。主制御部70および制御部80は、通信線を介して相互接続される。そして、主制御部70に、第1のコンバータ20に対応する零クロス検出回路41〜43および電流センサ51〜53が接続されるとともに、リモートコントロール式の操作器(リモコンという)71が接続される。制御部80に、第2のコンバータ20に対応する零クロス検出回路41〜43および電流センサ51〜53が接続される。
主制御部70は、各コンバータ20のMOSFET31〜36に対するオン,オフ駆動用の複数のスイッチングパターンデータ、および各コンバータ20のMOSFET31〜36に対するオン,オフ駆動用の複数のスイッチングパターンデータを内部メモリ70aに記憶している。これらスイッチングパターンデータは、三相交流電源1からの各相入力電圧が正レベルとなる位相の少なくとも前縁側および負レベルとなる位相の少なくとも前縁側においてMOSFET31〜36を断続的にオンするためのものである。これらスイッチングパターンデータは、三相交流電源1からの各相入力電流の値(実効値)にそれぞれ対応付けられている。断続的にオンするとは、所定の間隔でオンとオフを繰り返すことをいう。
前縁側とは、各交流電圧の0Vからの立ち上がり及び立ち下り部分を意味し、具体的には各交流電圧波形の0°〜60°の範囲及び180°〜240°の範囲を意味する。すなわち、各相入力電圧の正レベルとなる位相の前縁側は、図2に示すように、R相入力電圧、S相入力電圧、T相入力電圧のそれぞれ零クロス点から次の零クロス点までの電気角0°〜180°の半サイクル期間のうち、前寄りの電気角0°〜60°の期間Rx1,Sx1,Tx1である。各相入力電圧の負レベルとなる位相の前縁側は、R相入力電圧、S相入力電圧、T相入力電圧のそれぞれ零クロス点から次の零クロス点までの電気角180°〜360°の半サイクル期間のうち、前寄りの電気角180°〜240°の期間Ry1,Sy1,Ty1である。
主制御部70は、制御部80との連係に基づく主要な機能として、次の(1)(2)の制御手段を有する。
(1)内部メモリ70a内の各スイッチングパターンデータのうち、電流センサ51〜53で検知されるR相入力電流・S相入力電流・T相入力電流の値(実効値)にそれぞれ対応するスイッチングパターンデータをそれぞれ選定し、選定した各スイッチングパターンデータに基づいてMOSFET31〜36をオン,オフし、続いて同選定した各スイッチングパターンデータを力率が改善する方向に逐次に補正しながらその補正後の各スイッチングパターンデータに基づいてMOSFET31〜36をオン,オフするとともに、その補正後の各スイッチングパターンと上記選定時の各スイッチングパターンとの差を求め、求めた差が予め定められた所定値未満の場合は補正を継続し、求めた差が所定値以上の場合は、逐次改善しても最適値に到達することができない状況や最適値に到達するまでに長時間を必要とする状況であることから最初の選定に戻ってスイッチングパターンを最適化する制御を再開する第1制御手段。
(2)電流センサ51〜53で検知されるR相入力電流・S相入力電流・T相入力電流の値(実効値または最大値)の互いの相異が閾値以上の場合に、インバータ60の出力周波数Fを低減する第2制御手段。ここで、相異とは、差または比のことであり、通常は最大値を示す相と最小値を示す相の入力電流の値(実効値または最大値)の差または比が用いられる。
なお、(2)の第2制御手段は、電流センサ51〜53で検知されるR相入力電流・S相入力電流・T相入力電流の値の互いの相異が閾値以上で、かつ検知されるR相入力電流・S相入力電流・T相入力電流の値が設定値以上の場合、コンバータ20のMOSFET31〜36のオン,オフを停止し、かつインバータ60の出力周波数Fを低減する。電流センサ51〜53で検知されるR相入力電流・S相入力電流・T相入力電流の値の互いの相異が閾値以上でも、同センサにて検知されるR相入力電流・S相入力電流・T相入力電流の値が設定値未満の場合は、コンバータ20のMOSFET31〜36のオン,オフを停止することなく、インバータ60の出力周波数Fを低減する。
なお、R相入力電流・S相入力電流・T相入力電流の値が設定値以上とは、各相の入力電流の平均値が設定値以上の場合、最も電流値の大きい相の入力電流の値が設定値以上の場合、もしくは電流値の大きい2相の入力電流の平均値が設定値以上の場合のいずれでもよい。
つぎに、動作について説明する。初めに、コンバータ20の動作について説明する。
R相入力電圧が正レベルとなる位相では、三相交流電源1からリアクトル11および正側ダイオード21を通って平滑コンデンサ40に電流が流れ、その平滑コンデンサ40を経た電流が、先ず負側ダイオード24およびリアクトル12を通って三相交流電源1のS相に戻り、次にR相の位相が進むにつれ、負側ダイオード26およびリアクトル13を通って三相交流電源1のT相に戻る経路が形成される。そして、この動作に加え、R相入力電圧が正レベルとなる位相の前縁側0°〜60°の期間Rx1において、MOSFET32が断続的にオンする。MOSFET32がオンすると、ダイオード21,22の相互接続点が同コンバータ20の負側出力端と導通し、図1に矢印で示すように、三相交流電源1に対してリアクトル11、MOSFET32、負側ダイオード24、リアクトル12を介した短絡路が形成される。
S相入力電圧が正レベルとなる位相では、三相交流電源1からリアクトル12および正側ダイオード23を通って平滑コンデンサ40に電流が流れ、その平滑コンデンサ40を経た電流が、先ず負側ダイオード26およびリアクトル13を通って三相交流電源1のT相に戻り、次にS相の位相が進むにつれ、負側ダイオード22およびリアクトル11を通って三相交流電源1のR相に戻る経路が形成される。そして、この動作に加え、S相入力電圧が正レベルとなる位相の前縁側0°〜60°の期間Sx1において、MOSFET34が断続的にオンする。MOSFET34がオンすると、ダイオード23,24の相互接続点がコンバータ20の負側出力端と導通し、三相交流電源1に対してリアクトル12、MOSFET34、負側ダイオード26、リアクトル13を介した短絡路が形成される。
T相入力電圧が正レベルとなる位相では、三相交流電源1からリアクトル13および正側ダイオード25を通って平滑コンデンサ40に電流が流れ、その平滑コンデンサ40を経た電流が、先ず負側ダイオード22およびリアクトル11を通って三相交流電源1のR相に戻り、次にT相の位相が進むにつれ、負側ダイオード24およびリアクトル12を通って三相交流電源1のS相に戻る経路が形成される。そして、この動作に加え、T相入力電圧が正レベルとなる位相の前縁側0°〜60°の期間Tx1において、MOSFET36が断続的にオンする。MOSFET36がオンすると、ダイオード25,26の相互接続点がコンバータ20の負側出力端と導通し、三相交流電源1に対してリアクトル13、MOSFET36、負側ダイオード22、リアクトル11を介した短絡路が形成される。
R相入力電圧,S相入力電圧,T相入力電圧が負レベルとなる位相の前縁側期間Ry1,Sy1,Ty1では、正側ダイオード21,23,25と並列接続のMOSFET31,33,35が断続的にオンする。これらMOSFETの断続的なオンに伴う動作については、正負が反対となるだけで、基本的には正レベル期間と同じ動作パターンとなる。よって、その詳細な説明は省略する。
このように、R相入力電圧,S相入力電圧,T相入力電圧が正レベルとなる位相の前縁側期間Rx1,Sx1,Tx1においてコンバータ20のMOSFET32,34,36を断続的にオンするとともに、R相入力電圧,S相入力電圧,T相入力電圧が負レベルとなる位相の前縁側期間Ry1,Sy1,Ty1においてコンバータ20のMOSFET31,33,35を断続的にオンすることにより、コンバータ20への入力電流の波形を正弦波に追従性よく近似させることができる。これにより、力率が向上するとともに、コンバータ20への入力電流に含まれる高調波電流を抑制することができる。MOSFETを断続的にオンする前縁側0°〜60°の期間Rx1,Sx1,Tx1,Ry1,Sy1,Ty1は、1つの相のオン,オフ制御が他の2つの相の電流波形に及ぼす影響が少ない期間で、各相の立ち上がりに当たる。このため、この期間を選定したことにより、少ないスイッチング回数で大きな高調波電流の低減効果が得られる。また、全位相において高い周波数でスイッチングする場合に比べて、スイッチング回数を少なくすることができ、スイッチングノイズを低減できる。
一方、主制御部70および制御部80が実行する制御を図3のフローチャートに示す。また、各相入力電流に基づく制御状態の移り変わりを図5に示す。なお、各コンバータ20のうち、図1の上段側の第1のコンバータ20に対する制御を例に説明する。
電流センサ51〜53で検知されるR相入力電流・S相入力電流・T相入力電流の互いの相異たとえば差ΔIが計算され(ステップ101)、続いて入力電流が設定値I3以上か否かが判断される(ステップ102)。入力電流が設定値I3未満(ステップ102のNO)であれば、三相入力が不平衡であったとしても過大電流発生等の問題は生じないので、後述する出力周波数Fの低減が解除され(ステップ103)、通常の運転制御が実行される。
一方、入力電流が設定値I3以上と判断されると(ステップ102のYES)、状況によっては何等かの制限が必要な状態の可能性があると考えられるため、続くステップ115にて電源不平衡状態の有無が確認される。ステップ115では、ステップ101で計算された差ΔIが閾値ΔIa以上であるか否かが判定される。差ΔIが閾値ΔIa未満の場合(ステップ115のNO)、R相入力電流・S相入力電流・T相入力電流が平衡状態にあるとの判断の下に、後述する出力周波数Fの低減が解除される(ステップ103)。なお、この一連の処理の流れにおいて、その時点で出力周波数Fの低減が実行されていない場合は、ステップ103は、制御に影響を及ぼさない。
一方、差ΔIが閾値ΔIa以上である場合(ステップ115のYES)、さらに差ΔIが閾値ΔIaよりも高い閾値ΔIb以上であるか否かが判定される(ステップ110)。差ΔIが閾値ΔIb以上でなければ、ステップ112に移行し、ステップ差ΔIが閾値ΔIb以上の場合は、ステップ111へと移行する。ステップ111と112の説明の前にステップ103以降の処理を先に説明する。
ステップ103に続いて、内部メモリ70a内の各スイッチングパターンデータのうち、電流センサ51〜53で検知されるR相入力電流・S相入力電流・T相入力電流の値に対応するスイッチングパターンデータがメモリ61から選定される(ステップ104)。そして、選定されたスイッチングパターンデータに基づいてMOSFET31〜36がオン,オフ駆動される(ステップ105)。もともと、メモリ70aに記憶されている入力電流の値(実効値)に対応したスイッチングパターンデータは、特定の負荷の運転状態を想定して、実験的に設定したものである。このため、実際の運転中には温度や負荷変動等の影響で、記憶されているスイッチングパターンデータが、最適値とならない場合がある。そこで、同じ実効値であってもスイッチングパターンを逐次ずらすことで、高調波の発生や力率の向上を得ることができる。そのため、後述するステップ107以降において、スイッチングパターンの補正が行なわれる。
なお、選定されたスイッチングパターンデータに基づくMOSFET31〜36のオン,オフ駆動いわゆるスイッチングは、図3のフローチャートでは省略しているが、実際には図5に示すようにモータ2が起動して各相入力電流の値が設定値I2以上に上昇したところで開始される。また、このスイッチングは、モータ2の停止または軽負荷状態に際し、各相入力電流の値が設定値I1(<I2)未満に下降したところで終了される。次に、零クロス検出回路41〜43で検出される各相入力電圧の零クロス点と電流センサ51〜53で検知される各相入力電流の値とに基づいて各相入力電圧と各相入力電流との位相差が求められ、その位相差に基づく力率cosθと各相入力電流の値との積算により力率cosθのずれ量が求められる(ステップ106)。そして、求められた力率cosθのずれ量が減少する方向つまり力率が改善する方向に、初めに選定されたスイッチングパターンデータが逐次に補正される(ステップ107)。
ここで、各相入力電流は、図4に示すように、理想はsinθであるが、実際は位相遅れαがあってsin(θ−α)となる。この電流sin(θ−α)に関数cosθを掛けると、sin(θ−α)・cosθとなる。理想は位相ずれのないsinθ・cosθであり、その1周期の積分は∫sinθ・cosθ=0である。したがって、∫sin(θ−α)・cosθ=0になるように(近づくように)、スイッチングパターンが補正される。
上記補正ごとのスイッチングパターンデータと初めに選定したスイッチングパターンデータとの差が求められ(ステップ108)、その差と所定値とが比較される(ステップ109)。
求められた差が所定値未満であれば(ステップ109のNO)、ステップ105に戻り、補正されたスイッチングパターンデータに基づいてMOSFET31〜36がオン,オフ駆動される。続いて、力率cosθのずれ量が求められ(ステップ106)、そのずれ量が減少する方向つまり力率が改善する方向に上記補正されたスイッチングパターンデータがさらに補正される(ステップ107)。
このように力率cosθのずれ量が所定範囲内である限り、繰り返し最適なスイッチングパターンとなるように、スイッチングパターンデータが補正されていく。なお、スイッチングパターンの補正は、例えば山登り法等の方法が用いられる。具体的には、スイッチングパターンを+または−方向に所定位相だけシフトさせてスイッチングし、その結果、力率のずれ量が減少すれば、同じ方向に所定位相だけ再度シフトさせる。一方、新たなスイッチングパターンでスイッチした結果、力率のずれ量が増加すれば、逆方向に所定位相だけ再度シフトさせるという動作を繰り返すものである。
このような補正を繰返している最中に、補正したスイッチングパターンデータと初めに選定したスイッチングパターンデータとの差が所定値以上になった場合には(ステップ109のYES)、周囲や負荷の状況が変動し、補正を繰り返しても最適値に到達できない状況に陥っているとの判断の下に、補正されたスイッチングパターンデータを用いることなく、ステップ101〜103の処理を経て、スイッチングパターンが改めて選定される(ステップ104)。スイッチングパターンが改めて選定されることにより、スイッチングパターンの補正がそのまま続く場合よりも、迅速に適切なスイッチングパターンへと到達することができるようになる。これにより、力率改善および高調波抑制として十分な効果が得られる。
ただし、ステップ101で計算される差ΔIが閾値ΔIb以上の場合(ステップ110のYES)、入力電流値が大きい状態(ステップ102のYES)で、かつR相入力電流・S相入力電流・T相入力電流が不平衡状態にあるとの判断の下に、コンバータ20のMOSFET31〜36のオン,オフが停止されるとともに(ステップ111)、インバータ60の出力周波数Fが現時点の例えば80%に低減される(ステップ112)。一方、差ΔIが閾値ΔIb未満の場合は(ステップ110のNO)、コンバータ20のMOSFET31〜36のオン,オフを停止することなく、インバータ60の出力周波数Fのみを現時点の例えば80%に低減する(ステップ112)。このステップ112の処理を行った後は、ステップ104に移行するが、ステップ111でYESとなりコンバータ20のスイッチングが停止されている場合は、ステップ104からステップ109の処理は無視される。一方、ステップ111でNOとなりコンバータ20のスイッチングが継続されている場合は、ステップ104からステップ109の処理は有効に機能する。
出力周波数Fが低減されると、それに伴い、R相入力電流・S相入力電流・T相入力電流が低下する。これにより、不平衡状態下にあってもオン,オフ動作中のMOSFET31〜36に過電流が流れることなく、MOSFET31〜36の過熱や破壊が防止される。結果として、力率改善および高調波抑制のためのMOSFET31〜36のオン,オフを継続することができる。
以上の基本制御動作の具体例を図5により詳細に示す。R相入力電流・S相入力電流・T相入力電流の値が設定値I3未満の場合には、R相入力電流・S相入力電流・T相入力電流の互いの相異である差ΔIの大きさに係らずコンバータ20及びインバータ60は通常どおり動作する。R相入力電流・S相入力電流・T相入力電流の値が設定値I3以上の場合、R相入力電流・S相入力電流・T相入力電流の互いの差ΔIが、ΔIaとΔIbの間にある時はインバータ60の出力を制限し、ΔIbを超えた時はインバータ60の出力制限に加え、コンバータ20のスイッチング動作を停止させる。
さらに、コンバータ20のスイッチング動作を停止させた後、差ΔIが、ΔIa未満になるとコンバータ20のスイッチング動作を開始させる。すなわち、コンバータ20のスイッチング動作の停止と開始には、差ΔIa−ΔIb分だけヒステリシスを設けて頻繁に動作と停止が繰り返されないようになっている。一方、インバータの出力制限は、差ΔIが、ΔIaよりも低下すれば、解除されるようになっている。
なお、差ΔIが、ΔIa以上の状態であっても、R相入力電流・S相入力電流・T相入力電流の値が設定値I3未満となった場合(ステップ102のNO)には、不平衡状態下であるにしても各相電流の絶対値が低く、過電流などの問題発生の可能性がないため、コンバータ20、インバータ60の運転は通常通り実行される。以上説明のとおり、本実施形態の電源装置は、R相入力電流・S相入力電流・T相入力電流の互いの差が電源不平衡の状態であっても、R相入力電流・S相入力電流・T相入力電流の値が低い場合には、インバータ60、コンバータ20ともに運転を継続させる。
また、R相入力電流・S相入力電流・T相入力電流の値が高い場合で、かつ、R相入力電流・S相入力電流・T相入力電流の互いの相異が大きい場合にはインバータ60の出力を制限しながらコンバータ20の運転を継続できるようにし、さらにR相入力電流・S相入力電流・T相入力電流の互いの相異がさらに大きい場合には、コンバータ20の運転は停止するが、インバータ60は、その出力を制限しながら運転を継続するようにしている。
このように、本実施形態の電源装置おいては、電源不平衡状態であっても、できるだけインバータ60を停止することなく運転を継続できるように制御する。特に、空気調和機や保冷・保温のための冷凍サイクル装置では、その運転を停止することなく継続することが求められる。このため、本実施形態の電源装置は、冷凍サイクル装置の圧縮機モータの電源として用いることが好適である。
以上述べた制御は、図1の上段側の第1のコンバータ20とインバータ60に対するものであり、これは主制御部70によって実行される。下段側の第2のコンバータ20とインバータ60に対する制御は、制御部80と主制御部70との協働によって実行される。
具体的には、主制御部70が直接制御する上段側の第1のコンバータ20においてステップ111でコンバータ20のスイッチングを停止した場合には、下段側のコンバータ20も同じ状態になっている可能性が高いため、主制御部70から制御部80に下段側のコンバータ20に対してスイッチングを停止するように指示を出力し、これに基づき制御部80が下段側のコンバータ20に対してスイッチングを停止させる。
各コンバータ20の個数については、負荷であるモータ2の容量に応じて増減可能である。モータ容量の異なる複数の機種が用意された空気調和機の場合、その機種に合せてコンバータ20の接続数を選択すればよい。この結果、機種ごとに専用の電源装置を個別に設計するといった処置が不要となり、空気調和機の開発費、開発期間、コストを削減できるとともに、在庫管理が容易となる。
なお、上記実施形態では、R相入力電流・S相入力電流・T相入力電流の値の互いの相異として差を用いたが、比を用いてもよい。
上記実施形態では、MOSFETを断続的にオンする期間として、入力電圧が正レベルとなる位相の前縁側0°〜60°の期間Rx1,Sx1,Tx1、および入力電圧が負レベルとなる位相の前縁側0°〜60°の期間Ry1,Sy1,Ty1を設定したが、それに加えて、入力電圧が正レベルとなる位相の後縁側120°〜180°の期間、および入力電圧が負レベルとなる位相の後縁側120°〜180°の期間を設定してもよい。この場合、前縁側の期間Rx1,Sx1,Tx1,Ry1,Sy1,Ty1として0°〜(40°±10°)を設定し、後縁側の期間として(160°±10°)〜180°を設定してもよい。ここで、後縁側とは、各交流電圧の0Vに向かう立ち下がり(負レベルの位相)及び立ち下り(正レベルの位相)部分を意味し、具体的には各交流電圧波形の120°〜180°の範囲及び300°〜360°の範囲を意味する。
例えば、各相入力電圧の0クロス点を正負にかかわらず0°として表わした場合、前縁側の期間Rx1,Sx1,Tx1,Ry1,Sy1,Ty1として0°〜30°を設定する場合は、後縁側の期間として長めの150°〜180°の期間を設定する。前縁側の期間Rx1,Sx1,Tx1,Ry1,Sy1,Ty1として長めの0°〜50°を設定する場合は、後縁側の期間として170°〜180°の期間を設定する。要は電気角60°の範囲内で前縁側の期間と後縁側の期間を振り分ければよい。前縁側0°〜(40°±10°)および後縁側(160°±10°)〜180°の期間でのスイッチングは、前縁側0°〜60°および後縁側120°〜180°の期間にスイッチングする場合と比較すると、全期間(0°〜180°)を通してオン状態となるMOSFET31〜36がいずれか1つとなり、制御性向上、スイッチングノイズ減少の効果を得ることができる。
その他、上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…三相交流電源、2…モータ(負荷)、11〜13…リアクトル、20…コンバータ、21,23,25…正側ダイオード、22,24,26…負側ダイオード、31〜36…MOSFET(スイッチ素子)、40…平滑コンデンサ、41〜43…零クロス検出回路、51〜53…電流センサ、60…インバータ、70…主制御部、80…制御部

Claims (5)

  1. 交流電源の電圧を直流電圧に変換するコンバータと、
    前記コンバータの出力電圧を所定周波数の交流電圧に変換するインバータと、
    前記交流電源と前記整流回路との接続間に設けたリアクトルと、
    前記リアクトルおよび前記コンバータを通して前記交流電源に対する短絡路を形成するためのスイッチ素子と、
    前記交流電源からの入力電流をその交流電源の相ごとに検知する検知手段と、
    前記交流電源の電圧の所定の位相において前記スイッチ素子を断続的にオン,オフする第1制御手段と、
    前記検知手段で検知される各相入力電流の互いの相異が閾値以上の場合に、前記インバータの出力周波数を低減する第2制御手段と、
    を備えることを特徴とする電源装置。
  2. さらに、前記交流電源からの入力の力率を検出する検出手段を備え、
    第1制御手段は、前記スイッチ素子を断続的にオンするためのスイッチングパターンを前記検知手段の検知電流に応じて選定し、選定したスイッチングパターンに基づいて前記スイッチ素子をオン,オフし、続いて前記選定したスイッチングパターンを前記検出手段の検出力率が改善する方向に逐次に補正しながらその補正ごとのスイッチングパターンに基づいて前記スイッチ素子をオン,オフすることを特徴とする請求項1記載の電源装置。
  3. 前記第1制御手段は、前記補正ごとのスイッチングパターンと前記選定時のスイッチングパターンとの差を求め、求めた差が所定値未満の場合は前記補正を継続し所定値以上の場合は前記選定に戻る、
    ことを特徴とする請求項2記載の電源装置。
  4. 前記交流電源は、三相交流電源であり、
    前記コンバータは、正側ダイオードと負側ダイオードを直列接続しその両ダイオードの相互接続点が三相交流電源のR相に接続されるR相用直列回路、正側ダイオードと負側ダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のS相に接続されるS相用直列回路、正側ダイオードと負側ダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のT相に接続されるT相用直列回路を有し、前記三相交流電源の電圧を直流電圧に変換して出力する、
    前記スイッチ素子は、前記各ダイオードに並列接続されている、
    前記リアクトルは、前記三相交流電源の各相と前記各直列回路との接続間に設けられている、
    前記第1制御手段は、前記三相交流電源の各相電圧が正レベルとなる位相の少なくとも前縁側および負レベルとなる位相の少なくとも前縁側において前記スイッチ素子を断続的にオンするためのスイッチングパターンを前記検知手段の検知電流に応じて選定する、
    ことを特徴とする請求項1ないし3のいずれかに記載の電源装置。
  5. 前記第2制御手段は、
    前記検知手段で検知される各相入力電流が設定値以上で、前記検知手段で検知される各相入力電流の互いの相異が第1の閾値以上の場合、前記インバータの出力周波数を低減するとともに前記スイッチ素子のオン,オフを停止し、
    前記検知手段で検知される各相入力電流が前記設定値以上で、前記検知手段で検知される各相入力電流の互いの相異が第1の閾値より低く、かつこの第1の閾値よりも低い第2の閾値以上の場合、前記インバータの出力周波数を低減し、前記スイッチ素子のオン,オフは停止しない、
    ことを特徴とする請求項1乃至請求項4のいずれかに記載の電源装置。
JP2013201033A 2013-09-27 2013-09-27 電源装置 Pending JP2015070659A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201033A JP2015070659A (ja) 2013-09-27 2013-09-27 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201033A JP2015070659A (ja) 2013-09-27 2013-09-27 電源装置

Publications (1)

Publication Number Publication Date
JP2015070659A true JP2015070659A (ja) 2015-04-13

Family

ID=52836874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201033A Pending JP2015070659A (ja) 2013-09-27 2013-09-27 電源装置

Country Status (1)

Country Link
JP (1) JP2015070659A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047489A1 (ja) * 2015-09-14 2017-03-23 ダイキン工業株式会社 インバータ基板、接続順序の判断方法、欠相判断方法
WO2023175779A1 (ja) * 2022-03-16 2023-09-21 東芝キヤリア株式会社 電源回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047489A1 (ja) * 2015-09-14 2017-03-23 ダイキン工業株式会社 インバータ基板、接続順序の判断方法、欠相判断方法
JP2017060392A (ja) * 2015-09-14 2017-03-23 ダイキン工業株式会社 インバータ基板、接続順序の判断方法、欠相判断方法
JP2018029465A (ja) * 2015-09-14 2018-02-22 ダイキン工業株式会社 インバータ基板、接続順序の判断方法
WO2023175779A1 (ja) * 2022-03-16 2023-09-21 東芝キヤリア株式会社 電源回路

Similar Documents

Publication Publication Date Title
US10084383B2 (en) Booster device and converter device
EP2937984B1 (en) Inverter device
JP6217369B2 (ja) モータ制御装置及びモータ制御方法
US9698712B2 (en) Inverter apparatus
US10003260B2 (en) Semiconductor devices and methods for dead time optimization by measuring gate driver response time
US20150188454A1 (en) Inverter device, control circuit for inverter device, and method for controlling inverter device
JP2019033556A (ja) ゲート駆動装置および電力変換装置
JP6543872B2 (ja) 制御装置、制御方法及びプログラム
JP5802828B2 (ja) 整流装置および整流システム
JP2015070659A (ja) 電源装置
JP5824339B2 (ja) 三相整流装置
US11515826B2 (en) Motor drive control device, motor system, and air blowing device
WO2020059814A1 (ja) モータ制御装置、モータシステム及びインバータ制御方法
CN111819783B (zh) 电力变换控制方法以及电力变换控制装置
CN113544962A (zh) 直流电源装置、电力转换装置以及制冷循环装置
JPWO2020144796A1 (ja) 電力変換装置
JP2016103886A (ja) モータ制御装置
JP5934538B2 (ja) 三相整流装置
CN113302831A (zh) 电力变换装置
JP6468046B2 (ja) Pwm電力変換器の並列運転方法および並列運転装置
JP5223521B2 (ja) 電力変換装置
JP4248560B2 (ja) 電力変換装置
JP2022143053A (ja) 電力変換装置及びそれを備えた洗濯機。
JP2006262661A (ja) 直流電源装置
JP2016010245A (ja) 電源高調波抑制回路