JP2015063434A - Arsenic exudation method - Google Patents

Arsenic exudation method Download PDF

Info

Publication number
JP2015063434A
JP2015063434A JP2013199482A JP2013199482A JP2015063434A JP 2015063434 A JP2015063434 A JP 2015063434A JP 2013199482 A JP2013199482 A JP 2013199482A JP 2013199482 A JP2013199482 A JP 2013199482A JP 2015063434 A JP2015063434 A JP 2015063434A
Authority
JP
Japan
Prior art keywords
arsenic
leaching
copper
sulfide
pentavalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013199482A
Other languages
Japanese (ja)
Other versions
JP6102657B2 (en
Inventor
雅俊 高野
Masatoshi Takano
雅俊 高野
浅野 聡
Satoshi Asano
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013199482A priority Critical patent/JP6102657B2/en
Publication of JP2015063434A publication Critical patent/JP2015063434A/en
Application granted granted Critical
Publication of JP6102657B2 publication Critical patent/JP6102657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To exude pentavalent arsenic.SOLUTION: Sodium carbonate is added to slurry comprising sulfide precipitate comprising basic copper arsenate, and pentavalent arsenic is exuded in the slurry for separation.

Description

本発明は、塩基性砒酸銅を含有する硫化澱物から砒素を浸出させる砒素の浸出方法に関する。   The present invention relates to an arsenic leaching method for leaching arsenic from a sulfided starch containing basic copper arsenate.

銅鉱石中には、不純物である砒素が含まれている。銅鉱石から銅を製錬する方法には、例えば自溶炉を用いた乾式法がある。乾式法で銅を製錬する場合、砒素は、マットやスラグに分配されるが、一部は揮発し排ガスに分配される。   Copper ore contains arsenic as an impurity. As a method for smelting copper from copper ore, for example, there is a dry method using a flash smelting furnace. When copper is smelted by a dry process, arsenic is distributed to mats and slag, but part of it is volatilized and distributed to exhaust gas.

マットに分配された砒素は、電解精製における浄液工程で発生する脱銅スライムに移行する。   Arsenic distributed to the mat is transferred to copper-free slime generated in the liquid purification process in the electrolytic purification.

一方、排ガスに分配された砒素は、硫酸製造工程に運ばれ、硫酸製造時のガス精製工程で発生する廃酸に移行する。さらに廃酸中の砒素は、重金属除去のための硫化処理によって硫化澱物に含まれる。   On the other hand, arsenic distributed to the exhaust gas is transported to the sulfuric acid production process and transferred to waste acid generated in the gas purification process during sulfuric acid production. Furthermore, arsenic in the waste acid is contained in the sulfided starch by sulfidation treatment for removing heavy metals.

脱銅スライムや硫化澱物には、砒素の他に有価物が含まれている。そこで、銅製錬では、生成された脱銅スライムや硫化澱物を再び銅製錬プロセスに投入し、有価物を回収する。銅製錬では、脱銅スライムや硫化澱物を再び投入することによって銅製錬プロセス内に不純物である砒素が蓄積されないように、再投入する前に脱銅スライムや硫化澱物から砒素を分離することが望まれている。   In addition to arsenic, valuable copper is included in decopperized slime and sulfide starch. Therefore, in copper smelting, the produced decoppered slime and sulfide starch are again input into the copper smelting process, and valuable materials are recovered. In copper smelting, arsenic should be separated from decoppered slime and sulfide before re-injection so that arsenic, an impurity, does not accumulate in the copper smelting process by reintroducing decoppered slime and sulfide. Is desired.

更に、分離した砒素は、酸化物や塩化物などの化合物形態では有害性・有毒性を示すものがある。このため、砒素は、長期間、保管管理することを考えると、不溶性でかつ洗浄性が良いことが望ましい。   Furthermore, the separated arsenic may be harmful or toxic in the form of compounds such as oxides and chlorides. For this reason, it is desirable that arsenic is insoluble and has good cleaning properties in consideration of long-term storage management.

一般的に、砒酸鉄である結晶性スコロダイト(FeAsO・2HO)は、安定的な化合物であり、不溶性及び洗浄性に優れ、長期保管に適していることが知られている。 Generally, crystalline scorodite (FeAsO 4 .2H 2 O), which is iron arsenate, is a stable compound, and is known to be excellent in insolubility and detergency and suitable for long-term storage.

結晶性スコロダイトは、原料となる脱銅スライム又は硫化澱物から砒素を酸又はアルカリで浸出した後、得られた砒素含有液に鉄(例えば硫酸鉄)を添加して製造することができる。   Crystalline scorodite can be produced by leaching arsenic from a raw copper-free slime or sulfide starch with an acid or alkali, and then adding iron (for example, iron sulfate) to the obtained arsenic-containing liquid.

結晶性スコロダイトの砒素は、5価の価数を持つため、砒素含有液中の砒素の価数が5価である必要がある。しかしながら、硫化澱物を原料とする場合、砒素は、硫化砒素として含まれており、Asの形態をしているため3価である。そこで、As中の砒素を浸出してから5価にする必要がある。 Since crystalline scorodite arsenic has a pentavalent valence, the arsenic valence in the arsenic-containing liquid needs to be pentavalent. However, when a sulfide starch is used as a raw material, arsenic is trivalent because it is contained as arsenic sulfide and is in the form of As 2 S 3 . Therefore, it is necessary to make pentavalent after leaching out arsenic in As 2 S 3 .

まず、硫化砒素から砒素を浸出するには、先ず硫化澱物を含むスラリーに硫酸銅を添加し、砒素を亜砒酸(HAsO)溶液、銅を硫化銅とする置換反応を生じさせる。次に、浸出した亜砒酸を酸化して砒酸(HAsO)とし、砒素の価数を5価にする。ここで、砒素の酸化を容易に進めるためには、pHを高くすることが好ましい(例えば、特許文献1参照)。pHを高くすると、硫化銅の銅イオンにより、砒素は塩基性砒酸銅(Cu(AsO)(OH))として沈殿する。 First, in order to leach arsenic from arsenic sulfide, first, copper sulfate is added to the slurry containing sulfide starch, and a substitution reaction is performed in which arsenic is a arsenous acid (HAsO 2 ) solution and copper is copper sulfide. Next, the leached arsenous acid is oxidized to arsenic acid (H 3 AsO 4 ), and the valence of arsenic is made pentavalent. Here, in order to facilitate the oxidation of arsenic, it is preferable to increase the pH (see, for example, Patent Document 1). When the pH is increased, arsenic is precipitated as basic copper arsenate (Cu 2 (AsO 4 ) (OH)) by copper ions of copper sulfide.

塩基性砒酸銅中の砒素は、5価である。したがって、結晶性スコロダイトの原料液は、この塩基性砒酸銅から砒素を再浸出することで得ることができる。砒素の再浸出は、酸又はアルカリを用いて浸出する方法がある。   Arsenic in basic copper arsenate is pentavalent. Therefore, a raw material solution of crystalline scorodite can be obtained by releaching arsenic from this basic copper arsenate. There is a method of leaching arsenic using acid or alkali.

酸で再浸出した場合には、砒素と同時に銅も多く浸出され、良好な結晶性スコロダイトを生成できる原料液とすることができない。   In the case of re-leaching with an acid, a large amount of copper is also leached simultaneously with arsenic, and a raw material solution that can produce good crystalline scorodite cannot be obtained.

一方、塩基性砒酸銅は、アルカリに溶解するため、工業的によく用いられている水酸化ナトリウムを用いて再浸出することができる。さらに、pHを高くすることで、砒素の価数を5価に保持できるため好ましい。塩基性砒酸銅は、反応せずに残った硫化澱物に含まれている。そのため、塩基性砒酸銅を含む硫化澱物を水酸化ナトリウムで浸出することになるが、硫化澱物をアルカリで浸出した場合には、硫化澱物中に含まれる硫黄が浸出され、浸出された硫黄と水酸化ナトリウムが反応してチオ硫酸ナトリウムが生成される。   On the other hand, since basic copper arsenate dissolves in an alkali, it can be re-leached using sodium hydroxide which is often used industrially. Furthermore, it is preferable to increase the pH because the arsenic valence can be maintained at pentavalent. Basic copper arsenate is contained in the sulfurized starch remaining without reacting. Therefore, sulfurized starch containing basic copper arsenate will be leached with sodium hydroxide, but when sulfurized starch was leached with alkali, sulfur contained in the sulfided starch was leached and leached. Sulfur and sodium hydroxide react to produce sodium thiosulfate.

結晶性スコロダイトを製造する際には、硫酸を用いてpHを2以下に下げる必要がある。このpH調整時には、チオ硫酸ナトリウムと硫酸が反応して、硫黄が浸出し、二酸化硫黄ガスが生成される(例えば、非特許文献1参照)。   When producing crystalline scorodite, it is necessary to lower the pH to 2 or less using sulfuric acid. At the time of pH adjustment, sodium thiosulfate and sulfuric acid react, sulfur is leached, and sulfur dioxide gas is generated (see, for example, Non-Patent Document 1).

生成した二酸化硫黄は、還元剤として作用するため、5価の砒素を3価に還元してしまい、結晶性スコロダイトの原料液には適さなくなる。   Since the produced sulfur dioxide acts as a reducing agent, pentavalent arsenic is reduced to trivalent, and is no longer suitable as a raw material liquid for crystalline scorodite.

そこで、砒素を再浸出させる際に硫黄の浸出を抑制するために、浸出時の温度とpHを低くすると、十分な砒素の浸出が行われなくなってしまう。したがって、工業的に良く用いられる水酸化ナトリウムを用いて砒素の再浸出を行う場合には、硫黄の浸出の抑制と砒素の浸出率を高めることとを同時に満たすことは難しい。   Therefore, if the temperature and pH during leaching are lowered in order to suppress sulfur leaching when leaching arsenic again, sufficient arsenic leaching will not be performed. Therefore, when leaching of arsenic is performed using sodium hydroxide, which is often used industrially, it is difficult to simultaneously satisfy the suppression of sulfur leaching and the increase of the arsenic leaching rate.

そこで、硫黄の浸出の抑制と砒素の浸出率を高めることとを同時に行うことできる方法が求められている。   Therefore, there is a need for a method that can simultaneously suppress sulfur leaching and increase the arsenic leaching rate.

特開2005−000823号公報JP 2005-000823 A

高木誠司編、「新訂 定性分析化学 中巻」第41版、株式会社南江堂、1991年4月1日、p273−274Edited by Seiji Takagi, 41st edition of “New Revised Qualitative Analytical Chemistry”, Nankodo Co., Ltd., April 1, 1991, p273-274

そこで、本発明は、このような実情に鑑みて提案されたものであり、結晶性スコロダイトの製造を妨げる銅の浸出を抑制し、塩基性硫酸銅を含む硫化澱物から砒素をアルカリ性条件で浸出させても、硫黄の浸出を抑制でき、かつ砒素の浸出率を高めることができる砒素の浸出方法を提供することを目的とする。   Therefore, the present invention has been proposed in view of such circumstances, suppressing the leaching of copper which hinders the production of crystalline scorodite, and leaching arsenic from sulfided starch containing basic copper sulfate under alkaline conditions. It is an object of the present invention to provide an arsenic leaching method that can suppress sulfur leaching and increase the arsenic leaching rate.

上述した目的を達成する本発明に係る砒素の浸出方法は、塩基性砒酸銅を含有する硫化澱物を含むスラリーに炭酸ナトリウムを添加し、砒素をスラリー中に浸出して硫化澱物から分離する。   In the arsenic leaching method according to the present invention that achieves the above-mentioned object, sodium carbonate is added to a slurry containing a sulfurized starch containing basic copper arsenate, and arsenic is leached into the slurry to separate it from the sulfided starch. .

本発明では、銅の浸出を抑制でき、かつ塩基性硫酸銅を含む硫化澱物から砒素をアルカリ性条件で浸出させても、硫黄の浸出を抑制でき、砒素の浸出率を高めることができる。   In the present invention, leaching of copper can be suppressed, and even if arsenic is leached from a sulfided starch containing basic copper sulfate under alkaline conditions, the leaching of sulfur can be suppressed and the arsenic leaching rate can be increased.

以下に、本発明を適用した砒素の浸出方法について説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。   The arsenic leaching method to which the present invention is applied will be described below. Note that the present invention is not limited to the following detailed description unless otherwise specified.

砒素の浸出方法は、塩基性砒酸銅を含有する硫化澱物を含むスラリーに炭酸ナトリウムを添加し、砒素をスラリー中に浸出して硫化澱物から分離する方法である。この砒素の浸出方法は、例えば、自溶炉を用いて銅鉱石から銅を製錬する銅製錬プロセスに組み込まれている排ガスを利用した硫酸製造工程で発生した硫化澱物から砒素を浸出する際に利用することができる。この砒素の浸出方法は、安定な結晶性スコロダイト(FeAsO・2HO)を製造できる5価の砒素を高浸出率で浸出することができる。 The arsenic leaching method is a method in which sodium carbonate is added to a slurry containing a sulfided starch containing basic copper arsenate, and arsenic is leached into the slurry and separated from the sulfided starch. This arsenic leaching method is, for example, when leaching arsenic from sulfide starch generated in a sulfuric acid production process using exhaust gas incorporated in a copper smelting process for smelting copper from copper ore using a flash furnace. Can be used. This arsenic leaching method can leach pentavalent arsenic that can produce stable crystalline scorodite (FeAsO 4 .2H 2 O) at a high leaching rate.

<硫化砒素からの砒素の浸出>
排ガスに含まれた砒素は、硫酸製造時に発生する廃酸に移行する。さらに廃酸中の砒素は、重金属除去のための硫化処理によって生成される硫化澱物中に硫化砒素(As)の形態で含まれている。したがって、この硫化砒素から砒素を浸出する。
<Arsenic leaching from arsenic sulfide>
Arsenic contained in the exhaust gas shifts to waste acid generated during the production of sulfuric acid. Furthermore, arsenic in the waste acid is contained in the form of arsenic sulfide (As 2 S 3 ) in the sulfurized starch produced by the sulfiding treatment for removing heavy metals. Therefore, arsenic is leached from this arsenic sulfide.

硫化砒素からの砒素の浸出方法は、先ず、硫化澱物のスラリーに硫酸銅や銅粉末などの銅源を添加する。スラリーに硫酸銅や銅粉末を添加すると、下記の式1に示す置換反応により砒素が浸出される。置換反応で得られた亜砒酸(HAsO)は、砒素の価数が3価である。
As+4HO+3CuSO ⇒ 3HSO+2HAsO+3CuS
・・・(式1)
In the method of leaching arsenic from arsenic sulfide, first, a copper source such as copper sulfate or copper powder is added to the slurry of the sulfide starch. When copper sulfate or copper powder is added to the slurry, arsenic is leached by the substitution reaction shown in the following formula 1. Arsenous acid (HAsO 2 ) obtained by the substitution reaction has a valence of arsenic of three.
As 2 S 3 + 4H 2 O + 3CuSO 4 ⇒ 3H 2 SO 4 + 2HAsO 2 + 3CuS
... (Formula 1)

次に、亜砒酸に含まれている砒素の価数を3価から5価にする。結晶性スコロダイトの砒素は、5価の価数を持つため、結晶性スコロダイトの製造に適した5価とする。砒素の酸化は、アルカリ性条件下で例えば空気等の酸化剤を置換反応後の浸出液に加えて行う。砒素は、酸性条件よりもアルカリ性条件の方が3価から5価へ酸化しやすい。このため、酸化反応は、アルカリ性条件下で行う。亜砒酸は、下記の式2に示すように酸化されて砒酸となるが、アルカリ性条件下では浸出液中に含まれている硫化銅と反応して、5価の砒素を有する塩基性砒酸銅(Cu(AsO)(OH))として沈殿する。
2HAsO+2HO+O⇒2HAsO ・・・(式2)
Next, the valence of arsenic contained in arsenous acid is changed from trivalent to pentavalent. Since arsenic of crystalline scorodite has a pentavalent valence, it is made pentavalent suitable for the production of crystalline scorodite. Arsenic oxidation is performed under alkaline conditions by adding an oxidizing agent such as air to the leachate after the substitution reaction. Arsenic is more easily oxidized from trivalent to pentavalent under alkaline conditions than under acidic conditions. For this reason, the oxidation reaction is performed under alkaline conditions. Arsenous acid is oxidized to arsenic acid as shown in the following formula 2, but reacts with copper sulfide contained in the leachate under alkaline conditions to react with basic copper arsenate (Cu 2) having pentavalent arsenic. Precipitate as (AsO 4 ) (OH)).
2HAsO 2 + 2H 2 O + O 2 ⇒2H 3 AsO 4 (Formula 2)

<塩基性砒酸銅からの5価の砒素の浸出>
次に、塩基性砒酸銅から5価の砒素を再浸出させる。この5価の砒素の再浸出は、アルカリ剤を用いて行う。アルカリ剤には、水酸化ナトリウムではなく、炭酸ナトリウムを用いる。
<Leaching of pentavalent arsenic from basic copper arsenate>
Next, pentavalent arsenic is re-leached from basic copper arsenate. This re-leaching of pentavalent arsenic is performed using an alkaline agent. As the alkaline agent, sodium carbonate is used instead of sodium hydroxide.

アルカリ剤として炭酸ナトリウムを用いた場合には、下記の式3に示すように、砒素は砒酸ナトリウムとして浸出され、5価の砒素を浸出することができる。銅は、炭酸銅として沈殿し除去することができる。これにより、砒素と共に銅が浸出することを防止できる。塩基性砒酸銅中の殆どの銅は、炭酸銅として沈殿するが、過剰の炭酸ナトリウムが存在すると銅は少量溶解して、浸出液中に銅イオンとして存在する。
2Cu(AsO)(OH)+3NaCO+H
⇒2NaAsO+2CuCO・Cu(OH)+CO
・・・(式3)
When sodium carbonate is used as the alkaline agent, arsenic is leached as sodium arsenate as shown in the following formula 3, and pentavalent arsenic can be leached. Copper can be precipitated and removed as copper carbonate. Thereby, copper can be prevented from leaching together with arsenic. Most of the copper in basic copper arsenate precipitates as copper carbonate, but in the presence of excess sodium carbonate, a small amount of copper dissolves and exists as copper ions in the leachate.
2Cu 2 (AsO 4 ) (OH) + 3Na 2 CO 3 + H 2 O
⇒2Na 3 AsO 4 + 2CuCO 3 .Cu (OH) 2 + CO 2
... (Formula 3)

ここで、炭酸ナトリウムを添加してアルカリ性条件下で砒素の再浸出を行った場合には、硫化澱物から硫黄が溶解し、溶解した硫黄由来のチオ硫酸ナトリウムが生成される。このチオ硫酸ナトリウムは、−2価の価数を持つ硫黄を分子内に持っている。−2価の硫黄は、銅イオンと液中で共存できず、硫化銅の沈殿を生ずる。つまり、硫黄は、過剰の炭酸ナトリウムが存在する状態で微量溶解した銅と反応して、硫化銅として沈殿し、再浸出液中から除去される。   Here, when sodium carbonate is added and arsenic is leached again under alkaline conditions, sulfur is dissolved from the sulfurized starch, and dissolved sulfur-derived sodium thiosulfate is produced. This sodium thiosulfate has sulfur having a valence of -2 in the molecule. -2-valent sulfur cannot coexist with copper ions in the liquid, and precipitates copper sulfide. That is, sulfur reacts with a trace amount of copper in the presence of excess sodium carbonate, precipitates as copper sulfide, and is removed from the re-leaching solution.

これにより、例えば次工程で結晶性スコロダイトを製造する際に、硫酸等でpHを2以下に調整しても二酸化硫黄の発生を防ぐことができる。したがって、生成された5価の砒素が、二酸化硫黄によって3価に還元されることを防止できる。   Thereby, for example, when producing crystalline scorodite in the next step, generation of sulfur dioxide can be prevented even if the pH is adjusted to 2 or less with sulfuric acid or the like. Therefore, it is possible to prevent the generated pentavalent arsenic from being reduced to trivalent by sulfur dioxide.

以上のような砒素の浸出方法では、塩基性砒酸銅から砒素を再浸出させる際に、酸を用いず、アルカリ剤として炭酸ナトリウムを用いることで、銅の浸出を抑制することができる。また、砒素の浸出方法では、塩基性砒酸銅から砒素を再浸出させる際に、アルカリ剤として水酸化ナトリウムではなく炭酸ナトリウムを用いることで、硫黄の浸出を抑制でき、かつ5価の砒素の浸出率を高めることができる。   In the arsenic leaching method as described above, when arsenic is leached again from basic copper arsenate, the leaching of copper can be suppressed by using sodium carbonate as an alkaline agent without using an acid. In the arsenic leaching method, when arsenic is leached again from basic copper arsenate, leaching of pentavalent arsenic can be suppressed by using sodium carbonate instead of sodium hydroxide as an alkaline agent. The rate can be increased.

したがって、このような砒素の浸出方法は、銅製錬プロセスに含まれる硫酸製造工程で排出された砒素を含む硫化澱物から砒素を高い回収率で回収することができるため、銅製錬プロセスに硫化澱物を再投入して有価金属を回収する際に不純物である砒素を予め除去するのに好適である。   Therefore, such an arsenic leaching method can recover arsenic at a high recovery rate from sulfides containing arsenic discharged in the sulfuric acid production process included in the copper smelting process. It is suitable for removing arsenic, which is an impurity, in advance when an object is reintroduced to recover valuable metals.

また、この砒素の浸出方法では、銅が含まれておらず、かつ5価の砒素が多く浸出できるため、良好な結晶性スコロダイト(FeAsO・2HO)を製造する原料液の製造に用いることができる。 Further, in this arsenic leaching method, copper is not contained, and a large amount of pentavalent arsenic can be leached. Therefore, the arsenic leaching method is used for producing a raw material solution for producing good crystalline scorodite (FeAsO 4 .2H 2 O). be able to.

以下、本発明を適用した具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。   Specific examples to which the present invention is applied will be described below, but the present invention is not limited to these examples.

(実施例)
実施例では、下記の表1に示す組成の硫化澱物を乾燥重量で36g、銅粉末33g、硫酸銅5水和物9g、を300mlの水に添加してスラリーとした。
(Example)
In Examples, 36 g by dry weight of sulfide starch having the composition shown in Table 1 below, 33 g of copper powder, and 9 g of copper sulfate pentahydrate were added to 300 ml of water to form a slurry.

次に、スラリーを80℃で加熱し、空気を吹き込みながら5時間撹拌混合を行った。撹拌混合中のpHは、3.5〜4.0の間で安定していた。得られた浸出液中の砒素は3mg/lであった。pH領域から砒素は、塩基性砒酸銅として沈殿していると判断した。   Next, the slurry was heated at 80 ° C., and stirred and mixed for 5 hours while blowing air. The pH during stirring and mixing was stable between 3.5 and 4.0. Arsenic in the obtained leachate was 3 mg / l. From the pH range, it was judged that arsenic was precipitated as basic copper arsenate.

次に、得られた残渣からの砒素の再浸出を行った。まず、再浸出では、乾燥重量で20gの残渣に300mlの水を添加し、撹拌混合してスラリーを作製した。   Next, re-leaching of arsenic from the obtained residue was performed. First, in re-leaching, 300 ml of water was added to 20 g of residue by dry weight, and the mixture was stirred and mixed to prepare a slurry.

次の工程では、スラリーを80℃に加熱した後、炭酸ナトリウム(純度99.8%:関東化学製:特級)を50g添加した。添加後は、1時間、温度を80℃に保持して混合撹拌した。再浸出液中のpHは10.2であり、砒素濃度は2.5g/l、硫黄濃度は2.4g/l、銅の濃度は0.6g/lであった。濃度はICP発光分析を用いて行った。   In the next step, the slurry was heated to 80 ° C., and 50 g of sodium carbonate (purity 99.8%: manufactured by Kanto Chemical Co., Ltd .: special grade) was added. After the addition, the mixture was stirred for 1 hour while maintaining the temperature at 80 ° C. The pH in the re-leaching solution was 10.2, the arsenic concentration was 2.5 g / l, the sulfur concentration was 2.4 g / l, and the copper concentration was 0.6 g / l. Concentration was performed using ICP emission spectrometry.

次に、再浸出液に64重量%の硫酸水溶液58mlを添加してpH0〜1の間に調整したところ、硫黄の沈殿と二酸化硫黄の発生は確認できなかった。再浸出液中の砒素の価数は、分析した結果、5価の砒素の存在割合、即ち浸出率は95%であった。価数の分析は、ジエチルジチオカルバミンジエチルアンモニウムを用いた溶媒抽出法とICP(Inductively Coupled Plasma)質量分析を用いて行った。   Next, 58 ml of a 64% by weight aqueous sulfuric acid solution was added to the re-leaching solution and the pH was adjusted to be between 0 and 1. Sulfur precipitation and generation of sulfur dioxide could not be confirmed. As a result of analysis of the arsenic valence in the re-leaching solution, the existence ratio of pentavalent arsenic, that is, the leaching rate was 95%. The valence analysis was performed using a solvent extraction method using diethyldithiocarbamine diethylammonium and ICP (Inductively Coupled Plasma) mass spectrometry.

以上の実施例では、アルカリ性条件下で砒素の再浸出を行っても、硫黄の浸出及び二酸化硫黄の発生が抑制されており、5価の砒素を高い浸出率で浸出できることがわかる。また、実施例では、酸を用いて砒素の再浸出を行っていないため、銅の浸出も抑制できている。酸を用いて砒素の再浸出を行った場合には、数十g/lもの銅が浸出されるため、それに比べて実施例では0.6g/lであり非常に銅の浸出が抑制されている。   In the above examples, it is understood that even when arsenic re-leaching is performed under alkaline conditions, sulfur leaching and sulfur dioxide generation are suppressed, and pentavalent arsenic can be leached at a high leaching rate. Further, in the examples, since leaching of arsenic is not performed using an acid, copper leaching can be suppressed. When leaching of arsenic is performed using an acid, copper of several tens of g / l is leached, and in comparison with the example, the leaching of copper is 0.6 g / l. Yes.

(比較例)
比較例では、表1に示す組成の硫化澱物を乾燥重量で90g、銅粉末33g、硫酸銅5水和物9g、を300mlの純水に添加してスラリーとした。
(Comparative example)
In a comparative example, 90 g by dry weight of a sulfide starch having the composition shown in Table 1, 33 g of copper powder, and 9 g of copper sulfate pentahydrate were added to 300 ml of pure water to form a slurry.

次に、スラリーを80℃で加熱し、空気を吹き込みながら5時間撹拌混合を行った。撹拌混合中のpHは3.5〜4.0の間で安定していた。得られた浸出液中の砒素は3mg/lであった。pH領域から砒素は塩基性砒酸銅として沈殿していると判断した。   Next, the slurry was heated at 80 ° C., and stirred and mixed for 5 hours while blowing air. The pH during stirring and mixing was stable between 3.5 and 4.0. Arsenic in the obtained leachate was 3 mg / l. From the pH range, it was judged that arsenic was precipitated as basic copper arsenate.

次に、得られた残渣からの砒素の再浸出を行った。まず、再浸出では、乾燥重量で20gの残渣に300mlの水を添加し、撹拌混合してスラリーを作製した。   Next, re-leaching of arsenic from the obtained residue was performed. First, in re-leaching, 300 ml of water was added to 20 g of residue by dry weight, and the mixture was stirred and mixed to prepare a slurry.

次の工程では、スラリーを80℃に加熱した後、水酸化ナトリウム水溶液(濃度8mol/l:和光純薬工業製:容量分析用)を9ml添加した。添加後、1時間、温度を80℃に保持して混合撹拌した。再浸出液中のpHは10.3であり、砒素濃度は1.1g/l、硫黄濃度は3.7g/l、銅の濃度は0.03g/lであった。濃度はICP発光分析を用いて行った。   In the next step, the slurry was heated to 80 ° C., and then 9 ml of an aqueous sodium hydroxide solution (concentration 8 mol / l: manufactured by Wako Pure Chemical Industries, Ltd .: for volumetric analysis) was added. After the addition, the mixture was stirred for 1 hour while maintaining the temperature at 80 ° C. The pH in the leaching solution was 10.3, the arsenic concentration was 1.1 g / l, the sulfur concentration was 3.7 g / l, and the copper concentration was 0.03 g / l. Concentration was performed using ICP emission spectrometry.

次に、再浸出液に濃度64重量%の硫酸水溶液58mlを添加してpH0〜1の間に調整したところ、硫黄の沈殿と二酸化硫黄の発生が確認された。再浸出液中の砒素の価数は、分析した結果、5価の砒素の存在割合、即ち浸出率は1%だった。価数の分析は、ジエチルジチオカルバミンジエチルアンモニウムを用いた溶媒抽出法とICP質量分析を用いた。   Next, 58 ml of sulfuric acid aqueous solution having a concentration of 64% by weight was added to the re-leaching solution to adjust the pH between 0 and 1, and sulfur precipitation and generation of sulfur dioxide were confirmed. As a result of analysis of the valence of arsenic in the re-leaching solution, the presence ratio of pentavalent arsenic, that is, the leaching rate was 1%. For the analysis of the valence, a solvent extraction method using diethyldithiocarbamine diethylammonium and ICP mass spectrometry were used.

比較例では、アルカリ性条件下で砒素の再浸出を行っているため、銅の浸出は抑えられたが、硫黄及び二酸化硫黄が発生し、5価の砒素は殆ど浸出されなかった。したがって、比較例の方法では、5価の砒素を塩基性砒酸銅を含む硫化澱物から再浸出させることができないことがわかる。   In the comparative example, since the leaching of arsenic was performed under alkaline conditions, the leaching of copper was suppressed, but sulfur and sulfur dioxide were generated, and pentavalent arsenic was hardly leached. Therefore, it can be seen that the method of the comparative example cannot re-extract pentavalent arsenic from the sulfided starch containing basic copper arsenate.

Figure 2015063434
Figure 2015063434

Claims (2)

塩基性砒酸銅を含有する硫化澱物を含むスラリーに炭酸ナトリウムを添加し、5価の砒素を該スラリー中に浸出して該硫化澱物から分離する砒素の浸出方法。   A method for leaching arsenic in which sodium carbonate is added to a slurry containing a sulfide sulfide containing basic copper arsenate, and pentavalent arsenic is leached into the slurry and separated from the sulfide starch. 上記硫化澱物は、自溶炉を用いた銅製錬プロセスに含まれる硫酸製造工程で発生した硫化澱物である請求項1記載の砒素の浸出方法。   The arsenic leaching method according to claim 1, wherein the sulfided starch is a sulfided starch generated in a sulfuric acid production process included in a copper smelting process using a flash smelting furnace.
JP2013199482A 2013-09-26 2013-09-26 Arsenic leaching method Active JP6102657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013199482A JP6102657B2 (en) 2013-09-26 2013-09-26 Arsenic leaching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013199482A JP6102657B2 (en) 2013-09-26 2013-09-26 Arsenic leaching method

Publications (2)

Publication Number Publication Date
JP2015063434A true JP2015063434A (en) 2015-04-09
JP6102657B2 JP6102657B2 (en) 2017-03-29

Family

ID=52831676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199482A Active JP6102657B2 (en) 2013-09-26 2013-09-26 Arsenic leaching method

Country Status (1)

Country Link
JP (1) JP6102657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468282A (en) * 2019-09-20 2019-11-19 北方铜业股份有限公司 The alkali of arsenic-containing material soaks arsenic removing method
JP2020147449A (en) * 2019-03-11 2020-09-17 国立大学法人東北大学 Copper arsenate compound, copper arsenate compound for solar cell material, and producing method of copper arsenate compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614421A (en) * 1979-07-16 1981-02-12 Sumitomo Metal Mining Co Ltd Manufacture of composite copper-arsenic compound
US5126116A (en) * 1990-04-16 1992-06-30 Inco Limited Method for forming copper arsenate
JPH09315819A (en) * 1996-05-30 1997-12-09 Nikko Kinzoku Kk Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JP2009242222A (en) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating nonferrous smelting intermediate product containing arsenic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614421A (en) * 1979-07-16 1981-02-12 Sumitomo Metal Mining Co Ltd Manufacture of composite copper-arsenic compound
US4357261A (en) * 1979-07-16 1982-11-02 Sumitomo Metal Mining Company Limited Method for manufacture of a composite copper-arsenic compound mixture
US5126116A (en) * 1990-04-16 1992-06-30 Inco Limited Method for forming copper arsenate
JPH04238816A (en) * 1990-04-16 1992-08-26 Inco Ltd Preparation of copper arsenate
JPH09315819A (en) * 1996-05-30 1997-12-09 Nikko Kinzoku Kk Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JP2009242222A (en) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating nonferrous smelting intermediate product containing arsenic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147449A (en) * 2019-03-11 2020-09-17 国立大学法人東北大学 Copper arsenate compound, copper arsenate compound for solar cell material, and producing method of copper arsenate compound
JP7416372B2 (en) 2019-03-11 2024-01-17 国立大学法人東北大学 Copper arsenate compound, copper arsenate compound for solar cell materials, and method for producing copper arsenate compound
CN110468282A (en) * 2019-09-20 2019-11-19 北方铜业股份有限公司 The alkali of arsenic-containing material soaks arsenic removing method

Also Published As

Publication number Publication date
JP6102657B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6304530B2 (en) Tellurium separation and recovery method
JP6241661B2 (en) Arsenic separation and immobilization method
US8956583B2 (en) Method for separating rhenium and arsenic, and method for purification of rhenium
US8092764B2 (en) Method of processing non-ferrous smelting intermediate containing arsenic
JP4268196B2 (en) Method for producing scorodite
JP2009242224A (en) Method of treating nonferrous smelting intermediate product containing arsenic
CN104445101B (en) A kind of method extracting copper and tellurium from telluride copper ashes
JP6365838B2 (en) Cobalt nickel leaching method
CN102433439A (en) Method for recovering rhenium from arsenic filter cake
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP2010168237A (en) Method for treating arsenic
JP7016463B2 (en) How to collect tellurium
JP6102657B2 (en) Arsenic leaching method
JP5843069B2 (en) Tellurium separation and recovery method
JP3212875B2 (en) Arsenic recovery method
JP4529969B2 (en) Method for removing selenium from selenate-containing liquid
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP6102675B2 (en) Arsenic leaching method
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
JP6233177B2 (en) Method for producing rhenium sulfide
JP2013095985A (en) Method for recovering arsenic from nonferrous smelting smoke ash
JP5889603B2 (en) Arsenic leaching method from non-ferrous smelting ash
JP5091493B2 (en) Method for producing antimony oxide and method for producing metal antimony
JP6163392B2 (en) Germanium recovery method
JP2012001414A (en) Method for producing nickel/cobalt sulfate solution with low chlorine concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150