JP2008184653A - Method for producing antimony oxide and method for producing metal antimony - Google Patents

Method for producing antimony oxide and method for producing metal antimony Download PDF

Info

Publication number
JP2008184653A
JP2008184653A JP2007019450A JP2007019450A JP2008184653A JP 2008184653 A JP2008184653 A JP 2008184653A JP 2007019450 A JP2007019450 A JP 2007019450A JP 2007019450 A JP2007019450 A JP 2007019450A JP 2008184653 A JP2008184653 A JP 2008184653A
Authority
JP
Japan
Prior art keywords
antimony
fluorine
producing
antimony oxide
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007019450A
Other languages
Japanese (ja)
Other versions
JP5091493B2 (en
Inventor
Masayoshi Matsumoto
政義 松本
Kazunari Suzuki
一成 鈴木
Kosuke Inoguchi
康祐 井野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2007019450A priority Critical patent/JP5091493B2/en
Publication of JP2008184653A publication Critical patent/JP2008184653A/en
Application granted granted Critical
Publication of JP5091493B2 publication Critical patent/JP5091493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing antimony oxide and the like, which can more precisely separate impurities from antimony, and can efficiently and surely reduce the impurities in a short period of time, by leaching antimony from an antimony-containing intermediate product (antimony-containing object) through a wet process. <P>SOLUTION: The method for producing antimony oxide includes at least a leaching step of treating the antimony-containing object with a fluorine-containing liquid to leach antimony into the fluorine-containing liquid. The fluorine-containing liquid preferably includes at least one liquid selected from a hydrofluoric acid solution and a mixture solution of a soluble fluoride and sulfuric acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸化アンチモンの製造方法及び金属アンチモンの製造方法に関する。   The present invention relates to a method for producing antimony oxide and a method for producing metal antimony.

近年、アンチモン(Sb)は化合物半導体の材料として注目されており、その需要は高まっている。また、最近の環境規制強化の動きから、アンチモンを含む製品における不純物を低減するという要求は非常に強く、不純物を効率的に短時間で且つ確実に低減できる方法の必要性が高まっている。   In recent years, antimony (Sb) has attracted attention as a material for compound semiconductors, and its demand is increasing. In addition, due to the recent trend of strengthening environmental regulations, the demand for reducing impurities in products containing antimony is very strong, and there is an increasing need for a method that can efficiently and reliably reduce impurities in a short time.

主に、アンチモンを含む輝安鉱(Sb)を原料として製錬、更に、精錬工程で乾式法により粗アンチモンを生成後、電解法等により高品位のアンチモンを得ている。 Mainly smelted with antimony-containing antimony (Sb 2 S 3 ) as raw material, and after producing crude antimony by a dry method in a refining process, high-grade antimony is obtained by an electrolytic method or the like.

高品位のアンチモンを製造するために中間工程品等に含まれる他の金属とアンチモンを分離回収するために種々の方法が提案されている。例えば、還元して粗アンチモン金属とした後、硫酸ナトリウム等を加えて精製し純度を高め、酸化揮発して最終的に酸化アンチモンとして回収する方法が提案されている。また、硫化剤形態の中間工程品からアルカリの存在下でアンチモンを酸化浸出し、しかる後沈殿化させることにより銅、砒素、ビスマス等のその他の成分からアンチモンを分離回収する方法が提案されている(例えば、特許文献1)。また、三酸化アンチモンを水酸化ナトリウム(苛性ソーダ)溶液に溶解し、濾過して不溶解物を除去した後、酸化剤にて酸化してアンチモン酸ナトリウム(アンチモン酸ソーダ)を析出させ、熟成、分離、洗浄、乾燥して、高純度のアンチモン酸ナトリウム(アンチモン酸ソーダ)を製造する方法が提案されている(例えば、特許文献2)。また、鉛電解アノードスライムに付着している珪弗酸分を希硫酸もしくは水で酸を除去する洗浄をし、含銅硫酸酸性溶液中で空気酸化してアノードスライム中の銅を浸出し、銅スライムを水酸化ナトリウム(苛性ソーダ)溶液にて浸出し、該銅スライムの浸出により得られた脱硫酸スライムを珪弗酸溶液にして鉛、アンチモン、及びビスマスを溶出し、金及び銀を含有する浸出スライムから分離し、脱硫酸スライムの珪弗酸溶出液に含まれるアンチモンイオン及びビスマスイオンを金属鉛により置換処理し、置換メタルを500℃で溶解した後、空気を吹き込んで、酸化アンチモンを揮発させて酸化アンチモンとビスマスとを分離する方法が提案されている(例えば、特許文献3)。   In order to produce high-quality antimony, various methods have been proposed for separating and recovering antimony from other metals contained in intermediate products. For example, a method has been proposed in which after reducing to a crude antimony metal, sodium sulfate or the like is added for purification to increase purity, oxidation and volatilization, and finally recovery as antimony oxide. Further, a method for separating and recovering antimony from other components such as copper, arsenic and bismuth by oxidizing and leaching antimony from an intermediate process product in the form of a sulfiding agent in the presence of alkali and then precipitating it has been proposed. (For example, patent document 1). Also, antimony trioxide is dissolved in sodium hydroxide (caustic soda) solution, filtered to remove insoluble matter, then oxidized with an oxidizing agent to precipitate sodium antimonate (sodium antimonate), and matured and separated. A method of producing high purity sodium antimonate (sodium antimonate) by washing and drying has been proposed (for example, Patent Document 2). In addition, the silicic acid content adhering to the lead electrolysis anode slime is washed with dilute sulfuric acid or water to remove the acid, and is oxidized in air in a copper-containing sulfuric acid acidic solution to leach out the copper in the anode slime. The slime is leached with a sodium hydroxide (caustic soda) solution, and the desulfurized slime obtained by leaching the copper slime is converted into a silicic acid solution to elute lead, antimony, and bismuth, and leaching contains gold and silver. Antimony ions and bismuth ions contained in the eluate of desulfurized slime silicic acid are replaced with metallic lead, dissolved in the substituted metal at 500 ° C, and air is blown to volatilize the antimony oxide. A method of separating antimony oxide and bismuth has been proposed (for example, Patent Document 3).

特開平11−80853号公報Japanese Patent Laid-Open No. 11-80853 特開平1−278424号公報JP-A-1-278424 特開平5−311259号公報JP-A-5-311259

しかしながら、上記方法によってアンチモンを回収する場合、鉛などの不純物は分離しづらく、分離できたとしてもアンチモン収率が著しく低下する問題や、アルカリにより浸出するため処理時間が長く生産性が低いなどの問題があった。また、酸による浸出によってアンチモンが回収できる手段が見出されていなかった。   However, when antimony is recovered by the above method, impurities such as lead are difficult to separate, and even if it can be separated, the yield of antimony is significantly reduced. There was a problem. Also, no means has been found that can recover antimony by acid leaching.

例えば、特許文献3に記載された、置換メタルから酸化アンチモンを揮発させて、酸化アンチモンとビスマスとを分離する方法では少なくとも5,000ppmのビスマスが酸化アンチモンに含有され、金属鉛による置換処理だけでも約5時間を要していた。   For example, in the method of volatilizing antimony oxide from a substituted metal and separating antimony oxide and bismuth described in Patent Document 3, at least 5,000 ppm of bismuth is contained in antimony oxide, and even a substitution treatment with metallic lead alone It took about 5 hours.

また、希硫酸溶液ではアンチモンを浸出することができず、また、塩酸溶液でアンチモンを浸出しようとすると、塩化アンチモン又はアンチモンの塩素錯体を形成して塩酸溶液中に浸出するが、該塩化アンチモン及び該アンチモンの塩素錯体はいずれも不安定なため加水分解して沈殿しやすいため、希硫酸溶液や塩酸溶液ではアンチモンを浸出することはできなかった。   Also, antimony cannot be leached with dilute sulfuric acid solution, and when antimony is leached with hydrochloric acid solution, antimony chloride or a chlorine complex of antimony is formed and leached into the hydrochloric acid solution. All of the antimony chlorine complexes are unstable and therefore easily hydrolyze and precipitate, so that antimony cannot be leached with dilute sulfuric acid solution or hydrochloric acid solution.

本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、アンチモンを含む工程中間品(アンチモン含有対象品)からアンチモンを湿式法により浸出させることで、アンチモンと不純物の分離性を高め、不純物を効率的に短時間で且つ確実に低減できる酸化アンチモンの製造方法及び金属アンチモンの製造方法を提供することを目的とする。   An object of the present invention is to solve various problems in the prior art and achieve the following objects. That is, the present invention enhances the separation of antimony and impurities by leaching antimony from an intermediate product containing antimony (antimony-containing target product) by a wet method, and efficiently and reliably reduces impurities in a short time. An object of the present invention is to provide a method for producing antimony oxide and a method for producing metal antimony.

本発明者らは、上記の課題を解決すべく鋭意研究を続け、試行錯誤の結果、本発明に到達することができた。   The inventors of the present invention have continued intensive studies to solve the above problems, and as a result of trial and error, the present invention has been achieved.

前記課題を解決する手段としては、以下の通りである。即ち、
<1> アンチモン含有対象品をフッ素含有液で処理して、該フッ素含有液にアンチモンを浸出させる浸出工程を少なくとも含むことを特徴とする酸化アンチモンの製造方法である。
<2> アンチモン含有対象品は、鉛製錬工程で発生する工程中間品である前記<1>に記載の酸化アンチモンの製造方法である。
<3> フッ素含有液は、フッ化水素酸溶液と、可溶性フッ化物及び硫酸の混合溶液とから選択される少なくとも1種である前記<1>から<2>のいずれかに記載の酸化アンチモンの製造方法である。
<4> 可溶性フッ化物は、フッ化ナトリウム及びフッ化カリウムから選択される少なくとも1種である前記<3>に記載の酸化アンチモンの製造方法である。
<5> 浸出工程において、アンチモン含有対象品及びフッ素含有液に含まれるフッ素の合計とアンチモン含有対象品に含まれるアンチモンとのモル比(フッ素/アンチモン)が2.5以上である前記<1>から<4>のいずれかに記載の酸化アンチモンの製造方法である。
<6> 浸出工程において、フッ素含有液のpHが2以上5以下である前記<1>から<5>のいずれかに記載の酸化アンチモンの製造方法である。
<7> 更に、アンチモンが浸出したフッ素含有液から得られた浸出液に硫化剤を添加し、該硫化物が添加された浸出液を濾過する濾過工程を含む前記<1>から<6>のいずれかに記載の酸化アンチモンの製造方法である。
<8> 濾過工程において、pHが4以上5以下である浸出液に硫化剤を添加する前記<7>に記載の酸化アンチモンの製造方法である。
<9> 更に、硫化物が添加された浸出液を濾過して不純物を除去した濾液に中和剤を添加して中和する中和工程を含む前記<7>から<8>のいずれかに記載の酸化アンチモンの製造方法である。
<10> 中和工程において、不純物を除去した濾液に中和剤を添加して、該濾液のpHを5以上とする前記<9>に記載の酸化アンチモンの製造方法である。
<11> 更に、中和された濾液を濾過して得られた他の濾液に硫酸を添加してフッ化水素酸を再生するフッ化水素酸再生工程を含む前記<9>から<10>のいずれかに記載の酸化アンチモンの製造方法である。
<12> 前記<1>から<11>のいずれかに記載の方法で得られた酸化アンチモンを還元剤と共に加熱して、該酸化アンチモンを還元する還元工程を含むことを特徴とする金属アンチモンの製造方法である。
Means for solving the above problems are as follows. That is,
<1> A method for producing antimony oxide, comprising at least a leaching step of treating an antimony-containing target product with a fluorine-containing liquid and leaching antimony into the fluorine-containing liquid.
<2> The antimony-containing target product is the method for producing antimony oxide according to <1>, which is a process intermediate product generated in a lead smelting process.
<3> The antimony oxide according to any one of <1> to <2>, wherein the fluorine-containing liquid is at least one selected from a hydrofluoric acid solution and a mixed solution of soluble fluoride and sulfuric acid. It is a manufacturing method.
<4> The method for producing antimony oxide according to <3>, wherein the soluble fluoride is at least one selected from sodium fluoride and potassium fluoride.
<5> In the leaching step, the molar ratio (fluorine / antimony) of the total of fluorine contained in the antimony-containing target product and the fluorine-containing liquid to antimony contained in the antimony-containing target product is 2.5 or more <1> To <4>. The method for producing antimony oxide according to any one of <4>.
<6> The method for producing antimony oxide according to any one of <1> to <5>, wherein the pH of the fluorine-containing liquid is 2 or more and 5 or less in the leaching step.
<7> Any one of <1> to <6>, further including a filtration step of adding a sulfiding agent to the leachate obtained from the fluorine-containing solution from which antimony has been leached, and filtering the leachate to which the sulfide is added. The method for producing antimony oxide as described in 1. above.
<8> The method for producing antimony oxide according to <7>, wherein a sulfurizing agent is added to a leachate having a pH of 4 or more and 5 or less in the filtration step.
<9> The method according to any one of <7> to <8>, further including a neutralization step of adding a neutralizing agent to the filtrate obtained by filtering the leachate to which the sulfide is added to remove impurities to neutralize the filtrate. This is a method for producing antimony oxide.
<10> The method for producing antimony oxide according to <9>, wherein in the neutralization step, a neutralizing agent is added to the filtrate from which impurities are removed, and the pH of the filtrate is set to 5 or more.
<11> Further, the hydrofluoric acid regeneration step of regenerating hydrofluoric acid by adding sulfuric acid to another filtrate obtained by filtering the neutralized filtrate, from the above <9> to <10> It is a manufacturing method of the antimony oxide in any one.
<12> A metal antimony characterized by comprising a reduction step of heating the antimony oxide obtained by the method according to any one of <1> to <11> together with a reducing agent to reduce the antimony oxide. It is a manufacturing method.

本発明の方法によれば、前記従来における諸問題を解決し、前記目的を達成することができ、アンチモンを含む工程中間品(アンチモン含有対象品)からアンチモンを湿式法により浸出させることで、アンチモンと不純物の分離性を高め、不純物を効率的に短時間で且つ確実に低減できる酸化アンチモンの製造方法及び金属アンチモンの製造方法を提供することができる。   According to the method of the present invention, the conventional problems can be solved and the object can be achieved, and antimony is leached out by a wet method from an intermediate product containing antimony (antimony-containing target product). It is possible to provide a method for producing antimony oxide and a method for producing metal antimony that can improve the separability of impurities and reduce impurities efficiently and in a short time.

(酸化アンチモンの製造方法)
本発明の酸化アンチモンの製造方法は、浸出工程を少なくとも含み、更に必要に応じて、濾過工程(不純物除去工程)と、中和工程と、フッ化水素酸再生工程と、その他の工程とを含む。
(Production method of antimony oxide)
The method for producing antimony oxide of the present invention includes at least a leaching step, and further includes a filtration step (impurity removal step), a neutralization step, a hydrofluoric acid regeneration step, and other steps as necessary. .

−浸出工程−
前記浸出工程は、アンチモン含有対象品をフッ素含有液で処理して、該フッ素含有液にアンチモンを浸出させる工程である。
-Leaching process-
The leaching step is a step of treating the antimony-containing target product with a fluorine-containing liquid and leaching antimony into the fluorine-containing liquid.

前記フッ素含有液としては、例えば、フッ化水素酸溶液と、可溶性フッ化物及び硫酸の混合溶液とが挙げられる。   Examples of the fluorine-containing liquid include a hydrofluoric acid solution and a mixed solution of soluble fluoride and sulfuric acid.

前記フッ素含有液としてフッ化水素酸溶液を用いると、下記反応式(1)のように、比較的安定なフッ素錯体(Sb−F)を形成して、該フッ素錯体がフッ化水素酸溶液中に浸出する。
(化1)
HF+0.5Sb→Sb−F+HO・・・反応式(1)
When a hydrofluoric acid solution is used as the fluorine-containing liquid, a relatively stable fluorine complex (Sb—F 3 ) is formed as shown in the following reaction formula (1), and the fluorine complex becomes a hydrofluoric acid solution. Leach inside.
(Chemical formula 1)
HF + 0.5Sb 2 O 3 → Sb -F 3 + H 2 O ··· reaction formula (1)

また、前記可溶性フッ化物(例えば、フッ化ナトリウム、フッ化カリウム等の水に可溶なフッ化物塩)に硫酸等の無機酸を添加すると、フッ化水素酸を生成するため(下記反応式(2)参照)、可溶性フッ化物及び硫酸の混合溶液をフッ素含有液として用いることもできる。可溶性フッ化物としてフッ化ナトリウムを用いた場合、フッ化水素酸生成反応を進行すべく、可溶性フッ化物及び硫酸の混合溶液のpHを5以下にするのが好ましく、4.5以下にするのがより好ましい。
(化2)
NaF+0.5HSO→0.5NaSO+HF・・・反応式(2)
Further, when an inorganic acid such as sulfuric acid is added to the soluble fluoride (for example, a fluoride salt soluble in water such as sodium fluoride or potassium fluoride), hydrofluoric acid is generated (the following reaction formula ( 2)), a mixed solution of soluble fluoride and sulfuric acid can also be used as the fluorine-containing liquid. When sodium fluoride is used as the soluble fluoride, the pH of the mixed solution of soluble fluoride and sulfuric acid is preferably 5 or less, and 4.5 or less in order to proceed the hydrofluoric acid production reaction. More preferred.
(Chemical formula 2)
NaF + 0.5H 2 SO 4 → 0.5Na 2 SO 4 + HF... Reaction formula (2)

前記可溶性フッ化物に対して過剰に硫酸を添加すると、混合溶液中の硫酸イオン濃度が増加して、混合溶液のpHが小さくなるが、硫酸はアンチモンの浸出に寄与しないにもかかわらず、アンチモン含有対象品に含まれる不純物(例えば、ビスマス(Bi))の浸出量が増大すると共に、後述する中和工程において使用する中和剤量が増大するので好ましくない。特に、混合溶液のpHが2より小さくなると、アンチモン含有対象品に含まれるビスマス(Bi)の浸出量が急激に増大するため、混合溶液のpHは2以上であることが好ましく、混合溶液のpHが3.5以上であることがより好ましい。   If sulfuric acid is added excessively with respect to the soluble fluoride, the concentration of sulfate ions in the mixed solution increases and the pH of the mixed solution decreases. However, although sulfuric acid does not contribute to leaching of antimony, it contains antimony. This is not preferable because the leaching amount of impurities (for example, bismuth (Bi)) contained in the target product increases and the amount of neutralizing agent used in the neutralization step described later increases. In particular, when the pH of the mixed solution is less than 2, the leaching amount of bismuth (Bi) contained in the antimony-containing target product increases rapidly, so the pH of the mixed solution is preferably 2 or more. Is more preferably 3.5 or more.

なお、混合溶液中に適量の硫酸イオンが存在することにより、アンチモン含有対象品に含まれる鉛が硫酸鉛となって鉛の溶出が抑制される。混合溶液のpHが3.5以上4.5以下であれば、適量の硫酸イオンが存在するので、鉛の溶出を抑制することができる。   In addition, when a suitable amount of sulfate ions are present in the mixed solution, lead contained in the antimony-containing target product becomes lead sulfate, and elution of lead is suppressed. If the pH of the mixed solution is 3.5 or more and 4.5 or less, since an appropriate amount of sulfate ions is present, elution of lead can be suppressed.

また、前記浸出工程において、アンチモンが、フッ素に対して、モル比で概ねSb:F=1:3となったときに、比較的安定なフッ素錯体(Sb−F)を形成して、該フッ素錯体がフッ化水素酸溶液中に浸出するので、アンチモン含有対象品及びフッ素含有液に含まれるフッ素の合計とアンチモン含有対象品に含まれるアンチモンとのモル比(フッ素/アンチモン)が2.5以上、好ましくは3となるように、アンチモン含有対象品に含まれるアンチモンの量(アンチモン含有対象品の添加量)及びフッ素含有液に含まれるフッ素イオン量を調整することが必要となる。アンチモン含有対象品及びフッ素含有液に含まれるフッ素の合計とアンチモン含有対象品に含まれるアンチモンとのモル比(フッ素/アンチモン)が2.5より小さい場合(アンチモン含有対象品に含まれるアンチモンが、アンチモン含有対象品及びフッ素含有液に含まれるフッ素の合計に対して過剰な場合)でも、比較的安定なフッ素錯体(Sb−F)を形成して、該フッ素錯体がフッ化水素酸溶液中に浸出するが、残渣中に残留する未浸出のアンチモンの比率が増大するために好ましくない。 In the leaching step, when antimony has a molar ratio of approximately Sb: F = 1: 3 with respect to fluorine, a relatively stable fluorine complex (Sb-F 3 ) is formed, Since the fluorine complex is leached into the hydrofluoric acid solution, the molar ratio (fluorine / antimony) of the total of fluorine contained in the antimony-containing target product and the fluorine-containing liquid to antimony contained in the antimony-containing target product is 2.5. As described above, it is necessary to adjust the amount of antimony contained in the antimony-containing target product (addition amount of the antimony-containing target product) and the amount of fluorine ions contained in the fluorine-containing liquid so as to be preferably 3. When the molar ratio (fluorine / antimony) of the total amount of fluorine contained in the antimony-containing product and the fluorine-containing liquid to the antimony contained in the antimony-containing product is less than 2.5 (antimony contained in the antimony-containing product is A relatively stable fluorine complex (Sb-F 3 ) is formed in the hydrofluoric acid solution even when it is excessive relative to the total amount of fluorine contained in the antimony-containing product and the fluorine-containing liquid. However, it is not preferable because the ratio of unleached antimony remaining in the residue increases.

また、前記浸出工程における温度は、室温(20℃前後)であっても、100℃程度であってもよい。   Further, the temperature in the leaching step may be room temperature (around 20 ° C.) or about 100 ° C.

−濾過工程−
前記濾過工程は、アンチモンが浸出したフッ素含有液から得られた浸出液に硫化剤を添加し、該硫化物が添加された浸出液を濾過する工程である。アンチモンが浸出したフッ素含有液から得られた浸出液には、アンチモン以外に微量の鉛、ビスマス等の不純物が溶出しているため、硫化剤を添加してこれらの不純物を硫化して沈殿させて濾過することにより固液分離する(硫化除去)。
-Filtration process-
The filtration step is a step of adding a sulfiding agent to a leachate obtained from a fluorine-containing solution from which antimony has been leached, and filtering the leachate to which the sulfide is added. In the leachate obtained from the fluorine-containing liquid from which antimony has been leached, trace amounts of impurities such as lead and bismuth are eluted in addition to antimony. In this way, solid-liquid separation is performed (sulfurization removal).

前記硫化剤としては、例えば、水硫化ナトリウム(水硫化ソーダ)、硫化ナトリウム(硫化ソーダ)、硫化水素などが挙げられる。硫化剤がガスの場合は、直接浸出液に吹き込み、硫化剤が固形物の場合は、直接浸出液に投入してもよいし、また硫化剤が溶解した水溶液として添加してもよい。ここで、硫化剤を過剰に浸出液に添加するとアンチモンまで硫化して沈殿してしまうので、硫化剤は、不純物に対して2〜10当量添加するのが良い。   Examples of the sulfiding agent include sodium hydrosulfide (sodium hydrosulfide), sodium sulfide (sodium sulfide), hydrogen sulfide, and the like. When the sulfiding agent is a gas, it is blown directly into the leachate, and when the sulfiding agent is a solid substance, it may be charged directly into the leachate or may be added as an aqueous solution in which the sulfiding agent is dissolved. Here, if an excessive amount of the sulfurizing agent is added to the leachate, antimony is sulfided and precipitated, so the sulfurizing agent is preferably added in an amount of 2 to 10 equivalents with respect to the impurities.

前記硫化剤を添加するときの浸出液のpHは、浸出工程におけるフッ素含有液のpH範囲(2以上5以下)であればよいが、浸出液のpHを4以上、好ましくは4.3以上となるように、中和剤等を添加してpH調整した後に硫化剤を添加すると効果的に不純物を硫化除去できる。   The pH of the leachate when the sulfiding agent is added may be within the pH range (2 to 5) of the fluorine-containing liquid in the leaching step, but the pH of the leachate is 4 or more, preferably 4.3 or more. In addition, impurities can be effectively removed by sulfidation by adding a neutralizing agent or the like to adjust pH and then adding a sulfiding agent.

前記硫化剤を添加する際の温度は、特に限定されるものではない。また、硫化剤を添加する際における浸出液に残渣が残った状態であってもよいが、濾過して残渣を濾別した後に硫化剤を添加した方が、硫化剤の使用量が削減できるため好ましい。   The temperature at which the sulfiding agent is added is not particularly limited. Further, the residue may be left in the leachate when adding the sulfiding agent, but it is preferable to add the sulfiding agent after filtering and separating the residue because the amount of the sulfiding agent used can be reduced. .

−中和工程−
前記中和工程は、硫化物が添加された浸出液を濾過して不純物を除去した濾液に中和剤を添加して中和する工程である。不純物を除去した濾液は、pHが5以上になると、濾液中のアンチモンが酸化アンチモンとして沈殿する。
-Neutralization process-
The neutralization step is a step of neutralizing a leachate to which sulfide is added by adding a neutralizer to the filtrate from which impurities have been removed by filtration. When the pH of the filtrate from which impurities have been removed becomes 5 or more, antimony in the filtrate precipitates as antimony oxide.

前記中和剤としては、フッ素と反応して、水に対して可溶性の塩(フッ化ナトリウムやフッ化カリウム等)を生成するもの、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等が好ましい。   Examples of the neutralizing agent include those that react with fluorine to form a water-soluble salt (sodium fluoride, potassium fluoride, etc.), such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate. Etc. are preferred.

前記中和剤として水酸化ナトリウムを用いた場合、下記反応式(3)のように、酸化アンチモンが沈殿する。中和した濾液を濾過することによって沈殿した酸化アンチモンを濾別し、更に洗浄して酸化アンチモンに付着した付着塩(フッ化ナトリウム)を除去し、乾燥して酸化アンチモンを得る。
(化3)
2Sb−F+6NaOH→Sb+6NaF+3HO・・・反応式(3)
When sodium hydroxide is used as the neutralizing agent, antimony oxide is precipitated as shown in the following reaction formula (3). By filtering the neutralized filtrate, the precipitated antimony oxide is filtered off, and further washed to remove the adhering salt (sodium fluoride) adhering to the antimony oxide, followed by drying to obtain antimony oxide.
(Chemical formula 3)
2Sb-F 3 + 6NaOH → Sb 2 O 3 + 6NaF + 3H 2 O ··· reaction formula (3)

なお、前記中和剤として、フッ素と反応して、水に対して不溶性の塩(フッ化カルシウム等)を生成するもの、例えば、水酸化カルシウム等を用いた場合、酸化アンチモンが沈殿するだけでなく、フッ化カルシウムも沈殿してしまうので、高純度の酸化アンチモンを得ることができなくなるので、好ましくない。   In addition, when the neutralizing agent that reacts with fluorine to form a salt insoluble in water (calcium fluoride or the like), such as calcium hydroxide, only antimony oxide is precipitated. In addition, calcium fluoride is also precipitated, which makes it impossible to obtain high-purity antimony oxide, which is not preferable.

また、前記浸出工程、前記濾過工程(不純物除去工程)、及び前記中和工程は、工程が簡便であるため生産性が高い。   In addition, the leaching step, the filtration step (impurity removal step), and the neutralization step have high productivity because the steps are simple.

−フッ化水素酸再生工程−
前記フッ化水素酸再生工程は、中和された濾液を濾過して得られた他の濾液に硫酸を添加してフッ化水素酸を再生する工程である。中和された濾液を濾過することによって得られた他の濾液には、フッ化物塩(例えば、フッ化ナトリウム)が溶解している。よって、この他の濾液に硫酸を添加することにより、フッ化水素酸を再生することができ、もってフッ素を効率的に再利用することができる。
-Hydrofluoric acid regeneration process-
The hydrofluoric acid regeneration step is a step of regenerating hydrofluoric acid by adding sulfuric acid to another filtrate obtained by filtering the neutralized filtrate. A fluoride salt (for example, sodium fluoride) is dissolved in another filtrate obtained by filtering the neutralized filtrate. Therefore, by adding sulfuric acid to the other filtrate, hydrofluoric acid can be regenerated, and fluorine can be efficiently reused.

−その他の工程−
前記その他の工程としては、本発明の効果を害しない限り特に制限はなく、目的に応じて適宜選択することができ、例えば、不純物を除去した液から直接金属アンチモンを得る
電解工程等が挙げられる。
-Other processes-
The other steps are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose. Examples thereof include an electrolysis step for directly obtaining metal antimony from a liquid from which impurities are removed. .

(金属アンチモンの製造方法)
本発明の金属アンチモンの製造方法は、還元工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
(Method for producing metal antimony)
The method for producing metal antimony of the present invention includes at least a reduction step, and further includes other steps as necessary.

−還元工程−
前記還元工程は、前記酸化アンチモンの製造方法で得られた酸化アンチモンにコークス及び炭酸ナトリウム等の還元剤を添加して、該酸化アンチモンを還元する工程である。酸化アンチモンにコークスを加えて500℃以上で還元すると、下記反応式(4)のように、金属アンチモンが得られる。還元状態を安定化するために、700℃以上で還元するのが好ましい。
(化4)
Sb+3CO→2Sb+3CO・・・反応式(4)
-Reduction process-
The reduction step is a step of reducing the antimony oxide by adding a reducing agent such as coke and sodium carbonate to the antimony oxide obtained by the method for producing antimony oxide. When coke is added to antimony oxide and reduced at 500 ° C. or higher, metal antimony is obtained as shown in the following reaction formula (4). In order to stabilize the reduced state, the reduction is preferably performed at 700 ° C. or higher.
(Chemical formula 4)
Sb 2 O 3 + 3CO → 2Sb + 3CO 2 ... Reaction formula (4)

前記還元反応において酸化アンチモンに炭酸ナトリウム(炭酸ソーダ)を添加することにより、炭酸ナトリウムがスラグの溶剤として機能して、スラグの流動性が増大して金属アンチモンの回収率を向上することができる。   By adding sodium carbonate (sodium carbonate) to antimony oxide in the reduction reaction, sodium carbonate functions as a solvent for slag, and the fluidity of slag is increased, so that the recovery rate of metal antimony can be improved.

−その他の工程−
前記その他の工程としては、本発明の効果を害しない限り特に制限はなく、目的に応じて適宜選択することができ、金属アンチモンに、さらに必要に応じて、水酸化ナトリウム(苛性ソーダ)を加えて乾式で精製する精製工程等が挙げられる。
-Other processes-
The other steps are not particularly limited as long as they do not impair the effects of the present invention, and can be appropriately selected according to the purpose. Further, sodium hydroxide (caustic soda) is added to the metal antimony as necessary. Examples include a purification process for purification by a dry process.

以下、本発明の実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
鉛製錬工程において電解スライムを還元した際に発生する中間工程品(組成を下記表1に示す)400gを、フッ化ナトリウム(和光純薬工業製、1級)120gが溶解した水溶液4,000mLに添加した。次に、濃硫酸(和光純薬工業製、1級)を、フッ化ナトリウム水溶液のpHが3.5になるように添加し、50℃で60分間攪拌した後、濾過して浸出液3,800mLを得た。得られた浸出液に濃度100g/Lの水硫化ナトリウム水溶液(水硫化ナトリウム・n水和物 含量65%以上(和光純薬工業製)を用いて作製した水溶液)100mLを加えて、50℃で60分間攪拌した後、濾過して濾液3,700mLを得た。次に、得られた濾液を攪拌しながら、濃度300g/Lの水酸化ナトリウム(和光純薬工業製、1級)水溶液を、濾液のpHが7になるまで添加して、沈殿物を得た。中和した濾液を濾過することによって沈殿物を濾別し、更に水で洗浄して沈殿物に付着したフッ化ナトリウムを除去し、乾燥して酸化アンチモン(組成を下記表1に示す)320gを得た。
得られた酸化アンチモン100gに、コークス(工業品)を酸化アンチモンに対して8質量%、炭酸ナトリウム(和光純薬工業製、1級)を酸化アンチモンに対して12質量%加えて、坩堝炉にて800℃で還元し、金属アンチモン(組成を下記表1に示す)60gを得た。
(Example 1)
4,000 mL of aqueous solution in which 120 g of sodium fluoride (manufactured by Wako Pure Chemical Industries, Ltd., grade 1) is dissolved in 400 g of intermediate process products (composition shown in Table 1 below) generated when electrolytic slime is reduced in the lead smelting process. Added to. Next, concentrated sulfuric acid (manufactured by Wako Pure Chemical Industries, grade 1) was added so that the pH of the aqueous sodium fluoride solution was 3.5, stirred at 50 ° C. for 60 minutes, and then filtered to obtain 3,800 mL of leachate. Got. To the obtained leachate, 100 mL of a 100 g / L sodium hydrosulfide aqueous solution (an aqueous solution prepared using sodium hydrosulfide / n-hydrate content 65% or more (manufactured by Wako Pure Chemical Industries, Ltd.)) was added. After stirring for minutes, it was filtered to obtain 3,700 mL of filtrate. Next, while stirring the obtained filtrate, an aqueous solution of sodium hydroxide having a concentration of 300 g / L (manufactured by Wako Pure Chemical Industries, Ltd., first grade) was added until the pH of the filtrate became 7, to obtain a precipitate. . The neutralized filtrate is filtered to separate the precipitate, and further washed with water to remove sodium fluoride adhering to the precipitate and dried to obtain 320 g of antimony oxide (composition shown in Table 1 below). Obtained.
To 100 g of the obtained antimony oxide, 8% by mass of coke (industrial product) with respect to antimony oxide and 12% by mass of sodium carbonate (manufactured by Wako Pure Chemical Industries, grade 1) with respect to antimony oxide are added to the crucible furnace. To 800 g of metal antimony (composition shown in Table 1 below).

Figure 2008184653
Figure 2008184653

実施例1より、アンチモンを含む工程中間品(アンチモン含有対象品)からアンチモンを湿式法により浸出させることで、アンチモンと不純物の分離性を高め、不純物を効率的に短時間で且つ確実に低減できることが分かった。   From Example 1, antimony is leached from a process intermediate product (antimony-containing target product) containing antimony by a wet method, so that the separation of antimony and impurities can be improved, and impurities can be efficiently and reliably reduced in a short time. I understood.

(実施例2)
鉛製錬工程において電解スライムを還元した際に発生する中間工程品(組成を下記表1に示す)400gを、実施例1において中和した濾液を濾過することによって得られた他の濾液(フッ素濃度が15g/L)4,000mLに添加した。次に、濃硫酸(和光純薬工業製、1級)以下同じを、他の濾液のpHが4になるように添加し、50℃で60分間攪拌した後、濾過して浸出液3700mLを得た。得られた浸出液に濃度100g/Lの水硫化ナトリウム水溶液(水硫化ナトリウム・n水和物 含量65%以上(和光純薬工業製)を用いて作製した水溶液)25mLを加えて、50℃で60分間攪拌した後、濾過して濾液3,700mLを得た。次に、この得られた濾液を攪拌しながら、濃度300g/Lの水酸化ナトリウム(和光純薬工業製、1級)水溶液を、濾液のpHが7になるまで添加して、沈殿物を得た。中和した濾液を濾過することによって沈殿物を濾別し、更に水で洗浄して沈殿物に付着したフッ化ナトリウムを除去し、乾燥して酸化アンチモン(組成を下記表1に示す)310gを得た。
得られた酸化アンチモン100gに、コークス(工業品)を酸化アンチモンに対して8質量%、炭酸ナトリウム(和光純薬工業製、1級)を酸化アンチモンに対して12質量%加えて、坩堝炉にて800℃で還元し、金属アンチモン(組成を下記表1に示す)61gを得た。このように極めて少ない工程数で純度の高い金属アンチモンが得ることが可能となった。
(Example 2)
Another filtrate (fluorine) obtained by filtering the filtrate obtained by neutralizing 400 g of the intermediate process product (composition shown in Table 1 below) generated when reducing the electrolytic slime in the lead smelting process. The concentration was 15 g / L) and 4,000 mL. Next, concentrated sulfuric acid (manufactured by Wako Pure Chemical Industries, grade 1) and the same below were added so that the pH of the other filtrate was 4, stirred at 50 ° C. for 60 minutes, and then filtered to obtain 3700 mL of a leachate. . To the obtained leachate was added 25 mL of an aqueous solution of sodium hydrosulfide having a concentration of 100 g / L (an aqueous solution prepared using sodium hydrosulfide / n-hydrate content 65% or more (manufactured by Wako Pure Chemical Industries, Ltd.)). After stirring for minutes, it was filtered to obtain 3,700 mL of filtrate. Next, while stirring the obtained filtrate, an aqueous solution of sodium hydroxide having a concentration of 300 g / L (manufactured by Wako Pure Chemical Industries, Ltd., first grade) is added until the pH of the filtrate becomes 7, to obtain a precipitate. It was. The neutralized filtrate was filtered to separate the precipitate, and further washed with water to remove sodium fluoride adhering to the precipitate, and dried to obtain 310 g of antimony oxide (composition shown in Table 1 below). Obtained.
To 100 g of the obtained antimony oxide, 8% by mass of coke (industrial product) with respect to antimony oxide and 12% by mass of sodium carbonate (manufactured by Wako Pure Chemical Industries, grade 1) with respect to antimony oxide are added to the crucible furnace. And reduced at 800 ° C. to obtain 61 g of metal antimony (composition shown in Table 1 below). Thus, it became possible to obtain metal antimony having high purity with a very small number of steps.

Figure 2008184653
Figure 2008184653

実施例2より、中和した濾液を濾過することによって得られた他の濾液には、フッ化ナトリウムが溶解しているので、この他の濾液に硫酸を添加することにより、フッ化水素酸を再生することができ、もってフッ素を効率的に再利用することができることが分かった。   From Example 2, the other filtrate obtained by filtering the neutralized filtrate has sodium fluoride dissolved therein. By adding sulfuric acid to this other filtrate, hydrofluoric acid was added. It has been found that it can be regenerated and thus fluorine can be reused efficiently.

Claims (11)

アンチモン含有対象品をフッ素含有液で処理して、該フッ素含有液にアンチモンを浸出させる浸出工程を少なくとも含むことを特徴とする酸化アンチモンの製造方法。   A method for producing antimony oxide, comprising at least a leaching step of treating an antimony-containing target product with a fluorine-containing liquid and leaching the antimony into the fluorine-containing liquid. アンチモン含有対象品は、鉛製錬工程で発生する工程中間品である請求項1に記載の酸化アンチモンの製造方法。   The method for producing antimony oxide according to claim 1, wherein the antimony-containing target product is a process intermediate product generated in a lead smelting process. フッ素含有液は、フッ化水素酸溶液と、可溶性フッ化物及び硫酸の混合溶液とから選択される少なくとも1種である請求項1から2のいずれかに記載の酸化アンチモンの製造方法。   3. The method for producing antimony oxide according to claim 1, wherein the fluorine-containing liquid is at least one selected from a hydrofluoric acid solution and a mixed solution of soluble fluoride and sulfuric acid. 浸出工程において、アンチモン含有対象品及びフッ素含有液に含まれるフッ素の合計とアンチモン含有対象品に含まれるアンチモンとのモル比(フッ素/アンチモン)が2.5以上である請求項1から3のいずれかに記載の酸化アンチモンの製造方法。   The molar ratio (fluorine / antimony) of the total of fluorine contained in the antimony-containing target product and the fluorine-containing liquid to antimony contained in the antimony-containing target product (fluorine / antimony) is 2.5 or more in the leaching step. A method for producing antimony oxide according to claim 1. 浸出工程において、フッ素含有液のpHが2以上5以下である請求項1から4のいずれかに記載の酸化アンチモンの製造方法。   The method for producing antimony oxide according to any one of claims 1 to 4, wherein in the leaching step, the pH of the fluorine-containing liquid is 2 or more and 5 or less. 更に、アンチモンが浸出したフッ素含有液から得られた浸出液に硫化剤を添加し、該硫化物が添加された浸出液を濾過する濾過工程を含む請求項1から5のいずれかに記載の酸化アンチモンの製造方法。   The antimony oxide according to any one of claims 1 to 5, further comprising a filtration step of adding a sulfiding agent to a leachate obtained from the fluorine-containing liquid in which antimony is leached, and filtering the leachate to which the sulfide is added. Production method. 濾過工程において、pHが4以上5以下である浸出液に硫化剤を添加する請求項6に記載の酸化アンチモンの製造方法。   The method for producing antimony oxide according to claim 6, wherein a sulfurizing agent is added to the leachate having a pH of 4 or more and 5 or less in the filtration step. 更に、硫化物が添加された浸出液を濾過して不純物を除去した濾液に中和剤を添加して中和する中和工程を含む請求項6から7のいずれかに記載の酸化アンチモンの製造方法。   The method for producing antimony oxide according to any one of claims 6 to 7, further comprising a neutralization step of adding a neutralizer to the filtrate obtained by filtering the leachate to which the sulfide is added to remove impurities to neutralize the filtrate. . 中和工程において、不純物を除去した濾液に中和剤を添加して、該濾液のpHを5以上とする請求項8に記載の酸化アンチモンの製造方法。   The method for producing antimony oxide according to claim 8, wherein in the neutralization step, a neutralizing agent is added to the filtrate from which impurities have been removed to adjust the pH of the filtrate to 5 or more. 更に、中和された濾液を濾過して得られた他の濾液に硫酸を添加してフッ化水素酸を再生するフッ化水素酸再生工程を含む請求項8から9のいずれかに記載の酸化アンチモンの製造方法。   The oxidation according to any one of claims 8 to 9, further comprising a hydrofluoric acid regeneration step of regenerating hydrofluoric acid by adding sulfuric acid to another filtrate obtained by filtering the neutralized filtrate. Antimony production method. 請求項1から10のいずれかに記載の方法で得られた酸化アンチモンを還元剤と共に加熱して、該酸化アンチモンを還元する還元工程を含むことを特徴とする金属アンチモンの製造方法。   A method for producing metal antimony, comprising a reduction step of heating the antimony oxide obtained by the method according to any one of claims 1 to 10 together with a reducing agent to reduce the antimony oxide.
JP2007019450A 2007-01-30 2007-01-30 Method for producing antimony oxide and method for producing metal antimony Active JP5091493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019450A JP5091493B2 (en) 2007-01-30 2007-01-30 Method for producing antimony oxide and method for producing metal antimony

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019450A JP5091493B2 (en) 2007-01-30 2007-01-30 Method for producing antimony oxide and method for producing metal antimony

Publications (2)

Publication Number Publication Date
JP2008184653A true JP2008184653A (en) 2008-08-14
JP5091493B2 JP5091493B2 (en) 2012-12-05

Family

ID=39727893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019450A Active JP5091493B2 (en) 2007-01-30 2007-01-30 Method for producing antimony oxide and method for producing metal antimony

Country Status (1)

Country Link
JP (1) JP5091493B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182765A (en) * 2018-10-18 2019-01-11 郴州市金贵银业股份有限公司 A method of star metal is prepared with antimony cigarette ash
CN112410581A (en) * 2020-10-10 2021-02-26 中国恩菲工程技术有限公司 Method for producing metal antimony from antimony oxide powder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827999A (en) * 1971-08-13 1973-04-13
JPS5231906A (en) * 1975-06-30 1977-03-10 Univ Melbourne Hydrometallurgy using fluorine
JPS60258433A (en) * 1984-06-06 1985-12-20 Sumitomo Metal Mining Co Ltd Method for reducing mineral containing antimony oxide
JPH05311259A (en) * 1992-04-13 1993-11-22 Nikko Kinzoku Kk Wet process treatment of lead electrolyzing anode slime
JPH1072631A (en) * 1996-05-06 1998-03-17 Engitec Spa Wet process metallurgical and electrochemical treatment of sulfur-antimony ore for forming electrolytic antimony and simple substance sulfur
JP2000511234A (en) * 1996-05-21 2000-08-29 アサーコ・インコーポレーテッド Iron fluoroborate (III) extractant hydrometallurgy for metal recovery
JP2002241863A (en) * 2001-02-09 2002-08-28 Mitsui Mining & Smelting Co Ltd Method for removing antimony from solution for collecting and refining tantalum, niobium or the like

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827999A (en) * 1971-08-13 1973-04-13
JPS5231906A (en) * 1975-06-30 1977-03-10 Univ Melbourne Hydrometallurgy using fluorine
JPS60258433A (en) * 1984-06-06 1985-12-20 Sumitomo Metal Mining Co Ltd Method for reducing mineral containing antimony oxide
JPH05311259A (en) * 1992-04-13 1993-11-22 Nikko Kinzoku Kk Wet process treatment of lead electrolyzing anode slime
JPH1072631A (en) * 1996-05-06 1998-03-17 Engitec Spa Wet process metallurgical and electrochemical treatment of sulfur-antimony ore for forming electrolytic antimony and simple substance sulfur
JP2000511234A (en) * 1996-05-21 2000-08-29 アサーコ・インコーポレーテッド Iron fluoroborate (III) extractant hydrometallurgy for metal recovery
JP2002241863A (en) * 2001-02-09 2002-08-28 Mitsui Mining & Smelting Co Ltd Method for removing antimony from solution for collecting and refining tantalum, niobium or the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182765A (en) * 2018-10-18 2019-01-11 郴州市金贵银业股份有限公司 A method of star metal is prepared with antimony cigarette ash
CN112410581A (en) * 2020-10-10 2021-02-26 中国恩菲工程技术有限公司 Method for producing metal antimony from antimony oxide powder

Also Published As

Publication number Publication date
JP5091493B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP6304530B2 (en) Tellurium separation and recovery method
JP6241661B2 (en) Arsenic separation and immobilization method
US20080124269A1 (en) Purified molybdenum technical oxide from molybdenite
US20080166280A1 (en) Purification Of Molybdenum Technical Oxide
PT1834001E (en) Method for the hydrometallurgical treatment of sulfide concentrate containing several valuable metals
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
JP7016463B2 (en) How to collect tellurium
JP2016507637A (en) Method for producing scandium-containing solid material with high scandium content
JP4207959B2 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
WO2013129130A1 (en) Method for separating rhenium and arsenic, and method for purifying rhenium
JPS5952218B2 (en) Method for recovering gold from copper electrolytic slime
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
JP5843069B2 (en) Tellurium separation and recovery method
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP5200588B2 (en) Method for producing high purity silver
SE452169B (en) PROCEDURE FOR EXPLOITING THE METAL WORLD OF IRON-INHALING MATERIAL
JP5091493B2 (en) Method for producing antimony oxide and method for producing metal antimony
JP6233177B2 (en) Method for producing rhenium sulfide
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JPS6059975B2 (en) Method for concentrating silver from copper electrolytic slime
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP6163392B2 (en) Germanium recovery method
JP7005384B2 (en) How to collect tellurium
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP2005506449A (en) Solution purification method in the hydrometallurgical treatment of copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250