JP7416372B2 - Copper arsenate compound, copper arsenate compound for solar cell materials, and method for producing copper arsenate compound - Google Patents

Copper arsenate compound, copper arsenate compound for solar cell materials, and method for producing copper arsenate compound Download PDF

Info

Publication number
JP7416372B2
JP7416372B2 JP2019043850A JP2019043850A JP7416372B2 JP 7416372 B2 JP7416372 B2 JP 7416372B2 JP 2019043850 A JP2019043850 A JP 2019043850A JP 2019043850 A JP2019043850 A JP 2019043850A JP 7416372 B2 JP7416372 B2 JP 7416372B2
Authority
JP
Japan
Prior art keywords
copper
compound
arsenate
aso
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019043850A
Other languages
Japanese (ja)
Other versions
JP2020147449A (en
Inventor
孝久 小俣
一誓 鈴木
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2019043850A priority Critical patent/JP7416372B2/en
Publication of JP2020147449A publication Critical patent/JP2020147449A/en
Application granted granted Critical
Publication of JP7416372B2 publication Critical patent/JP7416372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、ヒ酸銅化合物、太陽電池材料用ヒ酸銅化合物、およびヒ酸銅化合物の製造方法に関する。 The present invention relates to a copper arsenate compound, a copper arsenate compound for use in solar cell materials, and a method for producing a copper arsenate compound.

銅、亜鉛、鉛、ニッケル、コバルトなどの硫化鉱の製錬においては、毒性が高く、環境負荷が高い複数の元素が副産物として分離回収される。その中でもヒ素については従来は農薬、ガラスの脱色剤、顔料、防腐剤など産出量に見合う大きな用途、市場があったが、近年ではその強い毒性により、いずれの市場も縮小しており、ヒ酸鉄やヒ酸カルシウムなどの不溶性化合物として保管するか、ガラス質のスラグ中に安定化させ、埋設またはコンクリートの骨材などに利用されるか、最終処分されている状況である。 In the smelting of sulfide ores such as copper, zinc, lead, nickel, and cobalt, multiple elements that are highly toxic and have a high environmental impact are separated and recovered as by-products. Among them, arsenic used to have large uses and markets commensurate with its production volume, such as pesticides, glass decolorizers, pigments, and preservatives, but in recent years, all markets have shrunk due to its strong toxicity. It is either stored as an insoluble compound such as iron or calcium arsenate, stabilized in glassy slag, buried, used as aggregate for concrete, or finally disposed of.

しかしながら、いずれの方法においても処理に多くの費用を必要とし、また、保管、埋設においては場所の制限があることから恒久的な対策とは言えなかった。 However, either method requires a large amount of processing costs and is not a permanent solution because of space restrictions for storage and burial.

前記課題を解決するため、製錬副産物であるヒ素を含有する新規な機能性材料の開発が求められており、ヒ素を含有する材料についてこれまでも検討がなされていた。 In order to solve the above problems, there is a need to develop a new functional material containing arsenic, which is a smelting byproduct, and studies have been made on materials containing arsenic.

例えば、非特許文献1では、複数の化合物について単接合太陽電池の理論限界変換効率について示されている。この中でヒ素を含有するCuAsS(Enargite)は、太陽電池材料として広く知られているSi、CdTe、CuInSe、GaAsと比較しても同等の変換効率を示し、太陽電池材料として有望であることを示している。太陽電池は半導体材料の中でも市場規模が大きく、ヒ素の工業的な応用分野として有望な用途である。 For example, Non-Patent Document 1 shows the theoretical limit conversion efficiency of a single junction solar cell for a plurality of compounds. Among these, Cu 3 AsS 4 (Enargite), which contains arsenic, shows the same conversion efficiency as Si, CdTe, CuInSe 2 and GaAs, which are widely known as solar cell materials, and is promising as a solar cell material. It shows that. Solar cells have a large market size among semiconductor materials, and are a promising industrial application field for arsenic.

非特許文献2では、Enargiteの類似化合物であるCuSbS (Chalcostibite)、AgSbS (Stephanite)、PbCuSbS (Bournonite)、PbFeSb14 (Jamesonite)、PbAs15 (Gratonite)が、非特許文献3では、同様に、Enargiteの類似化合物であるCuSbSe-CuSbSが開示されており、それぞれの直接遷移から判断し、太陽電池用の半導体として利用可能であることが示されている。 Non-patent Document 2 describes similar compounds of Enargite, such as CuSbS 2 (Chalcostibite), Ag 5 SbS 4 (Stephanite), PbCuSbS 3 (Bournonite), Pb 4 FeSb 6 S 14 (Jamesonite), and Pb 9 A. s 4 S 15 (Gratonite ), but Non-Patent Document 3 similarly discloses Cu 3 SbSe 4 -Cu 3 SbS 4 , which is a similar compound to Enargite, and judging from the direct transition of each, it can be used as a semiconductor for solar cells. It has been shown that there is.

Adv.Mter.Optics Electronics, Vol.5, Issue 6, p.289 (1995)Adv.Mter.Optics Electronics, Vol.5, Issue 6, p.289 (1995) Conference Record of the IEEE Photovoltaic Specialists Conference, p.2774 (2016)Conference Record of the IEEE Photovoltaic Specialists Conference, p.2774 (2016) Appl. Phys. Lett. Vol.98, Issue 26, p.261911 (2011)Appl. Phys. Lett. Vol.98, Issue 26, p.261911 (2011)

しかしながら、上記非特許文献1~3に開示された材料は、いずれも硫化物、セレン化物あるいはその複塩であり、安定性が低かった。このため、例えば太陽電池材料として用い、該太陽電池を長期間自然環境下で使用して経年劣化した場合や、外力による破壊を受けた場合、また該太陽電池をリサイクル工程に供した場合等に、分解し、長期間に渡って使用できなかったり、リサイクル等において取り扱い上の留意が必要であった。 However, the materials disclosed in Non-Patent Documents 1 to 3 are all sulfides, selenides, or double salts thereof, and have low stability. For this reason, for example, when used as a solar cell material and the solar cell deteriorates over time after being used in a natural environment for a long period of time, when it is damaged by external force, or when the solar cell is subjected to a recycling process, etc. , they disassembled and could not be used for a long period of time, and care had to be taken when handling them for recycling.

そして、長期間に渡って継続して使用できるように、安定な材料であることが求められるため、化学的に安定なヒ素含有化合物が求められていた。 Since a stable material is required so that it can be used continuously over a long period of time, a chemically stable arsenic-containing compound has been sought.

上記従来技術の問題に鑑み、本発明の一側面では、化学的に安定なヒ素含有化合物を提供することを目的とする。 In view of the above problems of the prior art, one aspect of the present invention aims to provide a chemically stable arsenic-containing compound.

上記課題を解決するため本発明の一側面では、
化学式:CuAsOで表されるヒ酸銅化合物を提供する。
In one aspect of the present invention to solve the above problems,
A copper arsenate compound having the chemical formula: Cu 3 AsO 4 is provided.

本発明の一側面によれば、化学的に安定なヒ素含有化合物を提供することができる。 According to one aspect of the present invention, a chemically stable arsenic-containing compound can be provided.

CuAsSのバンド図、状態密度を表す図である。FIG. 2 is a diagram showing a band diagram and density of states of Cu 3 AsS 4 . CuAsOのバンド図、状態密度を表す図である。It is a band diagram of Cu3AsO4 , and a diagram showing the density of states. CuAsO、CuAsSの光吸収スペクトルを表す図である。It is a figure showing the optical absorption spectrum of Cu3AsO4 and Cu3AsS4 .

本開示の一実施形態(以下「本実施形態」と記す)に係るヒ酸銅化合物について、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
[ヒ酸銅化合物]
以下、本実施形態のヒ酸銅化合物の一構成例について説明する。
A copper arsenate compound according to an embodiment of the present disclosure (hereinafter referred to as "this embodiment") will be described below with reference to the drawings. Note that the present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.
[Copper arsenate compound]
An example of the structure of the copper arsenate compound of this embodiment will be described below.

本実施形態のヒ酸銅化合物は、化学式:CuAsOで表される。 The copper arsenate compound of this embodiment is represented by the chemical formula: Cu 3 AsO 4 .

本実施形態のヒ酸銅化合物は、上述のように化学式:CuAsOで表すことができる。本実施形態のヒ酸銅化合物は、係る化学式から明らかなように、成分として、硫化物イオン、セレン化物イオン、テルル化物イオン、ヒ化物イオン(As3-)等の酸化による分解、溶出のリスクがある成分を含有していない。すなわち、耐酸化性が高く、仮に酸化されたとしても成分の一部が分解、溶出等しない安定な物質である。このため、ヒ素を含有する化合物でありながら、化学的に安定な化合物であり、例えば屋外で長期間使用する太陽電池材料として適した化学的特性を有する。 The copper arsenate compound of this embodiment can be represented by the chemical formula: Cu 3 AsO 4 as described above. As is clear from the chemical formula, the copper arsenate compound of this embodiment has components such as sulfide ions, selenide ions, telluride ions, arsenide ions (As 3- ), etc., which have a risk of decomposition and elution due to oxidation. Does not contain certain ingredients. That is, it is a stable substance that has high oxidation resistance, and even if it is oxidized, some of its components will not be decomposed or eluted. Therefore, although it is a compound containing arsenic, it is a chemically stable compound and has chemical properties suitable as, for example, a solar cell material that can be used outdoors for a long period of time.

上述のように、本実施形態のヒ酸銅化合物は、太陽電池材料の用途に用いた場合に特に高い性能を発揮し、化学式:CuAsOで表される太陽電池材料用ヒ酸銅化合物とすることができる。すなわち、太陽電池材料用のヒ酸銅化合物として好適に用いることができる。 As described above, the copper arsenate compound of the present embodiment exhibits particularly high performance when used as a solar cell material, and is a copper arsenate compound for solar cell materials represented by the chemical formula: Cu 3 AsO 4 It can be done. That is, it can be suitably used as a copper arsenate compound for solar cell materials.

本実施形態の上記ヒ酸銅化合物の結晶構造は特に限定されないが、例えばEnargite型構造を有することができる。 The crystal structure of the copper arsenate compound of the present embodiment is not particularly limited, but may have, for example, an Enargite structure.

ここで、太陽電池材料として重要なバンド構造を評価するため、第一原理計算により既存のCuAsSと、本実施形態のヒ酸銅化合物であるCuAsOそれぞれについてバンド図を作成し、比較評価を行った。 Here, in order to evaluate the band structure, which is important as a solar cell material, band diagrams were created for each of the existing Cu 3 AsS 4 and Cu 3 AsO 4 , which is the copper arsenate compound of this embodiment, by first-principles calculation. , a comparative evaluation was conducted.

図1(A)~図1(C)に、CuAsSのバンド図、状態密度を表す図を示す。図1(A)がバンド構造を示しており、図1(B)は全状態密度、および各原子の部分状態密度を、図1(C)はCu、As、Sの軌道の部分状態密度をそれぞれ示している。 FIGS. 1(A) to 1(C) show band diagrams and state density diagrams of Cu 3 AsS 4 . Figure 1 (A) shows the band structure, Figure 1 (B) shows the total state density and the partial state density of each atom, and Figure 1 (C) shows the partial state density of the orbits of Cu, As, and S. are shown respectively.

また、図2(A)~図2(C)に、CuAsOのバンド図、状態密度を表す図を示す。図2(A)がバンド構造を示しており、図2(B)は全状態密度、および各原子の部分状態密度を、図2(C)はCu、As、Oの軌道の部分状態密度をそれぞれ示している。なお、CuAsSおよびCuAsOは、Enargite型構造として計算を行っている。 Further, FIGS. 2(A) to 2(C) show band diagrams and diagrams representing the density of states of Cu 3 AsO 4 . Figure 2 (A) shows the band structure, Figure 2 (B) shows the total state density and the partial state density of each atom, and Figure 2 (C) shows the partial state density of the orbits of Cu, As, and O. are shown respectively. Note that calculations are performed assuming that Cu 3 AsS 4 and Cu 3 AsO 4 have an Enargite structure.

バンド構造評価の結果、CuAsOの伝導帯の底部のバンドは、主にCu 4s軌道からなり、そのエネルギーは0eV以上3eV以下の範囲にあり分散が大きく、電子の有効質量(m*/m)は0.50と小さい。このような特徴は、酸化亜鉛(ZnO;m*/m=0.2)や、酸化錫(SnO;m*/m=0.3)などのd10電子配置のp-block元素の陽イオンからなる酸化物半導体と同様であり、CuAsOはn型半導体として有望な化合物であることが分かる。 As a result of band structure evaluation, the bottom band of the conduction band of Cu 3 AsO 4 mainly consists of Cu 4s orbital, its energy is in the range of 0 eV to 3 eV, the dispersion is large, and the effective mass of electrons (m e * /m 0 ) is as small as 0.50. Such characteristics are due to the d 10 s 0 electron configuration of zinc oxide (ZnO; m e */m 0 =0.2) and tin oxide (SnO 2 ; m e */m 0 =0.3). This is similar to an oxide semiconductor composed of cations of p-block elements, and it can be seen that Cu 3 AsO 4 is a promising compound as an n-type semiconductor.

既存半導体であるCuAsSの伝導帯底部のバンドは、主にS 3p軌道からなり、Cu 4s軌道や、As 4s軌道の寄与はほとんどなく、エネルギーは0eV以上1eV以下の狭い範囲にあり分散は小さい。この特徴は、ZnOやSnOのそれとは全く異なり、n型伝導性のCuAsSが報告されていない事実をよく裏付けている。 The bottom conduction band of Cu 3 AsS 4 , an existing semiconductor, mainly consists of the S 3p orbital, with almost no contribution from the Cu 4s orbital or the As 4s orbital, and the energy is in a narrow range of 0 eV to 1 eV and is dispersed. is small. This characteristic is completely different from that of ZnO and SnO 2 and well supports the fact that Cu 3 AsS 4 with n-type conductivity has not been reported.

一方、CuAsOの価電子帯の上部は主にCu 3d軌道からなり、分散はそれほど大きくなく、正孔の有効質量(m*/m)は2.5であった。これは、同様に価電子帯上部がCu 3d軌道から成る1価のCuを含むCuO(m*/m=0.69)と比較するとCuAsOの正孔の有効質量は小さくないが、p型伝導性を呈するα-CuGaO(m*/m=0.4~1.4)や、β-CuGaO(m*/m=1.7~5.1)、CuAsS(m*/m=1.1)と同程度であることを確認できた。このことから、価電子帯に正孔を注入した場合に伝導性を発現する可能性が高いことを確認できた。 On the other hand, the upper part of the valence band of Cu 3 AsO 4 mainly consisted of Cu 3d orbitals, the dispersion was not so large, and the effective mass of holes (m h */m 0 ) was 2.5. This means that when compared with Cu 2 O (m h */m 0 =0.69), which similarly contains monovalent Cu whose upper valence band consists of Cu 3d orbitals, the effective mass of holes in Cu 3 AsO 4 is Although not small, α-CuGaO 2 (m h */m 0 =0.4 to 1.4), which exhibits p-type conductivity, and β-CuGaO 4 (m h */m 0 =1.7 to 5. 1) and Cu 3 AsS 4 (m h */m 0 =1.1). From this, it was confirmed that there is a high possibility that conductivity will be developed when holes are injected into the valence band.

以上の第一原理計算の結果から、CuAsOがn型、p型双方の伝導性を発現できる物質であることがいえ、CuAsOのみからなるホモp-n接合を形成できる半導体材料であるといえる。すなわち、CuAsOが半導体材料として好適に用いられることを確認できた。 From the above first-principles calculation results, it can be said that Cu 3 AsO 4 is a material that can exhibit both n-type and p-type conductivity, and is a semiconductor that can form a homo pn junction consisting only of Cu 3 AsO 4 . It can be said that it is a material. That is, it was confirmed that Cu 3 AsO 4 is suitably used as a semiconductor material.

上記計算によって求められたCuAsOのEg(バンドギャップ)は0.125eVであるが、本計算で用いたGGA(Generalized Gradient Approximation)法を使用した計算では通常Egは小さく見積もられる。 The Eg (band gap) of Cu 3 AsO 4 determined by the above calculation is 0.125 eV, but Eg is usually estimated to be small in calculations using the GGA (Generalized Gradient Approximation) method used in this calculation.

計算によって求められたCuAsSのEgが0.162eVで、実験的に求められたCuAsSのEgが1.28eVであることに基づくと、実際のCuAsOのEgは1eV前後と推定される。 Based on the fact that the calculated Eg of Cu 3 AsS 4 is 0.162 eV and the experimentally determined Eg of Cu 3 AsS 4 is 1.28 eV, the actual Eg of Cu 3 AsO 4 is 1 eV. Estimated to be around.

CuAsOの価電子帯の頂上は逆格子空間のX点にあり、伝導帯の最下端はΓ点にあるので、CuAsOは間接遷移型の半導体である。一般には、間接遷移型半導体のバンドギャップのエネルギー近傍での光吸収はそれほど強くないが、CuAsOは価電子帯の状態密度が大きいこと,直接ギャップ(価電子帯Γ点-伝導帯Γ点)と間接ギャップ(価電子帯X点-伝導帯Γ点)の差が約300meVと小さいことから、バンドギャップ近傍での光吸収は、直接遷移型半導体と同程度に強いと思われる。 The top of the valence band of Cu 3 AsO 4 is located at the X point in the reciprocal lattice space, and the bottom of the conduction band is located at the Γ point, so Cu 3 AsO 4 is an indirect transition type semiconductor. In general, light absorption near the energy of the band gap of indirect transition semiconductors is not so strong, but Cu 3 AsO 4 has a large density of states in the valence band and a direct gap (valence band Γ point - conduction band Γ point). Since the difference between the band gap (point) and the indirect gap (valance band point

図3はCuAsO、CuAsSの光吸収スペクトルを計算上で比較した結果である。CuAsOのバンド端付近の吸収の立ち上がりは、間接遷移型半導体であるSi(図中のx-Si)よりも急峻であり、吸収係数はCdTeやGaAsなど既存の薄膜太陽電池材料である直接遷移型半導体のそれと同程度に大きいことが確認できる。このことから、化学式:CuAsOで表されるヒ酸銅化合物を用いた半導体は、薄膜太陽電池の光吸収層として、すなわち太陽電池材料として好適に使用できることを確認できた。
[ヒ酸銅化合物の製造方法]
次に本実施形態のヒ酸銅化合物の製造方法について説明する。なお、本実施形態のヒ酸銅化合物の製造方法により、既述のヒ酸銅化合物を製造することができるため、既に説明した事項の一部は説明を省略する。
FIG. 3 shows the results of a calculated comparison of the optical absorption spectra of Cu 3 AsO 4 and Cu 3 AsS 4 . The absorption rise near the band edge of Cu 3 AsO 4 is steeper than that of Si (x-Si in the figure), which is an indirect transition type semiconductor, and the absorption coefficient is higher than that of existing thin-film solar cell materials such as CdTe and GaAs. It can be confirmed that it is as large as that of a direct transition type semiconductor. From this, it was confirmed that a semiconductor using a copper arsenate compound represented by the chemical formula: Cu 3 AsO 4 can be suitably used as a light absorption layer of a thin film solar cell, that is, as a solar cell material.
[Method for producing copper arsenate compound]
Next, a method for producing a copper arsenate compound according to the present embodiment will be explained. Note that since the copper arsenate compound described above can be produced by the method for producing a copper arsenate compound of this embodiment, some of the matters already explained will be omitted.

本実施形態のヒ酸銅化合物の製造方法は、化学式:CuAsOで表されるヒ酸銅化合物の製造方法に関し、以下の工程を有することができる。
銅(I)化合物を含む水溶液とヒ酸イオンを含む水溶液とを混合し、混合溶液を調製する混合工程。
混合溶液内に生成した沈殿物を分離、回収する回収工程。
The method for producing a copper arsenate compound of the present embodiment relates to a method for producing a copper arsenate compound represented by the chemical formula: Cu 3 AsO 4 and can include the following steps.
A mixing step of preparing a mixed solution by mixing an aqueous solution containing a copper (I) compound and an aqueous solution containing arsenate ions.
A recovery process that separates and collects the precipitate generated in the mixed solution.

既述のヒ酸銅化合物は、化学的に安定な化合物であることから半導体用途等の各種用途に使用できることが期待され、特に太陽電池用の化合物半導体として好適な特性を示すことから、本発明の発明者らは、その製造方法について検討を行った。 Since the copper arsenate compound described above is a chemically stable compound, it is expected that it can be used for various applications such as semiconductor applications, and the present invention particularly shows suitable characteristics as a compound semiconductor for solar cells. The inventors of 2003 and 2007 investigated the manufacturing method.

銅のヒ酸塩としてはCu(II)化合物であるCu(AsOが広く知られている。この化合物の構成成分であるCu2+、AsO 3-のいずれもCu、Asの最高価数のイオンであり、相互で酸化還元反応が進行することはないため、CuOおよびAsの高温直接反応であっても、Cu2+、AsO 3-を含む化合物の水溶液から合成しても容易かつ定量的に反応を進行させることが可能である。 As a copper arsenate, Cu 3 (AsO 4 ) 2, which is a Cu(II) compound, is widely known. Both Cu 2+ and AsO 4 3- , which are the constituent components of this compound, are the highest valence ions of Cu and As, and redox reactions do not proceed with each other, so the high temperature of CuO and As 2 O 5 Whether it is a direct reaction or synthesis from an aqueous solution of a compound containing Cu 2+ and AsO 4 3- , the reaction can proceed easily and quantitatively.

しかしながら、化学式:CuAsOで表されるヒ酸銅化合物では、還元型のCuと酸化型のAsO 3-とからなる化合物であるため、CuOおよびAsを混合して加熱すると相互で酸化還元反応が進行し、CuOとAsが生成するため、目的物質を合成することが困難である。 However, the copper arsenate compound represented by the chemical formula: Cu 3 AsO 4 is a compound consisting of reduced Cu + and oxidized AsO 4 3- , so Cu 2 O and As 2 O 5 are mixed together. When heated, a mutual redox reaction proceeds and CuO and As 2 O 3 are produced, making it difficult to synthesize the target substance.

そこで、本発明の発明者らは鋭意検討を行ったところ、上述のように、銅(I)化合物を含む水溶液とヒ酸イオンを含む水溶液とを混合し、湿式合成することで、化学式:CuAsOで表されるヒ酸銅化合物が得られることを見出し、本発明を完成させた。 Therefore, the inventors of the present invention conducted extensive studies and found that by mixing an aqueous solution containing a copper (I) compound and an aqueous solution containing arsenate ions and carrying out wet synthesis, the chemical formula: Cu It was discovered that a copper arsenate compound represented by 3 AsO 4 could be obtained, and the present invention was completed.

以下、本実施形態のヒ酸銅化合物の製造方法の各工程について説明する。
(混合工程)
混合工程では、銅(I)化合物を含む水溶液と、ヒ酸イオンを含む水溶液とを混合することで混合溶液とし、銅イオンと、ヒ酸イオンとを反応させ、ヒ酸銅化合物の沈殿物を得ることができる。
Each step of the method for producing a copper arsenate compound of this embodiment will be described below.
(Mixing process)
In the mixing step, a mixed solution is prepared by mixing an aqueous solution containing a copper (I) compound and an aqueous solution containing arsenate ions, and the copper ions and arsenate ions are reacted to form a precipitate of the copper arsenate compound. Obtainable.

このように、混合工程において、銅(I)化合物と、ヒ酸イオンとを反応させることで、原料として使用する銅(I)化合物の銅の酸化や、ヒ酸の還元を抑制し、目的物質であるヒ酸銅化合物をより確実に得ることが可能になる。 In this way, in the mixing process, by reacting the copper (I) compound with arsenate ions, the oxidation of copper in the copper (I) compound used as a raw material and the reduction of arsenate are suppressed, and the target substance is suppressed. It becomes possible to more reliably obtain a copper arsenate compound that is

混合工程に供する銅(I)化合物を含む水溶液は、目的とするヒ酸銅化合物における銅の価数と同じ、すなわち1価の銅の化合物である銅(I)化合物を含有することが好ましい。該銅(I)化合物を含む水溶液として、例えばハロゲン化銅(I)と、錯形成剤とを含む水溶液を用いることが好ましい。 The aqueous solution containing the copper (I) compound to be subjected to the mixing step preferably contains a copper (I) compound having the same valence as the copper in the target copper arsenate compound, that is, a monovalent copper compound. As the aqueous solution containing the copper (I) compound, it is preferable to use, for example, an aqueous solution containing copper (I) halide and a complex forming agent.

これは、通常ハロゲン化銅(I)は化学的に安定ではあるが、水には溶解しにくいことから、錯形成剤をあわせて添加することで、銅(I)化合物を含む水溶液を調製することができるからである。 Copper (I) halides are usually chemically stable, but are difficult to dissolve in water, so by adding a complexing agent, an aqueous solution containing the copper (I) compound is prepared. This is because it is possible.

ハロゲン化銅(I)としてはフッ化銅(I)、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)が挙げられるが、フッ化銅(I)は特に溶解度が低く、錯形成しにくい。このため、ハロゲン化銅(I)は、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)から選択された1種類以上であることがより好ましく、特に塩化銅(I)が入手しやすく、酸化還元反応も受けにくいため、ハロゲン化銅(I)は、塩化銅(I)であることがさらに好ましい。 Copper(I) halides include copper(I) fluoride, copper(I) chloride, copper(I) bromide, and copper(I) iodide, but copper(I) fluoride has particularly low solubility. , difficult to form complexes. Therefore, the copper(I) halide is more preferably one or more selected from copper(I) chloride, copper(I) bromide, and copper(I) iodide, and especially copper(I) chloride. The copper(I) halide is more preferably copper(I) chloride because it is easily available and is less susceptible to redox reactions.

また、錯形成剤としては、ハロゲン化銅(I)と錯形成反応を起こし、ハロゲン化銅(I)の溶解度を上昇可能な化合物を好適に用いることができる。このような錯形成剤として、例えばハロゲン化アルカリ、アンモニア水、シアン化物、水溶性アミン類、EDTAやカルボン酸を始めとする有機錯形成剤等を挙げることができる。ただし、錯体が過度に安定である場合は、ヒ酸イオンとの反応性が低くなる恐れがあるため、ハロゲン化銅の溶解度の上昇は可能だが、錯安定度定数が低い錯体を形成させる錯形成剤を用いることが好ましい。また、ヒ酸イオンと反応して沈殿物を形成しない錯形成剤であることが好ましい。 Further, as the complex forming agent, a compound capable of causing a complex forming reaction with copper (I) halide and increasing the solubility of copper (I) halide can be suitably used. Examples of such complexing agents include alkali halides, aqueous ammonia, cyanides, water-soluble amines, and organic complexing agents such as EDTA and carboxylic acids. However, if the complex is too stable, the reactivity with arsenate ions may be reduced, so although it is possible to increase the solubility of copper halides, the formation of complexes that lead to the formation of complexes with low complex stability constants is possible. It is preferable to use an agent. Further, it is preferable that the complex forming agent does not react with arsenate ions to form a precipitate.

係る観点から、錯形成剤としては、ハロゲン化アルカリを好ましく用いることができる。ハロゲン化アルカリの中でも入手の容易さを重視すると塩化リチウム、塩化ナトリウム、塩化カリウム、塩化アンモニウム等から選択された1種類以上をより好ましく用いることができ、塩化ナトリウムをさらに好ましく用いることができる。 From this point of view, an alkali halide can be preferably used as the complex forming agent. Among the alkali halides, when ease of availability is emphasized, one or more selected from lithium chloride, sodium chloride, potassium chloride, ammonium chloride, etc. can be more preferably used, and sodium chloride can be even more preferably used.

上述のように銅(I)化合物を含む水溶液を、ハロゲン化銅(I)と、錯形成剤とを含む水溶液として調製する場合、ハロゲン化銅(I)と十分に錯形成反応を進行させ、溶解させるため、錯形成剤の添加量、濃度を調整することが好ましい。この場合、十分に錯形成反応を進行させる観点から、錯形成剤の濃度は、1mol/L以上であることが好ましく、3mol/L以上であることがより好ましい。錯形成剤の濃度の上限は特に限定されないが、錯形成剤としてハロゲン化アルカリを用いる場合、その溶解度の観点から、例えば10mol/L以下とすることができる。 When preparing an aqueous solution containing a copper (I) compound as described above as an aqueous solution containing copper (I) halide and a complex forming agent, the complex formation reaction with copper (I) halide is sufficiently advanced; In order to dissolve the complex-forming agent, it is preferable to adjust the amount and concentration of the complex-forming agent added. In this case, the concentration of the complex forming agent is preferably 1 mol/L or more, and more preferably 3 mol/L or more, from the viewpoint of allowing the complex formation reaction to proceed sufficiently. The upper limit of the concentration of the complex-forming agent is not particularly limited, but when an alkali halide is used as the complex-forming agent, it can be set to, for example, 10 mol/L or less from the viewpoint of its solubility.

混合工程に供するヒ酸イオンを含む水溶液としては、Hを含まない塩であるヒ酸塩の正塩を含む水溶液であることが好ましい。ヒ酸塩の正塩を用いることでヒ酸水素塩などの副生物の発生を抑制し、定量的にヒ酸銅(I)化合物を生成することが可能になる。ヒ酸塩の正塩としては、水への溶解性を考慮すると、アルカリの正塩であることがより好ましい。ヒ酸塩のアルカリの正塩としては、例えばヒ酸ナトリウム、ヒ酸カリウム、ヒ酸リチウム、ヒ酸ルビジウム、ヒ酸セシウム等から選択された1種類以上を好ましく用いることができる。特に水への溶解度の高さや、入手の容易さの観点から、ヒ酸塩のアルカリの正塩としては、ヒ酸ナトリウム、ヒ酸カリウムから選択された1種類以上をより好ましく用いることができ、特に溶解度の高さからヒ酸カリウムをさらに好ましく用いることができる。 The aqueous solution containing arsenate ions to be subjected to the mixing step is preferably an aqueous solution containing a normal salt of arsenate, which is a salt that does not contain H + . By using a normal arsenate salt, it is possible to suppress the generation of by-products such as hydrogen arsenate and quantitatively produce a copper(I) arsenate compound. As the normal salt of arsenate, an alkali normal salt is more preferable in consideration of solubility in water. As the alkaline normal salt of arsenate, for example, one or more selected from sodium arsenate, potassium arsenate, lithium arsenate, rubidium arsenate, cesium arsenate, etc. can be preferably used. In particular, from the viewpoint of high solubility in water and easy availability, one or more types selected from sodium arsenate and potassium arsenate can be more preferably used as the alkali normal salt of arsenate. Particularly, potassium arsenate can be more preferably used because of its high solubility.

混合工程に供する銅化合物を含む水溶液と、ヒ酸イオンを含む水溶液との、それぞれの濃度は特に限定されない。ただし、高濃度で高速に混合するほど生成物は微細化し、低濃度で徐々にまたは連続的に混合した場合は粗大化させることが可能である。このため、生成物に求められる粒度等に応じて選択することができる。
(回収工程)
回収工程では、混合溶液内に生成した沈殿物であるヒ酸銅化合物を分離、回収することができる。
The respective concentrations of the aqueous solution containing the copper compound and the aqueous solution containing arsenate ions to be subjected to the mixing step are not particularly limited. However, the higher the concentration and the faster the mixing, the finer the product becomes, and the lower the concentration and the gradual or continuous mixing, the coarser the product becomes. Therefore, it can be selected depending on the particle size required for the product.
(Collection process)
In the recovery step, the copper arsenate compound, which is a precipitate generated in the mixed solution, can be separated and recovered.

混合溶液内からヒ酸銅化合物を分離する方法は特に限定されず、例えば吸引濾過機や、フィルタープレス等の各種固液分離手段を用いて分離することができる。また、必要に応じて、回収した沈殿物を純水で洗浄することもできる。 The method for separating the copper arsenate compound from the mixed solution is not particularly limited, and can be separated using various solid-liquid separation means such as a suction filter or a filter press. Moreover, the collected precipitate can also be washed with pure water, if necessary.

回収工程で回収した沈殿物は、水分を含んでいることから、本実施形態のヒ酸銅化合物の製造方法は、必要に応じて回収した沈殿物を乾燥し、含水率を低減する乾燥工程をさらに有することもできる。 Since the precipitate recovered in the recovery step contains water, the method for producing a copper arsenate compound of this embodiment includes a drying step of drying the recovered precipitate to reduce the moisture content as necessary. It is also possible to have more.

以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
(混合工程)
錯形成剤としてハロゲン化アルカリである塩化ナトリウム400gに水を加えて1000mLとした水溶液(Cl:6.8mol/L)中に、ハロゲン化銅(I)である塩化銅(I)50g(0.5mol)を添加し、1時間撹拌、混合して溶解した。残渣は濾過除去して銅(I)化合物を含む水溶液を調製した。
The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.
[Example 1]
(Mixing process)
In an aqueous solution (Cl: 6.8 mol/L) made by adding water to 400 g of sodium chloride, which is an alkali halide, as a complex forming agent, 50 g (0.0 g) of copper (I) chloride, which is a copper (I) halide, is added. 5 mol) was added thereto, and stirred and mixed for 1 hour to dissolve. The residue was removed by filtration to prepare an aqueous solution containing a copper(I) compound.

次いで、アルカリの正塩であるヒ酸カリウム・12水和物80g(0.17mol)に水を加えて500mLとし、ヒ酸イオンを含む水溶液を別途調製した。 Next, water was added to 80 g (0.17 mol) of potassium arsenate dodecahydrate, which is a normal salt of an alkali, to make 500 mL, and an aqueous solution containing arsenate ions was separately prepared.

そして、上記銅(I)化合物を含む水溶液に、上記ヒ酸イオンを含む水溶液を10分間かけて徐々に滴下し、1時間撹拌し、混合溶液を調製した。
(回収工程)
混合溶液内に生成した沈殿物を濾過することで分離、回収した。
(洗浄工程、乾燥工程)
回収した沈殿物は300mLの脱イオン水で2回吸引洗浄後、真空デシケーター中で乾燥し、乾燥物として53.4gの白色沈澱を回収した。
Then, the aqueous solution containing arsenate ions was gradually added dropwise to the aqueous solution containing the copper(I) compound over 10 minutes, and stirred for 1 hour to prepare a mixed solution.
(Collection process)
The precipitate formed in the mixed solution was separated and collected by filtration.
(Washing process, drying process)
The collected precipitate was suction-washed twice with 300 mL of deionized water, and then dried in a vacuum desiccator, and 53.4 g of white precipitate was collected as a dry product.

なお、試薬としては、いずれも富士フイルム和光純薬工業株式会社製の試薬特級を使用した。 The reagents used were all special grade reagents manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.

回収後、洗浄、乾燥した沈殿物をエックス線解析装置(株式会社リガク製 型式:RINT2500)で分析した結果、ほぼ純粋なEnargite型構造のCuAsOであることを確認した。 After collection, the washed and dried precipitate was analyzed using an X-ray analyzer (model: RINT2500, manufactured by Rigaku Co., Ltd.), and as a result, it was confirmed that the precipitate was almost pure Cu 3 AsO 4 having an Enargite structure.

得られた沈殿物を大気中に数日間放置したが、XRDパターンに変化はなく、安定な材料であることが確認できた。 Although the obtained precipitate was left in the air for several days, there was no change in the XRD pattern, confirming that it was a stable material.

また、上記沈殿物の粉末の拡散反射スペクトルを分光光度計(株式会社日立製作所製 型式:U4000)で分析した結果、Eg(バンドギャップ)は1.02eVという数値が得られた。 Moreover, as a result of analyzing the diffuse reflection spectrum of the powder of the above-mentioned precipitate with a spectrophotometer (model: U4000, manufactured by Hitachi, Ltd.), a value of Eg (band gap) of 1.02 eV was obtained.

さらに、沈殿物を100MPaの圧力で一軸加圧成形した圧粉体の熱起電力を測定した結果(自作装置)、ゼーベック係数は正で、沈殿粉末はp型伝導性を呈していた。これらの結果から、CuAsOが太陽電池用の化合物半導体として優れた特性を有することが確認された。
[比較例1]
酸化銅(I)21.5mg(CuO、0.15mmol、99.5%品、富士フイルム和光純薬工業(株)製)と、五酸化二ヒ素11.5mg(As、0.05mmol、99.9%品、Strem社製)とを窒素を充填したグローブボックス内で混合し、原料混合物を得た。
Furthermore, as a result of measuring the thermoelectromotive force of a green compact obtained by uniaxially pressing the precipitate at a pressure of 100 MPa (self-made device), the Seebeck coefficient was positive, and the precipitated powder exhibited p-type conductivity. These results confirmed that Cu 3 AsO 4 has excellent properties as a compound semiconductor for solar cells.
[Comparative example 1]
21.5 mg of copper (I) oxide (Cu 2 O, 0.15 mmol, 99.5% product, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 11.5 mg of diarsenic pentoxide (As 2 O 5 , 0 05 mmol, 99.9% product, manufactured by Strem Inc.) in a nitrogen-filled glove box to obtain a raw material mixture.

次いで、石英ガラス製チューブへ上記原料混合物を脱気封入したサンプルを3本製造し、それぞれ600℃、800℃、1000℃で6時間焼成した。 Next, three samples were prepared by enclosing the above raw material mixture in a quartz glass tube in a degassed manner, and each sample was fired at 600°C, 800°C, and 1000°C for 6 hours.

焼成後に得られた生成物をエックス線解析装置(株式会社リガク製 型式:RINT2500)で分析した結果、原料のCuOの他、Cu(AsO、Asのピークのみが認められ、Cu(I)とAs(V)との間で酸化還元反応が進行し、目的のCuAsOは生成しないことが確認された。 As a result of analyzing the product obtained after calcination with an X-ray analyzer (model: RINT2500, manufactured by Rigaku Co., Ltd.), in addition to the raw material Cu 2 O, only peaks of Cu 3 (AsO 4 ) 2 and As 2 O 3 were observed. It was confirmed that the redox reaction progressed between Cu(I) and As(V) and the target Cu 3 AsO 4 was not produced.

Claims (3)

化学式:CuAsOで表されるヒ酸銅化合物。 A copper arsenate compound represented by the chemical formula: Cu 3 AsO 4 . 化学式:CuAsOで表される太陽電池材料用ヒ酸銅化合物。 A copper arsenate compound for solar cell materials represented by the chemical formula: Cu 3 AsO 4 . 銅(I)化合物を含む水溶液とヒ酸イオンを含む水溶液とを混合し、混合溶液を調製する混合工程と、
前記混合溶液内に生成した沈殿物を分離、回収する回収工程と、
を有し、
前記銅(I)化合物を含む水溶液として、ハロゲン化銅(I)と、錯形成剤とを含む水溶液を、
前記ヒ酸イオンを含む水溶液として、アルカリの正塩を含む水溶液を用い、
前記ハロゲン化銅(I)が、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)から選択された1種類以上であり、
前記錯形成剤が、ハロゲン化アルカリであり、
前記アルカリの正塩がヒ酸カリウムである、化学式:CuAsOで表されるヒ酸銅化合物の製造方法。
a mixing step of preparing a mixed solution by mixing an aqueous solution containing a copper (I) compound and an aqueous solution containing arsenate ions;
a recovery step of separating and recovering the precipitate generated in the mixed solution;
has
As the aqueous solution containing the copper (I) compound, an aqueous solution containing copper (I) halide and a complex forming agent,
Using an aqueous solution containing a normal alkali salt as the arsenate ion-containing aqueous solution,
The copper (I) halide is one or more types selected from copper (I) chloride, copper (I) bromide, and copper (I) iodide,
the complex forming agent is an alkali halide,
A method for producing a copper arsenate compound represented by the chemical formula: Cu 3 AsO 4 , wherein the alkali normal salt is potassium arsenate.
JP2019043850A 2019-03-11 2019-03-11 Copper arsenate compound, copper arsenate compound for solar cell materials, and method for producing copper arsenate compound Active JP7416372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019043850A JP7416372B2 (en) 2019-03-11 2019-03-11 Copper arsenate compound, copper arsenate compound for solar cell materials, and method for producing copper arsenate compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019043850A JP7416372B2 (en) 2019-03-11 2019-03-11 Copper arsenate compound, copper arsenate compound for solar cell materials, and method for producing copper arsenate compound

Publications (2)

Publication Number Publication Date
JP2020147449A JP2020147449A (en) 2020-09-17
JP7416372B2 true JP7416372B2 (en) 2024-01-17

Family

ID=72430207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019043850A Active JP7416372B2 (en) 2019-03-11 2019-03-11 Copper arsenate compound, copper arsenate compound for solar cell materials, and method for producing copper arsenate compound

Country Status (1)

Country Link
JP (1) JP7416372B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078584A1 (en) 2007-09-25 2009-03-26 Nippon Mining & Metals Co., Ltd. Process for producing scorodite and recycling the post-scorodite-synthesis solution
JP2009242221A (en) 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating copper-arsenic compound
JP2015063434A (en) 2013-09-26 2015-04-09 住友金属鉱山株式会社 Arsenic exudation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2040353A1 (en) * 1990-04-16 1991-10-17 Eberhard Krause Method for forming copper arsenate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242221A (en) 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating copper-arsenic compound
US20100175509A1 (en) 2007-07-13 2010-07-15 Dowa Metals & Mining Co., Ltd Method of processing copper arsenic compound
US20090078584A1 (en) 2007-09-25 2009-03-26 Nippon Mining & Metals Co., Ltd. Process for producing scorodite and recycling the post-scorodite-synthesis solution
JP2009079237A (en) 2007-09-25 2009-04-16 Nikko Kinzoku Kk Process for producing scorodite, and process for recycling post-scorodite-synthesis solution
JP2015063434A (en) 2013-09-26 2015-04-09 住友金属鉱山株式会社 Arsenic exudation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Physica B,1991年,Vol.172,pp.324-328
Vacuum,2018年,Vol.156,pp.78-90,<https://doi.org/10.1016/j.vacuum.2018.06.067>

Also Published As

Publication number Publication date
JP2020147449A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
Creutz et al. Structural diversity in cesium bismuth halide nanocrystals
Jodlowski et al. Alternative perovskites for photovoltaics
Norako et al. Growth kinetics of monodisperse Cu− In− S nanocrystals using a dialkyl disulfide sulfur source
Khan et al. Novel single source precursor for synthesis of Sb2Se3 nanorods and deposition of thin films by AACVD: Photo-electrochemical study for water reduction catalysis
Ünlü et al. Bismuth-based halide perovskite and perovskite-inspired light absorbing materials for photovoltaics
Murria et al. Speciation of CuCl and CuCl2 thiol-amine solutions and characterization of resulting films: implications for semiconductor device fabrication
Dutta et al. A facile route to the synthesis of CuInS2 nanoparticles
Wang et al. Synthesizing crystalline chalcogenidoarsenates in thiol–amine solvent mixtures
Dong et al. The effects of cation and halide anion on the stability, electronic and optical properties of double perovskite Cs2NaMX6 (M= In, Tl, Sb, bi; X= Cl, Br, I)
Li et al. HI hydrolysis-derived intermediate as booster for CsPbI3 perovskite: from crystal structure, film fabrication to device performance
Vallejo et al. Synthesis and characterization of nanoparticles of CZTSe by microwave-assited chemical synthesis
Suhail et al. Chalcogenide perovskites for photovoltaic applications: a review
Adekoya et al. Canfieldite Ag8SnS6 nanoparticles with high light absorption coefficient and quantum yield
US8414862B2 (en) Preparation of CZTS and its analogs in ionic liquids
US8673260B2 (en) Development of earth-abundant mixed-metal sulfide nanoparticles for use in solar energy conversion
Wechwithayakhlung et al. Structures, bonding, and electronic properties of metal thiocyanates
JP7416372B2 (en) Copper arsenate compound, copper arsenate compound for solar cell materials, and method for producing copper arsenate compound
Olatunde et al. Stoichiometric phases and mechanism of crystal phase selectivity of copper-based ternary sulphides
CN108417648B (en) Light absorbing material, method for producing light absorbing material, and solar cell using light absorbing material
Zhang et al. Highly conducting p-type transparent LnCuOS (Ln= La and Nd) and p–n junction by using ink
CN115231608B (en) Chemical method for preparing multi-sulfide nanocrystalline at normal temperature
Kamruzzaman et al. Insights into the replacement of FA by Cs in FAPbI3− xClx thin film fabricated in atmospheric conditions: Inspection of solar cell and photocatalytic performances
Hsu et al. Crystallite formation mechanism of CuIn (Se, S) 2 synthesized using solvothermal method
Atri et al. Role of the solvent medium in the wet-chemical synthesis of CuSbS 2, Cu 3 SbS 3, and bismuth substituted Cu 3 SbS 3
Li et al. Structural, electrical, optical properties and stability of Cs2InBr5-yXy· H2O (X= Cl, I, y= 0, 1, 2, 3, 4, 5) perovskites: the first principles investigation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7416372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150