JP6102675B2 - Arsenic leaching method - Google Patents
Arsenic leaching method Download PDFInfo
- Publication number
- JP6102675B2 JP6102675B2 JP2013220129A JP2013220129A JP6102675B2 JP 6102675 B2 JP6102675 B2 JP 6102675B2 JP 2013220129 A JP2013220129 A JP 2013220129A JP 2013220129 A JP2013220129 A JP 2013220129A JP 6102675 B2 JP6102675 B2 JP 6102675B2
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- copper
- leaching
- sulfide
- pentavalent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Sludge (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、砒素を含有する硫化澱物から5価の砒素を砒酸として浸出する方法に関する。 The present invention relates to a method for leaching pentavalent arsenic as arsenic acid from a sulfided starch containing arsenic.
硫化銅鉱石から銅を製錬する方法は、まず、硫化銅鉱石を選鉱して銅品位を20〜30%前後に濃縮した銅精鉱を得て、この銅精鉱を酸素と共に自溶炉に装入し、高温で熔解してスラグとマットに分離する。そして、得られたマットを転炉並びに精製炉で精製してアノードとし、アノードを電解精製して電気銅を得る製錬プロセスが最も一般的に用いられている。 The method of smelting copper from copper sulfide ore is to first obtain copper concentrate that is enriched to around 20-30% by selecting the copper sulfide ore and using this copper concentrate together with oxygen in the flash smelting furnace. Charge and melt at high temperature to separate into slag and mat. And the smelting process which refine | purifies the obtained mat | matte in a converter and a refinement furnace to make an anode, and electrolytically purifies the anode to obtain electrolytic copper is most commonly used.
硫化銅鉱石には、銅のほかにも砒素などの不純物も含有されるが、上記の製錬方法を用いた場合、砒素はマットやスラグに分配され、さらに一部の砒素は揮発し排ガスに分配される。 Copper sulfide ore contains impurities such as arsenic in addition to copper, but when the above smelting method is used, arsenic is distributed to mats and slag, and some arsenic is volatilized and exhausted. Distributed.
このうち、マットに分配した砒素は、アノードに移行し、電解精製工程で電解液中にほぼ全量が溶出する。電解液は、浄液工程で電解採取され、砒素は一部の銅と共に脱銅スライムとして電解液から分離される。 Among these, arsenic distributed to the mat moves to the anode, and almost all of the arsenic is eluted in the electrolytic solution in the electrolytic purification process. The electrolytic solution is electrolyzed in a cleaning step, and arsenic is separated from the electrolytic solution as a copper removal slime together with some copper.
一方、排ガスに分配した砒素は、硫酸製造工程に運ばれ、硫酸製造時のガス精製工程で発生する廃酸中に移行する。この廃酸に硫化剤を添加することで、砒素等の重金属は硫化澱物として沈澱し、廃酸から除去される。 On the other hand, arsenic distributed to the exhaust gas is transported to the sulfuric acid production process and transferred to waste acid generated in the gas purification process during sulfuric acid production. By adding a sulfiding agent to this waste acid, heavy metals such as arsenic precipitate as sulfide starch and are removed from the waste acid.
上記の脱銅スライムや硫化澱物は、有価物も含んでいるため、通常は自熔炉もしくは転炉に再び投入して、製錬プロセス内で有価物を回収することが行われる。しかしながら、単純に製錬プロセスを繰り返すだけでは、砒素を含む不純物が製錬プロセス内に蓄積してしまう。このため、製錬プロセスを繰り返す前に脱銅スライムや硫化澱物から砒素を分離することが望ましい。 Since the above-mentioned decopperized slime and sulfide starch also contain valuables, it is usually thrown back into the auto-smelting furnace or converter and the valuables are recovered in the smelting process. However, simply repeating the smelting process causes impurities including arsenic to accumulate in the smelting process. For this reason, it is desirable to separate arsenic from decoppered slime and sulfide starch before repeating the smelting process.
また、砒素を分離した場合、砒素の酸化物や塩化物は有害性、有毒性があるため、保管や処分に際しては長期保存に適する耐環境性が必要である。具体的には、不溶性であり、かつ付着液を除去しやすいように洗浄性が良いことが望まれる。 In addition, when arsenic is separated, oxides and chlorides of arsenic are harmful and toxic. Therefore, environmental resistance suitable for long-term storage is required for storage and disposal. Specifically, it is desirable that it is insoluble and has good cleaning properties so that the attached liquid can be easily removed.
一般的には、砒酸鉄である結晶性スコロダイト(FeAsO4・2H2O)は、安定的な化合物であり、不溶性に優れ、長期保管に適していることが知られている。この結晶性スコロダイトを得る方法としては、脱銅スライム又は硫化澱物に酸又はアルカリを用いて砒素を浸出して砒素含有液とし、得た砒素含有液に硫酸鉄など鉄分を添加して得る方法が知られている。 Generally, crystalline scorodite (FeAsO 4 .2H 2 O), which is iron arsenate, is a stable compound, is known to be excellent in insolubility and suitable for long-term storage. The crystalline scorodite is obtained by leaching arsenic into copper-free slime or sulfide starch using acid or alkali to obtain an arsenic-containing liquid, and adding the iron content such as iron sulfate to the obtained arsenic-containing liquid. It has been known.
ここで、結晶性スコロダイトの砒素は、5価の価数であるため、砒素含有液中の砒素の価数を5価とすることが必要である。一方、硫化澱物中では、砒素は硫化砒素として含まれるため、As2S3の形態、すなわち砒素は3価の形態となる。 Here, since arsenic of crystalline scorodite has a pentavalent valence, the valence of arsenic in the arsenic-containing liquid needs to be pentavalent. On the other hand, since arsenic is contained as arsenic sulfide in the sulfide starch, the form of As 2 S 3 , that is, arsenic is trivalent.
この硫化砒素を浸出するには、砒素含有液に硫酸銅を添加し、砒素を亜砒酸(HAsO2)溶液、銅を硫化銅とする置換反応を生じさせるのが効率的である。なお、得た亜砒酸中の砒素は、3価の形態なので、酸化剤を加えて酸化し、砒素を5価の形態とする。 In order to leach out the arsenic sulfide, it is efficient to add copper sulfate to the arsenic-containing liquid to cause a substitution reaction in which arsenic is an arsenous acid (HAsO 2 ) solution and copper is copper sulfide. In addition, since arsenic in the obtained arsenous acid is a trivalent form, it is oxidized by adding an oxidizing agent to form arsenic in a pentavalent form.
また、上記の置換反応では硫酸が副生するため、硫化澱物の浸出が進行するとスラリー中のpHが低下する。一般的に砒素は、pHが高い領域の方が酸化されやすい。このため、砒素の酸化速度の向上にはpH調整剤の添加が必要となる。 Moreover, since sulfuric acid is by-produced in the above substitution reaction, the pH in the slurry decreases as the leaching of sulfide starch proceeds. In general, arsenic is more easily oxidized in the region where the pH is higher. Therefore, it is necessary to add a pH adjuster to improve the arsenic oxidation rate.
酸化処理には、様々な方法があり、例えば特許文献1に示すように、溶液を砒素が酸化されやすいアルカリ領域にpH調整剤で調整した後、酸化剤を添加する方法がある。この方法では、pH調整剤の使用がコスト増加の要因となる。また、好適とされる酸化剤は次亜塩素酸ソーダ、過酸化水素水とされるが、これらの酸化剤はいずれも高価でコスト上の問題がある。 There are various methods for the oxidation treatment. For example, as shown in Patent Document 1, there is a method of adding an oxidizing agent after adjusting a solution in an alkaline region where arsenic is easily oxidized with a pH adjusting agent. In this method, the use of a pH adjusting agent causes a cost increase. The preferred oxidizing agents are sodium hypochlorite and hydrogen peroxide, but these oxidizing agents are both expensive and costly.
また、特許文献2では、三酸化砒素を浸出した3価の砒素含有溶液中に硫化銅、銅イオン、及び銅の5価砒素化合物の3種類の触媒を存在させた系で過酸化水素などの酸化剤を添加するか又は、酸素又は空気などの酸化性ガスを吹き込み、3価の砒素を5価に酸化している。この方法は、三酸化砒素を製造する必要があるため、硫化澱物を原料としてスコロダイトを製造しようとした場合、工程が複雑になる上、酸化処理時に別途触媒が必要となる。 In Patent Document 2, hydrogen peroxide or the like is used in a system in which three types of catalysts of copper sulfide, copper ions, and a copper pentavalent arsenic compound are present in a trivalent arsenic-containing solution in which arsenic trioxide is leached. An oxidizing agent is added or an oxidizing gas such as oxygen or air is blown to oxidize trivalent arsenic to pentavalent. In this method, it is necessary to produce arsenic trioxide. Therefore, when scorodite is produced using sulfide starch as a raw material, the process becomes complicated, and a separate catalyst is required during the oxidation treatment.
このような状況から、安価で簡便な方法で硫化澱物から砒素を浸出し、結晶性スコロダイトの製造に適した5価の砒素として浸出する方法が望まれている。 Under such circumstances, a method is desired in which arsenic is leached from sulfided starch by an inexpensive and simple method, and leached as pentavalent arsenic suitable for the production of crystalline scorodite.
そこで、本発明は、上述のような従来の実情に鑑みて提案されたものであり、pH調整剤を添加することなしに、硫化澱物から結晶性スコロダイトの製造に適した5価の砒素を高浸出率で浸出することができる、砒素の浸出方法を提供することを目的とする。 Therefore, the present invention has been proposed in view of the conventional situation as described above, and pentavalent arsenic suitable for the production of crystalline scorodite from sulfide starch can be obtained without adding a pH adjuster. An object of the present invention is to provide an arsenic leaching method capable of leaching at a high leaching rate.
上述した目的を達成する本発明に係る砒素の浸出方法は、砒素を含有する硫化澱物に、粉末状の銅及び酸化剤、並びに硫酸又は硫酸銅を添加して砒素を亜砒酸とし、該亜砒酸を上記酸化剤で酸化して砒酸として浸出し、上記酸化剤は、空気又は酸素である。 In the arsenic leaching method according to the present invention that achieves the above-mentioned object, powdered copper and an oxidizing agent, and sulfuric acid or copper sulfate are added to a sulfided starch containing arsenic to make arsenic arsenous acid. Oxidized with the oxidant and leached as arsenic acid , the oxidant being air or oxygen .
また、浸出は60℃以上、95℃以下の温度で行うことが好ましい。 The leaching is preferably performed at a temperature of 60 ° C. or higher and 95 ° C. or lower.
本発明によって、pH調整剤を添加することなしに、硫化澱物から結晶性スコロダイトの製造に適した5価の砒素を高浸出率で浸出できる。 According to the present invention, pentavalent arsenic suitable for the production of crystalline scorodite can be leached from a sulfurized starch at a high leaching rate without adding a pH adjuster.
以下に、本発明を適用した砒素の浸出方法について説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。 The arsenic leaching method to which the present invention is applied will be described below. Note that the present invention is not limited to the following detailed description unless otherwise specified.
砒素の浸出方法は、硫化澱物に銅及び酸化剤、並びに硫酸又は硫酸銅を添加して混合撹拌することで、pH調整剤を添加することなしに、砒素を浸出して5価に酸化するものである。この砒素の浸出方法は、例えば、自溶炉を用いて銅鉱石から銅を製錬する銅精錬プロセスに組み込まれている排ガスを利用した硫酸製造工程で発生した硫化澱物から砒素を浸出する際に利用することができる。この砒素の浸出方法は、安定な結晶性スコロダイト(FeAsO4・2H2O)を製造できる5価の砒素を高浸出率で浸出することができる。 Arsenic leaching is performed by adding copper and an oxidizing agent, and sulfuric acid or copper sulfate to a sulfided starch, and mixing and stirring the mixture, thereby leaching arsenic and oxidizing to pentavalent without adding a pH adjuster. Is. This arsenic leaching method is, for example, when leaching arsenic from sulfide starch generated in a sulfuric acid production process using exhaust gas incorporated in a copper refining process for smelting copper from copper ore using a flash furnace. Can be used. This arsenic leaching method can leach pentavalent arsenic that can produce stable crystalline scorodite (FeAsO 4 .2H 2 O) at a high leaching rate.
<硫化砒素からの砒素の浸出>
排ガスに含まれた砒素は、硫酸製造時に発生する廃酸に移行する。さらに廃酸中の砒素は、重金属除去のための硫化処理によって生成される硫化澱物中に硫化砒素(As2S3)の形態で含まれている。したがって、この硫化砒素から砒素を浸出する。
<Arsenic leaching from arsenic sulfide>
Arsenic contained in the exhaust gas shifts to waste acid generated during the production of sulfuric acid. Furthermore, arsenic in the waste acid is contained in the form of arsenic sulfide (As 2 S 3 ) in the sulfurized starch produced by the sulfiding treatment for removing heavy metals. Therefore, arsenic is leached from this arsenic sulfide.
硫化砒素からの砒素の浸出方法は、硫化砒素を含む硫化澱物のスラリーに銅及び酸化剤、並びに硫酸又は硫酸銅を添加することで行う。硫化澱物と共に添加された銅は、例えば空気や酸素などの酸化剤により酸化され、酸化銅になる(式1)。
2Cu+O2→2CuO ・・・(式1)
Arsenic leaching from arsenic sulfide is performed by adding copper and an oxidizing agent, and sulfuric acid or copper sulfate to a slurry of sulfide starch containing arsenic sulfide. The copper added together with the sulfide starch is oxidized by an oxidizing agent such as air or oxygen to become copper oxide (Formula 1).
2Cu + O 2 → 2CuO (Formula 1)
このとき、スラリー中に硫酸が存在すると、硫酸は、酸化銅によって中和され硫酸銅と水になる(式2)。この中和反応により、硫酸が消費され、スラリー中のpHの低下が抑制される。
CuO+H2SO4→CuSO4+H2O ・・・(式2)
At this time, if sulfuric acid is present in the slurry, the sulfuric acid is neutralized by copper oxide to become copper sulfate and water (Formula 2). By this neutralization reaction, sulfuric acid is consumed, and a decrease in pH in the slurry is suppressed.
CuO + H 2 SO 4 → CuSO 4 + H 2 O (Formula 2)
生成した硫酸銅、又ははじめから添加されていた硫酸銅は、硫化砒素と反応して亜砒酸、硫化銅及び硫酸が生成する(式3)。この反応で得られた亜砒酸(HAsO2)は、砒素の価数が3価である。
As2S3+4H2O+3CuSO4→3H2SO4+2HAsO2+3CuS
・・・(式3)
The produced copper sulfate or the copper sulfate added from the beginning reacts with arsenic sulfide to produce arsenous acid, copper sulfide and sulfuric acid (Formula 3). Arsenous acid (HAsO 2 ) obtained by this reaction has trivalent arsenic valence.
As 2 S 3 + 4H 2 O + 3CuSO 4 → 3H 2 SO 4 + 2HAsO 2 + 3CuS
... (Formula 3)
このように、硫化砒素を含む硫化澱物のスラリーには、銅及び酸化剤、並びに硫酸又は硫酸銅を添加するが、硫酸を添加した場合には、スラリー中に硫酸が存在するので、(式2)に示すように酸化銅と反応して硫酸銅を生成する反応が生じ、硫酸が消費される。その後、(式3)において、硫酸銅は硫化砒素と反応し、砒素は亜砒酸として浸出される。 Thus, copper and an oxidizing agent and sulfuric acid or copper sulfate are added to the slurry of the sulphided starch containing arsenic sulfide. However, when sulfuric acid is added, sulfuric acid is present in the slurry. As shown in 2), a reaction occurs to react with copper oxide to produce copper sulfate, and sulfuric acid is consumed. Thereafter, in (Equation 3), copper sulfate reacts with arsenic sulfide, and arsenic is leached as arsenous acid.
一方で、硫酸銅を添加した場合には、(式3)において、硫酸銅は硫化砒素と反応して砒素が亜砒酸として浸出される。(式3)により生じた硫酸は、(式2)において酸化銅により中和され、硫酸が消費される。 On the other hand, when copper sulfate is added, in (Equation 3), copper sulfate reacts with arsenic sulfide and arsenic is leached as arsenous acid. The sulfuric acid produced by (Formula 3) is neutralized by copper oxide in (Formula 2), and sulfuric acid is consumed.
砒素の浸出反応は、(式3)によるものであり、銅と酸化剤を添加せずに硫酸銅のみを添加した場合、亜砒酸の浸出とともに硫酸が発生し、pHが低下し砒素の酸化が効率良く行われなくなるため、アルカリ剤などのpH調整剤が必要となる。しかしながら、銅と酸化剤を添加した場合は、酸化銅による中和反応でスラリー中の硫酸が消費され、pHの低下が抑制されるため、pH調整剤を添加することなしに、浸出した砒素の酸化を効率よく行うことができる。 The arsenic leaching reaction is based on (Equation 3). When only copper sulfate is added without adding copper and oxidizer, sulfuric acid is generated with the leaching of arsenous acid, the pH is lowered, and arsenic oxidation is efficient. Since it is not performed well, a pH adjusting agent such as an alkaline agent is required. However, when copper and an oxidizing agent are added, the sulfuric acid in the slurry is consumed by the neutralization reaction with copper oxide, and the decrease in pH is suppressed. Therefore, without adding a pH adjuster, the leached arsenic Oxidation can be performed efficiently.
次に、亜砒酸に含まれている砒素の価数を3価から5価にする。結晶性スコロダイトの砒素は、5価の価数を持つため、結晶性スコロダイトの製造に適した5価とする。砒素の酸化は、亜砒酸に空気や酸素ガスなどの酸化剤を添加し、酸化することで砒酸とする(式4)。
2HAsO2+2H2O+O2→2H3AsO4 ・・・(式4)
Next, the valence of arsenic contained in arsenous acid is changed from trivalent to pentavalent. Since arsenic of crystalline scorodite has a pentavalent valence, it is made pentavalent suitable for the production of crystalline scorodite. Arsenic is oxidized by adding an oxidizing agent such as air or oxygen gas to arsenous acid and oxidizing it (Formula 4).
2HAsO 2 + 2H 2 O + O 2 → 2H 3 AsO 4 (Formula 4)
以上のように、砒素の浸出方法では、砒素を含有する硫化澱物に、銅及び酸化剤、並びに硫酸又は硫酸銅を添加して砒素を亜砒酸とし、亜砒酸を酸化して砒酸とすることで、pH調整剤を添加することなく、5価の砒素を浸出することができる。 As described above, in the arsenic leaching method, copper and an oxidizing agent, and sulfuric acid or copper sulfate are added to sulfide sulfide containing arsenic to make arsenic arsenous acid, and arsenous acid is oxidized to arsenic acid. Pentavalent arsenic can be leached without adding a pH adjuster.
硫化砒素を含む硫化澱物に添加する銅は、酸化して酸化銅にする必要があるため、反応性の良い粉末状が好ましい。 Since the copper added to the sulfided starch containing arsenic sulfide needs to be oxidized to copper oxide, a powdery form having good reactivity is preferable.
砒素を最終的に砒酸として浸出する一連の反応(式1)〜(式4)の反応温度は、特に限定されないが、砒素を最終的に砒酸として浸出する一連の反応(式1)〜(式4)の反応速度を向上させるために60℃以上が好ましい。反応温度が高すぎる場合、反応槽の材質が高価なものでないと耐えられなくなるため、60℃以上95℃以下の範囲であることがより好ましい。 The reaction temperature of a series of reactions (formula 1) to (formula 4) for finally leaching arsenic as arsenic acid is not particularly limited, but a series of reactions (formula 1) to (formula 1) for finally leaching arsenic as arsenic acid In order to improve the reaction rate of 4), 60 ° C. or higher is preferable. When the reaction temperature is too high, the reaction vessel is not expensive unless it is expensive. Therefore, the reaction temperature is more preferably in the range of 60 ° C to 95 ° C.
なお、スラリー中に銅イオンが存在する場合、pH領域が弱酸性から中性の領域では、5価の砒素は砒酸銅(Cu2(AsO4)(OH))として沈澱するため、このような場合は浸出後のスラリーを固液分離した後の残渣を酸又はアルカリで再浸出することで結晶性スコロダイトの原料液にしても良い。 When copper ions are present in the slurry, since the pentavalent arsenic precipitates as copper arsenate (Cu 2 (AsO 4 ) (OH)) in the weakly acidic to neutral pH range, In this case, the residue after the leaching slurry is subjected to solid-liquid separation may be re-leached with acid or alkali to form a raw material liquid for crystalline scorodite.
<塩基性砒酸銅からの5価の砒素の浸出>
塩基性砒酸銅からの5価の砒素を再浸出する方法について説明する。この5価の砒素の再浸出は、アルカリ剤を用いて行う。アルカリ剤には、水酸化ナトリウムではなく、炭酸ナトリウムを用いる。
<Leaching of pentavalent arsenic from basic copper arsenate>
A method for releaching pentavalent arsenic from basic copper arsenate will be described. This re-leaching of pentavalent arsenic is performed using an alkaline agent. As the alkaline agent, sodium carbonate is used instead of sodium hydroxide.
アルカリ剤として炭酸ナトリウムを用いた場合には、下記の(式5)に示すように、砒素は砒酸ナトリウムとして5価の砒素を浸出することができる。銅は、炭酸銅として沈殿し除去することができる。これにより、砒素と共に銅が浸出することを防止できる。塩基性砒酸銅中の殆どの銅は、炭酸銅として沈殿するが、過剰の炭酸ナトリウムが存在すると銅は少量溶解して、浸出液中に銅イオンとして存在する。
2Cu2(AsO4)(OH)+3Na2CO3+H2O
→2Na3AsO4+2CuCO3・Cu(OH)2+CO2(式5)
When sodium carbonate is used as the alkali agent, arsenic can leach pentavalent arsenic as sodium arsenate as shown in the following (formula 5). Copper can be precipitated and removed as copper carbonate. Thereby, copper can be prevented from leaching together with arsenic. Most of the copper in basic copper arsenate precipitates as copper carbonate, but in the presence of excess sodium carbonate, a small amount of copper dissolves and exists as copper ions in the leachate.
2Cu 2 (AsO 4 ) (OH) + 3Na 2 CO 3 + H 2 O
→ 2Na 3 AsO 4 + 2CuCO 3 .Cu (OH) 2 + CO 2 (Formula 5)
ここで、炭酸ナトリウムを添加してアルカリ性条件下で砒素の再浸出を行った場合には、硫化澱物から硫黄が溶解し、溶解した硫黄由来のチオ硫酸ナトリウムが生成される。このチオ硫酸ナトリウムは、−2価の価数を持つ硫黄を分子内に持っている。−2価の硫黄は、銅イオンと液中で共存できず、硫化銅の沈殿を生ずる。つまり、硫黄は、過剰の炭酸ナトリウムが存在する状態で微量溶解した銅と反応して、硫化銅として沈殿し、再浸出液中から除去される。 Here, when sodium carbonate is added and arsenic is leached again under alkaline conditions, sulfur is dissolved from the sulfurized starch, and dissolved sulfur-derived sodium thiosulfate is produced. This sodium thiosulfate has sulfur having a valence of -2 in the molecule. -2-valent sulfur cannot coexist with copper ions in the liquid, and precipitates copper sulfide. That is, sulfur reacts with a trace amount of copper in the presence of excess sodium carbonate, precipitates as copper sulfide, and is removed from the re-leaching solution.
これにより、例えば次工程で結晶性スコロダイトを製造する際に、硫酸等でpHを2以下に調整しても二酸化硫黄の発生を防ぐことができる。したがって、生成された5価の砒素が、二酸化硫黄によって3価に還元されることを防止できる。 Thereby, for example, when producing crystalline scorodite in the next step, generation of sulfur dioxide can be prevented even if the pH is adjusted to 2 or less with sulfuric acid or the like. Therefore, it is possible to prevent the generated pentavalent arsenic from being reduced to trivalent by sulfur dioxide.
以上のような砒素の浸出方法では、硫化澱物に銅及び酸化剤、並びに硫酸又は硫酸銅を添加して混合撹拌することで、酸化銅による中和反応でpHの低下が抑制されるため、pH調整剤を添加することなしに、砒素を高浸出率で浸出することができる。また、以上のような砒素の浸出方法では、pH調整剤を必要としないため、安価かつ簡便に砒素を含有する溶液から5価の砒素を砒酸として浸出することができる。 In the arsenic leaching method as described above, the addition of copper and an oxidizing agent, and sulfuric acid or copper sulfate to the sulfide starch, and mixing and stirring, the pH reduction is suppressed by the neutralization reaction with copper oxide. Arsenic can be leached at a high leaching rate without adding a pH adjusting agent. Further, since the arsenic leaching method as described above does not require a pH adjuster, pentavalent arsenic can be leached as arsenic acid from a solution containing arsenic inexpensively and easily.
したがって、このような砒素の浸出方法は、銅製錬プロセスに含まれる硫酸製造工程で排出された砒素を含む硫化澱物から砒素を高い回収率で回収することができるため、銅製錬プロセスに硫化澱物を再投入して有価金属を回収する際に不純物である砒素を予め除去するのに好適である。 Therefore, such an arsenic leaching method can recover arsenic at a high recovery rate from sulfides containing arsenic discharged in the sulfuric acid production process included in the copper smelting process. It is suitable for removing arsenic, which is an impurity, in advance when an object is reintroduced to recover valuable metals.
また、この砒素の浸出方法では、5価の砒素が多く浸出できるため、良好な結晶性スコロダイト(FeAsO4・2H2O)を製造する原料液の製造に用いることができる。 Further, in this arsenic leaching method, since a large amount of pentavalent arsenic can be leached, it can be used for the production of a raw material solution for producing good crystalline scorodite (FeAsO 4 .2H 2 O).
以下、本発明を適用した具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。 Specific examples to which the present invention is applied will be described below, but the present invention is not limited to these examples.
(実施例1)
実施例1では、表1に示す組成の硫化澱物を乾燥重量で36g、銅粉末33g、硫酸銅5水和物9g、を300mlの水に添加してスラリーとした。
Example 1
In Example 1, 36 g by dry weight of a sulfide starch having the composition shown in Table 1, 33 g of copper powder, and 9 g of copper sulfate pentahydrate were added to 300 ml of water to form a slurry.
次に、このスラリーを80℃で加熱し、空気を吹き込みながら5時間撹拌混合を行った。撹拌混合中のpHは3.5〜4.0の間で安定していた。 Next, this slurry was heated at 80 ° C., and stirred and mixed for 5 hours while blowing air. The pH during stirring and mixing was stable between 3.5 and 4.0.
得られた浸出液中の砒素は3mg/lであった。pH領域から砒素は砒酸銅として沈澱していると判断した。 Arsenic in the obtained leachate was 3 mg / l. From the pH range, it was judged that arsenic was precipitated as copper arsenate.
次に、得られた残渣からの砒素の再浸出を行った。乾燥させた残渣50gを300mlの硫酸水溶液に添加し、70℃に加熱して、pHを0.5〜0.7の間に保持しながら撹拌混合した。得られた再浸出液中の5価及び3価の砒素濃度を表2に示す。 Next, re-leaching of arsenic from the obtained residue was performed. 50 g of the dried residue was added to 300 ml of sulfuric acid aqueous solution, heated to 70 ° C., and stirred and mixed while maintaining the pH between 0.5 and 0.7. Table 2 shows pentavalent and trivalent arsenic concentrations in the obtained re-leaching solution.
なお、硫化澱物中の含有砒素量及び浸出液中の砒素濃度の定量分析はICP(Inductively Coupled Plasma)発光分析法を用いた。また、再浸出液中の砒素の価数は、ジエチルジチオカルバミンジエチルアンモニウムを用いた溶媒抽出法とICP質量分析を用いて分析した。 In addition, ICP (Inductively Coupled Plasma) emission spectrometry was used for quantitative analysis of the amount of arsenic contained in the sulfide starch and the arsenic concentration in the leachate. In addition, the valence of arsenic in the re-leaching solution was analyzed using a solvent extraction method using diethyldithiocarbamine diethylammonium and ICP mass spectrometry.
表2に示すように、再浸出液中の5価の砒素の濃度は10g/lであり、それに対して3価の砒素の濃度は0.5g/lであった。よって、再浸出液中の全砒素に占める5価の砒素の割合は約95%であり、高い割合で5価の砒素が浸出されていることが分かる。 As shown in Table 2, the concentration of pentavalent arsenic in the re-leaching solution was 10 g / l, whereas the concentration of trivalent arsenic was 0.5 g / l. Therefore, the ratio of pentavalent arsenic in the total arsenic in the re-leaching solution is about 95%, and it can be seen that pentavalent arsenic is leached at a high ratio.
以上の結果から、硫化澱物に銅、酸化剤及び硫酸銅を添加して、混合撹拌することでpH調整剤を添加することなしに弱酸性領域に保ちながら砒素を浸出して5価に酸化できることが確認できた。 From the above results, copper, oxidizer and copper sulfate were added to the sulfide starch, and arsenic was leached and oxidized to pentavalent by mixing and stirring without adding a pH adjuster while maintaining a weakly acidic region. I was able to confirm that it was possible.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013220129A JP6102675B2 (en) | 2013-10-23 | 2013-10-23 | Arsenic leaching method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013220129A JP6102675B2 (en) | 2013-10-23 | 2013-10-23 | Arsenic leaching method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015081214A JP2015081214A (en) | 2015-04-27 |
JP6102675B2 true JP6102675B2 (en) | 2017-03-29 |
Family
ID=53012024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013220129A Active JP6102675B2 (en) | 2013-10-23 | 2013-10-23 | Arsenic leaching method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6102675B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106242008B (en) * | 2016-07-29 | 2019-01-25 | 中南大学 | The method of arsenic is removed in a kind of waste acid system |
CN113832360A (en) * | 2021-07-21 | 2021-12-24 | 中国科学院大学 | Method for recovering simple substance arsenic from arsenic slag through hydrothermal reduction |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4103000A (en) * | 1973-02-09 | 1978-07-25 | Koppers Company, Inc. | Method for preparing copper arsenate compositions |
US4438079A (en) * | 1981-03-30 | 1984-03-20 | Sumitomo Metal Mining Company Limited | Method for manufacture of arsenious anhydride |
JPS6042172B2 (en) * | 1981-03-30 | 1985-09-20 | 住友金属鉱山株式会社 | Arsenous acid manufacturing method |
JPS58204826A (en) * | 1982-05-21 | 1983-11-29 | Sumitomo Metal Mining Co Ltd | Oxidation of arsenite ion |
JP3212875B2 (en) * | 1996-05-30 | 2001-09-25 | 日鉱金属株式会社 | Arsenic recovery method |
JP2009242223A (en) * | 2007-07-13 | 2009-10-22 | Dowa Metals & Mining Co Ltd | Method of treating diarsenic trioxide |
JP5188296B2 (en) * | 2007-07-13 | 2013-04-24 | Dowaメタルマイン株式会社 | Method for treating copper arsenic compound |
JP5188298B2 (en) * | 2007-08-09 | 2013-04-24 | Dowaメタルマイン株式会社 | Method for processing non-ferrous smelting intermediates containing arsenic |
-
2013
- 2013-10-23 JP JP2013220129A patent/JP6102675B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015081214A (en) | 2015-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101160752B1 (en) | Method for treatment of arsenic-containing nonferrous smelting intermediate product | |
KR101330464B1 (en) | Method for the recovery of valuable metals and arsenic from a solution | |
ES2300469T3 (en) | ZINC RECOVERY PROCESS. | |
JP6241661B2 (en) | Arsenic separation and immobilization method | |
EP2174912B1 (en) | Method of removing arsenic from smelting residues comprising copper-arsenic compounds | |
JP5382269B1 (en) | Method for separating rhenium and arsenic, and method for purifying rhenium | |
EP2177477A1 (en) | Method of treating arsenical matter with alkali | |
ES2380995T3 (en) | Method of treatment of non-ferrous foundry intermediates containing arsenic | |
JP6365838B2 (en) | Cobalt nickel leaching method | |
JP4710034B2 (en) | Arsenic-containing material treatment method | |
WO2010084877A1 (en) | Processes for the disposal of arsenic | |
KR20100031773A (en) | Method of treating diarsenic trioxide | |
JP5114049B2 (en) | Preparation of arsenic liquid from copper arsenic compound | |
JP7016463B2 (en) | How to collect tellurium | |
CA3122492C (en) | Procedure for obtaining scorodite with a high arsenic content from acidic solutions with high content of sulfuric acid | |
JP3212875B2 (en) | Arsenic recovery method | |
JP6102675B2 (en) | Arsenic leaching method | |
JP4529969B2 (en) | Method for removing selenium from selenate-containing liquid | |
JP2004285368A (en) | Method for refining cobalt aqueous solution | |
JP6102657B2 (en) | Arsenic leaching method | |
JP6195536B2 (en) | Iron removal method, iron leaching method, and gold recovery method | |
JP2013095984A (en) | Method for leaching arsenic from nonferrous smelting smoke ash | |
JP2008184653A (en) | Method for producing antimony oxide and method for producing metal antimony | |
WO2004081242A1 (en) | Recovery of metals from industrial dusts | |
JP2016069690A (en) | Method for producing rhenium sulfide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6102675 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |