JP2015059255A - Electrolytic polishing apparatus for hollow tube - Google Patents

Electrolytic polishing apparatus for hollow tube Download PDF

Info

Publication number
JP2015059255A
JP2015059255A JP2013194932A JP2013194932A JP2015059255A JP 2015059255 A JP2015059255 A JP 2015059255A JP 2013194932 A JP2013194932 A JP 2013194932A JP 2013194932 A JP2013194932 A JP 2013194932A JP 2015059255 A JP2015059255 A JP 2015059255A
Authority
JP
Japan
Prior art keywords
hollow tube
liquid
electrolytic
electrode
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013194932A
Other languages
Japanese (ja)
Other versions
JP6231835B2 (en
Inventor
義明 井田
Yoshiaki Ida
義明 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUI MEKKI KOGYO KK
Original Assignee
MARUI MEKKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUI MEKKI KOGYO KK filed Critical MARUI MEKKI KOGYO KK
Priority to JP2013194932A priority Critical patent/JP6231835B2/en
Publication of JP2015059255A publication Critical patent/JP2015059255A/en
Application granted granted Critical
Publication of JP6231835B2 publication Critical patent/JP6231835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polishing apparatus for hollow tubes arranged vertically.SOLUTION: In an electrolytic polishing apparatus for polishing the inside surface of a hollow tube, a liquid guide chamber formed with a liquid circulation port at a position of a specified height is provided at the upper end of the hollow tube. An electrolytic solution is injected from the lower end of the hollow tube by liquid circulation means and circulated from the hollow tube through the liquid circulation port of the liquid guide chamber. Bubble detection means detects bubbles staying at positions above a waterline in the vicinity of the liquid circulation port of the liquid guide chamber. Control means controls the bubble formation condition according to the state of detected bubbles. The bubble detection means preferably uses an optical sensor detecting transmission of light on the upper side of the waterline of the liquid guide chamber.

Description

本発明は空洞管の内面を電解研磨するための電解研磨装置に関する。   The present invention relates to an electrolytic polishing apparatus for electrolytic polishing an inner surface of a hollow tube.

陽電子と陰電子を衝突させ、ビッグバン状態を形成する装置としてリニアコライダが建設されようとしている(ILC計画)。リニアコライダには図5に示すように、両端にフランジ101a、101bを有し、軸方向に周期的に径が変化するニオブの空洞管100が使用される。リニアコライダを用いた実験で所定の効果を得るための要素の1つとして、このニオブの空洞管100の内面が平滑になっているか否かがある。   A linear collider is being built as a device that collides positrons and negative electrons to form a big bang state (ILC project). As shown in FIG. 5, the linear collider uses a niobium hollow tube 100 having flanges 101a and 101b at both ends and whose diameter periodically changes in the axial direction. One of the factors for obtaining a predetermined effect in an experiment using a linear collider is whether or not the inner surface of the niobium hollow tube 100 is smooth.

ところが、空洞管100は、成形時に過大な圧力や熱を掛けるところから、その内表面の組織は不均一に歪んだ状態となっている。この表面状態をこのままにしておくと、電気的特性、磁気的特性も不均一な状態となり、結果として、電子や陽子に所定の速度を与えることができなくなる。そこで、空洞管の内面を所定の厚さ、研磨する方法が開発されている。   However, since the hollow tube 100 is subjected to excessive pressure and heat during molding, the structure of the inner surface thereof is unevenly distorted. If this surface state is left as it is, the electrical and magnetic characteristics are also non-uniform, and as a result, a predetermined speed cannot be given to electrons and protons. Therefore, a method of polishing the inner surface of the hollow tube to a predetermined thickness has been developed.

ニオブ空洞管を研磨する方法としては、化学的に研磨する方法(以後「化学研磨」と称す)及び電気化学的に研磨する方法(以後「電解研磨」と称す)の2種類が知られている。   As a method for polishing a niobium hollow tube, two types are known: a method of polishing chemically (hereinafter referred to as “chemical polishing”) and a method of polishing electrochemically (hereinafter referred to as “electrolytic polishing”). .

化学研磨法は、空洞管全体を電解液に浸漬するので、作業自体は簡便であるものの、本来不要な空洞管の外面まで研磨され、液の不要な汚染や老化・劣化を促し、また研磨対象物の浸漬方向によって研磨量に著しい差異を生ずるという問題がある。 また、発生するガスが空洞管の形状によっては、その内表面に付着して研磨状態を損ねる等難点が多い。   The chemical polishing method immerses the entire hollow tube in the electrolytic solution, so the operation itself is simple, but the outer surface of the originally unnecessary hollow tube is polished to promote unnecessary contamination, aging and deterioration of the liquid, and to be polished. There is a problem that the amount of polishing varies significantly depending on the immersion direction of the object. In addition, depending on the shape of the hollow tube, the generated gas has many disadvantages such as adhering to the inner surface and impairing the polished state.

電解研磨については以下のような例がある。   Examples of electrolytic polishing include the following.

特公昭55−12116号には、ニオブの空洞管の両端開口部を水平にした状態で、フッ酸、硫酸、水からなる電解液中に空洞管の下半分を部分浸漬して、停止状態で短時間通電して部分電解研磨し、次いで通電を停止したのち回転させ、酸化膜を溶解除去することを何回も繰り返して行う間歇的な電解研磨が開示されている。   In Japanese Patent Publication No. 55-12116, the both ends of the hollow tube of niobium are leveled, and the lower half of the hollow tube is partially immersed in an electrolytic solution of hydrofluoric acid, sulfuric acid, and water. Discontinuous electropolishing is disclosed in which energization is performed for a short time, partial electropolishing is performed, and then the energization is stopped and then rotated to dissolve and remove the oxide film many times.

この方法も本来、研磨を必要としない空洞管の外面をも同時に研磨することになり、空洞管の不要な溶解ロスが発生するとともに、電解液が不要に消耗し、また汚染することになる。また、研磨が間歇的であることによる、研磨段差が発生し、加えて、揮散性が高く有害なガスを発生するフッ酸と、発熱性の高い硫酸を扱う極めて危険性の高い作業となっている。   This method also inherently polishes the outer surface of the hollow tube that does not require polishing, which causes unnecessary dissolution loss of the hollow tube and unnecessarily consumes and contaminates the electrolyte. In addition, polishing steps occur due to intermittent polishing, and in addition, it is extremely dangerous work that handles hydrofluoric acid that generates volatile gas with high volatility and sulfuric acid with high heat generation. Yes.

特開昭61−23799号に開示の発明は、ニオブの空洞管を回転させながら、通液パイプに連通する吹出孔から電解液を送液し、部分浸漬状態で連続電解しようとするようになっている。この構成で、研磨時間の短縮が計れると同時に無駄にニオブ材の溶解を起こさず、従って、電解液の不要な汚染や消耗が抑制されることになる。   In the invention disclosed in Japanese Patent Application Laid-Open No. 61-23799, while rotating a niobium hollow tube, an electrolytic solution is fed from a blowout hole communicating with a liquid passing pipe, and continuous electrolysis is attempted in a partially immersed state. ing. With this configuration, the polishing time can be shortened, and at the same time, the niobium material is not melted unnecessarily. Therefore, unnecessary contamination and consumption of the electrolyte are suppressed.

しかながら、通液パイプに設けた吹出孔を電解液中に開口して、電解液を貯留した電解液中に吐出させるようにしているので、電解液の流速の差が研磨の状態に現れ、ニオブの空洞管の内面に研磨外観ムラを生じるという問題があった。   However, since the blowout hole provided in the liquid passage pipe is opened in the electrolyte and discharged into the stored electrolyte, a difference in the flow rate of the electrolyte appears in the polishing state. There was a problem that unevenness of the polished appearance was caused on the inner surface of the niobium hollow tube.

特開平11−350200に開示の発明は、基本的に上記特開昭61−23799号に開示の発明と同じであるが、前記通液パイプに設けた吹出孔を、研磨される側と反対側である電解液の上側に開口させて、貯留した電解液に直接電解液が流れ込まないようにして、研磨の均一化を図ろうとしている。   The invention disclosed in Japanese Patent Application Laid-Open No. 11-350200 is basically the same as the invention disclosed in the above Japanese Patent Application Laid-Open No. 61-23799, except that the outlet hole provided in the liquid flow pipe is opposite to the side to be polished. In order to achieve uniform polishing, an opening is made above the electrolyte solution so that the electrolyte solution does not flow directly into the stored electrolyte solution.

特開昭61-23799JP 61-23799 特開平11−350200JP-A-11-350200

空洞管の内面の研磨に電解研磨を使用する場合、発生ガスの処理を適切にしないと、ガスに触れた部分が白濁したり、逆に黒く汚れたりする。特に、本願が主として対応しようとしているリニアコライダの加速器としての空洞管は周期的に内径が変化する構造であり、横向きの状態で電解研磨する場合はもちろん、縦向きに電解研磨する場合であっても内部にガスが滞留しやすい形状となっている。   When electrolytic polishing is used for polishing the inner surface of the hollow tube, if the treatment of the generated gas is not appropriate, the portion that has come into contact with the gas becomes cloudy or conversely becomes black. In particular, the cavity tube as a linear collider accelerator that the present application mainly intends to deal with has a structure in which the inner diameter periodically changes, and even in the case of electrolytic polishing in a horizontal state, even in the case of electrolytic polishing in a vertical direction, It has a shape in which gas tends to stay inside.

上記した従来の電解研磨方法はいずれも、空洞管は横向きになっており、明らかにガスが滞留する構造であり、滞留したガスをどのようにして外部に逃がすのかが明らかになっていない。   In any of the above-described conventional electropolishing methods, the hollow tube is in a horizontal direction, and gas is clearly retained. It is not clear how the accumulated gas is released to the outside.

本願出願人は、国際出願JP2013-068593号で、前記空洞管を縦にした状態で電解研磨できる電極を、それを用いた電解研磨装置とともに開示している。   In the international application JP2013-068593, the applicant of the present application discloses an electrode that can be electropolished with the hollow tube in a vertical state, together with an electropolishing apparatus using the electrode.

これによると、電極は空洞管の内面に沿った形状に変化する翼を持つので、内面を高精度に研磨することができるようになっている。この場合、空洞管は縦に設置するようになっているので、前記各従来技術より空洞管の内部でガスが滞留することは軽減される。しかしながら、空洞管は周期的に内径が変化しているので、この観点からは発生するガスは内部に滞留する確率が高く、しかも内部に滞留したガスは外部から目視することができないので研磨の質を著しく低下させる懼れがある。   According to this, since the electrode has a blade that changes in shape along the inner surface of the hollow tube, the inner surface can be polished with high accuracy. In this case, since the hollow pipe is installed vertically, it is less likely that the gas stays inside the hollow pipe than the conventional techniques. However, since the inside diameter of the hollow tube changes periodically, the gas generated is highly likely to stay inside from this point of view, and the gas staying inside cannot be visually observed from the outside. There is a fear of significantly lowering.

本発明は上記従来の事情に鑑みて提案されたものであって、電解研磨時に発生するガスを空洞管の内部に滞留させず、かつ、ガスが発生したときにはそれを検知して電解液の循環量や研磨電流を制御できる電解研磨装置を提供することを目的とするものである。   The present invention has been proposed in view of the above-described conventional circumstances, and does not cause the gas generated during electropolishing to stay in the hollow tube, and detects the gas when it is generated and circulates the electrolyte. An object of the present invention is to provide an electrolytic polishing apparatus capable of controlling the amount and polishing current.

本発明は、空洞管の内面を、軸方向に挿入された電極によって電解研磨する電解研磨装置を前提とする。   The present invention is premised on an electropolishing apparatus for electropolishing the inner surface of a hollow tube with an electrode inserted in the axial direction.

前記電解研磨装置において、前記空洞管の上端に、所定高さの位置に液循環口が設けられた液導出室が設けられる。液循環手段で前記空洞管の下端から空洞管に電解液を注入し、さらに、空洞管から液導出室の前記液循環口を介し電解液を循環させる。泡検出手段は、前記液導出室の液循環口付近の喫水線から上の位置に滞留する泡を検出する。制御手段は、前記検出された泡の状態に応じて泡の発生状態を制御する。すなわち、電解に使用している電圧あるいは循環している電解液の流量を制御する。   In the electropolishing apparatus, a liquid lead-out chamber provided with a liquid circulation port at a predetermined height is provided at the upper end of the hollow pipe. The electrolytic solution is injected from the lower end of the hollow tube into the hollow tube by the liquid circulation means, and the electrolytic solution is further circulated from the hollow tube through the liquid circulation port of the liquid outlet chamber. The bubble detection means detects bubbles staying at a position above the water line near the liquid circulation port of the liquid outlet chamber. The control means controls the bubble generation state according to the detected bubble state. That is, the voltage used for electrolysis or the flow rate of the circulating electrolyte is controlled.

前記泡検出手段は、液導出室の喫水線の上側の光の透過を検出する光センサを用いるのが好ましい。   The bubble detection means preferably uses an optical sensor that detects transmission of light above the water line of the liquid outlet chamber.

電解研磨中に電解液に発生するガスは泡の形態となる。上記構成によって、電解液に泡が発生すると、電解液が空洞管を下側から上側の液導出室に循環しているので、前記発生したガスは液導出室の喫水にまで上昇することになる。従って、前記喫水線位置に泡が滞留すると光センサが働くことになる。これを受けて制御手段で、電解液の循環速度を大きくする、あるいは、電解電流を小さくする等の制御がなされ、ガスの滞留がない状態が維持できる。   The gas generated in the electrolyte during electropolishing is in the form of bubbles. With the above configuration, when bubbles are generated in the electrolytic solution, the electrolytic solution circulates through the hollow pipe from the lower side to the upper liquid outlet chamber, and thus the generated gas rises to the draft of the liquid outlet chamber. . Therefore, if bubbles stay at the waterline position, the optical sensor will work. In response to this, the control means performs control such as increasing the circulation rate of the electrolytic solution or decreasing the electrolytic current, and can maintain a state in which no gas stays.

本発明の装置の主要部を示す側面図The side view which shows the principal part of the apparatus of this invention 本発明の装置の全体を示す側面図The side view which shows the whole apparatus of this invention 本発明に使用する単位の電極Unit electrode used in the present invention 本発明に使用する電極の全体図Overall view of electrodes used in the present invention 空洞管の全体図Overall view of hollow tube

図1は本発明に係る装置を用いて、空洞管の電界研磨をしている状態を示す図である。   FIG. 1 is a view showing a state where a hollow tube is subjected to electric field polishing using an apparatus according to the present invention.

基台10上に、架台11が設けられ、当該架台11の上側に、研磨対象物である空洞管100が一方のフランジ101aを利用して固定される。当該架台11の下側には、空洞管と通液性を保って液導入室14が設けられ、当該液導入室14には電解液が電解液タンク15からポンプ16を介して供給され、さらに、当該液導入室14を介して架台11上に載置された空洞管100の内部に導入できるようになっている。   A gantry 11 is provided on the gantry 10, and a hollow pipe 100 as an object to be polished is fixed to the upper side of the gantry 11 using one flange 101 a. A liquid introduction chamber 14 is provided below the pedestal 11 so as to maintain liquid permeability with the hollow tube, and an electrolytic solution is supplied to the liquid introduction chamber 14 from an electrolyte tank 15 via a pump 16. The liquid can be introduced into the hollow tube 100 placed on the gantry 11 via the liquid introduction chamber 14.

この状態で、電極20が空洞管100の上端から差し込まれる。この電極は所定の太さの棒状であってもかまわないが、ここでは国際出願JP2013-068593号に開示する電極を使用しており、当該電極20自体の構造および差込方法については後に説明する。   In this state, the electrode 20 is inserted from the upper end of the cavity tube 100. This electrode may be a rod having a predetermined thickness, but here, the electrode disclosed in International Application JP2013-068593 is used, and the structure of the electrode 20 itself and the insertion method will be described later. .

上記電極20が挿入された後に、空洞管100の上側のフランジ101b上に透明の液導出室19が取り付けられる。この液導出室19は図2に示すように所定高さの上底を備えた空洞よりなり、前記所定高さの半分程度の位置に、以下のように循環する電解液が排出される循環口191が設けられる。当該循環口191は排出される電解液を電解液タンク15に戻す循環ホース192に連通する構成となっている。   After the electrode 20 is inserted, a transparent liquid outlet chamber 19 is mounted on the upper flange 101 b of the cavity tube 100. As shown in FIG. 2, the liquid lead-out chamber 19 is formed of a cavity having an upper base at a predetermined height, and a circulation port through which an electrolyte that circulates is discharged at a position about half the predetermined height as follows. 191 is provided. The circulation port 191 is configured to communicate with a circulation hose 192 that returns the discharged electrolyte solution to the electrolyte tank 15.

上記循環口191の位置は、電解液の喫水線となり、当該喫水線に対応して、径方向の一方の外部から発光素子40aで発光し、他方側で受光素子40bで受光する光センサ40が設けられる。電解処理中に泡が発生すると、喫水線より上に浮上して滞留することになり、前記光センサ40は当該泡の存在を検知することができる。   The position of the circulation port 191 serves as a water line of the electrolyte, and corresponding to the water line, there is provided an optical sensor 40 that emits light from the light emitting element 40a from one outside in the radial direction and receives light from the light receiving element 40b on the other side. . When bubbles are generated during the electrolytic treatment, the bubbles rise above the water line and stay, and the optical sensor 40 can detect the presence of the bubbles.

この光センサ40の出力は制御手段50に入力され、泡の発生を検出したときは、後述する泡の発生を抑える制御をすることになる。   The output of the optical sensor 40 is input to the control means 50, and when the generation of bubbles is detected, control is performed to suppress the generation of bubbles, which will be described later.

尚、液導出室19の上底付近には、ガス排出口194が設けられ、電解処理中に発生するガスを、減圧ポンプ80で引いて排出するようになっている。ガス排出口194に対向する側に調整弁81が設けられ、当該弁の開閉で減圧ポンプ80での吸引力を調整できるようになっている。また、上記排出口191の上側で前記ガス排出口194の下側に予備的に第二の排出口193が設けられ、過剰な泡が大量に滞留したとき、当該第二の排出口193にから、ホース195を介して電解液タンク15に戻すようにしている。   A gas discharge port 194 is provided in the vicinity of the upper bottom of the liquid lead-out chamber 19 so that the gas generated during the electrolytic process is discharged by being drawn by the decompression pump 80. An adjustment valve 81 is provided on the side facing the gas discharge port 194, and the suction force of the decompression pump 80 can be adjusted by opening and closing the valve. In addition, a second discharge port 193 is preliminarily provided above the discharge port 191 and below the gas discharge port 194. When a large amount of excessive bubbles stays, the second discharge port 193 is connected to the second discharge port 193. The electrolyte tank 15 is returned via a hose 195.

空洞管100全体は空調カバー61に収められており、当該空調カバー61の雰囲気は熱交換機60で所定の温度に調整さるようになっている。さらに、電解液タンク15の電解液はチラー70の冷水によって冷却されるようになっている。更に、本件では国際出願JP2013-068593号に開示の翼を持った電極を使用しており、当該電極20をゆっくり回転させる駆動手段120が設けられている。   The entire hollow tube 100 is housed in an air conditioning cover 61, and the atmosphere of the air conditioning cover 61 is adjusted to a predetermined temperature by the heat exchanger 60. Further, the electrolytic solution in the electrolytic solution tank 15 is cooled by the cold water in the chiller 70. Furthermore, in this case, an electrode having a wing disclosed in International Application JP2013-068593 is used, and a driving means 120 for slowly rotating the electrode 20 is provided.

上記の構成で、電解処理の開始前に、給液ポンプ16で電解液タンク15から液導入室14を介して空洞管100に電解液を充填し、さらに空洞管100から液導出室19を介して当該液導出室19の循環口191から循環ホース192を介して電解液タンク15に電解液を循環する。この循環は、所定の流量継続的に行われ、電解液の速度を一定に保持する。   With the above configuration, before the start of the electrolytic treatment, the liquid supply pump 16 fills the hollow pipe 100 with the electrolytic solution from the electrolytic solution tank 15 through the liquid introduction chamber 14, and further from the hollow pipe 100 through the liquid outlet chamber 19. Then, the electrolytic solution is circulated from the circulation port 191 of the liquid discharge chamber 19 to the electrolytic solution tank 15 through the circulation hose 192. This circulation is continuously performed at a predetermined flow rate, and the speed of the electrolytic solution is kept constant.

電解が進行して液温が上昇すると、電解反応が激しくなり、空洞管100の内部で泡のガスが泡の形態で発生する。   As the electrolysis progresses and the liquid temperature rises, the electrolysis reaction becomes intense, and bubble gas is generated in the form of bubbles inside the hollow tube 100.

液の循環に従って液導出室19に押し出され、あるいは浮上した泡は前記循環口191の近辺の喫水線の上にまで浮上することになり、泡が発生しないとき、あるいは泡が少ないときは前記発光素子40aからの光ビームが受光素子40bで受光されることになるが、泡が多くなると発光素子からの光を遮ることになる。   The bubbles pushed out or floated to the liquid outlet chamber 19 according to the circulation of the liquid will float up to the water line near the circulation port 191, and when the bubbles are not generated or when there are few bubbles, the light emitting element. The light beam from 40a is received by the light receiving element 40b, but when the number of bubbles increases, the light from the light emitting element is blocked.

光が遮られたとき、過剰な電解処理をしていることになるので、制御手段50は泡の発生を抑える制御をすることになる。泡の発生を抑える制御としては、電解電流を少なくすること、ポンプ16を制御して液の循環量を多くすること、熱交換機60を制御して空調室61内の雰囲気温度を下げること、チラー70を制御して液温を下げること、さらに、減圧ポンプ70とバルブ71によって液導出室19内の圧力を強制的に排出すること等が考えられる。また、本件では国際出願JP2013-068593号に開示する電極を使用している。この電極の回転速度も泡の発生に関係するところから、駆動手段120による電極の回転数の制御によっても泡の発生を制御することができる。上記の少なくとも1つの手段を講じて泡の発生を抑えることによって、電解研磨後の表面を満足できる状態に保つことができる。   When the light is blocked, an excessive electrolytic treatment is performed, so that the control means 50 performs control to suppress the generation of bubbles. Control for suppressing the generation of bubbles includes reducing the electrolysis current, increasing the circulation amount of the liquid by controlling the pump 16, lowering the ambient temperature in the air conditioning chamber 61 by controlling the heat exchanger 60, chiller It is conceivable that the liquid temperature is lowered by controlling 70, and the pressure in the liquid outlet chamber 19 is forcibly discharged by the decompression pump 70 and the valve 71. In this case, an electrode disclosed in International Application JP2013-068593 is used. Since the rotation speed of the electrode is also related to the generation of bubbles, the generation of bubbles can be controlled by controlling the number of rotations of the electrode by the driving means 120. By taking at least one of the above measures to suppress the generation of bubbles, the surface after electropolishing can be kept in a satisfactory state.

空洞管100内の電解研磨用の電極としては直線上の電極棒を空洞管100の軸の位置に挿入することも考えられるが、本願出願人は、国際出願JP2013-068593号で、空洞管を電解研磨するための電極について出願しているので、以下簡単に説明する。   As an electrode for electropolishing in the hollow tube 100, it is conceivable to insert a straight electrode rod at the position of the axis of the hollow tube 100. However, the applicant of the present application disclosed an international application JP2013-068593 with a hollow tube. Since an application for an electrode for electropolishing has been filed, a brief description will be given below.

図3は、空洞管100の1のふくらみに対応した単位の電極20を示すものである。   FIG. 3 shows a unit electrode 20 corresponding to one bulge of the hollow tube 100.

電極軸21に、空洞管100の膨らみの内形状に対応した単翼22a、22b・・が少なくとも1枚取り付けられる。当該各単翼22a、22b・・は可撓性を供え、前記電極軸21に巻回可能となっている。一方、前記各単翼22a、22b・・に対応した位置に軸方向にスリット23a、23b・・が設けられた収納筒29を用意し、前記スリット29に前記各単翼22a、22b・・が挿通された状態で、電極軸21に前記収納筒29を嵌挿する。当然のことながら、収納筒29は電極軸21に対して径は大きくなり、電極軸21との間にスペーサ30が介在される。   At least one single blade 22a, 22b,... Corresponding to the inner shape of the bulge of the hollow tube 100 is attached to the electrode shaft 21. The single blades 22a, 22b,... Have flexibility and can be wound around the electrode shaft 21. On the other hand, a storage cylinder 29 provided with slits 23 a, 23 b... In the axial direction is prepared at positions corresponding to the single blades 22 a, 22 b..., And the single blades 22 a, 22 b. The storage cylinder 29 is inserted into the electrode shaft 21 in the inserted state. As a matter of course, the storage cylinder 29 has a larger diameter than the electrode shaft 21, and a spacer 30 is interposed between the storage tube 29 and the electrode shaft 21.

これによって、電極軸21に対して収納筒29を一方に回転すると、各単翼22a、22b・・は電極軸21に巻回され、収納筒29の内部に収納された状態となる(収納状態)。各単翼22a、22b・・の先端をスリット23a、23bの先端に少し出した状態で前記収納状態を形成し、ついで、電極軸21に対して収納筒29を他方に回転すると、各単翼22a、22b・・)は電極軸21から延伸する。各単翼22a、22b・・は可撓性を備えており、各単翼22a、22b・・の形状は空洞管100の内周面の形状に符合するので、前記延伸によって、各単翼22a、22b・・の周端と空洞管100の内面の距離は、いずれのポイントでも略一定となり、かつ、電解研磨に適した距離まで近づくことになる(稼動状態)。これによって、所定の電界を掛け、かつ、電極20をゆっくり回転させると、空洞管100の内面はむらなく均一に電解研磨が可能となる。   Accordingly, when the storage cylinder 29 is rotated in one direction with respect to the electrode shaft 21, the single blades 22a, 22b,... Are wound around the electrode shaft 21 and are stored in the storage cylinder 29 (storage state). ). When the storage state is formed with the tips of the single blades 22a, 22b,... Slightly protruding from the tips of the slits 23a, 23b, and then the storage tube 29 is rotated to the other side with respect to the electrode shaft 21, the single blades 22a, 22b... Extend from the electrode shaft 21. Each of the single blades 22a, 22b,... Is flexible, and the shape of each single blade 22a, 22b,... Matches the shape of the inner peripheral surface of the cavity tube 100. The distance between the peripheral ends of 22b,... And the inner surface of the hollow tube 100 is substantially constant at any point and approaches a distance suitable for electrolytic polishing (operation state). As a result, when a predetermined electric field is applied and the electrode 20 is slowly rotated, the inner surface of the hollow tube 100 can be uniformly electropolished without unevenness.

尚、図3では各単翼22a、22b・・を金属の網体で構成している。当該各単翼22a、22b・・に可撓性を与えるための構造、あるいは材質の選択は種々あるが、図3では、可撓性をもつ合成樹脂板221a、221b・・を各単翼の基端(電極軸側)から先端に貼り渡すようにしている。更に図3では、各単翼22a、22b・・の先端の、空洞管100の膨らみの頂点に対応する位置に周方向に長い補助電極220a、220b・・を設けて、当該膨らみの頂点部分が研磨不足にならないようにしている。   In FIG. 3, each single blade 22a, 22b,... Is formed of a metal net. There are various structures or materials for giving flexibility to the single blades 22a, 22b,... In FIG. 3, the synthetic resin plates 221a, 221b,. The base end (electrode shaft side) is pasted to the front end. Further, in FIG. 3, auxiliary electrodes 220 a, 220 b... That are long in the circumferential direction are provided at positions corresponding to the bulge apexes of the hollow tube 100 at the tips of the single blades 22 a, 22 b. I try not to run out of polishing.

更に、収納状態から稼動状態へまたはその逆の状態に行こうするには、収納筒29を手で押さえて、摩擦力に抗して電極軸21を回転させることになるが、電極20全体を回転させるためには、電極軸21に弱い回転力を与えることで足りる。   Further, in order to go from the storage state to the operation state or vice versa, the storage tube 29 is pressed by hand and the electrode shaft 21 is rotated against the frictional force. In order to rotate, it is sufficient to apply a weak rotational force to the electrode shaft 21.

図4は、複数のふくらみを持つ空洞管100に対応した電極を示すものである。   FIG. 4 shows an electrode corresponding to the hollow tube 100 having a plurality of bulges.

前記各単翼22a、22b・・を1組とする翼電極22が、膨らみの数に対応する数、電極軸21の軸方向に設けられ、収納筒29が電極軸21にスペーサ30を介して挿入される。このとき、前記各翼電極22の各単翼22a、22b・・と、収納筒29に設けられたスリット23a、23b・・との関係は前記単位の電極で説明したとおりである。   Each of the single blades 22 a, 22 b... Is provided with a pair of blade electrodes 22 corresponding to the number of bulges in the axial direction of the electrode shaft 21, and a storage cylinder 29 is disposed on the electrode shaft 21 via a spacer 30. Inserted. At this time, the relationship between each single blade 22a, 22b,... Of each blade electrode 22 and the slits 23a, 23b,.

上記の電極20を前記架台11上に設置した空洞管100の上から同軸に挿入することになるが、挿入に際して、前記収納状態で挿入し、その後、稼動状態にして前記電解研磨を実行することになる。   The electrode 20 is inserted coaxially from above the hollow tube 100 installed on the gantry 11, but when inserted, the electrode 20 is inserted in the housed state, and then in an operating state to perform the electrolytic polishing. become.

電解研磨処理が終了後は収納状態にして電極20を抜き取ることになる。   After the electrolytic polishing process is completed, the electrode 20 is pulled out in the housed state.

この電極20を使用して電解処理をするとき、電極20は空洞管100に対してゆっくり回転し、しかも、電解液は所定の速度で循環している。さらに、各単翼22a、22b・・は電極軸21を回転させることによって回転している。従って、電解液は螺旋上に回転しながら空洞管100の内部を上昇するので、空洞管100の内部でガス(泡)は発生しにくいが、流す電流と電解液の循環速度の関係のバランスが崩れるとガスが泡の形態で発生することになる。   When electrolytic treatment is performed using the electrode 20, the electrode 20 rotates slowly with respect to the hollow tube 100, and the electrolytic solution circulates at a predetermined speed. Further, each single blade 22a, 22b,... Rotates by rotating the electrode shaft 21. Accordingly, since the electrolyte rises inside the hollow tube 100 while rotating in a spiral, gas (bubbles) is hardly generated inside the hollow tube 100, but the balance between the flowing current and the circulation rate of the electrolytic solution is balanced. When broken, gas is generated in the form of bubbles.

泡が発生すると、前記光センサ40で検出され、電解電圧、循環する液の流量、電極(翼)の回転速度、空調カバー16内の温度、液の温度、液導出室の引き圧のいずれかを調整することになる。   When bubbles are generated, they are detected by the optical sensor 40, and are any one of an electrolysis voltage, a flow rate of circulating liquid, a rotation speed of an electrode (wing), a temperature in the air conditioning cover 16, a temperature of the liquid, and a pulling pressure of the liquid discharge chamber. Will be adjusted.

本発明において、電解液としては従来と同様の電解液(例えばフッ酸、硫酸、水からなる電解液)が使用されることは勿論である。また、ここで研磨される厚みは、当該空洞管が高速加速器である場合には、50μm〜100μmである。更に、研磨時に掛かる電圧は15V前後、流れる電流は20A/dm程度、電極の回転数は5rpm程度、電解液の循環流量は5L/minである。 In the present invention, it is needless to say that an electrolytic solution similar to the conventional one (for example, an electrolytic solution comprising hydrofluoric acid, sulfuric acid, and water) is used as the electrolytic solution. The thickness polished here is 50 μm to 100 μm when the hollow tube is a high-speed accelerator. Furthermore, the voltage applied during polishing is around 15 V, the flowing current is about 20 A / dm 2 , the rotation speed of the electrode is about 5 rpm, and the circulating flow rate of the electrolyte is 5 L / min.

また、本願発明に使用する電極は、ニオブの電解研磨だけでなく、種々の金属管の内面を電解研磨するときに使用でき、更に、電解研磨だけでなく、電解メッキにも利用できる。   The electrode used in the present invention can be used not only for electrolytic polishing of niobium but also for electrolytic polishing of the inner surface of various metal tubes, and can be used not only for electrolytic polishing but also for electrolytic plating.

以上説明したように、本発明は、空洞管の内部の電解研磨の進行にともなってガスが泡の形態で発生したとき、その泡を検出して、電解状態、例えば流れる電流あるいは電解液の循環量を調整するので、空洞管、特にリニアコライザに用いる空洞化の内面を短時間に均一に研磨することができる、産業上の利用可能性は極めて高い。   As described above, according to the present invention, when gas is generated in the form of bubbles with the progress of electrolytic polishing inside the hollow tube, the bubbles are detected, and the electrolytic state, for example, the flowing current or the circulation of the electrolyte is detected. Since the amount is adjusted, the industrial applicability is very high because the hollow tube, particularly the inner surface of the hollowing used for the linear equalizer can be uniformly polished in a short time.

10 基台
11 架台
14 液導入室
17 液導出室
21 電極軸
20 電極
21 電極軸
22 翼電極
22a、22b・・ 単翼
23 スリット群
23a、23b・・ スリット
29 収納筒
40 光センサ
50 制御手段
100 空洞管
191 循環口
192 循環ホース
194 ガス排出口
DESCRIPTION OF SYMBOLS 10 Base 11 Base 14 Liquid introduction chamber 17 Liquid extraction chamber 21 Electrode shaft 20 Electrode 21 Electrode shaft 22 Blade electrode 22a, 22b ... Single blade 23 Slit group 23a, 23b ... slit 29 Storage cylinder 40 Optical sensor 50 Control means 100 Cavity pipe 191 Circulation port 192 Circulation hose 194 Gas exhaust port

Claims (3)

空洞管の内面を、軸方向に挿入された電極によって電解研磨する電解研磨装置において、
前記空洞管の上端に設けられ、所定高さの位置に液循環口が設けられた液導出室と、
前記空洞管からの下端から空洞管に電解液を注入し、さらに、空洞管から液導出室の前記液循環口を介し電解液を循環させる液循環手段と、
前記液導出室の液循環口付近の喫水線から上の位置に滞留する泡を検出する泡検出手段と、
前記検出手段の出力を受けて泡の発生状況を制御する制御手段と、
を備えたことを特徴とする空洞管の電解研磨装置。
In the electropolishing apparatus for electropolishing the inner surface of the hollow tube with an electrode inserted in the axial direction,
A liquid outlet chamber provided at an upper end of the hollow pipe and having a liquid circulation port at a predetermined height;
A liquid circulation means for injecting an electrolytic solution from the lower end of the hollow tube into the hollow tube, and further circulating the electrolytic solution from the hollow tube through the liquid circulation port of the liquid outlet chamber;
Bubble detecting means for detecting bubbles staying at a position above the water line near the liquid circulation port of the liquid outlet chamber;
Control means for receiving the output of the detection means to control the occurrence of bubbles;
An electrolytic polishing apparatus for a hollow tube, comprising:
前記泡検出手段が液導出室の喫水線の上側の光の透過を検出する光センサである請求項1に記載の空洞管の電解研磨装置   2. The electrolytic polishing apparatus for a hollow tube according to claim 1, wherein the bubble detecting means is an optical sensor that detects transmission of light on the upper side of the water line of the liquid outlet chamber. 制御手段の制御対象が、空洞管を包む空調カバー内の温度、電解液の温度、前記液導出室の圧力、電解液の循環流量、電解電圧の少なくともいずれか1つである請求項1または2に記載の空洞管の研磨装置




The control object of the control means is at least one of the temperature in the air-conditioning cover enclosing the hollow tube, the temperature of the electrolytic solution, the pressure of the liquid outlet chamber, the circulating flow rate of the electrolytic solution, and the electrolytic voltage. Polishing device for hollow tube as described in




JP2013194932A 2013-09-20 2013-09-20 Electrolytic polishing equipment for hollow tube Active JP6231835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194932A JP6231835B2 (en) 2013-09-20 2013-09-20 Electrolytic polishing equipment for hollow tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194932A JP6231835B2 (en) 2013-09-20 2013-09-20 Electrolytic polishing equipment for hollow tube

Publications (2)

Publication Number Publication Date
JP2015059255A true JP2015059255A (en) 2015-03-30
JP6231835B2 JP6231835B2 (en) 2017-11-15

Family

ID=52817032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194932A Active JP6231835B2 (en) 2013-09-20 2013-09-20 Electrolytic polishing equipment for hollow tube

Country Status (1)

Country Link
JP (1) JP6231835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151102A1 (en) * 2018-02-02 2019-08-08 マルイ鍍金工業株式会社 Electrolytic polishing method and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861334A (en) * 1971-09-18 1973-08-28
JPS49122826A (en) * 1973-03-15 1974-11-25
JPS6230900A (en) * 1985-07-30 1987-02-09 Neos Co Ltd Electrolytic polishing method for inside surface of pipe
JPH05317606A (en) * 1992-05-26 1993-12-03 Kawasaki Steel Corp Ultrasonic defoaming device and continuous defoaming method using this device
JPH08165600A (en) * 1994-12-14 1996-06-25 Yamaguchi Seisakusho:Kk Method for polishing inner face of stainless steel vessel and device therefor
JP2005240144A (en) * 2004-02-27 2005-09-08 Takahisa Deguchi Production method for titanium-based metal product
JP2011086450A (en) * 2009-10-14 2011-04-28 Mitsubishi Heavy Ind Ltd Surface treatment method of superconducting acceleration cavity

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861334A (en) * 1971-09-18 1973-08-28
JPS49122826A (en) * 1973-03-15 1974-11-25
JPS6230900A (en) * 1985-07-30 1987-02-09 Neos Co Ltd Electrolytic polishing method for inside surface of pipe
JPH05317606A (en) * 1992-05-26 1993-12-03 Kawasaki Steel Corp Ultrasonic defoaming device and continuous defoaming method using this device
JPH08165600A (en) * 1994-12-14 1996-06-25 Yamaguchi Seisakusho:Kk Method for polishing inner face of stainless steel vessel and device therefor
JP2005240144A (en) * 2004-02-27 2005-09-08 Takahisa Deguchi Production method for titanium-based metal product
JP2011086450A (en) * 2009-10-14 2011-04-28 Mitsubishi Heavy Ind Ltd Surface treatment method of superconducting acceleration cavity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151102A1 (en) * 2018-02-02 2019-08-08 マルイ鍍金工業株式会社 Electrolytic polishing method and device
CN110637108A (en) * 2018-02-02 2019-12-31 丸井镀金工业株式会社 Electrolytic grinding method and apparatus
EP3613877A4 (en) * 2018-02-02 2020-05-13 Marui Galvanizing Co., Ltd Electrolytic polishing method and device
CN110637108B (en) * 2018-02-02 2021-07-23 丸井镀金工业株式会社 Electrolytic grinding method and apparatus

Also Published As

Publication number Publication date
JP6231835B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US9689086B2 (en) Electrode for polishing hollow tube, and electrolytic polishing method using same
WO2017081893A1 (en) Hydrogen-containing water generator, and method for generating hydrogen-containing water
US11021807B2 (en) Electrolytic polishing method and device
WO2016056620A1 (en) Rotor for polishing hollow tubes
JP6231835B2 (en) Electrolytic polishing equipment for hollow tube
JP2014132109A (en) Anodic oxidation treatment apparatus, and anodic oxidation treatment method
JP7437016B2 (en) Electrolytic polishing method and device
WO2013151381A1 (en) Apparatus and method for anodizing inner surface of tube
JP2008184639A (en) Electro-polishing method
JP6804086B2 (en) Electrolytic processing equipment and method
JP2007160849A (en) Liquid supply device
JP5742689B2 (en) Electrolytic treatment apparatus and mold manufacturing method using the treatment apparatus
JP6374724B2 (en) Cavity tube polishing equipment
JP6231838B2 (en) Cavity tube partial electrolytic polishing jig and electrolytic polishing method
JP6009268B2 (en) Cleaning liquid generating apparatus, cleaning liquid generating method, substrate cleaning apparatus, and substrate cleaning method
US20160290405A1 (en) Bearing manufacturing method
CN108031998A (en) The welder and its welding method of a kind of glassy metal
JP2013124407A (en) Alumite treatment method
JP2004059936A (en) Surface treatment apparatus for aluminum alloy
JP5725910B2 (en) Pickling treatment method and pickling treatment apparatus
JP3667437B2 (en) Electrolyzed water generator
JP2016032806A (en) Liquid treatment apparatus
JPH10324998A (en) Method for controlling oxidized film thickness in formation of anodically oxidized film of aluminum shape material
JP2012243827A (en) Circulation thermostatic wet etching device and wet etching processing tank
KR100381136B1 (en) Electrolytic Liquid circulation apparatus of formation process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171020

R150 Certificate of patent or registration of utility model

Ref document number: 6231835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250